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Abstract

This paper studies a new lot-size inventory problem for products whose demand pattern is dependent

on price, advertising frequency and time. It is considered that the demand rate of an item multiplicatively

combines the effects of a power function dependent on the frequency of advertisement and a function de-

pendent on both selling price and time. This last function is additively separable in two power functions,

one varies with the selling price and the other depends on the time since the last inventory replenishment.

Moreover, it is assumed that the holding cost per unit of item is a non-linear function of time in stock.

Shortages are not allowed. The aim consists of determining the frequency of advertisement, the selling price

and the length of the stock period to maximize the average profit per unit time. This leads to a mixed

integer non-linear inventory problem, which is solved by using an efficient algorithm previously developed.

The inventory model considered here extends several inventory models previously proposed in the literature.

Some numerical examples are solved to illustrate how the algorithm works to obtain optimal inventory poli-

cies. Finally, a sensitivity analysis for the optimal solution with respect to the parameters of the inventory

system is presented.

Keywords: inventory; profit maximization; advertisement-dependent demand; time and price-dependent

demand; non-linear holding cost

1 Introduction

One of the main objectives in any company or organization that distributes products is to have a sufficient

amount of stored items to be able to satisfy the demand of the clients during a reasonable period of time and

to sell the items at an acceptable selling price to obtain the maximum profit.
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In general, demand for items is not constant and fluctuates over time due to external causes that occur

in the market. Therefore, the control of the inventory of an article is a dynamic activity that requires the

continuous revision of the operative methods to reflect the possible changes in the stock level of the products.

As a consequence, inventory systems must be adapted to new situations by applying the most efficient inventory

policies at any time.

The theory of stock management seeks to maintain adequate levels of inventory to meet customer demand and

in turn to obtain the highest possible profit. To carry out this control, it is necessary to develop mathematical

models that allow the characteristics of the inventory systems to be represented in order to deduce good

properties on the strategies to follow in the stock control. In this way, the optimal inventory policies that

should be applied to stock management can be determined.

As in real-life inventory systems, the demand rate often depends on time, so it would be interesting to analyze

functions that better represent the demand rate. Thus, Naddor (1966) introduced the power demand pattern

as an adequate function to model the customer demand process. This function considers that the demand

depends both on the time elapsed since the last replenishment and on the duration of the inventory cycle. After

Naddor, other works have appeared in the literature that consider this type of demand. For example, we can

cite the articles by Datta and Pal (1988); Singh et al. (2009); Rajeswari and Vanjikkodi (2011); Mishra and

Singh (2013); and Mandal and Islam (2015). In all these papers, it is assumed that the length of the inventory

cycle is known and fixed. However, Sicilia et al. (2012) and Siclia et al. (2014) developed several inventory

systems in which the length of the inventory cycle was unknown and assumed that it was a decision variable of

the inventory model. More recently, San-José et al. (2017) studied an inventory system with a power demand

pattern and partial backlogging, where the duration of the inventory cycle was a decision variable.

The customer’s behavior can also depend on the selling price of the products (see, e.g., Mills, 1959; Karlin

and Carr, 1962; Federgruen and Heching, 1999; Petruzzi and Dada, 1999; Smith et al., 2007; and Kabirian,

2012). Usually, if the selling price increases, then demand decreases, and viceversa. A hypothesis frequently

used in the literature is that demand depends linearly on the selling price of the article (see, e.g., Roy, 2008;

Sundar et al., 2012; Rao et al., 2014; Chaudhary and Sharma, 2015; Alfares and Ghaithan, 2016; and Panda et

al., 2017). Chen et al. (2006) extended this type of demand function and assumed a power function of the price

in the inventory system with periodic review and finite planning horizon. The above papers assume that demand

depends on the selling price, but it does not depend on the time elapsed since the replenishment is received.

However, it would be more realistic to consider that the demand function depends on both selling price and time.

In the literature, there are several works in which it is considered that the demand rate depends on the time

and the selling price. Thus, You (2005) determined the order size and optimal price for a perishable inventory

system considering time and price dependent demand. Maihami and Abadi (2012) developed an inventory model

for non-instantaneously deteriorating items with price and time dependent demand and permissible delay in

payments. Soni (2013) studied an inventory model with an additive demand rate with respect to both the sale

price and the stock level. Wu et al. (2014) reviewed and corrected the Soni model. Avinadav et al. (2014)
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analyzed two inventory models with demand dependent on time and price (one with a multiplicative influence

of price and time, and the other with an additive effect). Hossen et al. (2016) analyzed a fuzzy inventory model

for deteriorating items, considering that demand is dependent on price and time and assuming an inflation

effect. Recently, Herbon and Khmelnitsky (2017) developed an inventory model with an additive demand rate

that generalizes the pseudoadditive model suggested in Avinadav et al. (2014). Pervin et al. (2019) developed

a multi-item inventory model for deteriorating items where the retailer’s demand depends on the stock level

and the selling price under a trade-credit policy. Shaikh et al. (2019) developed two inventory models with

price- and stock-dependent demand, linearly time-varying carrying cost, and variable unit purchase cost under

all-units quantity discount environment. Khan et al. (2019) developed two inventory models (with and without

shortages) for deteriorating products, assuming that demand depends linearly on price and the deterioration

rate is a time-varying increasing function, which depends on the expiration date.

In classic inventory models, the maintenance cost is considered to be a linear function of time. However,

this hypothesis may not be realistic for some articles. Thus, Weiss (1982) analyzed an inventory model with

constant demand where the holding cost was a power function of time. He showed that models with non-linear

holding cost can be applied to inventory systems in which the value of the product decreases non-linearly with

respect to the time spent in the inventory. Later, Ferguson et al. (2007) showed how the deterministic inventory

model studied by Weiss was an approximation of the optimal batch size for perishable items. More recently,

some authors have considered that the holding cost per unit and per unit of time is a linearly increasing function

of time. Pervin et al. (2017, 2018a, 2018b) are some of the papers in this research line.

In the inventory literature, there are several articles on inventory models in which product demand is sen-

sitive to the frequency of advertisement through media (press, radio, television, internet, etc.). Thus, Goyal

and Gunasekaran (1995) developed an integrated production-inventory model considering the effect of the price

and the advertising frequency on the demand of a deteriorating item. Shah and Pandey (2009) studied the

economic replenishment policy in an EOQ model with stock-level and advertisement-frequency dependent de-

mand. Shah et al. (2013) studied an inventory system for non-instantaneous deteriorating items in which

the demand rate is a function of the advertisement of an item and the selling price. Rabbani et al. (2015)

developed an integrated model for dynamic pricing and inventory control of non-instantaneous deteriorating

items. Their demand rate is a function of the selling price, frequency of advertisement and changes in price

per time unit. Manna et al. (2017) analyzed an economic production quantity (EPQ) model with imperfect

production system and advertisement dependent demand, where the advertisement rate is assumed to be an

exponentially increasing function with respect to time, but with a gradually decreasing growth rate. Bhunia et

al. (2017) presented a production-inventory model to study the effects of partially integrated production and

marketing policy, considering that demand is dependent on the selling price and marketing cost. Chen (2018)

developed a production-inventory model of perishable products with pricing and promotion for a single-vendor

multi-buyer system comprising one manufacturer and multiple retailers. Rad et al. (2018) studied inventory

models of a vendor–buyer supply chain with imperfect products and shortages completely backordered by the
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buyer, assuming that both the selling price and advertisements influence market demand. Panda et al. (2019)

introduced an inventory model for deteriorating items, where demand depends on frequency of advertisement,

price and stock under the credit policy approach, considering the frequency of advertising to be constant. Khan

et al. (2020) studied two inventory models for a deteriorating product, which has a maximum useful life,

assuming that demand depends on the selling price and the frequency of advertisement, while also considering

the advance payment.

Table 1 shows a list of papers previously cited that have been developed since 2010, classifying them according

to the type of demand, the shortage and the unit cumulative holding cost.

In this paper, we study an inventory model for a single item whose demand depends on marketing strategies,

the selling price and time. Thus, we assume that the demand rate is the product of a power function dependent

on the advertising frequency and a function dependent on both selling price and time. Moreover, we consider

that this last function is additively separable in two power functions, one dependent on the selling price and the

other dependent on the time since the last inventory replenishment. As in San-José et al. (2015), we suppose

that the holding cost per unit of product has two components: a fixed cost and a variable cost that is a power

function of the time that the items spend in stock. The objective is to determine the values of the frequency

of advertisement, the selling price and the lot size that maximize the average profit per unit of time. To solve

this mixed integer non-linear problem, we have developed an efficient algorithm that finds a maximum. In

some steps of the algorithm, we need to solve non-linear equations by using some numerical method of solving

equations (for example, the bisection method or the Newton-Raphson method).

This new inventory model can be useful for products whose demand is sensitive to the effect of advertising

policies, changes in the selling price and time spent in the inventory. In this sense, we can mention, among

others, the following goods: (a) cooked foods, fruit, yoghurts, etc., which have a higher demand at the beginning

than at the end of the inventory period; (b) sugar, coffee, oil, salt, water, etc., which may have a lower demand at

the beginning of the inventory cycle and this increases as the stock decreases; and (c) kitchen utensils, supplies,

consumables, etc., which have an almost constant demand during the inventory cycle. In order to clarify the

contribution of our work for the readers, we have shown the main characteristics of the present paper and of

previous papers published since 2010 in Table 1.

The rest of the paper is organized as follows. Section 2 introduces the properties of the inventory system

and shows the notation that will be used throughout the paper. Section 3 presents the formulation of the

mathematical model and finds the profit function per unit time to be maximized. In Section 4, an algorithm to

determine an optimal inventory policy is developed. Section 5 presents some numerical examples to illustrate

the theoretical results and the application of the algorithm. Moreover, a numerical sensitivity analysis for the

optimal values of the decision variables (frequency of advertisement, selling price and length of inventory cycle),

the lot size and the maximum profit with respect to the parameters of the inventory system is given. Finally,

the conclusions are drawn and future research lines are addressed in Section 6.
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Table 1. Summary of literature published since 2010

Authors Demand rate Shortage
Unit cumulative

holding cost

Constant
Stock-

dependent

Time-

dependent

Price-

dependent

Advertisement

-dependent
Fixed

Time-

dependent

Alfares and Ghaithan (2016) Linear Quadratic

Avinadav et al. (2014) General General Linear

Bhunia et al. (2017) Linear Yes PBO Linear

Chaudhary and Sharma (2015) Linear PBO Linear

Chen (2018) Mixture PBO Linear

Herbon and Khmelnitsky (2017) General General Linear

Hossen et al. (2016) Linear Linear PBO Fuzzy

Kabirian (2012) General Linear

Khan et al. (2019) Linear PBO Quadratic

Khan et al. (2020) Linear Yes PBO Quadratic

Maihami and Abadi (2012) Exponential Linear PBO Linear

Mandal and Islam (2015) Power pattern PBO Fuzzy

Manna et al. (2017) Mixture Yes Linear

Mishra and Singh (2013) Power pattern PBO Linear

Panda et al. (2017) Linear Linear

Panda et al. (2019) Yes Linear Yes PBO Linear

Pervin et al. (2017) Yes PBO Quadratic

Pervin et al. (2018a) Yes PBO Quadratic

Pervin et al. (2018b) Linear PBO Quadratic

Pervin et al. (2019) Yes Exponential FBO Linear

Rabbani et al. (2015) Changes in price Mixture Yes General

Rad et al. (2018) Iso-elastic Yes FBO Linear

Rao et al. (2014) Linear FBO Linear

Rajeswari and Vanjikkodi (2011) Power pattern PBO Linear

San-José et al. (2015) Yes PBO Yes Power

San-José et al. (2017) Power pattern PBO Linear

Shah et al. (2013) Iso-elastic Yes General

Shaikh et al. (2019) Yes Linear PBO Quadratic

Sicilia et al. (2012) Power pattern FBO Linear

Sicilia et al. (2014) Power pattern Linear

Soni (2013) Yes General Linear

Sundar et al. (2012) Linear Linear

Wu et al. (2014) Yes General Linear

This paper Power pattern Polynomial Yes Yes Power

PBO: partial backordering; FBO: full backordering

2 Hypothesis and notation

The notation used throughout the paper is presented in Table 2.

The mathematical model for the inventory system studied here is based on the following hypotheses:
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Table 2. Notation

K Cost of placing an order (> 0)

c Unit purchasing cost (> 0)

h0 Fixed accommodating cost per stored unit (≥ 0)

h Scale parameter for the holding cost (> 0)

θ Elasticity of the holding cost (≥ 1)

H(t) Cumulative holding cost for t units of time, that is, H(t) = h0 + htθ

p Unit selling price (p ≥ c, decision variable)

pm Maximum unit price for sale

A Frequency of advertisement per cycle (≥ 0, decision variable)

v Cost for each advertisement

T Inventory cycle length (≥ 0, decision variable)

D(A, p, t) Demand per unit of time at time t when the frequency of advertisement is A and the selling

price is p, with 0 < t < T

η Power of the advertising frequency in the demand rate

α Scale parameter of the part of the price-dependent demand

β Sensitivity parameter of the demand with respect to price

γ Exponent of the selling price in the demand rate

λ Scale parameter of the part of the time-dependent demand

δ Index of the power demand pattern (> 0)

I(A, p, t) Inventory level at time t when the frequency of advertisement is A and the selling price is p,

with 0 ≤ t < T

Q Lot size (> 0)

B(A, p, T ) Average profit per unit of time

1. The inventory refers to a single product.

2. The inventory is reviewed continuously and the planning horizon is infinite.

3. The inventory replenishment is instantaneous.

4. Shortages are not allowed.

5. The replenishing quantity or lot size is constant, but unknown.

6. The cost K of placing an order is constant and independent of the lot size.

7. The price c of acquisition of a unit of the product is a known constant.

8. The demand rate D(A, p, t) is a function of the frequency of advertisement, the selling price and time.

Thus, it is assumed thatD(A, p, t) = (A+ 1)
η
[
α− βpγ + λδ

(
t
T

)δ−1
]
, with α, β, λ, δ > 0, γ ≥ 1, 0 < η < 1

and c ≤ p ≤ pm, where pm is the maximum selling price, that is,

pm = (α/β)
1/γ

.
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Hence, the demand rate combines the effects of the unit selling price, the power demand pattern and the

frequency of advertisement.

Given the advertising frequency A and the unit selling price p, the demand rate D(A, p, t) describes the

way by which demanded quantities are taken out of the inventory. There exist several real-life products

that can follow this type of demand pattern. Thus, demand for cooked products, such as sweets, breads,

cakes, etc., is higher at the beginning of the inventory cycle because customers prefer goods that have just

been made. Also, other products, such as fish, fruit, yoghurts, etc., have greater demand at the beginning

than at the end of the inventory cycle, because these products have an expiry date and, in general, people

prefer to buy these products when they are recently put up for sale and their expiration date is far away.

These situations are considered in the demand rate function, assuming a demand pattern index n > 1.

There exist other products where demand at the beginning of the inventory period is lower than at the end

of the period. Thus, household goods such as sugar, milk, coffee, oil, etc., have major demand when the

amount in the inventory decreases significantly, because if people detect that these products are becoming

scarce, then the demand for them grows considerably because they are basic products in daily use. In

this case, the fluctuation of demand can be modeled considering a demand pattern index n < 1. Lastly,

other products have a uniform demand rate along the inventory cycle. For instance, electrical goods,

supplies, furniture, kitchen utensils and appliances, etc., have a more or less constant demand during

the replenishment cycle. This situation can be modeled by using a demand pattern index n = 1 in the

function D(A, p, t). Therefore, the function D(A, p, t) allows to describe the behavior of customer demand

for a wide variety of products.

9. The cumulative cost of holding per unit of product up to time t is a non-linear function of storage time.

It is assumed, as in San-José et al. (2015), that H(t) = h0 + htθ, with h0 ≥ 0, h > 0 and θ ≥ 1. Thus, h0

represents a fixed accommodating cost per stored unit (independent of time), h is the scaling factor and

θ is the shape parameter.

10. As no shortages are allowed, the lot size Q must be equal to the total demand during the inventory cycle,

that is, Q =
∫ T

0
D(A, p, t)dt.

3 The mathematical model

It is considered that an order of Q units is received at time t = 0, so that at the beginning of the inventory

cycle there are Q items in the inventory. During the period (0, T ), the inventory level decreases due to demand.

Therefore, for all t ∈ [0, T ), the inventory level at time t is given by

I(A, p, t) = Q−

∫ t

0

D(A, p, x)dx =

∫ T

t

D(A, p, x)dx =

{
(α− βpγ)(T − t) + λT

[
1−

(
t

T

)δ
]}

(A+ 1)
η
. (1)

The lot size Q is equal to I(A, p, 0). Thus, we have

Q = (α− βpγ + λ)T (A+ 1)
η
. (2)
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Taking into account the previous hypotheses, the income and costs in each cycle are calculated:

• Revenue: pQ = pT (α− βpγ + λ) (A+ 1)
η

• Purchasing cost: cQ = cT (α− βpγ + λ) (A+ 1)
η

• Ordering cost: K

• Advertisement cost: vA

• Holding cost:
∫ T

0
H(t)D(A, p, t)dt = h0(α− βpγ + λ) (A+ 1)

η
T + hf(p) (A+ 1)

η
T θ+1, where

f(p) =
(α− βpγ) (θ + δ) + λδ(θ + 1)

(θ + 1)(θ + δ)
> 0. (3)

Therefore, the total profit during the inventory cycle is

(p− c− h0)(α− βpγ + λ) (A+ 1)
η
T −

(
K + vA+ hf(p) (A+ 1)

η
T 1+θ

)
. (4)

The objective is to maximize the total profit per unit of time, that is,

B(A, p, T ) = (p− c− h0)(α− βpγ + λ) (A+ 1)
η
−

(
K + vA

T
+ hf(p) (A+ 1)

η
T θ

)
. (5)

So, the inventory problem consists of solving the optimization problem

max
(A,p,T )∈Π

B(A, p, T ), (6)

where Π = {(A, p, T ) : T > 0, c ≤ p ≤ pm and A ∈ Z, with A ≥ 0}.

4 Problem solution

In this section, we provide a procedure to obtain an optimal inventory policy that solves the problem (6). We

start by giving some useful theoretical results in order to find the optimal inventory cycle T ∗ and the optimal

selling price p∗ when A is fixed. In this situation, we first consider the unit selling price of the item as fixed and

then, the best inventory cycle for that price is determined. Thus, assuming that the advertising frequency A and

the unit selling price p are fixed, with A > 0 and p ∈ [c, pm], we can consider the function BA,p(T ) = B(A, p, T ),

with T > 0 variable. The following result gives the optimal length of the inventory cycle.

Lemma 1 For any fixed values of A and p, the function BA,p(T ) is strictly concave and attains its maximum

at the point

T ∗(A, p) =

(
Av +K

θhf(p) (A+ 1)
η

)1/(θ+1)

. (7)

Proof. See Appendix.

Now, evaluating the function BA,p(T ) at the point T ∗(A, p) and considering p variable, we obtain the

univariate function

GA(p) = B(A, p, T ∗(A, p)) = (p− c− h0)(α− βpγ + λ) (A+ 1)
η
− (θ + 1)hf(p) (A+ 1)

η
(T ∗(A, p))

θ
(8)
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Also, this function GA(p) can be expressed as

GA(p) = (p− c− h0)(α− βpγ + λ) (A+ 1)
η
−

(θ + 1)(Av +K)

θT ∗(A, p)
(9)

It is evident that GA(p) is a continuous and twice-differentiable function on the interval (c, pm). Thus, the

first derivative of GA(p) is given by

G′
A(p) =

[
g1(p) +

βγh

θ + 1
pγ−1 (T ∗(A, p))

θ

]
(A+ 1)

η
, (10)

where

g1(p) = α+ λ+ β [γ (c+ h0)− (γ + 1)p] pγ−1, (11)

and the second derivative of the function GA(p) is:

G′′
A(p) = βγpγ−2 (A+ 1)

η

[
(c+ h0 − p)γ − (c+ h0 + p) +

h

θ + 1
(T ∗(A, p))

θ

(
γ − 1 +

βγθpγ

(θ + 1)
2
f(p)

)]
. (12)

By studying the function GA(p) and its first two derivatives, we can establish a criterion to determine the

selling price p∗(A) that maximizes the function GA(p). To do this, below we provide an interesting property of

the function g1(p).

Lemma 2 Let g1(p) be the function defined by (11).

1. If λ ≥ αγ (1− (c+ h0)/pm), then g1(p) > 0 for all p ∈ [c, pm).

2. Otherwise, g1(p) > 0 for all p ∈ [c, p1) and g1(p) < 0 for all p ∈ (p1, pm], where

p1 = argp∈(c,pm){g1(p) = 0}. (13)

Proof. See Appendix.

Taking into account the result of the above lemma, if λ ≥ αγ (1− (c+ h0)/pm), then g1(p) > 0 and

G′
A(p) > 0 for all p ∈ [c, pm). Therefore, the maximum profit is attained at the price p∗(A) = pm. However, if

λ < αγ (1− (c+ h0)/pm), then G′
A(p) > 0 and GA(p) increases for all p ∈ [c, p1). Thus, the maximum profit

must be in the interval (p1, pm]. Hence, let p̃(A) be a solution of the equation G′
A(p) = 0 in the interval (p1, pm).

From (12), that solution has to satisfy G′′(p̃(A)) = (A+1)η(p̃(A))γ−1

(θ+1)2f(p̃(A))
g2(p̃(A)), where

g2(p) = β2γθpγ−1 ((γ + 1)p− γ(c+ h0))+p−γ(1−γ) (α+ λ) (θ+1)2f(p)−β
(
(θ + 1)2(γ + 1)f(p) + γθ(α+ λ)

)
.

(14)

Next, in order to know the number of local extrema of the function GA(p) in the interval (p1, pm), we study the

function g2(p) on such an interval.

The first derivative of the function g2(p) is given by

g′2(p) = β2γ2θpγ−2 ((γ + 1)p− (γ − 1)(c+ h0)) +
γ

θ + δ
(γ − 1)(θ + 1)(α+ λ) (θ(α+ δλ) + (α+ λ)δ) p−(γ+1)

+β2γ(γ + 1)(θ + 1)pγ−1
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Since p ∈ (p1, pm), we have g1(p) < 0 and, from (11), it follows that γ (c+ h0) < (γ + 1)p and, therefore, the

derivative of g2(p) is always positive in such an interval. Consequently, the function g2(p) is strictly increasing.

Thus, we can conclude that the function GA(p) has at most two local extremes in the interval (p1, pm).

Taking into account that

g2(p1) =
βγ(θ + 1)2 (γ (c+ h0 − p1)− (c+ h0 + p1)) f(p1)

p1
= −

βγ(θ + 1)2f(p1)

p1
((γ + 1)p1 − (γ − 1)(c+ h0))

and g1(p1) = 0, it leads to g2(p1) < 0. Since limp→∞ g2(p) = ∞, it follows that g2(p) has a root p2 in the

interval (p1,∞). In addition, if p̃(A) < p2 then G′′(p̃(A)) < 0 and the function GA(p) has a local maximum at

the point p̃(A) ∈ (p1, pm).

Now, we can already state one of our main results in the following theorem, which gives us a criterion to

determine the selling price p∗(A) that maximizes the function GA(p).

Theorem 1 Let GA(p), G
′
A(p), g1(p), G

′′
A(p) and g2(p) be the functions defined by (8), (10), (11), (12) and

(14), respectively. Consider pm = (α/β)
1/γ

, p1 = argp∈(c,pm){g1(p) = 0} and p2 = argp∈(p1,∞){g2(p) = 0}. We

have:

1. If λ ≥ αγ (1− (c+ h0)/pm), then p∗(A) = pm.

2. If λ < αγ (1− (c+ h0)/pm) and G′
A(pm) < 0, then p∗(A) is the only root of the equation G′

A(p) = 0 in

the interval (p1, pm).

3. If λ < αγ (1− (c+ h0)/pm) and G′
A(pm) ≥ 0, then three cases can occur:

(a) If p2 ≥ pm, then p∗(A) = pm.

(b) If p2 < pm and G′
A(p2) ≥ 0, then p∗(A) = pm.

(c) Otherwise (that is, p2 < pm and G′
A(p2) < 0), let p̃(A) = argp∈(p1,p2){G

′
A(p) = 0}.

i. If GA(p̃(A)) ≤ GA(pm), then p∗(A) = pm.

ii. If GA(p̃(A)) > GA(pm), then p∗(A) = p̃(A).

Proof. See Appendix.

To obtain an optimal inventory policy that solves the inventory problem (6), we next analyze the behavior of

the function B(A, p, T ) with respect to the integer decision variable A. Thus, assuming that the unit selling price

p and the length of the inventory cycle T are fixed, with p ∈ [c, pm] and T > 0, we can consider the univariate

function Bp,T (A) = B(A, p, T ). Relaxing the integer condition and assuming A is a continuous variable, the

first derivarive of Bp,T (A) is given by

B′
p,T (A) =

[
(p− c− h0)(α− βpγ + λ)− hf(p)T θ

]
η (A+ 1)

η−1
−

v

T
(15)

By analyzing the function B′
p,T (A), we can establish the following result:

Theorem 2 For any fixed values of p and T , we have:

1. If (p− c− h0)(α− βpγ + λ)− hf(p)T θ ≤ 0, then the function Bp,T (A) is strictly decreasing.

10



2. If (p− c− h0)(α− βpγ + λ)− hf(p)T θ > 0, then Bp,T (A) is a strictly concave function.

Proof. See Appendix.

Based on Eq. (15) and Theorems 1 and 2, we can develop an algorithm to solve the model studied in this

paper.

Algorithm 1

Step 1 Set i = 1, A(i) = 0.

Step 2 Set A = A(i).

Using Theorem 1, calculate p(i) = p∗A.

From (7), obtain T (i) = T ∗(A(i), p(i)), and, from (8), determine B(i) = GA(p
(i)).

Step 3 Set p = p(i) and T = T (i).

If (p− c− h0)(α− βpγ + λ)− hf(p)T θ ≤ 0, then A(i+1) = 0.

Otherwise, calculate

A(i+1) =

⌈(
v

ηT ((p− c− h0)(α− βpγ + λ)− hf(p)T θ)

)1/(η−1)

− 1

⌉
.

Step 4 If A(i+1) 6= A(i), set i = i+ 1 and go to step 2.

Otherwise, go to step 5.

Step 5 If i = 1, then set (A∗, p∗, T ∗, B∗) = (A(i), p(i), T (i), B(i)).

Otherwise:

If B(i) < B(i−1), then set (A∗, p∗, T ∗, B∗) = (A(i−1), p(i−1), T (i−1), B(i−1)).

Otherwise:

Set (A∗, p∗, T ∗, B∗) = (A(i), p(i), T (i), B(i)).

Step 6 The optimal solution is (A∗, p∗, T ∗) and the optimal profit per unit time is B∗.

Step 7 From (2), calculate the optimal lot size Q∗ = [α− β (p∗)
γ
+ λ] (A∗ + 1)

η
T ∗. Stop.

Note that Theorem 2 ensures that Algorithm 1 converges and gives an optimal inventory policy.

Let us present some interesting consequences of the previous results.

Corollary 1 Let (A∗, p∗, T ∗) be the optimal inventory policy given by Algorithm 1. If p∗ = pm, then the optimal

inventory cycle is

T ∗
0 = T ∗(A∗, pm) =

(
(A∗v +K)(θ + δ)

δθλh (A∗ + 1)
η

)1/(1+θ)

, (16)

the economic ordering quantity is Q∗
0 = λ (A∗ + 1)

η
T ∗
0 and the maximum profit per unit of time is

B∗
0 = GA∗(pm) = (pm − c− h0)λ (A

∗ + 1)
η
− (θ + 1)(A∗v +K)/(θT ∗

0 ). (17)
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Proof. It follows directly from (2), (3), (7) and (8).

Corollary 2 Let (A∗, p∗, T ∗) be the optimal inventory policy given by Algorithm 1. If p∗ < pm, then the optimal

inventory cycle is

T ∗
1 =

(
−(1 + θ)g1 (p

∗)

βγh (p∗)
γ−1

)1/θ

=



(1 + θ)

{
β (p∗)

γ−1
[(1 + γ)p∗ − γ(c+ h0)]− α− λ

}

βγh (p∗)
γ−1




1/θ

, (18)

the economic ordering quantity is Q∗
1 = (A∗ + 1)

η
(α+ λ− β (p∗)

γ
)T ∗

1 and the maximum profit per unit of time

is

B∗
1 = (A∗ + 1)

η

{
(p∗ − c− h0) (α+ λ− β (p∗)

γ
) +

(θ + 1)
2
f(p∗) [(α+ λ) p∗ + β (p∗)

γ
(γ (c+ h0)− (γ + 1) p∗)]

βγ (p∗)
γ

}

(19)

Proof. See Appendix.

4.1 Special models

In this subsection, we show how some inventory models developed by other authors can be considered as

particular cases of the inventory model studied here.

(a) If we assume that δ = 1, h0 = 0 and α, β, η → 0, we have the inventory model developed by Weiss (1982)

and Ferguson et al. (2007).

(b) If we suppose θ = 1, h0 = 0 and α, β, η → 0, we obtain the inventory system studied by Sicilia et al (2012)

for an item with power demand pattern where shortages are not allowed.

(c) If one considers δ = 1, θ = 1, γ = 1, h0 = 0 and η → 0, then we derive in the model proposed by

Kunreuther and Richard (1971) and Smith et al. (2007) when a linear demand curve is considered in their

models.

(d) If δ = 1, θ = 1, γ = 1, h0 = 0 and η → 0 are assumed, then we obtain the model developed by

Kabirian (2012) when it is supposed that the production cost is constant, the demand rate is linear and

the production rate tends to infinity.

(e) If δ = 1, γ = 1, h0 = 0 and η → 0, we have the inventory model proposed by Alfares and Ghaithan (2016),

assuming in their model that the time-varying holding cost coefficient is zero and quantity discounts are

not considered in the unit purchasing cost.

5 Numerical examples

In this section several numerical examples are presented to illustrate how the algorithm works.
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Example 1 Consider the following values for the parameters of the model: α = 243, β = 1, γ = 1.25, λ = 10,

δ = 2, K = 200, c = 20, h0 = 1, h = 0.6, θ = 1.5, η = 0.04 and v = 120. Applying Algorithm 1, the result of the

solution procedure is shown in Table 3. Thus, the optimal frequency of advertisement per cycle is A∗ = A(2) = 2,

the optimal selling price is p∗ = p(2) = 53.7419, the optimal inventory cycle is T ∗ = T (2) = 2.55792 and the

maximum profit is B∗ = B(2) = 3390.86. From (2), the economic lot size is Q∗ = 287.304.

Table 3. Computational results of Example 1

Iteration A(i) p(i) T (i) B(i) A(i+1)

i = 1 0 53.5764 1.89532 3344.02 ⌈1.251⌉ = 2

i = 2 2 53.7419 2.55792 3390.86 ⌈2.039⌉ = 3

i = 3 3 53.8101 2.80634 3387.28 ⌈2.331⌉ = 3

Example 2 Assume the same parameters as in Example 1, but now change the values of β and λ to β = 3.5

and λ = 100, respectively. Now, applying Algorithm 1, the result of the solution procedure is shown in

Table 4. Thus, the optimal frequency of advertisement per cycle is A∗ = A(1) = 0, the optimal selling price

is p∗ = p(1) = 29.7324, the optimal inventory cycle is T ∗ = T (1) = 1.72159 and the maximum profit is

B∗ = B(1) = 679.625. From (2), the economic lot size is Q∗ = 172.159.

Table 4. Computational results of Example 2

Iteration A(i) p(i) T (i) B(i) A(i+1)

i = 1 0 29.7324 1.72159 679.625 ⌈−0.5580⌉ = 0

Example 3 Now, let us assume the following parameters of the model: α = 243, β = 1, γ = 1.25, λ = 80,

δ = 0.01, K = 1000, c = 15, h0 = 0, h = 1, θ = 2, η = 0.04 and v = 600. Executing Algorithm 1, the result of the

solution procedure is shown in Table 5. Thus, the optimal frequency of advertisement per cycle is A∗ = A(1) = 0,

the optimal selling price is p∗ = p(1) = 61.0694, the optimal inventory cycle is T ∗ = T (1) = 2.73306 and the

maximum profit is B∗ = B(1) = 6466.70. From (2), the economic lot size is Q∗ = 416.195.

Table 5. Computational results of Example 3

Iteration A(i) p(i) T (i) B(i) A(i+1)

i = 1 0 61.0694 2.73306 6466.70 ⌈0.2563⌉ = 1

i = 2 1 61.4821 3.18821 6455.00 ⌈0.4603⌉ = 1

Example 4 Consider the same parameters as in Example 3, but modifying the values of β and λ to β = 2 and

λ = 120, respectively. Applying Algorithm 1, the result of the solution procedure is shown in Table 6. Thus, the

optimal frequency of advertisement per cycle is A∗ = A(2) = 2, the optimal selling price is p∗ = p(2) = 46.5223,

the optimal inventory cycle is T ∗ = T (2) = 12.0811 and the maximum profit is B∗ = B(2) = 3679.45. From (2),

the economic lot size is Q∗ = 1514.86.
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Table 6. Computational results of Example 4

Iteration A(i) p(i) T (i) B(i) A(i+1)

i = 1 0 46.5223 9.42602 3623.54 ⌈1.428⌉ = 2

i = 2 2 46.5223 12.0811 3679.45 ⌈2.115⌉ = 3

i = 3 3 46.5223 13.0423 3676.33 ⌈2.360⌉ = 3

Example 5 Assume the same parameters as in Example 4, but modifying the values of δ and λ to δ = 0.1 and

λ = 160, respectively. Executing Algorithm 1, the result of the solution procedure is shown in Table 7. Thus, the

optimal frequency of advertisement per cycle is A∗ = A(1) = 0, the optimal selling price is p∗ = p(1) = 45.3263,

the optimal inventory cycle is T ∗ = T (1) = 3.65817 and the maximum profit is B∗ = B(1) = 4678.21. From (2),

the economic lot size is Q∗ = 613.781.

Table 7. Computational results of Example 5

Iteration A(i) p(i) T (i) B(i) A(i+1)

i = 1 0 45.3263 3.65817 4678.21 ⌈0.2171⌉ = 1

i = 2 1 46.5223 4.67429 4671.91 ⌈0.5465⌉ = 1

5.1 Numerical sensitivity analysis

In this subsection, we analyze the sensitivity of the inventory model proposed in this paper. For that, let us

consider an inventory system that satisfies the assumptions described in Section 2 and has the following input

data: α = 2000, β = 1, γ = 2, λ = 1000, δ = 0.8, K = 200, c = 10, h0 = 1, h = 0.5, θ = 2, η = 0.04 and

v = 1000. From Algorithm 1, it follows that the optimal frequency of advertisement per cycle is A∗ = 2, the

optimal selling price is p∗ = 35.6573, the optimal inventory cycle is T ∗ = 1.58518, the economic lot size is

Q∗ = 2863.18 and the optimal profit is B∗ = 42454.51.

In order to know the effect of the parameters of the demand rate function on the optimal inventory policy,

we summarize in Table 8 the solutions of the inventory problem for different values of the parameters α, β, γ,

λ, δ and η.

From the computational results, we can establish the following managerial insights:

1. The optimal frequency of advertisement per cycle A∗, the best selling price p∗, the optimal lot size Q∗

and the maximum profit B∗ do not decrease as the parameter α or the parameter λ increase. However,

the optimal inventory cycle T ∗ does not follow a pattern of increasing or decreasing.

2. The optimal frequency of advertisement per cycle A∗, the optimal selling price p∗, the economic order

quantity Q∗ and the optimal profit B∗ do not increase as the parameter β or the parameter γ increase.

However, the optimal inventory cycle T ∗ does not follow a pattern of increasing or decreasing.

3. The optimal inventory policy is not very sensitive to changes in the parameter δ. Even so, if the value of

δ increases then the optimal advertising frequency per cycle A∗, the best selling price p∗, the economic

order quantity Q∗, the maximum profit B∗ and the optimal inventory cycle T ∗ do not increase.

14



Table 8. Effects of α, β, γ, λ, δ and η on optimal policy

α 1000 1500 1800 1900 2100 2200 2500 3000

A∗ 0 0 1 1 2 2 3 4

p∗ 29.7917 32.8039 34.5478 35.0815 36.1723 36.6794 38.1943 40.5522

T ∗ 0.852157 0.776596 1.33746 1.31885 1.56473 1.54527 1.68502 1.74783

Q∗ 947.988 1105.80 2208.96 2263.43 2929.24 2994.64 3635.56 4390.81

B∗ 20552.87 30660.36 37546.02 39964.29 45014.80 47629.57 55825.26 70635.06

β 0.5 0.75 0.9 0.95 1.05 1.1 1.25 1.5

A∗ 5 3 2 2 1 1 1 0

p∗ 48.7931 40.5581 37.3552 36.4726 34.8500 34.1462 32.2956 29.7796

T ∗ 2.05767 1.77522 1.58003 1.58262 1.30325 1.30526 1.31117 0.732453

Q∗ 4000.25 3314.32 2879.57 2871.30 2310.98 2304.74 2286.60 1223.02

B∗ 69681.86 52480.80 45943.36 44128.84 40910.63 39490.78 35765.24 30947.90

γ 1 1.5 1.8 1.9 2.1 2.2 2.5 3

A∗ 1651 29 6 3 0 0 0 0

p∗ 1521.89 118.274 52.5931 42.7682 30.2555 26.2243 18.6060 12.5992

T ∗ 14.0242 3.65112 2.20504 1.78357 0.725717 0.731101 0.760544 0.887904

Q∗ 27880.9 7168.90 4165.94 3287.14 1242.92 1226.97 1145.94 887.904

B∗ 2827115.22 198633.77 74363.52 55857.90 32564.98 25139.87 11065.88 1261.34

λ 500 750 900 950 1050 1100 1250 1500

A∗ 0 1 1 1 2 2 2 3

p∗ 32.8025 34.2756 35.0808 35.3447 35.9163 36.17321838 36.9322 38.1989

T ∗ 0.762660 1.33611 1.31475 1.30791 1.57716 1.569293561 1.54657 1.70681

Q∗ 1086.02 2163.78 2256.46 2286.98 2900.54 2937.686426 3047.90 3681.94

B∗ 30653.31 36346.88 39960.04 41192.10 43730.88 45020.91 48971.89 55861.45

δ 0.4 0.6 0.72 0.76 0.84 0.88 1 1.2

A∗ 2 2 2 2 2 2 1 1

p∗ 35.6865 35.6692 35.6616 35.6594 35.6553 35.6535 35.6005 35.5959

T ∗ 1.72690 1.64458 1.60687 1.59572 1.57521 1.56574 1.26431 1.23522

Q∗ 3115.39 2969.00 2901.83 2881.96 2845.39 2828.51 2252.14 2200.73

B∗ 42624.36 42529.32 42482.47 42468.19 42441.39 42428.79 42397.53 42364.08

η 0.02 0.03 0.036 0.038 0.042 0.044 0.05 0.06

A∗ 0 0 1 1 2 2 3 5

p∗ 35.5336 35.5336 35.6065 35.6064 35.6571 35.6568 35.6985 35.7678

T ∗ 0.721952 0.721952 1.30242 1.30182 1.58402 1.58285 1.78204 2.07075

Q∗ 1254.29 1254.29 2313.02 2315.17 2867.39 2871.61 3295.83 3967.45

B∗ 42208.24 42208.24 42317.74 42377.72 42550.95 42647.61 42985.61 43687.23
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4. The optimal frequency of advertisement per cycle A∗, the economic order quantity Q∗ and the optimal

profit B∗ do not decrease as the parameter η increases. However, the optimal inventory cycle T ∗ and the

optimal selling price p∗ do not follow a pattern of increasing or decreasing.

Table 9 shows the results of the sensitivity analysis, in which we explore the impact on the optimal policy

and the maximum profit of changing the parameters of the inventory system h0, h, θ, v, K and c. According

to the obtained results, we can establish the following issues:

1. The optimal frequency of advertisement per cycle A∗ is not sensitive to changes in the parameters h0 or

K.

2. The optimal selling price p∗ and the optimal inventory cycle T ∗ increase, while the optimal lot size Q∗

and the maximum profit B∗ decrease as the parameter h0 increases.

3. The optimal frequency of advertisement per cycle A∗, the economic order quantity Q∗, the optimal

inventory cycle T ∗ and the optimal profit B∗ do not increase as the parameter h increases. However,

the optimal selling price p∗ does not follow a pattern of increasing or decreasing.

4. The optimal frequency of advertisement per cycle, the best selling price, the economic order quantity and

the inventory cycle do not increase as the parameter θ increases. However, the maximum profit is first

decreasing and, later, increasing.

5. The optimal frequency of advertisement per cycle A∗ and the maximum profit B∗ do not increase as the

parameter v increases. However, the optimal inventory cycle, the best selling price and the lot size do not

follow a pattern of increasing or decreasing.

6. The optimal selling price p∗, the economic order quantity Q∗ and the optimal inventory cycle T ∗ increase,

while the optimal profit B∗ decreases as the parameter K increases.

7. The optimal frequency of advertisement per cycle A∗, the optimal lot size Q∗ and the maximum profit

B∗ do not increase, while the best selling price p∗ increases as the parameter c increases. However, the

optimal inventory cycle T ∗ does not follow a pattern of increasing or decreasing.

The impact of deviations in the estimation of the parameters of the demand rate funcion on the optimal

solution and the maximum profit is shown in Table 10. In this table, A′, p′, T ′, Q′ and B′ are the optimal values

calculated under the wrong parameter values, and A∗, p∗, T ∗, Q∗ and B∗ are the optimal values computed

under the correct parameter values. Thus, we have considered the effect of 50% over and under-estimation of

the parameters α, β, γ, λ, δ and η.

From the results shown in Table 10, we can make the following inferences:

1. The optimal frequency of advertisement, the best selling price p∗, the economic lot size Q∗ and the maxi-

mum profit B∗ are much more sensitive to the parameter γ as compared to other parameters considered.

Thus, for deviations in estimating the parameter γ, the ratio (A′ + 1) / (A∗ + 1) varies from 0.333333 to

550.667, the ratio p′/p∗ varies from 0.353342 to 42.6810 and the ratio B′/B∗ varies from 0.029710 to

66.5916.
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Table 9. Effects of h0, h, θ, v, K and c on optimal policy

h0 0.5 0.75 0.9 0.95 1.05 1.1 1.25 1.5

A∗ 2 2 2 2 2 2 2 2

p∗ 35.4703 35.5637 35.6198 35.6385 35.6760 35.6948 35.7511 35.8452

T ∗ 1.58077 1.58297 1.58429 1.58474 1.58563 1.58608 1.58742 1.58969

Q∗ 2877.19 2870.20 2865.99 2864.58 2861.77 2860.35 2856.11 2848.99

B∗ 43361.10 42906.94 42635.27 42544.86 42364.24 42274.03 42003.84 41554.91

h 0.25 0.375 0.45 0.475 0.525 0.55 0.625 0.75

A∗ 3 2 2 2 2 1 1 1

p∗ 35.6590 35.6429 35.6519 35.6546 35.6599 35.6098 35.6145 35.6216

T ∗ 2.25429 1.74434 1.64171 1.61245 1.55967 1.26059 1.20809 1.13698

Q∗ 4118.56 3152.52 2965.94 2912.75 2816.80 2244.65 2150.75 2023.55

B∗ 42922.42 42644.89 42526.36 42489.81 42420.38 42393.14 42330.98 42237.62

θ 1 1.5 1.8 1.9 2.1 2.2 2.5 3

A∗ 5 2 2 2 2 1 1 1

p∗ 35.8253 35.6825 35.6666 35.6618 35.6530 35.5995 35.5906 35.5788

T ∗ 3.47274 1.80816 1.65824 1.61962 1.55428 1.26856 1.23039 1.18542

Q∗ 6404.04 3262.53 2993.98 2924.83 2807.87 2259.79 2192.60 2113.48

B∗ 42785.32 42507.60 42472.22 42462.89 42446.96 42445.31 42455.99 42471.87

v 500 750 900 950 1050 1100 1250 1500

A∗ 5 3 2 2 1 1 1 0

p∗ 35.6770 35.6677 35.6476 35.6525 35.6093 35.6121 35.6205 35.5336

T ∗ 1.68206 1.63705 1.53539 1.56068 1.31910 1.33652 1.38623 0.721952

Q∗ 3121.03 2989.80 2774.35 2819.47 2348.88 2379.62 2467.29 1254.29

B∗ 43379.94 42806.52 42582.69 42518.09 42399.63 42361.97 42251.80 42208.24

K 100 150 180 190 210 220 250 300

A∗ 2 2 2 2 2 2 2 2

p∗ 35.6525 35.6549 35.6563 35.6568 35.6578 35.6582 35.6597 35.6620

T ∗ 1.56068 1.57303 1.58034 1.58277 1.58759 1.58999 1.59716 1.60896

Q∗ 2819.47 2841.50 2854.54 2858.87 2867.47 2871.75 2884.52 2905.56

B∗ 42518.09 42486.18 42467.15 42460.83 42448.21 42441.92 42423.09 42391.90

c 5 7.5 9 9.5 10.5 11 12.5 15

A∗ 3 2 2 2 2 1 1 1

p∗ 33.8662 34.7311 35.2841 35.4703 35.8452 35.9820 36.5520 37.5195

T ∗ 1.74466 1.56404 1.57646 1.58077 1.58969 1.30864 1.32039 1.34180

Q∗ 3417.35 2931.52 2891.02 2877.19 2848.99 2294.36 2258.83 2196.60

B∗ 51831.38 47055.91 44274.60 43361.10 41554.91 40670.68 38072.54 33887.07
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Table 10. Sensitivity analysis of α, β, γ, λ, δ and η on optimal policy

Percentage of under -or over- estimation of parameter

Parameter −50 −25 −10 −5 5 10 25 50

α A
′
+1

A∗+1
0.333333 0.333333 0.666667 0.666667 1 1 1.33333 1.66667

p′/p∗ 0.835500 0.919976 0.968885 0.983852 1.01444 1.02867 1.07115 1.13728

T ′/T ∗ 0.537576 0.489909 0.843725 0.831985 0.987096 0.974823 1.06298 1.10260

Q′/Q∗ 0.331097 0.386215 0.771508 0.790532 1.02307 1.04592 1.26977 1.53354

B′/B∗ 0.484115 0.722193 0.884382 0.941344 1.06031 1.12190 1.31494 1.66378

β A
′
+1

A∗+1
2 1.33333 1 1 0.666667 0.666667 0.666667 0.333333

p′/p∗ 1.36839 1.13744 1.04762 1.02286 0.977361 0.957621 0.905721 0.835162

T ′/T ∗ 1.29806 1.11988 0.996748 0.998385 0.822146 0.823415 0.827144 0.46206

Q′/Q∗ 1.39714 1.15757 1.00573 1.00284 0.807137 0.804959 0.798624 0.427156

B′/B∗ 1.64133 1.23617 1.08218 1.03944 0.963634 0.930190 0.842437 0.728966

γ A
′
+1

A∗+1
550.667 10 2.33333 1.33333 0.333333 0.333333 0.333333 0.333333

p′/p∗ 42.6810 3.31697 1.47496 1.19942 0.84851 0.735455 0.521802 0.353342

T ′/T ∗ 8.84707 2.30328 1.39103 1.12515 0.457813 0.461209 0.47978 0.560127

Q′/Q∗ 9.7377 2.50383 1.45501 1.14807 0.434104 0.428535 0.400235 0.310112

B′/B∗ 66.5916 4.67874 1.75160 1.31571 0.767056 0.592160 0.260653 0.029710

λ A
′
+1

A∗+1
0.333333 0.666667 0.666667 0.666667 1 1 1 1.33333

p′/p∗ 0.919939 0.96125 0.983833 0.991233 1.00726 1.01447 1.03575 1.07128

T ′/T ∗ 0.48112 0.842873 0.829397 0.825086 0.994939 0.989977 0.975644 1.07673

Q′/Q∗ 0.379307 0.755727 0.78810 0.798755 1.01305 1.02602 1.06452 1.28597

B′/B∗ 0.722027 0.856137 0.941244 0.970264 1.03006 1.06045 1.15351 1.31580

δ A
′
+1

A∗+1
1 1 1 1 1 1 0.666667 0.666667

p′/p∗ 1.00082 1.00033 1.00012 1.00006 0.999945 0.999893 0.998406 0.998280

T ′/T ∗ 1.08940 1.03747 1.01368 1.00665 0.993706 0.987737 0.797580 0.779228

Q′/Q∗ 1.08809 1.03696 1.01350 1.00656 0.993787 0.987893 0.786587 0.768631

B′/B∗ 1.00400 1.00176 1.00066 1.00032 0.999691 0.999394 0.998658 0.997870

η A
′
+1

A∗+1
0.333333 0.333333 0.666667 0.666667 1 1 1.33333 2

p′/p∗ 0.996532 0.996532 0.998577 0.998574 0.999994 0.999987 1.00116 1.00310

T ′/T ∗ 0.455438 0.455438 0.821622 0.821242 0.999264 0.998529 1.12419 1.30632

Q′/Q∗ 0.438077 0.438077 0.807853 0.808602 1.00147 1.00295 1.15111 1.38568

B′/B∗ 0.994199 0.994199 0.996778 0.998191 1.00227 1.00455 1.01251 1.02904
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2. The maximum profit B∗ and the optimal selling price p∗ are almost insensitive to the parameters δ or η.

Thus, p′/p∗ varies from 0.998280 to 1.00082 for δ, and from 0.996532 to 1.00310 for η. The ratio B′/B∗

varies from 0.997870 to 1.00400 for δ, and from 0.994199 to 1.02904 for η.

3. In general, the optimal inventory policy is less sensitive to the variation of the parameter λ as compared

to the parameters α or β.

4. The economic order quantity Q∗ and the maximum profit B∗ are more sensitive to the parameter α than

to the parameter β. However, the optimal frequency of advertisement A∗, the optimal selling price p∗ and

the optimal inventory cycle T ∗ are more sensitive to β than to α.

5. The effect of over or under estimating the parameter δ on the economic order quantity Q∗ or on the

optimal inventory cycle T ∗ is quite similar. The same can be said with respect to the parameter η.

6. The under-estimation of the parameters α and λ produces a lower frequency of advertisement A′, a lower

selling price p′ and a lower profit B′, while the under-estimation of the parameters β, γ and δ produces

a higher frequency of advertisement A′, a higher selling price p′, a higher lot size Q′ and a higher profit

B′. However, the under-estimation of the parameter η produces a lower frequency of advertisement A′, a

lower lot size Q′ and a lower profit B′.

Table 11 shows the impact of deviations in the estimation of the parameters h0, h, θ, v, K and c on

the optimal solution and the maximum profit. As in Table 10, A′, p′, T ′, Q′ and B′ are the optimal values

calculated under the wrong parameter values, and A∗, p∗, T ∗, Q∗ and B∗ are the optimal values computed

under the correct parameter values. From these results, we can make the following observations:

1. In general, the optimal inventory solution is almost insensitive to the parameters h0 or K. Thus, the

optimal frequency of advertisement does not change for variarions of these parameters. However, p′/p∗

varies from 0.994755 to 1.00527 for h0, and from 0.999866 to 1.00013 for K; Q′/Q∗ varies from 0.995046

to 1.00489 for h0, and from 0.984737 to 1.01480 for K. The maximum profit is a little more sensitive,

since the ratio B′/B∗ varies from 0.978810 to 1.02135 for h0 and from 0.998525 to 1.00150 for K.

2. The optimal frequency of advertisement A∗ is more sensitive to the parameters θ and v than the other

parameters considered in this table.

3. As expected, the optimal selling price p∗ and the maximum profit B∗ are more sensitive to the parameter

c than the other parameters considered here.

4. The economic order quantity Q∗ and the optimal inventory cycle T ∗ are more sensitive to the parameters

θ and h than the other parameters considered in this study. Moreover, the under-estimation of θ and h is

more sensitive than the over-estimation.

5. The effect of over or under estimation of the parameter h0 on the optimal policy or on the maximum profit

is quite similar. Also, the effect of over or under estimation of the parameter c on the optimal selling price

is almost the same.
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Table 11. Sensitivity analysis of h0, h, θ, v, K and c on optimal policy

Percentage of under -or over- estimation of parameter

Parameter −50 −25 −10 −5 5 10 25 50

h0
A

′
+1

A∗+1
1 1 1 1 1 1 1 1

p′/p∗ 0.994755 0.997374 0.998949 0.999474 1.00053 1.00105 1.00263 1.00527

T ′/T ∗ 0.997219 0.998602 0.999439 0.999719 1.00028 1.00056 1.00141 1.00284

Q′/Q∗ 1.00489 1.00245 1.00098 1.00049 0.999507 0.999014 0.997530 0.995046

B′/B∗ 1.02135 1.01066 1.00426 1.00213 0.997874 0.995749 0.989384 0.978810

h A
′
+1

A∗+1
1.33333 1 1 1 1 0.666667 0.666667 0.666667

p′/p∗ 1.00005 0.999598 0.999848 0.999925 1.00007 0.998667 0.998800 0.999000

T ′/T ∗ 1.42210 1.10041 1.03566 1.01720 0.983906 0.795233 0.762113 0.717252

Q′/Q∗ 1.43846 1.10106 1.03589 1.01732 0.983802 0.783973 0.751175 0.706751

B′/B∗ 1.01102 1.00448 1.00169 1.00083 0.999196 0.998554 0.997090 0.994891

θ A
′
+1

A∗+1
2 1 1 1 1 0.666667 0.666667 0.666667

p′/p∗ 1.00471 1.00071 1.00026 1.00013 0.999879 0.998378 0.998129 0.997798

T ′/T ∗ 2.19075 1.14067 1.04609 1.02173 0.980508 0.800259 0.776181 0.747810

Q′/Q∗ 2.23669 1.13948 1.04568 1.02153 0.980683 0.789261 0.765794 0.738160

B′/B∗ 1.00779 1.00125 1.00042 1.00020 0.999822 0.999783 1.00003 1.00041

v A
′
+1

A∗+1
2 1.33333 1 1 0.666667 0.666667 0.666667 0.333333

p′/p∗ 1.00055 1.00029 0.999729 0.999866 0.998653 0.998733 0.998969 0.996532

T ′/T ∗ 1.06111 1.03272 0.968589 0.984542 0.832143 0.843130 0.874495 0.455438

Q′/Q∗ 1.09006 1.04423 0.968975 0.984737 0.820377 0.831111 0.861730 0.438077

B′/B∗ 1.02180 1.00829 1.00302 1.00150 0.998707 0.997820 0.995225 0.994199

K A
′
+1

A∗+1
1 1 1 1 1 1 1 1

p′/p∗ 0.999866 0.999933 0.999973 0.999987 1.00001 1.00003 1.00007 1.00013

T ′/T ∗ 0.984542 0.992331 0.996946 0.998475 1.00152 1.00304 1.00755 1.01500

Q′/Q∗ 0.984737 0.992428 0.996985 0.998495 1.00150 1.00300 1.00746 1.01480

B′/B∗ 1.00150 1.00075 1.00030 1.00015 0.999852 0.999703 0.999260 0.998525

c A
′
+1

A∗+1
1.33333 1 1 1 1 0.666667 0.666667 0.666667

p′/p∗ 0.949769 0.974025 0.989535 0.994755 1.00527 1.00911 1.02509 1.05223

T ′/T ∗ 1.10061 0.986660 0.994497 0.997219 1.00284 0.825544 0.832957 0.846465

Q′/Q∗ 1.19355 1.02387 1.00973 1.00489 0.995046 0.801332 0.788925 0.767189

B′/B∗ 1.22087 1.10838 1.04287 1.02135 0.978810 0.957982 0.896784 0.798197
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5.2 Management insights

In this section, some comments or suggestions to inventory systems managers that could help in improving the

effectiveness of the inventory control practices are proposed. The sensitivity analysis reveals that the maximum

profit is almost insensitive to variations of the index δ of the power demand pattern or changes in the power

η of the advertising frequency in the demand rate. Furthermore, the maximum profit is not very sensitive to

movements of the scale parameter λ of the part of the time-dependent demand or changes in the parameter

β of the price-dependent demand. Thus, the inventory manager should not worry about those parameters.

However, the manager should be aware of the parameters α and γ. In relation to the scale parameter α of the

price-dependent demand, a 10% or 25% decrease in its value results in a profit drop of almost 12% or 28%.

Therefore, the decision maker should boost the price-dependent demand by implementing policies that increase

the scale parameter α of the demand (e.g., increasing the marketing policies such as sales or quantity discount).

With respect to the exponent γ of the selling price in the demand rate, this has the greatest impact on the

total profit per unit time among the parameters associated with customer demand. Thus, the manager should

reduce this parameter as much as possible and this would significantly increase the profit. One possibility would

be to increase the maximum selling price, keeping the parameters α and β constant. With this, the parameter

γ would decrease.

The variation in the parameters that appear in the holding cost do not have any great influence on the

behavior of the maximum profit. The effect of h0, h or θ on the profit is almost negligible. Thus, a 25%

decrease in the value of the parameter h0, h or θ leads to an increase in profit of less than 1.1%, 0.5% and 0.2%,

respectively. Thus, to obtain a major benefit, the manager should fundamentally try to reduce the fixed unit

cost of storage.

From the findings obtained with the sensitivity analysis, we can deduce that the impact of the ordering cost

K on the total profit per unit time is almost negligible. A 25% increase in the order cost leads to a decrease

in the profit of only 0.074%. Moreover, the cost v of an advertisement has very little impact on profit. Thus,

if v decreases by 50%, that leads to the profit increasing by only 2.18%. Hence, the manager should not worry

about possible changes in the K and v parameters, since the effect they would have on profit is relatively small.

Finally, an increment in the unit purchasing cost c has a negative effect on the maximum profit per unit

time. Thus, a 10% or 25% increase in the value of c leads to a decrease of less than 4.21% or 10.33% of the

maximum profit, respectively. For this reason, the decision maker should try to reduce the unit purchasing cost

as much as possible. One way to reduce this cost would be to negotiate a reduction in the purchase price of the

product with the supplier, promising, in exchange for a price reduction, an increase in the quantity requested

to replenish the inventory.
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6 Conclusions

We have developed an inventory model for items whose demand depends on marketing strategies, the selling

price and time. More specifically, we assume that the demand rate is the product of a power function dependent

on the frequency of advertisement and a function that is the sum of two power functions, one depending on the

unit selling price and the other on time. In addition, we assume that the maintenance cost per unit of product

has two components: a fixed cost and a variable cost that is a power function of the time spent in inventory.

The aim is to maximize the average profit per unit of time. This objective function can have, depending on

the parameters of the model, several local optima. To solve the problem, we present an efficient algorithm that

analyzes all the possible cases that may occur in the inventory system and finds a maximum. Although, in

general, optimal solutions cannot be expressed in closed form, they can easily be obtained using some numerical

method, such as the bisection method, in solving the equations that help us identify the best inventory policy.

The numerical sensitivity analysis shows that the optimal inventory solution and the maximum profit are

very sensitive to changes in the exponent of the selling price in the demand rate function. Nevertheless, they

are hardly sensitive to changes in the ordering cost.

Some possible extensions of the model that can be future research lines are: (i) to consider discounts in the

unit purchasing cost; (ii) to analyze the case of perishable or deteriorating items; (iii) to allow shortages in the

inventory system; (iv) to consider other functions for the unit holding cost; (v) to assume a finite replenishment

rate and (vi) to study the same inventory system under stochastic demand.
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Appendix

Proof of Lemma 1.

The first derivative of BA,p(T ) is

B′
A,p(T ) =

Av +K

T 2
− θhf(p) (A+ 1)

η
T θ−1

and the second derivative is given by:

B′′
A,p(T ) = −

(
2(Av +K)

T 3
+ θ(θ − 1)hf(p) (A+ 1)

η
T θ−2

)
.

As θ ≥ 1, then B′′
A,p(T ) < 0 for all T > 0 and, therefore, BA,p(T ) is a strictly concave function. Since

limT↑0 BA,p(T ) = limT→∞ BA,p(T ) = −∞, the maximum of BA,p(T ) is reached at the point T ∗(A, p) given by

(7), which is the solution of the equation B′
A,p(T ) = 0.

22



Proof of Lemma 2.

Let g1(p) be the function given in (11) defined for all p > 0. The derivative of g1(p) is

g′1(p) = βγpγ−2 [(γ − 1) (c+ h0)− (γ + 1) p] .

Then:

(a) If γ = 1, then g′1(p) < 0 and g1(p) is a strictly decreasing function.

(b) If γ > 1, then g1(p) has a unique local maximum at the point p0 = (c+h0)(γ−1)/(γ+1). This is because

g′1(p) > 0 for all p < p0 and g′1(p) < 0 for all p > p0. Also, the second derivative of g1 at the point p0 is

g′′1 (p0) = −βγ (γ + 1)
3−γ

[(γ − 1) (c+ h0)]
γ−2

< 0.

Since g1(c) = α− βcγ + λ+ βγh0c
γ−1 > 0 and g1(pm) = λ− αγ (1− (c+ h0)/pm), we can conclude that if

λ ≥ αγ (1− (c+ h0)/pm), then g1(p) > 0 for all p ∈ [c, pm). Note that this is true when γ = 1 or when γ > 1.

Otherwise, i.e., λ < αγ (1− (c+ h0)/pm), then g1(c) > 0 and g1(pm) < 0. Therefore, the function g1(p) has

a single root p1 in the interval (c, pm).

Proof of Theorem 1.

1. It is immediate because g1(p) > 0 for all p ∈ [c, pm) and, therefore, GA(p) is a strictly increasing function

on such an interval.

2. In this case, GA(p) has a single local extremum p̃(A) in the interval (p1, pm). Thus, GA(p) is a strictly

increasing function on (c, p̃(A)) and strictly decreasing on (p̃(A), pm). Therefore, GA(p) reaches its maxi-

mum value at the point p̃(A) = argp∈(p0,p1){G
′
A(p) = 0}.

3. Note that, in this case, the function GA(p) either has no local extrema or has two local extrema in the

interval (p1, pm). We can consider the following situations:

(a) If p2 ≥ pm, then the function G′
A(p) has no roots in the considered interval (p1, pm). Therefore, the

function GA(p) is strictly increasing on that interval and the maximum benefit is obtained at the

point p∗(A) = pm.

(b) Otherwise, we can divide the proof into two sections:

i. If p2 < pm and G′
A(p2) > 0, then G′

A(p) has no roots in the interval (p1, pm). Thus, GA(p) is

strictly increasing on (p1, pm) and p∗(A) = pm.

ii. If p2 < pm and G′
A(p2) = 0, then GA(p) is a non-decreasing function on (p1, pm). Consequently,

GA(p) reaches its maximum at the point p∗(A) = pm.

(c) Finally, if p2 < pm and G′
A(p2) < 0, then GA(p) has two local extremes in the interval (p1, pm):

p̃(A) and p̃1(A), with p̃(A) < p2 < p̃1(A). Now the function GA(p) is strictly increasing on (c, p̃(A)),

strictly decreasing on (p̃(A), p̃1(A)) and strictly increasing on (p̃1(A), pm). Therefore, GA(p) reaches

its maximum at the point p∗(A) = p̃(A) or at the point p∗(A) = pm, depending on the value that

the function GA(p) takes at both points.
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Proof of Theorem 2.

From (15), the second derivative is

B′′
p,T (A) =

[
(p− c− h0)(α− βpγ + λ)− hf(p)T θ

]
η(η − 1) (A+ 1)

η−2
.

Taking into account again Eq. (15), if (p− c− h0)(α− βpγ + λ)− hf(p)T θ ≤ 0, then B′
p,T (A) < 0 and Bp,T (A)

is a strictly decreasing function. However, if (p − c − h0)(α − βpγ + λ) − hf(p)T θ > 0, then B′′
p,T (A) < 0 and

the function Bp,T (A) is strictly concave.

Proof of Corollary 2.

In this case, we have G′
A(p

∗) = 0. As A ≥ 0, from (10), we obtain the optimal inventory cycle T ∗
1 given by

(18) and, from (2), we get the optimal lot size Q∗
1 . Substituting T ∗

1 into Eq. (8), we deduce the expression for

the maximum profit B∗
1 given by (19).
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