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A B S T R A C  T

Tree height measurements are laborious and require more time and effort compared to tree diameter mea-surements. That being the case, height-diameter (H-D) 
models are usually used to predict individual tree heights, which are necessary for estimating the tree volume and the site index, as well as for projecting the stand de-
velopment over time. Using a permanent sampling network (400x400m) from Retezat National Park in Romania, twenty-one (H-D) functions were evaluated for their 
fit performance, sensitivity to outliers and prediction ability for Norway spruce in mixed uneven aged stands. A set of twenty-three stand variables, both spatial and 
non-spatial, were used to describe the stand structure, species inter-mingling and competition, in order to be used as stand predictors in a generalized H-D model. 
Nonlinear mixed effects model was used in modelling the H-D relationship of Norway spruce. We developed the first generalized height-diameter model in Romania 
using three stand predictors as measures of the stand vertical structure, density and competition. Random and fixed effects calibration techniques were compared, 
testing various sampling designs in order to improve the height prediction accuracy of the model on a new dataset. Measuring six trees around the median and the 
thickest tree gave the best result in calibrating both fixed and random effects. On average, the best calibration design in-creased the accuracy of the prediction by 50 
cm compared to the fixed effects prediction. The use of the esti-mated coefficients and the calibration design will significantly decrease the amount of work done by 
forest management planners, while ensuring high accuracy and reducing costs.

1. Introduction

Tree height and diameter at breast height are two of the most im-
portant variables and commonly used measurements in forest in-
ventory. Diameter at breast height and height models have been widely
used in developing growth and yield models for volume and yield
prediction. The height diameter (H-D) relationship allows forest man-
agers to build H-D models for single stands in order to determine the
volumes of single trees, the stand volume or the site index (Burkhart
et al., 1972; Wykoff et al., 1982; Soares and Tomé, 2002).

Even though diameters are straightforward measurements, height is
heavily affected by visual obstructions which results in higher mea-
surement errors (Castaño-Santamaría et al., 2013). Therefore, the most
common approach for estimating height for all trees in a stand is to
measure a subsample of heights from trees that allow a good assessment

of their height and build a simple (local) H-D model.
Local H-D models developed for single stands have a low applic-

ability and they require great sampling effort as the H-D relationship
changes over time and varies from stand to stand (Curtis, 1967). A more
practical method with a wider applicability is to build a generalized H-
D model that accounts for the stand conditions. Such models use ad-
ditional stand predictors which help explain the local variation of the
H-D relationship, instead of fitting simple H–D models that are specific
to each stand. The stand predictors used are usually derived from
common measurements e.g. quadratic mean diameter, basal area per
hectare or dominant height (Temesgen and Gadow, 2004; Castedo-
Dorado et al., 2006; Trincado et al., 2007; Özçelik et al., 2018).

Ordinary least squares (OLS) regression has served as the first tool in
modelling H-D relationship (Kramer, 1964; Curtis, 1967; Huang et al.,
2000). Lately, the popularity and use of mixed effects models has
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increased in forestry and H-D modelling practices (Mehtätalo, 2004;
Trincado et al., 2007; Castaño-Santamaría et al., 2013; Bronisz and
Mehtätalo, 2020). This method is more reliable because it takes into
account the assumption of random and independent observations which
is otherwise often violated, as well as the presence of autocorrelation
which is also often ignored in OLS modelling.

In addition, mixed effects models provide both fixed (population
specific) and random (plot specific) effects, allowing to develop stand
specific H-D curves with a minimum sample size per plot (Lappi, 1991,
1997). Furthermore, if trees in a new plot are measured for height and
diameter, the fixed and random parameters of mixed effects models can
be easily calibrated for that particular stand (Temesgen et al., 2008;
Mehtätalo et al., 2015).

A large number of models has been used for species in temperate
forests. Norway spruce (Picea abies (L.) H. Karst) is one of the most
economically and ecologically important evergreen coniferous native
tree species found in Europe, including in Romania. In Romania, it
usually forms a unique belt at the tree line of the Carpathian Mountains.
At lower altitudes it coexists with beech (Fagus sylvatica L.) and fir
(Abies albaMill.) in mixed mountain forests (Bravo-Oviedo et al., 2014).
Their compatible ecological requirements allow beech, Norway spruce
and fir to create unique ecosystems with complex structures such as
uneven aged forests.

Although the H-D relationship of Norway spruce has been studied
across Europe (Mehtätalo, 2004; Sharma and Breidenbach, 2015;
Schmidt et al., 2018), the main focus has been on pure even aged
stands. In even aged stands H-D curves tend to shift over time and a
distinct different layer can be identified at each inventory with an al-
most parallel curve to the x axis in mature stands. In uneven aged
stands, however, with more or less the same tree number and diameter
distribution, the H-D relationship remains constant over time. Trees in a
given diameter class always have a similar position in the stand and the
H-D curve of the stand follows an S-shape form (Pretzsch, 2009).

This study focuses on describing the H-D relationship of Norway
spruce in uneven aged stands located in the Retezat National Park in
Romania (South – Western Carpathians). It explores the application of
H-D curves in unmanaged uneven aged structures which have hardly
been studied, and it provides valuable information related to both forest
conservation and sustainable forest management.

The main objectives of this study are to (i) evaluate the fit perfor-
mance, sensitivity to outliers and prediction ability of twenty-one H-D
models, (ii) test the impact of including spatial and non-spatial stand
predictors in a generalized H-D model, (iii) compare the fixed effects
and the random effects calibration methods for new stands, and (iv)
determine the best calibration strategy for both calibration methods, by
varying both the number of heights sampled and the diameter that
heights are sampled from.

2. Materials and method

2.1. Study area

The Retezat National Park (RNP) is a 380,5 km2 protected area lo-
cated in the South – Western Carpathians in Romania. The park extends
over the montane and alpine altitudinal belts. Forests cover more than
45 percent of the park area with approximately 4800 ha of virgin and
quasi-virgin forests (Stelian, 2002). The most important tree species in
the montane belt are Norway spruce, beech, fir, sycamore maple (Acer
pseudoplatanus L.), birch (Betula pendula Roth) and swiss pine (Pinus
cembra L.), but shrubby tree species like mugo pine (Pinus mugo Turra)
and green alder (Alnus alnobetula (Ehrh.) K.Koch) can also be found.

2.2. Sampling design

A permanent sampling network (PSN) developed in 2015 (Fig. 1) to
assess the main indicators of forest health status and the influence of

climate change on the Retezat bio-geoclimatic ecosystem covers more
than 2800 ha of unmanaged forests owned by the Romanian Academy.

The sampling strategy involves a grid of 400 × 400 m with a total
number of 178 permanent sample plots (PSP), one for each 16 ha. Each
PSP has two circular sub-sampling plots (SSP) with a distance of 60 m
between them (30 m distance each from the PSP coordinates). The SSP
surface varies depending on the maximum diameter at breast height
(D): 200 m2 (r = 7.98) if the maximum D is< 28 cm or 500 m2

(r = 12.62) otherwise (Badea, 1999, 2008).
In order to estimate the forest characteristics with the desired ac-

curacy the number and distance between PSPs were computed using
prior information from the management plans. The standing volume
(m3/ha) variability 50%, the desired 95% confidence interval and a
±10% precision were introduced in the following formula (Cochran,
1963; Giurgiu, 1972):
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where n is the sample size, F is the total surface of the study area, u
is the selected critical value of the desired confidence level, s% is the
variation coefficient of the volume and Δ is the desired level of preci-
sion.

From a total of 178 PSPs only 115 were reachable and covered by
tree species, while 63 plots were found inaccessible due to steep slopes
or due to them being at the edge of the tree line and therefore not
covered by tree vegetation.

2.3. Data

For each SSP the following variables were recorded: species code,
the circumference at breast height (mm) of all trees greater
than 250 mm, the radius from the center of the SSP to all trees (m), the
azimuth (°) and the height (m) of a random subsample of 10 trees. The
circumference was measured with a tape band to the nearest mm, the
height and radius were measured using VERTEX IV hypsometer
(Häglofs, Sweden) to the nearest dm, the azimuth of trees was measured
using a compass and the distance between every tree and the SSP center
was measured using VERTEX IV and it was rounded to the closest cm.
Other tree and stand variables were measured for each sample plot
following the above-mentioned purposes of the PSN. All measurements
were conducted in 2015 and no repeated measurements are involved. A
total number of 6447 trees was measured of which 27 different species,
with 3126 pairs of height-diameter measurements. A brief summary of
relevant structural descriptors is given in Table 1.

Norway spruce represents 65% of the trees measured and is the
main species in the study area. The presence of beech and fir, on the
other hand, varies across the PSPs, being the dominated species in the
mixed forests. We proceeded analyzing the H-D relationship for Norway
spruce only. All trees that were dead, broken or with broken tops were
removed and the dataset was split in a prediction (80%) and a cali-
bration (20%) H-D dataset.

In order to apply different calibration designs, we selected nine SSPs
in the calibration dataset, with at least ten trees sampled and with more
than 90% of them measured for both height and diameter.

All three diameter distributions of the Norway spruce dataset (all
sampled trees, prediction dataset and calibration dataset) (Fig. 2) dis-
play a reverse J-shape, which is considered an essential feature of un-
even aged forests (Meyer, 1952).

2.4. Base model selection

The relationship between height and diameter has been described
using both linear (Curtis, 1967; Fang and Bailey, 1998) and nonlinear
models (Huang et al., 1992) with two and three parameters. Due to the
relative ease of fitting nonlinear models and the nonlinear nature of the
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height-diameter relationship, 21 nonlinear models with two and three
parameters were chosen from literature and tested for their fitness and
predictive ability. Most of the 3-parameter models did not converge
with all SSPs, although they were linearized in order to obtain starting
values. The best ten models that managed to converge with all datasets
are presented in the following table (Table 2) to summarize the model
selection process.

The models tested have been widely used in modelling height –
diameter data with high variability.

Model M2 (as indicated in the table) has been used for height pre-
diction of uneven aged beech forests in northwestern Spain (Castaño-
Santamaría et al., 2013). The latter, as well as M8 function are known
to be the most flexible functions for modelling height-diameter re-
lationships according to Yuancai and Parresol (2001). Models M3, M4
and M6 have been found to perform best in both mixed effects models
and simple fixed-effects models using data from diverse ecological
zones from tropical to boreal conditions (Mehtätalo et al., 2015). Model
M9 has been tested for prediction for major tree species in complex
stands of interior British Columbia (Temesgen and Gadow, 2004) and
has given the best results for an interregional nonlinear height-diameter

model for stone pine (Calama and Montero, 2004). Model M10 is
widely used (Zeide, 1993; Mehtätalo, 2004; Lynch et al., 2005) as well
as M1, M5 and M7 which are often used together on various datasets for
comparison (Curtis, 1967; Huang et al., 1992; Soares and Tomé, 2002;
Adame et al., 2008; Misik et al., 2016).

Each model was evaluated using 4 criteria: a) model fit performance
for each SSP based on the root mean square error (RMSE) and the mean
error (ME); b) model sensitivity to outliers for the entire prediction
dataset using Prediction Sum-Of-Squares (PRESS) where small values
indicate that the model is not overly sensitive to any single data point,
and P-Square (P2) - the equivalent to R-square (Allen, 1971); c) model
prediction ability performance based on RMSE of 10 – fold cross –
validation ( −RMSE CVk) using the complete prediction dataset; d) vi-
sual analysis of studentized residuals (SR) for each of the SSP.

The expressions of these statistics are summarized as follows:
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wherehj, ̂hj and h̄ are the observed, the predicted and the average

Fig. 1. Study area location where A) is the permanent sampling network (PSN), where the dots indicate the position of the PSP, B) the boundaries of Retezat National
Park, C) Romania and the study area location in Europe.

Table 1
Summary of the main species descriptors of the RNP dataset: quadratic mean
(Dq), maximum diameter at breast height (Max[D]), median height (Med[H]),
maximum tree height (Max[H]), number of trees measured (N) and height-
diameter pairs sampled (H-D pairs).

Species D (cm) H (m) N H-D pairs

Dq Max. Med. Max.

Fir 39.9 127.6 21.5 48.4 584 391
Beech 37.4 107 21.3 43.1 923 609
Spruce 32.1 134.9 23.2 48.4 4259 1880
Other species 29.0 91.4 19.4 40.2 690 246
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values of the height of tree j; n is the total number of heights used to fit
the model; p is the number of parameters used in the model; k is the
subset (fold) left out from the training set and used to compute the error
and m - the number of folds used; d d, ¯j are the diameter of the j tree and
the mean diameter of each SSP respectively, while sd is the standard
deviation of each SSP.

2.5. Stand variables

Generalized H-D models express the height as a function of tree
diameter while using additional stand-level predictors to increase the
explained variability. In order to fully grasp the H-D relationship
variability, a set of twenty-three stand variables, both spatial and non-
spatial, were used to describe the stand structure, species inter-mingling
and competition (Pommerening, 2002; Maleki et al., 2020) for each PSP
(Supplementary Table 1).

The stand structure was described using quadratic mean for dia-
meter and height (Dq, Hq); the maximum diameter and height (Max
[D], Max[H]); the range of diameters and heights (Range[D], Range
[H]); the height of the thickest tree and the range of heights belonging
to the thinnest and thickest trees (Max[DH], Range[DH]); the dominant

height (Dom[H]), as well as the spatially explicit diameter dominance
index (Dom[D] - Von Gadow and Hui, 2002) using four neighbors and
the diameter variation (Dvar - Pretzsch, 2009). The horizontal structure
of the plot was also estimated by two distance dependent indexes using
one neighbor: the aggregation index (Agg index - Clark and Evans,
1954) and the Pielou index (Pielou, 1959).

Species diversity and inter-mingling were evaluated using the
Shannon, Simpson index (Shannon, 1948; Simpson, 1949), the pro-
portion of spruce basal area per hectare (spruce%) and the spatially
explicit mingling factor (Ming - Füldner, 1995) using four neighbors.

The number of trees per hectare (N), the basal area per hectare (BA),
the basal area of the largest trees (BAL - Temesgen and Gadow, 2004),
the Reineke stand density index for even aged stands (SDI - Reineke,
1933) and uneven aged stands (SDI[uneven] - Shaw, 2000) and the
nearest neighbors mean distance (NN mean) were used as competition
and stand density variables.

The edge effect has an impact on spatial variables estimates as
neighboring trees existing outside the plot border where no measure-
ments are available lead to biased estimations. Edge correction methods
are used to reduce (minus sampling) or increase in an artificial way the
number of trees from a sample in order to reduce the bias of the esti-
mators (Monserud and Ek, 1974; Radtke and Burkhart, 1998;
Pommerening and Stoyan, 2006; Pretzsch, 2009). Nevertheless, no edge
correction was made for the spatial variables computed because redu-
cing the number of trees in small circular plots where the number of
trees is already small leads to high bias values and they should only be
applied to samples with sufficiently large number of trees (≥100)
(Pommerening and Stoyan, 2006). Furthermore, edge correction
methods which increase the number of trees such as the translation
method (Illian et al., 2008) or the reflection method (Radtke and
Burkhart, 1998) result in unrealistic periodicities, especially for circular
sample plots (Windhager, 1997). Both sample reduction and sample
increment methods were discarded after being initially assessed for
RNP dataset.

2.6. Stand variable selection

The inclusion of stand variables can be done using various ap-
proaches; see Calama and Montero (2004). This study uses the two-
stage approach (Ferguson and Leech, 1978) to include the stand pre-
dictors in the base model. In the first step all sampling plots were fitted

Fig. 2. The solid line is the diameter density distribution of all sampled spruce trees in the PSN, the dotted line represents the diameter density distribution of the -H-
D prediction dataset and the dashed line is the diameter density distribution of the H-D calibration dataset. The vertical lines with the same line-types are the median
diameter for each of the above-mentioned datasets respectively.

Table 2
H is the total tree height (m), D is the diameter at breast height (cm), b b,1 2 and
b3 are the parameters of the model.

Model Formulae References Eq.no.

M1 = +
+( )H 1.3 b D

b D
1

2

Bates and Watts (1980) (2)

M2 = + − −H b b D1.3 [1 exp( )]1 2 3 Von Bertalanffy (1957) (3)

M3
= + +

−( )H b1.3 1
D

b
1

1 2 Curtis (1967) (4)

M4 = + ( )H b1.3 exp b
D1
2 Schumacher (1939) (5)

M5 = + − −H b b D1.3 [1 exp( )]1 2 Meyer (1940) (6)
M6

= + ⎡
⎣

⎤
⎦+

H 1.3 D
b b D( 1 2 )

3 Näslund (1936) (7)

M7 = +
+ +

H 1.3 D
b b D b D

2

1 2 3 2
Prodan (1968) (8)

M8 = + − −H b b D1.3 (1 exp( )b1 2 3 Richards (1959) (9)

M9 = + ⎡
⎣

+ ⎤
⎦+

H exp b1.3 b
D1

2
( 1)

Wykoff et al. (1982) (10)

M10 = + − −H b b D1.3 exp( )b1 2 3 Zeide (1993) (11)
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by each model using the ordinary nonlinear least squares method
(ONLS). In the second stage a redundancy analysis (RDA) was made to
extract and summarize the variation of the model parameters explained
by a stand predictor set. The stand variables that were statistically
significant (> 0.001) in RDA and had a strong significant correlation
(p-value < 0.001) with the models’ parameters were included in the
base model. In addition, each stand predictor was plotted against each
of the model’s parameters in order to assess the type of relationship
between them.

2.7. Nonlinear generalized mixed effects model

The model that performed best was selected and used to develop a
nonlinear generalized mixed effects model using additional stand pre-
dictors. The general form of a nonlinear mixed effects model (Pinheiro
and Bates, 2006) is represented by:

= +y f ϕ x e( , )i i i i (18)

where yi is the ×n 1i response vector of ni observations of SSP i; xi is the
×n 1i corresponding predictor vector of ni observations of SSP i; ϕ is the

parameter vector ×r i of the nonlinear model for each SSP unit with r
being the number of parameters; f is a nonlinear function of a SSP-
specific parameter vector and predictor variables; and ei is a ×n 1i
vector, normally distributed, of the within SSPi error. The parameter
vector can be defined as:

= +ϕ A β B b b N ψ, (0, )i i i i i (19)

where Aiand Bi are design matrices for fixed and random-effects spe-
cific to SSP i and vector β and bi are the fixed and random effects of SSP
i with a variance–covariance matrix of ψ.

The model performance was tested using RMSE, Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). During a
preliminary analysis we observed that although our data has two levels
of hierarchy (trees inside the SSP and SSP inside the PSP), a higher
proportion of variance was explained when we used SSP as a single
level of grouping than when applying the nested design of SSP inside of
PSP. The model was tested for heteroscedasticity by applying the
power-type variance function:

=var e σ d( )ij ij
δ2 2 (20)

where σ2 is the scale, dij is the diameter j of SSP i and δ is the shape
parameter of the power function.

2.8. Calibration of the nonlinear generalized fixed effects model

Mixed effects models allow the prediction of random parameters for
a specific sample plot not included in the original dataset if supple-
mentary observations are available (Lappi, 1991; Castaño-Santamaría
et al., 2013; Mehtätalo et al., 2015). If no height measurements are
available, the random parameters are set to 0 and the prediction of the
fixed part is the standard generalized height–diameter curve.

When a set of heights from a new stand is available, the nonlinear
generalized fixed effects model can be easily calibrated to that parti-
cular stand applying the following correction factor (Temesgen et al.,
2008):

̂
̂=

∑ − −
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where ∗ki is the correction factor of sample i, ̂hij is the predicted height
from the nonlinear generalized fixed effects model and hij is the ob-
served height of tree j in sample i.

The predicted height based only on the fixed effects is then cor-
rected as follows:

= +∗h k f ϕ d e( , )ij i i ij ij (22)

where hij is the calibrated height of tree j, in the sample i after cor-
rection, the random-effects value of the nonlinear mixed effects func-
tion described above were set to 0 and dij is the diameter of tree j in
sample i.

2.9. Calibration of the nonlinear generalized random effects model

A common option to predict random effects-parameters bi is through
the following approach (Chinchilli and Vonesh, 1997):

̂̂ ≈ +
−

b D Z R Z D Z e( )i i
T

i i i
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1    (23)

where D is the variance–covariance matrix common to all plots for
the among plot variability; Ri is the variance-covariance matrix for the
within-plot variability; ̂ei is the residual error given by the difference
between the observed height and the predicted height including only
fixed effects in the model: ̂ = −e h f d(Φ , )ij ij i ij where Φi in this case
equals ̂A λi including only the fixed part of the estimated vector of the
parameters, and Zi is the evaluated at β:
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where Φi is previously stated, β1
 ,…, βq

 are the fixed parts of the mixed

coefficients components of the vector for estimated fixed effects β, and
dij is the diameter of the j tree of plot i.

Once bi is predicted, the value of the vector of heights, ̂hi , for plot i,
is defined by the expression:

̂ = +h f d e(Φ , )i i i i (25)

̂= +A β U bΦi i i i (26)

2.10. Calibration design

The SSPs from the calibration dataset have more than 90% of the
trees measured both for diameter and height which allowed us to
sample heights from the entire range of the diameter distribution for
each unit.

Different numbers of height sampling designs and sampling sizes
were used to calibrate both the fixed and random effects parameters.
We sampled the heights of three diameter categories: the thinnest, the
thickest and the heights of the trees around the median tree diameter.

In the first sampling design -one-point sampling- we chose one, two
and three trees from one diameter class over the curve: the thinnest, the
median and the thickest tree. In the second sampling design -two-point
sampling- we sampled one, two and three trees from two diameter
classes (the thinnest, the median and the thickest). In the last sampling
design, we used information from all the area over the curve -three-
point sampling- and sampled from one to three trees from each dia-
meter class (the thinnest, the median and the thickest).

Each SSP included in the calibration dataset was fitted with the base
model (M9 – eq. no. 10) applying ONLS and using all heights mea-
surements of the SSP. The prediction achieved was compared with the
fit obtained by the calibration of the fixed and random effects using the
sampling design described above.

The performance of each calibration design and sampling size was
evaluated using RMSE statistic.

The nonlinear mixed effects analyses were performed using the
nlme (Pinheiro et al., 2018) the graphs were built with ggplot2 package
(Wickham, 2016) and the data manipulation was done with dplyr
package (Wickham et al., 2019) of R statistical software (R Core Team,
2018).
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3. Results

3.1. Base model selection results

The difference between the assessed models in terms of fit perfor-
mance, sensitivity to outliers and prediction ability is negligible
(Table 3). Any of the 10 models except M7 can be utilized to build the
generalized mixed effects model. Model 9 (M9) had the best fit, the
lowest PRESS and also performed best on a new dataset. As the dif-
ference between the models performance is minor, we focused on the
two parameters models in order to estimate the lowest possible number
of parameters (model parsimony).

We proceeded with the analysis by comparing the standardized
residuals of the models. No patterns were found in the residual plots
and M9 was selected as the base model for developing the nonlinear
generalized mixed effects model. The model is based on the linear re-
lation proposed by Curtis (1967) where b1 and b2 are the rate and shape
parameters and the value of + 1 is added to the diameter to avoid
meaningless estimates when values of breast height diameter are near
zero.

3.2. Variable selection

Several variables describing stand structure, stand species diversity
and inter-mingling as well as stand competition exhibited a strong
correlation with the M9 fixed effects parameters (Fig. 3).

The stand structure variables, in particular those measuring vertical
differentiation (e.g Range[H]), showed the highest correlation with the
model parameters. The distance dependent stand variables which
measure the horizontal (Pielou index, Agg index) tree distribution un-
derline a low or inexistent relation with the model parameters.

Among the stand variables measuring tree species diversity and
inter-mingling (Simpson, Shannon, Ming, spruce%), only species min-
gling (Ming) and the proportion of Norway spruce in the species mix-
ture (spruce%) showed a statistically significant correlation. The
nearest neighbor mean (NN mean) and species mingling (Ming) are the
only distance dependent variables which revealed a statistically sig-
nificant relation with the model’s parameters. The relationship between
the variables with a significant correlation and the model’s parameters
was linear and no transformation was made. No statistically significant
correlation was found for the stand density and competition variables
BA (basal area), SDI (Reineke stand density index) for even and uneven
aged stands or the BAL (basal area of the largest trees). The number of
trees per hectare (N) and the NN mean (nearest neighbors mean dis-
tance) were the only two density-competition variables which ex-
plained the height variability at the plot level.

3.3. Nonlinear generalized mixed effects model

One of this paper’s objectives is to develop a height diameter model
to be used for height predictions in future inventories carried out by the
national park administration and forest management planners. The
development process was iterative, including height related variables
one at a time and comparing the model’s performance with the like-
lihood testing for a significant influence (p-value < 0.0001). The first
generalized model we developed (Generalized 1) used the maximum
height (Max[H]) and the range of heights (Range[H]) as the stand
variables that had the strongest relationship with the model para-
meters. For field-work practical reasons, we chose the height of the
thickest tree (Max[DH]) and the range of height (Range[DH]) com-
puted as the difference between the height of the thinnest (Min[DH])
and the thickest tree (Max[DH]) as stand variables (Generalized 2). The
correlation between Min[DH], Max[DH] and the real minimum and
maximum heights measured is strong, over 0.96, (Fig. 4) and no sig-
nificant differences were found in the model performance when the two
sets of heights were used in the model (Table 4).

Other variables were tested such as Ming, spruce%, N and Dq.
Although each variable slightly improved the Generalized 2 model’s
performance, only the number of trees per hectare had significant in-
fluence (p < 0.0001) and thus was added to the model (Generalized
3).

The residual plot (Fig. 5) of the nonlinear generalized mixed effects
model Generalized 3 shows the presence of heteroscedasticity and
confirms that variance weighting is necessary. The likelihood testing
indicated that the variance function used has significant influence on
the model fit ( − <p value 0.0001) and therefore resulted in the final
nonlinear generalized mixed effect model (Generalized 4).

The final nonlinear generalized mixed effects model developed has
the following form:
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2
(2)
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(27)

where Hij is the height of tree j in sample SSPi, Dijis the diameter at
breast height of tree j in SSP i, Max DH( )i is the height of the maximum
diameter at breast height of SSPi, Range DH( )i is the difference between
the heights of trees with the maximum and the minimum diameters of
SSP i, Ni is the number of trees per hectare estimation of SSP i, β1and
β2are the fixed-effects parameters, andbi represents the estimated
random-effects.

The parameters of the four nonlinear generalized mixed-effects
models are presented in the following table:

3.4. Calibration of fixed and random effects results

The calibration design, the sampling design and the number of
heights were found to influence the calibration prediction accuracy
(Table 5).

Both the calibration of random and fixed effects showed a lower
RMSE as the number of trees increases. The fixed effects calibration is
particularly sensitive to height variability and performed worse than
the fixed effects prediction when a low number of trees was sampled
among the thinnest trees. The same result was found for the random
effect calibration prediction. The calibration of the fixed effects im-
proved when the heights sampled were close to the median diameter
and the thickest trees. The random effects calibration is less sensitive to
height variability and it performed better than the fixed effects cali-
bration in the one-point sampling calibration design.

For both calibration techniques the two-point sampling design
where six heights around the median and thickest trees were sampled

Table 3
Simple fixed-effects H–D models fit performance, sensitivity to outliers and
prediction ability.

Model Fit performance Sensitivity to outliers Prediction ability

RMSE ME P2 PRESS CV-RMSE

M1 2.949 −0.060 0.688 28,687 4.353
M2 2.737 0.104 0.800 25,216 4.145
M3 2.728 −0.081 0.780 23,684 3.997
M4 2.667 0.018 0.786 23,713 4.001
M5 2.664 0.013 0.719 24,907 4.081
M6 2.663 −0.011 0.767 23,811 4.017
M7 4.026 1.338 0.776 23,685 3.998
M8 2.668 −0.013 0.773 23,798 4.010
M9 2.662 0.009 0.778 23,672 3.994
M10 2.667 0.018 0.778 23,712 3.998
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resulted in the lowest RMSE increasing the prediction accuracy by up to
50 cm compared with the fixed effects prediction and proved to be the
best calibration design.

Fig. 6 presents an example of the best calibration and sampling
design of the calibrated fixed effects and random effects for one unit of
the calibration dataset. Conjunctively it is also shown the fixed effect
prediction of the generalized model and the ONLS prediction of the
simple model (M9 – eq. no. 10).

4. Discussion and conclusion

4.1. Base model selection

In this study we developed the first generalized height diameter
model for the Romanian forests. We used a nonlinear mixed effects
regression technique (Pinheiro and Bates, 2006) to model the height-
diameter relationship of Norway spruce in uneven aged stands, as it has
been successfully applied in other temperate forests in Europe
(Mehtätalo, 2004) .

A number of 21 models with two and three parameters were fitted
separately for each SSP and compared for their fit performance, sensi-
tivity to outliers and prediction ability. Ten of the models that managed

Fig. 3. Correlation barplot between the stand variables and the model parameters b1 and b2. The light gray bars indicate a low correlation with the model parameters
while the dark gray ones show a significant, moderate and strong correlation. The whiskers represent the 0.95 confidence interval.

Fig. 4. The Pearson correlation (r) between the Min[DH] and Min[H] for each SSP in scatterplot A and the correlation between Max[DH] and Max[H] in scatterplot
B. The points overlaying the line show perfect match between variables in a given SSP. All the other points indicate SSP height discrepancies.
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to converge all SSPs were presented in the study. Non-convergence is
largely caused by high variance associated with the uneven aged
structure and the randomness associated with small samples. Non-
convergence issues are common to other authors (Soares and Tomé,
2002; Mehtätalo et al., 2015) when applying nonlinear regression
models.

The difference in the predictive performance of the ten tested base
models was found to be negligible; most of the base models used
showed similar statistics. Previous studies (Curtis, 1967; Huang et al.,
1992) have shown that although most models found in literature give
similar results within the observed range of the data, their predictive
ability differs when they are used on a new dataset.

The Wykoff et al. (1982) model, M9, was chosen to build the non-
linear generalized mixed effects model as it provides the best fit, the
lowest PRESS and the best predictive ability on a new dataset esti-
mating only 2 parameters. This function was previously used for the
development of the stand model PROGNOSIS (Wykoff et al., 1982), for
height-diameter modelling of tree species in Southwestern Oregon and

Inland Northwest (Larsen and Hann, 1987; Moore et al., 1996) and also
for creating an interregional nonlinear height-diameter model for stone
pine (Calama and Montero, 2004).

4.2. Stand variable selection

In order to build a generalized model and increase the applicability
of the M9 model, twenty-three spatial and non-spatial plot-specific
predictors describing the structure, the stand density, species diversity
and inter-mingling, as well as the competition at the stand level, were
assessed.

In general, structural descriptors provided a better correlation with
the M9 parameters. However, all of these predictors provide more than
one type of information because they are determined by a high number
of ecological processes and thus they are often similar; Pommerening
(2006), for example, points out that some competition and structure
indices are alike.

Indeed, most of these indices are inter-correlated and even when

Table 4
The fixed effects parameters and their standard deviation (in parenthesis), the variance–covariance structure of the random effects and model performance and
significance of the four nonlinear generalized mixed-effects models.

Type Parameter Generalized 1 Generalized 2 Generalized 3 Generalized 4

Fixed effects β1
(1) 2.9315 (0.0408) 2.9619 (0.0428) 2.9282 (0.0424) 2.9325 (0.0432)

β2
(1) 0.0236 (0.0011) 0.0237 (0.0012) 0.0249 (0.0012) 0.0248 (0.0012)

β1
(2) −14.6695 (0.6717) −13.8802 (0.6204) −16.1872 (0.7321) −16.2470 (0.7326)

β2
(2) −0.1590 (0.0242) −0.2471 0.0266 −0.2439 0.0249) −0.2471 (0.0249)

β3
(2) 0.0031 (0.0005) 0.0031 (0.0005)

Random effects StdDev b( )i
(1) 0.0822 0.0866 0.0850 0.0924

StdDev b( )i
(2) 3.4314 2.6552 2.0336 2.3545

corr b b( , )i i
(1) (2) −0.7900 −0.6030 −0.6060 −0.6760

Variance function σ2 1.40422

δ 0.1959
Model performance AIC 8338 8358 8336 8315

BIC 8380 8400 8384 8368
Significance testing F-test ( −p value) > 0.0001

<0.0001
<0.0001

Fig. 5. Residues scatterplot of the Generalized 3 model, without variance weighting, (left) and residues scatterplot of the Generalized 4 model, with variance
weighting (right).
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they had a significant correlation with the M9 model parameters in-
dividually, they did not improve the model’s overall performance.

The diversity, the mingling factor and most competition variables
were unsuccessful in improving the model. Similar findings were de-
scribed by Huang et al. (2009), who indicated that species composition
did not improve the precision of height prediction in their studies.

One likely reason is that complex stand structures such as mixed
uneven aged forests contribute to niche differentiation. Indeed, Norway
spruce, beech and fir tend to coexist (Bravo-Oviedo et al., 2014) and yet
niche complementarity and facilitation processes diminish the compe-
titive interferences quantified by the distance dependent predictors in
mixed uneven aged stands (Dănescu et al., 2016); hence the high pro-
ductivity of mixed uneven aged stands compared with even aged stands
(Pretzsch et al., 2010).

In addition, most of the descriptors have certain limitations that can
undermine their prediction capacity. For instance, nearest-neighbor
based methods are largely affected by the interdependence between
tree-distances measured and by the ecological processes in force at that
scale (Pommerening, 2002).

No competition variables were used in the generalized model other
than the number of trees per hectare. Although this variable had little
effect on the model, it did manage to improve the model’s fit. The in-
clusion of competition predictors in the H-D model is coherent with the
fact that competition for light promotes higher vertical structure de-
velopment. Therefore, even when the coefficient estimate is low, its
presence is fully justified being commonly used as a stand predictor
(Soares and Tomé, 2002; Calama and Montero, 2004; Sharma and
Parton, 2007). The basal area per hectare is another competition vari-
able that usually explains H-D variability and therefore it is likely to be
used (Bronisz and Mehtätalo, 2020; Sharma and Parton, 2007).
Nevertheless, in our study it did not show any significant correlation
with the model parameters, most likely because of the uneven aged
structure. However, the basal area of the largest trees underlined a

significant correlation with the asymptotic part of the model M9 and it
has been used by Temesgen and Gadow (2004) in similar complex
structures as the one in our study.

The stand structure variables, in particular those measuring vertical
differentiation (e.g Range[H]), tend to show the highest correlation
with the model parameters. The quadratic mean diameter and the
dominant height are the stand structure predictors most frequently used
in H-D modelling as they are easy to measure or compute from available
field data.

Although the dominant height, the maximum height and the height
range showed a higher correlation with the stand parameters, their
determination on the field is difficult. The dominant height requires a
large number of height measurements, whereas the highest and the
smallest trees from a stand are hard to establish. Furthermore, the de-
termination of the dominant height in uneven aged stands is difficult
due to the multiple development phases present, even in small stands
(Barbir et al., 2010). This is the reason why the yield class for uneven
aged stands are not computed using the dominant height as it is for
even aged stands but using the height of a reference diameter.

Our model uses the height of the thickest tree, the range between
the height of the thinnest and the tallest tree, and the number of trees
per hectare Similarly to our study Huang et al. (2009) also found top
height to be the most significant contributor among different stand-
level variables. Although the variables underlined a strong correlation
with both M9 model coefficients, each one of them was eventually used
to modify only the parameters with which it showed the strongest
correlation. By taking into account the model’s parameters’ mathema-
tical meaning, the developed generalized H-D model will result in high
growth rates with higher heights of the thickest trees and lower
asymptotes, with reduced number of trees per hectare and higher range
between the height of the thickest and thinnest tree.

4.3. Calibration design of fixed and random effects

The main purpose of the generalized H-D model is to be used as a
tool for predicting tree heights for a new stand. Without any additional
information, a fixed effects prediction usually provides high accuracy.
However, where new heights are available, fixed effects predictions can
usually be improved by calibrating the random effects for that parti-
cular stand (Trincado et al., 2007; Mehtätalo et al., 2015; Fu et al.,
2017). In this study, we calibrated both the fixed and the random ef-
fects of the developed model using three calibration designs.

Although there is no accepted rule on what the number of heights or
the calibration design used to calibrate the local curve should be, dif-
ferent studies have already addressed this issue (Calama and Montero,
2004; Temesgen et al., 2008). In our study, we varied both the number
of trees sampled and their diameter in order to find the combination of
both which gave the most accurate calibration. For both calibration
techniques increasing the number of trees provided higher accuracy.
However, the calibration of fixed effects performed weakest with a low
number of trees compared with the random effects’ calibration. Similar
findings have been reported by Temesgen et al. (2008) and Özçelik
et al. (2018) who found that the calibrated mixed-effects model per-
formed better than the fixed effects calibration. However, Temesgen
et al. (2008) state that increasing the number of trees reduces the dif-
ference between the two calibration techniques. This was the case for
our study too. In fact, in some cases the fixed effects calibration out-
performed the random effects’ calibration when the number of sampled
trees increased.

Another key point is where to take height measurements from or
what trees should be selected. We excluded the random sampling as
previous studies have shown that the accuracy of the calibration de-
pends on both the number of the trees sampled and their diameter class
(Calama and Montero, 2004). When we sampled from two different
diameter classes (two-three-point sampling) the accuracy increased in
comparison with the samples from a single diameter class, as was also

Table 5
Calibration results.

Calibration
design

Sampling
design

No. trees Fixed effects
calibration

Random effects
calibration

RMSE sd RMSE Sd

Fixed effects – – 3.292 1.356 3.292 1.356
Base Model -

ONLS
– – 2.655 0.748 2.655 0.748

1 4.710 1.893 3.311 1.263
Thinnest 2 3.502 0.922 3.228 1.185

3 3.303 0.991 3.151 1.230
1 3.883 1.492 3.052 0.990

One-point
sampling

Median 2 3.051 0.599 2.957 0.957

3 2.888 0.808 2.887 0.968
1 3.469 1.275 3.318 1.309

Thickest 2 3.053 0.835 3.153 1.035
3 2.846 0.769 2.997 0.910
2 3.578 1.025 3.083 0.952

Thinnest-
Median

4 3.036 0.699 2.964 0.947

6 2.928 0.792 2.895 0.975
2 3.488 1.135 3.339 1.234

Two-point
sampling

Thinnest-
Thickest

4 3.086 0.855 3.111 0.996

6 2.881 0.856 2.958 0.943
2 2.985 0.848 3.117 1.040

Median-
Thickest

4 2.871 0.771 2.967 0.900

6 2.744 0.781 2.821 0.856
3 3.578 1.025 3.083 0.952

There-point
sampling

Thinnest-
Median-
Thickest

6 3.036 0.699 2.964 0.947

9 2.928 0.792 2.895 0.975
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found by Castedo-Dorado et al. (2006) and Bronisz and Mehtätalo
(2020).

The diameter classes selected are also important. Sampling from the
median and thickest trees gave the best results for both calibration
techniques. The same results were found by Crecente-Campo et al.
(2014) when they sampled the medium size trees in mixed uneven aged
stands and by Temesgen et al. (2008) when they tested different cali-
bration techniques. A number of six trees sampled around the median
and the thickest trees proved to be the best sampling design for both the
fixed and the random effects calibration.

Mixed effects regression techniques performed very well in ex-
plaining the variation of the H-D relationship of Norway spruce in
mixed uneven aged stands. The vertical structure, the stand density and
the competition existing in an uneven forest, which all influence height
variability, were explained by the stand predictors used in the model.
The model has a high practical applicability as it is easy to determine
both the stand level predictors and to calibrate the fixed and random
effects. In future forest management planning tasks, the use of this
model will not only lead to high accuracy and a more convenient field
work, but it will also result in reduced costs.
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Appendix A. Supplementary material

Fig. 6. Example of the best fixed and random effects calibration under different sampling designs compared to the fixed effect and ONLS prediction with the simple
model (M9). The red solid line is the fixed effects prediction, the dashed blue line is the ONLS prediction and the colorful solid lines are the fixed and random effects
calibrations using different calibration designs. The black dots are the heights of the sample and the star shape dots are the selected heights used for calibration. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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