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Abstract
The global bifurcation diagrams for two different one-parametric perturbations (+λx and
+λx2) of a dissipative scalar nonautonomous ordinary differential equation x ′ = f (t, x)
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first derivative with respect to x is a strictly concave function. The use of the skewproduct
formalism allows us to identify bifurcations with changes in the number of minimal sets and
in the shape of the global attractor. In the case of perturbation +λx , a so-called generalized
pitchfork bifurcation may arise, with the particularity of lack of an analogue in autonomous
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1 Introduction

The interest that the description of nonautonomous bifurcation patterns arouses in the scien-
tific community has increased significantly in recent years, as evidenced by the works [1–3,
5, 11–13, 15, 17, 20, 21, 24, 25, 27, 29–32], and references therein. This paper constitutes an
extension of the work initiated in [11], were we describe several possibilities for the global
bifurcation diagrams of certain types of one-parametric variations of a coercive equation.
We make use of the skewproduct formalism, which allows us to understand bifurcations as
changes in the number of minimal sets and in the shape of the global attractor, which of
course give rise to substantial changes in the global dynamics.

Let us briefly describe the skewproduct formalism. Standard boundedness and regularity
conditions ensure that the hull� of a continuous map f0 : R×R → R, defined as the closure
of the set of time-shifts { f0·t : t ∈ R} in a suitable topology of C(R × R, R), is a compact
metric space, and that the map σ : R × � → �, (t, ω) �→ ω·t (where, as in the case of
f0, (ω·t)(s, x) = ω(t + s, x)) defines a global continuous flow. The continuous function
f (ω, x) = ω(0, x) provides the family of equations

x ′ = f (ω·t, x) , ω ∈ �, (1.1)

which includes x ′ = f0(t, x): it corresponds to ω = f0 ∈ �. When, in addition, f0 satisfies
some properties of recurrence in time, the flow (�, σ ) is minimal, which means that � is
the hull of any of its elements. If u(t, ω, x) is the solution of (1.1)ω with u(0, ω, x) = x ,
then τ : U ⊆ R × � × R → � × R, (t, ω, x) �→ (ω·t, u(t, ω, x)) defines a (possibly local)
flow on � × R of skewproduct type: it projects over the flow (�, σ ). If f0 is coercive with
respect to x uniformly in t ∈ R, so is f uniformly in ω ∈ �, and this ensures the existence
of the global attractor and of at least one minimal compact τ -invariant subset of � × R. In
the simplest nonautonomous cases, the minimal subsets are (hyperbolic or nonhyperbolic)
graphs of continuous functions, and thus they play the role performed by the critical points
of an autonomous equation; but there are cases in which both the shape of a minimal set
and the dynamics on it are extremely complex, without autonomous analogues, and therefore
impossible bifurcation scenarios for a autonomous equation can appear in the nonautonomous
setting.

So, we take as starting points a (global) continuous minimal flow (�, σ ) and a continuous
map f : �×R → R, assume that f is coercive in x uniformly on�, and define the dissipative
flow τ . Throughout this paper, we also assume that the derivatives fx and fxx globally exist
and are jointly continuous on � × R, as well as the fundamental property of strict concavity
of fx with respect to x : d-concavity. Not all these conditions are in force to obtain the results
of [11], but, for simplicity, we also assume them all to summarize part of the properties there
proved.

The first goal in [11] is to describe the possibilities for the μ-bifurcation diagram of the
one-parametric family x ′ = f (ω·t, x) + μ, with global attractor Aμ. In particular, it is
proved that, if there exist three minimal sets for a value μ0 ∈ R of the parameter, then: Aμ

contains three (hyperbolic) minimal sets if and only if μ belongs to a nondegenerate interval
(μ−, μ+); the two upper (resp. lower) minimal sets collide on a residual invariant subset of
� when μ ↓ μ− (resp. μ ↑ μ+); and Aμ reduces to the (hyperbolic) graph of a continuous
map on� ifμ /∈ [μ−, μ+]. That is, the bifurcation diagram presents atμ− andμ+ two local
saddle-node bifurcation points of minimal sets and two points of discontinuity of Aμ: is the
nonautonomous analogue of the bifurcation diagram of x ′ = −x3 + x + μ.

A second type of perturbation is considered in [11], namely x ′ = f (ω·t, x) + λx , with
global attractor Aλ, under the additional assumption f (·, 0) ≡ 0. Now, M0 = � × {0} is a
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minimal set for all λ, and its hyperbolicity properties are determined by the Sacker and Sell
spectrum [−λ+,−λ−] of the map ω �→ fx (ω, 0). Two possible global bifurcation diagrams
are described, and some conditions ensuring their occurrence are given. The first one is the
classical pitchfork bifurcation diagram, with unique bifurcation point λ+:M0 is the unique
minimal set for λ ≤ λ+, and two more (hyperbolic) minimal sets occur for λ > λ+, which
collide with M0 as λ ↓ λ+. An autonomous analogue is the diagram of x ′ = −x3 + λx .
The second one is the local saddle-node and transcritical bifurcation diagram, with a local
saddle node bifurcation of minimal sets at a point λ0 < λ− and a so-called generalized
transcritical bifurcation of minimal sets around M0. We will describe this diagram in detail
in the next pages, pointing out now the most remarkable fact: M0 collides with another
(hyperbolic) minimal set as λ ↑ λ− and as λ ↓ λ+, and it is the unique minimal set lying on
a band �×[−ρ, ρ] for a ρ > 0 if λ ∈ [λ−, λ+]. This local transcritical bifurcation becomes
classical if λ− = λ+, being x ′ = −x3 + 2x2 + λx an autonomous example of this situation.

This analysis of the family x ′ = f (ω·t, x) + λx initiated in [11] is now completed: the
main goal in this paper is to describe all the possibilities for its bifurcation diagram. Besides
the two described ones, only a third situation may arise: a generalized pitchfork bifurcation
diagram, just possible when λ− < λ+. It is characterized by the existence of two bifurcation
points, λ0 ∈ [λ−, λ+) and λ+: M0 is the unique minimal set for λ < λ0, there are two of
them for λ ∈ (λ0, λ+], and there are three for λ > λ+. The lack of an autonomous analogue
raises a nontrivial question: does this bifurcation diagram correspond to some actual family?
We also answer it, explaining how to construct nonautonomous patterns fitting at each one
of the described possibilities. Furthermore, we prove that, given λ− < λ+, any λ0 ≤ λ+ is
the first bifurcation point of a suitable family x ′ = gλ0(ω·t, x) + λx with Sacker and Sell
spectrum of (gλ0)x (·, 0) given by [−λ+,−λ−], and that the three possible diagrams actually
occur: they correspond to λ0 < λ−, λ0 = λ+ and λ0 ∈ [λ−, λ+). As a tool to prove of this
last result, we analyze the bifurcation possibilities for a new one-parametric family, namely
x ′ = f (ω·t, x) + ξ x2. In order not to lengthen this introduction too much, we omit here the
(self-interesting) description of the bifurcation possibilities for this case, and refer the reader
to Sect. 6.

These are themain results of this paper, which presents more detailed descriptions in some
particular cases. Its contents are organized in five sections. Section2 contains the basic notions
and properties required to start with the analysis. Section3 is devoted to the description of the
three mentioned possibilities for the bifurcation diagrams of x ′ = f (ω·t, x)+λx . In Sect. 4,
we focus on the case of a cubic polynomial f (ω, x) = −a3(ω)x3 + a2(ω)x2 + a1(ω)x with
strictly positive a3, and show how some suitable properties of the coefficients a1, a2 and
a3 and some factible relations among them either preclude or ensure each one of the three
different bifurcation diagrams. Section5 extends these results to more general functions
f (ω, x) = (−a3(ω)+h(ω, x))x3+a2(ω)x2+a1(ω)x , describing in this way other patterns
fitting each one of the possibilities. And Sect. 6 begins with the description of the possibilities
for the bifurcation diagrams of x ′ = f (ω·t, x) + ξ x2 to conclude with the consequence
mentioned at the end of the previous paragraph.

2 Preliminaries

Throughout the paper, the map σ : R × � → �, (t, ω) �→ σt (ω) = ω·t defines a global
continuous flow on a compactmetric space�, andwe assume that the flow (�, σ ) is minimal,
that is, that everyσ -orbit is dense in�. This paperwill be focusedondescribing the bifurcation
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diagrams of simple parametric variations of the family

x ′ = f (ω·t, x) , ω ∈ �, (2.1)

where f : �× R → R is assumed to be jointly continuous, fx and fxx are supposed to exist
and to be jointly continuous (which we represent as f ∈ C0,2(� × R, R)), and f (ω, 0) = 0
for allω ∈ � (that is, x ≡ 0 solves the equation). If only f and fx are assumed to exist and to
be jointly continuous, then we shall say that f ∈ C0,1(� × R, R). Additional coercivity and
concavity properties will be assumed throughout the paper. In Sect. 4, we focus on the case
in which f (ω, x) is a cubic polynomial in the state variable x with strictly negative cubic
coefficient.

We develop our bifurcation theory through the skewproduct formalism: as explained in
the Introduction, our bifurcation analysis studies the variations on the global attractors and
on the number and structure of minimal sets for the corresponding parametric family of
skewproduct flows. In the next subsections, we summarize the most basic concepts and some
basic results required in the formulations and proofs of our results. The interested reader can
find in Sect. 2 of [11] more details on these matters, as well as a suitable list of references.

2.1 Scalar Skewproduct Flow

We define the local skewproduct flow on � × R induced by (2.1) as

τ : U ⊆ R × � × R → � × R , (t, ω, x0) �→ (ω·t, u(t, ω, x0)) , (2.2)

where Iω,x0 → R, t �→ u(t, ω, x0) is the maximal solution of (2.1) with initial value
u(0, ω, x0) = x0, and U = ⋃

(ω,x0)∈�×R
(Iω,x0 × {(ω, x0)}). The flow τ projects on (�, σ ),

which is called its base flow. It is known that u satisfies the cocycle property u(t+s, ω, x0) =
u(t, ω·s, u(s, ω, x0))whenever the right-hand term is defined; and, clearly, the flow τ is fiber-
monotone: if x1 < x2, then u(t, ω, x1) < u(t, ω, x2) for any t in the common interval of
definition of both solutions.

2.2 Functions of Bounded Primitive

Throughout this paper, the space of continuous functions from � to R will be represented by
C(�), the subspace of functions a ∈ C(�) such that

∫
�
a(ω) dm = 0 for allm ∈ Merg(�, σ )

will be represented by C0(�), the subspace of functions a ∈ C(�) such that the map
t �→ aω(t) = a(ω·t) is continuously differentiable on R will be represented by C1(�)

(in this case we shall represent a′(ω) = a′
ω(0)), and the subspace of functions a ∈ C(�)

with continuous primitive, that is, such that there exists b ∈ C1(�) with b′ = a, will be
represented by CP(�).

It is frequent to refer to a function a ∈ CP(�) as “with bounded primitive”. Let us
explain briefly the reason. Recall that (�, σ ) is minimal. Then, a ∈ CP(�) if and only if
there exists ω0 ∈ � such that the map a0 : R → R, t �→ a(ω0·t) has a bounded primitive
b0(t) = ∫ t

0 a0(s) ds, in which case this happens for all ω ∈ � (see e.g. Lemma 2.7 of [16]
or Proposition A.1 of [19]).

It follows from Birkoff’s Ergodic Theorem that CP(�) ⊆ C0(�). It is well known that
CP(�) = C0(�) if (�, σ ) is periodic, and Lemma 5.1 of [7] ensures that CP(�) is a dense
subset of C0(�) of first category in C0(�) if (�, σ ) is a minimal aperiodic flow. In addition,
C1(�) is dense in C(�) (see Sect. 2 of [34]).
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2.3 Equilibria and Semiequilibria

Let β : � → R be such that u(t, ω, β(ω)) is defined for all ω ∈ � and t ≥ 0 (resp. t ≤ 0).
We shall say that β is a τ -equilibrium if β(ω·t) = u(t, ω, β(ω)) for allω ∈ � and t ∈ R, a τ -
subequilibrium (resp. time-reversed τ -subequilibrium) if β(ω·t) ≤ u(t, ω, β(ω)) for all ω ∈
� and t ≥ 0 (resp. t ≤ 0), and a τ -superequilibrium (resp. time-reversed τ -superequilibrium)
if β(ω·t) ≥ u(t, ω, β(ω)) for all ω ∈ � and all t ≥ 0 (resp. t ≤ 0). Superequilibria and
subequilibria are generally denominated semiequilibria.Wewill frequently omit the reference
to τ if there is no risk of confusion.

Given a Borel measure m on �, we shall say that β : � → R is m-measurable if it is
measurable with respect to the m-completion of the Borel σ -algebra, and we shall say that
β : � → R is C1 along the base orbits if t �→ βω(t) = β(ω·t) is C1 on R for all ω ∈ �, in
which case we represent β ′(ω) = β ′

ω(0). Note that any τ -equilibrium is C1 along the base
orbits. We shall say that β : � → R is a semicontinuous equilibrium (resp. semiequilibrium)
if it is an equilibrium (resp. semiequilibrium) and a bounded semicontinuous map. A copy
of the base for the flow τ is the graph of a continuous τ -equilibrium.

We shall say that a τ -superequilibrium (resp. time-reversed τ -superequilibrium) β : � →
R is strong if there exists s∗ > 0 (resp. s∗ < 0) such that β(ω·s∗) > u(s∗, ω, β(ω)) for
all ω ∈ �, and we shall say that a τ -subequilibrium (resp. time-reversed τ -subequilibrium)
is strong if there exists s∗ > 0 (resp. s∗ < 0) such that β(ω·s∗) < u(s∗, ω, β(ω)) for all
ω ∈ �. Since (�, σ ) is minimal, Proposition 4.3 of [23] and its analogue in the time-reversed
cases show that, if β is a semicontinuous strong τ -superequilibrium (resp. time-reversed τ -
superequilibrium), then there exist e0 > 0 and s∗ > 0 (resp. s∗ < 0) such that β(ω) ≥
u(s∗, ω·(−s∗), β(ω·(−s∗))) + e0 for all ω ∈ �, and if β is a semicontinuous strong τ -
subequilibrium (resp. time-reversed τ -subequilibrium), then there exist e0 > 0 and s∗ > 0
(resp. s∗ < 0) such that β(ω) ≤ u(s∗, ω·(−s∗), β(ω·(−s∗))) − e0 for all ω ∈ �.

Let β : � → R be C1 along the base orbits. The map β shall be said to be a global upper
(resp. lower) solution of (2.1) if β ′(ω) ≥ f (ω, β(ω)) (resp. β ′(ω) ≤ f (ω, β(ω))) for every
ω ∈ �, and to be strict if the previous inequalities are strict for all ω ∈ �. Some comparison
arguments prove the following facts (see Sects. 3 and 4 of [23]): if every forward τ -semiorbit
is globally defined, then β is a τ -superequilibrium (resp. τ -subequilibrium) if and only if is a
global upper (resp. lower) solution of (2.1), and it is strong as superequilibrium (resp. subequi-
librium) if it is strict as global upper (resp. lower) solution. Analogously, if every backward
τ -semiorbit is globally defined, then β is a time-reversed τ -subequilibrium (resp. time-
reversed τ -superequilibrium) if and only if it is a global upper (resp. lower) solution of (2.1),
and it is strong as time-reversed subequilibrium (resp. time-reversed superequilibrium) if it
is strict as global upper (resp. lower) solution.

2.4 Minimal Sets, Coercivity and Global Attractor

A set K ⊆ � × R is τ -invariant if it is composed by globally defined τ -orbits, and it is
minimal if it is compact, τ -invariant and it does not contain properly any other compact
τ -invariant set. Let us recall some properties of compact τ -invariant sets and minimal sets
for the local skewproduct flow (� × R, τ ) over a minimal base (�, σ ). Let K ⊂ � × R be a
compact τ -invariant set. Since (�, σ ) is minimal, K projects onto �, that is, the continuous
map π : K → �, (ω, x) �→ ω is surjective. In addition,

K ⊆
⋃

ω∈�

({ω} × [αK(ω), βK(ω)]) ,
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where αK(ω) = inf{x ∈ R : (ω, x) ∈ K} and βK(ω) = sup{x ∈ R : (ω, x) ∈ K} are,
respectively, lower and upper semicontinuous τ -equilibria whose graphs are contained in K.
In particular, the residual sets of their continuity points are σ -invariant. They will be called
the lower and upper delimiter equilibria of K. The compact τ -invariant set K is said to be
pinched if there exists ω ∈ � such that the section (K)ω = {x : (ω, x) ∈ K} is a singleton.
A τ -minimal set M ⊂ � × R is said to be hyperbolic attractive (resp. repulsive) if it is
uniformly exponentially asymptotically stable at ∞ (resp. −∞). Otherwise, it is said to be
nonhyperbolic.

A function f : � × R → R is said to be coercive ((Co) for short) if

lim|x |→∞
f (ω, x)

x
= −∞

uniformly on �. A stronger definition of coercivity will be needed in part of Sect. 5 and in
Sect. 6: f : � × R → R is said to be 2-coercive ((Co)2 for short) if

lim
x→±∞

f (ω, x)

x2
= ∓∞ ,

uniformly on �. It is clear that, if f is (Co)2, then it is (Co). The arguments leading to
Theorem 16 of [8] (see also Sect. 1.2 of [9]) ensure that, if f ∈ C0,1(�×R, R) is (Co), then
the flow τ is globally forward defined and admits a global attractor. That is, a compact τ -
invariant setAwhich satisfies limt→∞ dist(τt (C),A) = 0 for every bounded set C ⊂ �×R,
where τt (C) = {(ω·t, u(t, ω, x0)) : (ω, x0) ∈ C} and

dist(C1, C2) = sup
(ω1,x1)∈C1

(

inf
(ω2,x2)∈C2

(
dist�×R((ω1, x1), (ω2, x2))

)
)

.

In addition, the attractor takes the form A = ⋃
ω∈�({ω} × [αA(ω), βA(ω)]) and is com-

posed by the union of all the globally defined and bounded τ -orbits. And, as proved in
Theorem 5.1(iii) of [11], any global (strict) lower solution κ satisfies κ ≤ βA (κ < βA)
and a (strict) upper solution κ satisfies κ ≥ αA (κ > αA). Besides, if ω1 (resp. ω2) is a
continuity point of αA (resp. βA), then the set Ml = cl�×R{(ω1·t, αA(ω1·t)) : t ∈ R}
(resp. Mu = cl�×R{(ω2·t, βA(ω2·t)) : t ∈ R}) is the lower (resp. upper) τ -minimal set,
and its sections reduce to the points αA(ω) (resp. βA(ω)) at all the continuity points ω of
αA (resp. βA): see Theorem 3.3 of [6]. Moreover, it is easy to check by contradiction that,
if Ml (resp. Mu) is hyperbolic, then it is attractive and it coincides with the graph of αA
(resp. βA), which therefore is a continuous map.

2.5 Measures and Lyapunov Exponents

We shall say that a Borel measure m on � is normalized if m(�) = 1, that it is σ -invariant
if m(σt (B)) = m(B) for every t ∈ R and every Borel subset B ⊆ �, and that it is σ -ergodic
if it is normalized, σ -invariant and m(B) ∈ {0, 1} for every σ -invariant subset B ⊆ �.
Minv(�, σ ) and Merg(�, σ ) are, respectively, the nonempty sets of normalized σ -invariant
and σ -ergodic Borel measures on �. The flow (�, σ ) is said to be uniquely ergodic if
Minv(�, σ ) reduces to just one element m, in which case m is ergodic; and it is said to be
finitely ergodic ifMerg(�, σ ) is a finite set.

The Lyapunov exponent of a ∈ C(�) with respect to m ∈ Merg(�, σ ) is

γa(�,m) =
∫

�

a(ω) dm .
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The family of scalar linear differential equations x ′ = a(ω·t) x has exponential dichotomy
over � if there exist k ≥ 1 and δ > 0 such that either

exp
∫ t

0
a(ω·s) ds ≤ ke−δt whenever ω ∈ � and t ≥ 0

or

exp
∫ t

0
a(ω·s) ds ≤ keδt whenever ω ∈ � and t ≤ 0 .

The set of λ ∈ R such that the family x ′ = (a(ω·t) − λ) x does not have exponential
dichotomy over � is called the Sacker and Sell spectrum of a ∈ C(�), and represented by
sp(a). Recall that � is connected, since (�, σ ) is minimal. The arguments in [18] and [33]
show the existence of ml ,mu ∈ Merg(�, σ ) such that sp(a) = [

γa(�,ml), γa(�,mu)
]
,

and also that
∫
�
a(ω) dm ∈ sp(a) for any m ∈ Minv(�, σ ). We shall say that a has band

spectrum if sp(a) is a nondegenerate interval and that a has point spectrum if sp(a) reduces
to a point. As seen in Sect. 2.2, sp(a) = {0} if a ∈ C0(�).

On the other hand, assume that f ∈ C0,1(� × R, R), where f is the function on the right
hand side of (2.1). The Lyapunov exponent of a compact τ -invariant set K ⊂ � × R with
respect to ν ∈ Merg(K, τ ) is

γ fx (K, ν) =
∫

K
fx (ω, x) dν .

We will frequently omit the subscript fx if no confusion may arise. We will refer to the
Sacker and Sell spectrum of fx : K → R as the Sacker and Sell spectrum of fx on a compact
τ -invariant set K ⊂ � × R. Since (�, σ ) is a minimal flow, a τ -minimal setM ⊂ � × R is
nonhyperbolic if and only if 0 belongs to the Sacker and Sell spectrum of fx onM. Moreover,
Proposition 2.8 of [6] proves thatM is an attractive (resp. repulsive) hyperbolic copy of the
base if and only if all its Lyapunov exponents are strictly negative (resp. positive).

Theorems 1.8.4 of [4] and 4.1 of [14] provide a fundamental characterization of the
set Merg(K, τ ) given by the τ -ergodic measures concentrated on a compact τ -invariant set
K ⊂ �×R: for any ν ∈ Merg(K, τ ), there exists anm-measurable τ -equilibrium β : � → R

with graph contained in K such that, for every continuous function g : � × R → R,
∫

K
g(ω, x) dν =

∫

�

g(ω, β(ω)) dm , (2.3)

where m ∈ Merg(�, σ ) is the ergodic measure on which ν projects, given by m(A) =
ν((A × R) ∩ K). In particular, the Lyapunov exponent on K for (2.1) with respect to any
τ -ergodic measure projecting onto m is given by an integral of the form

∫
�

fx (ω, β(ω)) dm.
The converse also holds: any m-measurable τ -equilibrium β : � → R with graph in K
defines ν ∈ Merg(K, τ ) projecting onto m by (2.3). Note that β1 and β2 define the same
measure if and only if they coincide m-a.e.

2.6 Strict D-Concavity

We shall say that f ∈ C0,1(� × R, R) is d-concave ((DC) for short) if its derivative fx is
concave on R for all ω ∈ �. With the purpose of measuring the degree of strictness of the
concavity of fx , the standardized ε-modules of d-concavity of f on a compact interval J
were introduced in [11], and several subsets of strictly d-concave functions ofC0,1(�×R, R)

were defined in terms of these modules. In this paper, we will only be interested in the set
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(SDC)∗ of strictly d-concave functions with respect to every measure (see Definition 3.8
of [11]). Proposition 3.9 of [11] gives a characterization of this set of functions which will
be sufficient for the purposes of this paper: f ∈ C0,2(� × R, R) is (SDC)∗ if and only if
m({ω ∈ � : fxx (ω, ·) is strictly decreasing on J }) > 0 for every compact interval J and
everym ∈ Merg(�, σ ). In particular, it can be easily checked that any polynomial of the form
p(ω, x) = −a3(ω)x3 + a2(ω)x2 + a1(ω)x + a0(ω), where the coefficients are continuous
and � and a3 is nonnegative and nonzero, is (SDC)∗, since pxx (ω, ·) is strictly decreasing
on R for every ω on an open subset of � (recall that the minimality of (�, σ ) ensures that
every open set has positive m-measure for all m ∈ Merg(�, σ )).

Assume that the function f of (2.1) is (SDC)∗. Following the methods of [26] and [35],
Theorems 4.1 and 4.2 of [11] state relevant dynamical properties of the local skewproduct
flow τ in terms of the previous properties. Let K ⊂ � × R be a compact τ -invariant set.
Then, there exist at most three distinct τ -invariant measures of Merg(K, τ ) which project
onto m. Moreover, if there exist three such measures ν1, ν2 and ν3 projecting onto m, and
they are respectively given by the m-measurable equilibria β1, β2 and β3 (see (2.3)) with
β1(ω) < β2(ω) < β3(ω) for m-a.e. ω ∈ �, then γ fx (K, ν1) < 0, γ fx (K, ν2) > 0 and
γ fx (K, ν3) < 0. In addition, K contains at most three disjoint compact τ -invariant sets, and
if it contains exactly three, then they are hyperbolic copies of the base: attractive the upper and
lower ones, and repulsive the middle one. These properties will be often combined with those
established in Proposition 5.3 of [11]: if f is coercive and either if there exists a repulsive
hyperbolic τ -minimal set or if there exist two hyperbolic τ -minimal sets, then there exist
three τ -minimal sets.

3 Generalized Pitchfork Bifurcation Patterns

Let (�, σ ) be a minimal flow, and let f ∈ C0,2(� × R, R) be (Co) and (SDC)∗, and satisfy
f (ω, 0) = 0 for every ω ∈ �. The description of the global bifurcation diagram for the
family

x ′ = f (ω·t, x) + λx , ω ∈ � (3.1)

with respect the real parameter λwas initiated in Sect. 6 of [11] and is completed in Theorem
3.1. We denote by Iλ

ω,x0 → R, t �→ uλ(t, ω, x0) the maximal solution of (3.1)λ with initial
value uλ(0, ω, x0) = x0, and by τλ the corresponding local skewproduct flow induced by
(3.1)λ; i.e., τλ(t, ω, x0) = (ω·t, uλ(t, ω, x0)). The coercivity property ensures the existence
of the global attractor Aλ for all λ ∈ R. Theorems 5.1 and 6.2 of [11] describe the structure
of Aλ and its variation with respect to λ: it can be written as

Aλ =
⋃

ω∈�

({ω} × [αλ(ω), βλ(ω)]) ,

where: αλ : � → R and βλ : � → R are lower and upper semicontinuous τλ-equilibria;
αλ(ω) ≤ 0 ≤ βλ(ω) for all ω ∈ �; the maps λ �→ βλ(ω) and λ �→ αλ(ω) are respec-
tively nondecreasing and nonincreasing on R for all ω ∈ � and both are right-continuous;
limλ→∞ αλ(ω) = −∞ and limλ→∞ βλ(ω) = ∞ uniformly on �; and there exists λ∗ ∈ R

such thatAλ = �×{0} and it is hyperbolic attractive for every λ < λ∗. We represent byMl
λ

andMu
λ the lower and upper τλ-minimal sets, and recall that any of them is hyperbolic if and

only it is hyperbolic attractive, in which case it coincides with the graph of the corresponding
delimiter equilibrium of Aλ (see Sect. 2.4).
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Fig. 1 Local saddle-node and transcritical bifurcation diagrams described in Theorem 3.1(i). The left one
corresponds to λ− = λ+ and the right one to λ− < λ+. The solid red curves represent the families of
attractive hyperbolic solutions of the λ-parametric family (3.1): αλ for λ �= λ0 and βλ for λ /∈ [λ−, λ+]. The
blue curve represents the family of repulsive hyperbolic solutions of (3.1): κλ for λ ∈ (μ−, λ−)∪ (λ+, ∞). In
the first diagram, a large black point with abscissa λ0 represents the complex possibilities which arise for the
collision of αλ and κλ as λ ↓ λ0, which is partly explained in the left zoom: the limit maps αλ0 and κλ0 are not
necessarily continuous, but lower and upper semicontinuous; they take the same value for a residual invariant
set of points ω; but this residual set may (not necessarily) coexist with a nonempty invariant set �0 � � at
whose points αλ0 (ω) < κλ0 (ω); and the set �0 can have measure 0 or 1 for an ergodic measure on �. The
situation is analogous for all λ = λ± with the maps κλ± and βλ± given by the limits of κλ as λ ↑ λ−(= λ+)

and of βλ as λ ↓ λ+(= λ−), and represented by “κλ± ≤ βλ± " and the large black point. The hyperbolic
minimal sets are given by the graphs of the curvesαλ, κλ andβλ whenever they are hyperbolic.A nonhyperbolic
minimal setMl

λ0
exists for λ0, lying in the region delimited by the graphs of αλ0 and κλ0 , and with a possibly

highly complex shape. The situation is, again, analogous for λ−(= λ+), and no more minimal sets exist for
any λ. The green-shadowed area represents the global attractorAλ, and the light grey arrows just try to depict
the attracting and repelling properties of αλ, κλ and βλ. In the second diagram, besides the features already
described for the first one, M0 is a nonhyperbolic minimal set for λ ∈ [λ−, λ+], and βλ is not identically
zero for λ ∈ (λ−, λ+], as deduced from the existence of m ∈ Merg(�, σ ) with

∫
�( fx (ω, 0) + λ) dm > 0

and Proposition 5.2 of [11], which ensures that
∫
�( fx (ω, βλ(ω)) + λ) dm ≤ 0. (We will use “large black

points" and analogous inequalities in the remaining figures to depict similar situations, as well as red and blue
“hyperbolic" curves, green-shadowing, and grey arrows) (Color figure online)

Let {κ1
λ : λ ∈ (λ1, λ2)} and {κ2

λ : λ ∈ (λ1, λ2)} be two families of τλ-equilbria. We will
say that κ1

λ and κ2
λ collide (or that κ1

λ collides with κ2
λ ) as λ ↓ λ1 or λ ↑ λ2 on a residual

set R ⊆ � if the limit of the difference κ1
λ(ω) − κ2

λ(ω) vanishes for all ω ∈ R. The same
terminology will be used for the different parametric families of flows appearing throughout
the paper.

Theorem 3.1 describes the possibilities for the global bifurcation diagram, which are
depicted in Figs. 1 and 2. Its proof is given after a required technical result, Lemma 3.2.

Theorem 3.1 Let f ∈ C0,2(� × R, R) be (Co) and (SDC)∗, and let [−λ+,−λ−] be the
Sacker and Sell spectrum of fx on M0 = � × {0}, with λ− ≤ λ+. Then, M0 is hyperbolic
attractive (resp. repulsive) if λ < λ− (resp. λ > λ+) and nonhyperbolic if λ ∈ [λ−, λ+]; τλ

admits three different hyperbolic minimal sets Ml
λ < M0 < Mu

λ for λ > λ+, where Ml
λ

and Mu
λ are hyperbolic attractive and given by the graphs of αλ and βλ respectively; and

either αλ or βλ (or both of them) collide with 0 on a residual σ -invariant set as λ ↓ λ+.
Assume that this is the case for βλ. Then, one of the following situations holds:

(i) (Local saddle-node and transcritical bifurcations). There exists λ0 < λ− such that:Aλ =
M0 for λ < λ0; τλ0 admits exactly two different minimal sets Ml

λ0
< M0, with Ml

λ0

nonhyperbolic; τλ admits three hyperbolic minimal sets Ml
λ < Nλ < M0 for λ ∈

(λ0, λ−), where Ml
λ is hyperbolic attractive and given by the graph of αλ, and Nλ is

hyperbolic repulsive and given by the graph of a continuous map κλ : � → R which
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Fig. 2 The classical pitchfork bifurcation (left and center) and generalized pitchfork bifurcation (right) dia-
grams described in Theorem 3.1(ii) and (iii). In the last case, the possible existence of one or two nonhyperbolic
minimal sets at λ0 is depicted by a solid-filled purple eight, and it will be proved in a forthcoming paper. See
Fig. 1 to understand the meaning of the remaining elements

increases strictly as λ increases in (λ0, λ−), and which collides with αλ (resp. with 0)
on a residual σ -invariant set as λ ↓ λ0 (resp. λ ↑ λ−); and τλ admits exactly two
minimal setsMl

λ < M0 for λ ∈ [λ−, λ+], whereMl
λ is hyperbolic attractive and given

by the graph of αλ. In particular, λ0, λ− and λ+ are the unique bifurcation points: a
local saddle-node bifurcation of minimal sets occurs around Mλ0 at λ0, as well as a
discontinuous bifurcation of attractors; and a classical (resp. generalized) transcritical
bifurcation of minimal sets arises around M0 at λ− (resp. on [λ−, λ+]) if λ− = λ+
(resp. λ− < λ+).

(ii) (Classical pitchfork bifurcation).M0 is the unique τλ-minimal set if λ ≤ λ+, and Aλ =
M0 if λ < λ−; and both αλ and βλ collide with 0 on a residual σ -invariant set as λ ↓ λ+.
A classical pitchfork bifurcation of minimal sets arises around M0 at λ+.

(iii) (Generalized pitchfork bifurcation). λ− < λ+ and there exists λ0 ∈ [λ−, λ+) such that:
M0 is the unique τλ-minimal set if λ < λ0 andAλ = M0 if λ < λ−; and τλ-admits two
minimal setsMl

λ < M0 for λ ∈ (λ0, λ+], whereMl
λ is hyperbolic attractive and given

by the graph of αλ. A generalized pitchfork bifurcation of minimal sets around M0 on
[λ−, λ+] arises, with λ0 and λ+ as bifurcation points.

The possibilities for the bifurcation diagram are symmetric with respect to the horizontal
axis to those described if αλ collides with 0 as λ ↓ λ+.

Lemma 3.2 Let f ∈ C0,2(� × R, R) be (Co) and (SDC)∗ and satisfy f (ω, 0) = 0 for all
ω ∈ �. Assume that there exist exactly twominimal setsMl < M0 (resp.Mu > M0) for the
local skewproduct flow τ defined by the solutions u(t, ω, x0) of the family x ′ = f (ω·t, x),
with Ml (resp. Mu) hyperbolic attractive. Assume also that

∫
�

fx (ω, 0) dm �= 0 for an
m ∈ Merg(�, σ ). Then, there exist a lower semicontinuous τ -equilibrium κ1 : � → (−∞, 0]
and an upper semicontinuous τ -equilibrium κ2 : � → [0,∞) which take the value 0 on the
residual σ -invariant sets of their continuity points and such that

∫
�

fx (ω, κ1(ω)) dm > 0
and

∫
�

fx (ω, κ2(ω)) dm < 0 (resp.
∫
�

fx (ω, κ1(ω)) dm < 0 and
∫
�

fx (ω, κ2(ω)) dm > 0).
Moreover,

κ1(ω) = sup{x0 ∈ R : lim
t→∞(u(t, ω, x0) − α(ω·t)) = 0} > α(ω)

(resp. κ2(ω) = inf{x0 ∈ R : lim
t→∞(u(t, ω, x0) − β(ω·t)) = 0} < β(ω)) ,

where the τ -equilibriumα (resp. β) is the lower (resp. upper) delimiter of the global attractor,
with graph Ml (resp. Mu).
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Proof Proposition 5.3(ii) of [11] ensures the nonhyperbolicity of M0. We reason in the
case Ml < M0. Theorem 5.12 of [11] ensures that the ξ -bifurcation diagram for x ′ =
f (ω·t, x)+ξ is described byTheorem5.10 of [11],with 0 as left local saddle-node bifurcation
point, at which the upper (nonhyperbolic) minimal set is M0. As explained in the proof of
Theorem 5.10 of [11], M0 is contained on a compact τ -invariant pinched set

⋃
ω∈�

({ω} ×
[κ1(ω), κ2(ω)]), where: κ1 : � → (−∞, 0] (called κ in [11]) is a lower semicontinuous τ -
equilibrium; κ2 : � → (−∞, 0] (calledβ in [11]) is the upper delimiter of the global attractor;
and both of them coincide (and hence take the value 0) on the residual set of their common
continuity points (and hence at all their continuity points: see Proposition 2.4 of [11]). Since∫
�

fx (ω, 0) dm �= 0, Proposition 5.11(i) of [11] ensures that
∫
�

fx (ω, κ1(ω)) dm > 0 and∫
�

fx (ω, κ2(ω)) dm < 0.
Let us check the last assertion, also in the case Ml < M0. Recall that the hyperbolic

attractiveness of Ml ensures that it coincides with the graph of α, which is continuous, and
that every global strict upper solution is strictly greater than α (see Sect. 2.4). Since κ1 is a τ -
equilibrium,κ1(ω) ≥ sup{x0 ∈ R : limt→∞(u(t, ω, x0)−α(ω·t)) = 0} for allω ∈ �.Wefix
ω0 to check that limt→∞(u(t, ω0, x0)−α(ω0·t)) = 0 for any x0 < κ1(ω0). The ξ -bifurcation
diagram for x ′ = f (ω·t, x) + ξ described by Theorem 5.10 of [11] ensures the existence of
ξ+ > 0 and strictly negative continuous equilibria κξ : � → R of x ′ = f (ω·t, x) + ξ for
ξ ∈ (0, ξ+) which decrease strictly as ξ increases and such that κ1(ω) = limξ↓0 κξ (ω) for
all ω ∈ �. Hence, for any x0 < κ1(ω0), there exists ξ0 > 0 such that x0 < κξ0(ω0). Since
κξ0 is a strict upper solution of x ′ = f (ω·t, x) and hence a strong τ -superequilibrium, the
ω-limit for τ of (ω0, x0) is strictly below the graph of κξ0 (see Sect. 2.3), so this ω-limit
contains Ml , which is the unique τ -minimal set strictly below it. Therefore, there exists a
sequence {tn} ↑ ∞ such that limn→∞(u(tn, ω0, x0) − α(ω0·tn)) = 0, and the hyperbolic
attractiveness of Ml ensures that limt→∞(u(t, ω0, x0) − α(ω0·t)) = 0, as asserted.

The proof is analogous in the other case. ��
Proof of Theorem 3.1 The Sacker and Sell spectrum of fx +λ onM0 is [−λ+ +λ,−λ− +λ],
which ensures the stated hyperbolicity properties of M0 (see Sect. 2.5). As in Theorem 6.3
of [11], we define

μ− = inf{λ : ∀ ξ > λ the graph of αξ is the hyperbolic minimal set Ml
ξ < M0} ,

μ+ = inf{λ : ∀ ξ > λ the graph of βξ is the hyperbolic minimal set Mu
ξ > M0} ,

which, as proved there, belong to (−∞, λ+]. This property guarantees the stated structure
of the τλ-minimal sets for λ > λ+, since there exist at most three τλ-minimal sets (see
Sect. 2.6). Theorem 6.3(ii) of [11] also ensures that at least one of these two parameters
μ−, μ+ coincides with λ+, which proves the stated collision properties for αλ or for βλ as
λ ↓ λ+. As in the statement, we assume that this is the case for βλ, i.e., that μ+ = λ+.
Then, since λ �→ βλ(ω) is nondecreasing for all ω ∈ � and the intersection of two residual
sets is also residual, M0 is the upper minimal set for all λ ≤ λ+. If also μ− = λ+, then
Theorem 6.3(iii) of [11] ensures that the bifurcation diagram is that of (ii). If μ− < λ−, then
Theorem 6.4 of [11] shows that the diagram is that of (i), with λ0 = μ−. The remaining case
is, hence, μ− ∈ [λ−, λ+). We will check that, in this case, the situation is that of (iii), which
will complete the proof.

Let us call λ0 = μ−. Notice that, if λ ∈ (λ0, λ+], then there exist only two τλ-minimal
sets, as otherwise the nonhyperbolicity ofM0 would be contradicted (see Sect. 2.6); and, as
explained before,Ml

λ is hyperbolic attractive (and given by the graph of αλ). Consequently,
it only remains to prove that αλ(ω) = 0 on the residual σ -invariant set of its continuity
points for λ < λ0. This will ensure that M0 is the unique τλ-minimal set for λ < λ0, and
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the hyperbolic attractiveness of M0 for λ < λ− will ensure that Aλ = M0 for λ < λ− (see
Theorem 3.4 of [6]). Recall also that αλ vanishes at all its continuity points if it vanishes at
one of them (see e.g. Proposition 2.5 of [11]).

First, let us assume that Ml
λ0

= M0, which means that αλ0(ω) = 0 on the residual set
of its continuity points (see Sect. 2.4). Therefore, the same happens with αλ if λ < λ0, since
αλ0 ≤ αλ ≤ 0 and the intersection of two residual sets is also residual. This proves the result
in this case.

So, we assume Ml
λ0

< M0, which in particular ensures that αλ0(ω) < 0 for all ω ∈ �.
Let us take λ > λ0. Lemma 3.2 shows that the upper delimiter of the basin of attraction of the
graph of αλ is a lower semicontinuous τλ-equilibrium κ1

λ : � → (−∞, 0] which vanishes
at its continuity points, with κ1

λ > αλ, and which satisfies
∫
�
( fx (ω, κ1

λ(ω)) + λ) dm > 0
whenever

∫
�
( fx (ω, 0)+λ) dm < 0. In particular, sincem is ergodic, κ1

λ < 0m-a.e. whenever
∫
�
( fx (ω, 0) + λ) dm < 0. Let us check that the map λ �→ κ1

λ(ω) is nondecreasing on
(λ0,∞) for all ω ∈ �. It is easy to deduce from the hyperbolicity of the graphMl

λ of αλ that
x < κ1

λ(ω) if and only if Ml
λ is the ω-limit for τλ of (ω, x). We take λ0 < λ1 < λ2, ω ∈ �

and x < κ1
λ1

(ω). Then, uλ2(t, ω, x) < uλ1(t, ω, x) < κ1
λ1

(ω·t) for all t ≥ 0, which precludes
the possibility thatM0 is contained in the ω-limit set for τλ2 of (ω, x) and hence guarantees
that x < κ1

λ2
(ω). This proves the assertion. As a consequence of this nondecreasing character,

the map κ1
λ0

(ω) = limλ↓λ0 κ1
λ(ω) is well defined, and it satisfies αλ0(ω) ≤ κ1

λ0
(ω) ≤ κ1

λ(ω)

for all ω ∈ � if λ > λ0. It is clear that κ1
λ0

it is an m-measurable τλ0 -equilibrium for every
m ∈ Merg(�, σ ).

Let βM be the upper delimiter τλ0 -equilibrium of Ml
λ0
. Our next purpose is to check

that there exist points ω0 ∈ � with κ1
λ0

(ω0) ≤ βM(ω0). Since Ml
λ0

is nonhyperbolic,

there exists m ∈ Merg(�, σ ) and an m-measurable τλ0 -equilibrium κ̃ with graph in Ml
λ0

such that
∫
�
( fx (ω, κ̃(ω)) + λ0) dm ≥ 0 (see Sect. 2.5). Proposition 4.4 of [11] ensures

that
∫
�
( fx (ω, 0) + λ0) dm < 0, so

∫
�
( fx (ω, 0) + λ) dm < 0 for λ ≥ λ0 close enough.

Therefore, as seen before, κ1
λ(ω) < 0 m-a.e. for these values of the parameter, and hence

κ1
λ0

(ω) < 0 m-a.e. Assume for contradiction that κ1
λ1

(ω) > βM(ω) for all ω ∈ �, and hence

that κ1
λ1

(ω) > κ̃(ω) for all ω ∈ �. Then, 0, κ1
λ0

and κ̃ define three different τλ0 -ergodic
measures by (2.3). This ensures that

∫
�
( fx (ω, κ̃(ω)) + λ0) dm < 0 (see Sect. 2.6), which is

not the case. This proves the assertion.
Finally, let us fix λ < λ0 and check that αλ(ω) = 0 at one of its continuity points, which

completes the proof. Propositions 6.1 and 2.1 of [11] show the existence of s∗ > 0 such
that βM(ω) < uλ(s∗, ω·(−s∗), αλ0(ω·(−s∗))) ≤ αλ(ω) for all ω ∈ � (the last inequality
follows from the flowmonotonicity and the nonincreasing character of λ �→ αλ(ω)). We take
ω0 ∈ � with κ1

λ0
(ω0) ≤ βM(ω0). Then, limλ↓λ0 κ1

λ(ω0) = κ1
λ0

(ω0) ≤ βM(ω0) < αλ(ω0).

Therefore, there exists ξ > λ0 close enough to get κ1
ξ (ω0) < αλ(ω0). Consequently, since

ξ > λ and hence the nonpositive semicontinuous map κ1
ξ is a global lower solution for

(3.1)λ, κ1
ξ (ω0·t) ≤ uλ(t, ω0, κ

1
ξ (ω0)) < uλ(t, ω0, αλ(ω0)) = αλ(ω0·t) for all t > 0. Let ω1

be a common continuity point of κ1
ξ and αλ. As (�, σ ) is minimal, there exists a sequence

{tn} ↑ ∞ such that ω0·tn → ω1 as n → ∞. Since κ1
ξ vanishes at ω1, 0 = κ1

ξ (ω1) =
limn→∞ κ1

ξ (ω0·tn) ≤ limn→∞ αλ(ω0·tn) = αλ(ω1) ≤ 0. That is, αλ(ω1) = 0, and the proof
is complete. ��

The first and second diagrams in Fig. 1 (resp. in Fig. 2) depict the two cases of local
saddle-node and transcritical bifurcations (resp. classical pitchfork bifurcation) described in
detail in Theorem 3.1 when the Sacker and Sell spectrum is a point (the first one) and a
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band (the second one). The third diagram in Fig. 2 depicts the case of a generalized pitchfork
bifurcation, which requires the Sacker and Sell spectrum to be a band (and hence never
happens in the autonomous case, which is uniquely ergodic). Notice that we have examples
of one, two, and three bifurcation points. In particular, the band case of local saddle-node
and transcritical bifurcation diagram exhibits three of these values.

We complete the section by mentioning that there are simple autonomous examples of
classical pitchfork bifurcation (as x ′ = −x3 + λx , with λ± = 0 as bifurcation point) and
local saddle-node and transcritical bifurcation (as x ′ = −x3 ± 2x2 + λx , with λ0 = −1 as
local saddle-node bifurcation point and λ± = 0 as local classical transcritical bifurcation
point; the two signs of the second-order term correspond to the two possible sings for the
curve κλ of nonhyperbolic critical points). We will go deeper in this matter in Sects. 4, 5 and
6, where we will show that all the possibilities realize for suitable families (3.1).

4 Criteria for Cubic Polynomial Equations

Let us consider families of cubic polynomial ordinary differential equations

x ′ = −a3(ω·t)x3 + a2(ω·t)x2 + (a1(ω·t) + λ)x , ω ∈ �, (4.1)

where ai ∈ C(�) for i ∈ {1, 2, 3}, a3 is strictly positive and λ ∈ R. It is clear that the
function f (ω, x) = −a3(ω)x3 + a2(ω)x2 + a1(ω)x is (Co). In addition, f is (SDC)∗ (see
Sect. 2.6). Then, Theorem 3.1 describes the three possible λ-bifurcation diagrams for (4.1).
Our first goal in this section, achieved in Sects. 4.1 and 4.2, is to describe conditions on the
coefficients ai determining the specific diagram. The last subsection is devoted to explain
how to get actual patterns satisfying the previously established conditions.

As in Sect. 3, τλ(t, ω, x0) = (ω·t, uλ(t, ω, x0)) repesents the local skewproduct flow
induced by (4.1)λ on�×R. Notice that the Sacker and Sell spectrum of fx onM0 = �×{0}
(which is τλ-minimal for all λ ∈ R) coincides with sp(a1).

4.1 The Case of a1 with Continuous Primitive

Throughout this subsection, we assume that a1 ∈ CP(�). Since CP(�) ⊆ C0(�) (see
Sect. 2.2), the Sacker and Sell spectrum of a1 is sp(a1) = {0}. Hence, the bifurcation diagram
of (4.1) fits in (i) or (ii) of Theorem 3.1, and our objective is to give criteria ensuring each one
of these two possibilities. The relevant fact in terms of which the criteria will be constructed
is that the number of τ0-minimal sets distinguishes the type of bifurcation: there is either one
τ0-minimal set in (ii) or two τ0-minimal sets in (i).

Proposition 4.2 provides a simple classification for (4.1) in this case. It is based on the
previous bifurcation analysis of

x ′ = −a3(ω·t)x3 + (a2(ω·t) + ξ)x2 , ω ∈ �, (4.2)

made in Proposition 4.1. These two results extend Proposition 6.6 and Corollary 6.7 of [11]
to the case of strictly positive a3 (instead of a3 ≡ 1), since the case of a1 ≡ 0 is trivially
covered by Proposition 4.2 with b ≡ 0. We will call τ̌ξ the local skewproduct flow induced
by (4.2)ξ on � × R.

Proposition 4.1 The τ̌ξ -minimal set M0 = � × {0} is nonhyperbolic for all ξ ∈ R. In
addition, if sp(a2) = [−ξ+,−ξ−], with ξ− ≤ ξ+, then
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(i) τ̌ξ admits exactly two minimal setsMl
ξ < M0 respectively given by the graphs of αξ and

0 for ξ < ξ−, where Ml
ξ is hyperbolic attractive; and αξ collides with 0 on a residual

σ -invariant set as ξ ↑ ξ−;
(ii) M0 is the unique τ̌ξ -minimal set for ξ ∈ [ξ−, ξ+];
(iii) τ̌ξ admits exactly two minimal setsM0 < Mu

ξ respectively given by the graphs of 0 and
βξ for ξ > ξ+, where Mu

ξ is hyperbolic attractive; and βξ collides with 0 on a residual
σ -invariant set as ξ ↓ ξ+.

Proof The proof follows step by step that of Proposition 6.6 of [11]. The only remarkable
differences arise in checking the existence of a bounded solution of (4.2)ξ for ξ > ξ+ which
is bounded away from 0 for t > 0. Let us explain these differences. Take α ∈ (0, ξ − ξ+)

with α <
√
2r for r = ‖a3‖ = maxω∈� a3(ω) > 0. Let us check that the solution w(t) of

w′ = −(a2(ω·t)+ ξ)+ a3(ω·t)/w with w(0) = α < 2r/α is bounded on [0,∞). We define
t1 = sup{t > 0 : w(s) ≤ 2r/α + ltα for all s ∈ [0, t]}, where l = r/α + ‖a2 + ξ‖ and
tα > 0 satisfies

∫ tα
0 (a2(ω·s) + ξ) ds ≥ αtα for all ω ∈ �. The existence of such tα is proved

in the proof of Proposition 6.6 of [11]. We assume for contradiction that t1 < ∞ and define
t0 = inf{t < t1 : w(s) ≥ 2r/α for all s ∈ [t, t1]}. Then, t0 < t1 − tα: otherwise

w(t1) = w(t0) +
∫ t1

t0

(

−(a2(ω0·s) + ξ) + a3(ω0·s)
w(s)

)

ds <
2r

α
+ ltα ,

which is not the case. In particular, w(t) ≥ 2r/α for t ∈ [t1 − tα, t1], and hence

w(t1) = w(t1 − tα) −
∫ tα

0
(a2(ω0·(t1 − tα)·s) + ξ) ds +

∫ t1

t1−tα

a3(ω0·s)
w(s)

ds

≤ w(t1 − tα) − αtα + α

2
tα < w(t1 − tα) ,

which contradicts the definition of t1. ��
Proposition 4.2 Let b be a continuous primitive of a1. Then,

(i) sp(eba2) ⊂ (0,∞) if and only if (4.1) exhibits the local saddle-node and classical
transcritical bifurcations of minimal sets described in Theorem 3.1(i), with αλ colliding
with 0 on a residual σ -invariant set as λ ↓ λ+. In particular, this situation holds if
0 �≡ a2 ≥ 0.

(ii) sp(eba2) ⊂ (−∞, 0) if and only if (4.1) exhibits the local saddle-node and classical
transcritical bifurcations of minimal sets described in Theorem 3.1(i), with βλ colliding
with 0 on a residual σ -invariant set as λ ↓ λ+. In particular, this situation holds if
0 �≡ a2 ≤ 0.

(iii) 0 ∈ sp(eba2) if and only if (4.1) exhibits the classical pitchfork bifurcation of minimal
sets described in Theorem 3.1(ii).

Proof The family of changes of variable y(t) = e−b(ω·t)x(t) takes (4.1) to

y′ = −e2b(ω·t)y3 + eb(ω·t)a2(ω·t)y2 + (a1(ω·t) − b′(ω·t) + λ)y

= −e2b(ω·t)y3 + eb(ω·t)a2(ω·t)y2 + λy .
(4.3)

The possibilities for (4.1) follow from here, since N is a minimal set for (4.3)λ if and only
if M = {(ω, eb(ω)x) : (ω, x) ∈ N } is minimal for (4.1)λ. The rest of the proof adapts that
of Corollary 6.7 of [11]. Theorem 3.1 applied to f (ω, y) = −e2b(ω·t)y3 + eb(ω·t)a2(ω·t)y2
shows that λ− = λ+ = 0 is a bifurcation point for (4.3), and that the corresponding bifur-
cation diagram is that described in its points (i) or (ii). According to Proposition 4.1, the
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flow induced by y′ = f (ω·t, y), that is, (4.3)0, admits just one minimal set if and only
if 0 ∈ sp(eba2); two minimal sets, being M0 = � × {0} the lower one, if and only
if sp(eba2) ⊂ (0,∞); and two minimal sets, being M0 the upper one, if and only if
sp(eba2) ⊂ (−∞, 0). As said before, this determines the global bifurcation diagram. The
last assertions in (i) and (ii) are trivial. ��
As a consequence of the previous result, given any strictly positive a3 and any changing-sign
a2, we are able to construct a1 with bounded primitive in such a way that (4.1) exhibits the
classical pitchfork bifurcation of minimal sets described in Theorem 3.1(ii).

Proposition 4.3 Let a2 ∈ C(�) change sign. Then, there exists a1 ∈ CP(�) such that (4.1)
exhibits the classical pitchfork bifurcation described in Theorem 3.1(ii).

Proof Letm ∈ Merg(�, σ ) be arbitrarily fixed.We define the nonempty open sets�1 = {ω ∈
� : a2(ω) > 0} and �2 = {ω ∈ � : a2(ω) < 0}. As (�, σ ) is minimal, supp(m) = �, so
m(�1) > 0 andm(�2) > 0.A suitable applicationofUrysohn’sLemmaprovides nonnegative
and not identically zero continuous functions c1, c2 : � → R such that supp(c1) ⊆ �1

and supp(c2) ⊆ �2. Then,
∫
�
c1(ω)a2(ω) dm > 0 and

∫
�
c2(ω)a2(ω) dm < 0, so there

exists ε > 0 such that
∫
�
(c1(ω) + ε)a2(ω) dm > 0 and

∫
�
(c2(ω) + ε)a2(ω) dm < 0.

The density of C1(�) on C(�) and the strict positiveness of c1 + ε and c2 + ε ensure
the existence of strictly positive functions ĉ1, ĉ2 ∈ C1(�) such that

∫
�
ĉ1(ω)a2(ω) dm >

0 and
∫
�
ĉ2(ω)a2(ω) dm < 0. Therefore, there exists s ∈ (0, 1) such that

∫
�
(sĉ1(ω) +

(1 − s)ĉ2(ω))a2(ω) dm = 0. Since sĉ1(ω) + (1 − s)ĉ2(ω) is strictly positive, b(ω) =
log(sĉ1(ω) + (1 − s)ĉ2(ω)) is well defined and b ∈ C1(�). So,

∫
�
eb(ω)a2(ω) dm = 0, and

hence 0 ∈ sp(eba2) (see Sect. 2.5). We take a1 = b′ and apply Proposition 4.2 to complete
the proof. ��

4.2 The Case of Sign-Preserving a2

In what follows, we will describe some conditions ensuring which one of the bifurcation
possibilities of minimal sets described in Theorem 3.1 holds for (4.1). Our starting point are
the functions a1, a3, with a3 strictly positive. Let sp(a1) = [−λ+,−λ−], with λ− ≤ λ+, be
the Sacker and Sell spectrum of a1, let k1 < k2 be such that k1 ≤ a1(ω) ≤ k2 for all ω ∈ �,
and let 0 < r1 ≤ r2 be such that r1 ≤ a3(ω) ≤ r2 for all ω ∈ �. Since sp(a1) ⊆ [k1, k2] (see
Sect. 2.5), λ− + k1 ≤ λ+ + k1 ≤ 0 ≤ λ− + k2 ≤ λ+ + k2, and the first and last inequalities
are strict if a1 has band spectrum. Our goal is to relate the “size" of a2 to these six constants
in order to get the different diagrams. A remarkable fact is that, in the cases studied this
subsection, a2 never changes sign, in contrast with the situation of Proposition 4.3 and those
analyzed at the end of Sect. 6.

Now, we recall and complete the statement of Proposition 6.5 of [11] when applied to our
current model (4.1), which gives a sufficient criterium for the classical pitchfork bifurcation.

Proposition 4.4

(i) (A criterium ensuring classical pitchfork bifurcation). If a2(ω) = 0 for all ω ∈ �,
then (4.1) exhibits the classical pitchfork bifurcation of minimal sets described in
Theorem 3.1(ii).

(ii) If a2(ω) ≥ 0 (resp. a2(ω) ≤ 0) for all ω ∈ �, then αλ (resp. βλ) takes the value 0 at its
continuity points for all λ ≤ λ+.
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Proof Proposition 6.5 of [11] ensures (i) and (ii) for λ < λ+. To check (ii) for λ+, it suffices
to observe that all the alternatives of Theorem 3.1 in which αλ (resp. βλ) takes the value 0 at
its continuity points for all λ < λ+, also αλ+ (resp. βλ+ ) takes the value 0 at its continuity
points. ��
The main results of this subsection are stated in Propositions 4.7, 4.8 and 4.9, whose proofs
use the next technical results. The first one shows that one of the conditions required in
Proposition 4.7 always holds if a1 has band spectrum (in which case a1 is not a constant
function).

Lemma 4.5 Let a ∈ C(�). Then, the next three assertions are equivalent: a is nonconstant;
minω∈� a(ω) < inf sp(a); maxω∈� a(ω) > sup sp(a).

Proof Clearly a is nonconstant if minω∈� a(ω) < inf sp(a). Now, we assume that a is
nonconstant and take 0 < ε < maxω∈� a(ω) − minω∈� a(ω). We define the nonempty
open set U1 = {ω ∈ � : a(ω) > minω∈� a(ω) + ε}, and note that m(U1) > 0 for all
m ∈ Merg(�, σ ), since� isminimal. Letm1 ∈ Merg(�, σ ) satisfy inf sp(a) = ∫

�
a(ω) dm1

(see Sect. 2.5). Then,

inf sp(a) =
∫

�

a(ω) dm1 =
∫

�\U1

a(ω) dm1 +
∫

U1

a(ω) dm1

≥ m1(� \U1)min
ω∈�

a(ω) + m1(U1)(min
ω∈�

a(ω) + ε) > min
ω∈�

a(ω) .

This completes the proof of the equivalence of the two first assertions. To check the equiva-
lence of the first and the third ones, wework withU2 = {ω ∈ � : a(ω) < maxω∈� a(ω)−ε}.

��
Lemma 4.6 Let λ + k1 < 0.

(i) If a2(ω) > 2
√
r2(−λ − k1) for all ω ∈ �, then ρ1 = √

(−λ − k1)/r2 is a global strict
lower solution of (4.1)λ. Consequently, τλ admits a minimal set Mu

λ > M0.
(ii) If a2(ω) < −2

√
r2(−λ − k1) for all ω ∈ �, then −ρ1 is a global strict upper solution

of (4.1)λ. Consequently, τλ admits a minimal set Ml
λ < M0.

Proof Let us prove (i). We define g(ρ) = r2ρ − (λ+ k1)/ρ. Then, g(ρ1) = 2
√
r2(−λ − k1),

and

−a3(ω)ρ3
1 + a2(ω)ρ2

1 + (a1(ω) + λ)ρ1 ≥ ρ2
1

(

a2(ω) −
(

r2ρ1 − λ + k1
ρ1

))

= ρ2
1 (a2(ω) − g(ρ1)) > 0

for all ω ∈ �, which proves the first assertion. In turn, this property ensures that ρ1 < βλ

(see Sect. 2.4), which proves the second assertion. The proof of (ii) is analogous. ��
Proposition 4.7

(i) (A criterium ensuring saddle-node and transcritical bifurcations). If k1 < −λ+ and

a2(ω) > 2
√
r2(−λ− − k1) (resp. a2(ω) < −2

√
r2(−λ− − k1) )

for all ω ∈ �, then (4.1) exhibits the local saddle-node and transcritical bifurcations
of minimal sets described in Theorem 3.1(i), with αλ (resp. βλ) colliding with 0 on a
residual σ -invariant set as λ ↓ λ+.
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(ii) (A criterium precluding classical pitchfork bifurcation). If k1 < −λ+ and

a2(ω) > 2
√
r2(−λ+ − k1) (resp. a2(ω) < −2

√
r2(−λ+ − k1) )

for all ω ∈ �, then (4.1) does not exhibit the classical pitchfork bifurcation of minimal
sets described in Theorem 3.1(ii).

Proof

(i) Note that if k1 < −λ+, then −λ− − k1 ≥ −λ+ − k1 > 0. There exists δ > 0 such that
a2(ω) > 2

√
r2(−λ− + δ − k1) (resp. a2(ω) < −2

√
r2(−λ− + δ − k1)) for all ω ∈ �.

Hence, Lemma 4.6 ensures the existence of a τλ−−δ-minimal set Mu
λ−−δ > M0 (resp.

Ml
λ−−δ < M0), and this situation only arises in the stated case of Theorem 3.1(i).

(ii) The existence of a τλ+ -minimal set Mu
λ+ > M0 (resp. Ml

λ+ < M0), ensured by
Lemma 4.6, precludes the situation of Theorem 3.1(ii).

��
Recall that λ+ < k2 if a1 has band spectrum: see Lemma 4.5. The following two results refer
to the case that a1 has band spectrum: λ− < λ+. (This is ensured in Proposition 4.9 by its
condition (4.4)).

Proposition 4.8 (A criterium ensuring pitchfork bifurcation) If λ− < λ+ and

0 ≤ a2(ω) <

√
r1 (λ+ − λ−)√

λ+ + k2

(

resp. −
√
r1 (λ+ − λ−)√

λ+ + k2
< a2(ω) ≤ 0

)

for all ω ∈ �, then (4.1) does not exhibit the saddle-node and transcritical bifurcations of
minimal sets described in Theorem 3.1(i).

Proof We reason in the case of positive a2. Let β̂λ be the upper delimiter equilibrium of the
global attractor of the skewproduct flow induced by x ′ = −a3(ω·t)x3 + (a1(ω·t) + λ)x , so
that β̂λ : � → R is a strictly positive continuous map if λ > λ+ (see Proposition 4.4(i)).
Note that, if λ + k2 ≥ 0 and ρ >

√
(λ + k2)/r1, then

−a3(ω)ρ3 + (a1(ω) + λ)ρ ≤ −r1ρ
3 + (λ + k2)ρ < 0 ;

that is, ω �→ ρ is a global strict upper solution of x ′ = −a3(ω·t)x3 + (a1(ω·t)+λ)x . Hence,
if λ > λ+, for any ω ∈ �, then the ω-limit set of (ω, ρ) contains a minimal set Mu which
is below of the graph of ρ (see Sect. 2.3), and which cannot be M0, since M0 is repulsive
for τλ. Hence,Mu is the graph of β̂λ, which ensures that β̂λ(ω) ≤ ρ for all ω ∈ �. It follows
easily that β̂λ(ω) ≤ √

(λ + k2)/r1 for all ω ∈ �.
We take δ > 0 such that, if λ ∈ [λ+, λ+ + δ], then a2(ω) ≤ √

r1 (λ+ − λ−)/
√

λ + k2 for
all ω ∈ �. Then, if λ ∈ (λ+, λ+ + δ],

a2(ω)β̂λ(ω) ≤ a2(ω)
√

(λ + k2)/r1 ≤ λ+ − λ−
for all ω ∈ �, and hence

β̂ ′
λ(ω) > −a3(ω)β̂3

λ(ω) + (λ+ − λ−)β̂λ(ω) + (a1(ω) + λ−)β̂λ(ω)

≥ −a3(ω)β̂3
λ(ω) + a2(ω)β̂2

λ(ω) + (a1(ω) + λ−)β̂λ(ω)

for all ω ∈ �: β̂λ is a global strict upper τλ− -solution, and, in particular, a continuous strong
τλ− -superequilibrium. In addition, Proposition 4.4(i) ensures that β̂λ+ = limλ↓λ+ β̂λ collides
with 0 on a residual set of points R1.
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Let us assume for contradiction that the situation for (4.1) is that described in Theo-
rem 3.1(i). It follows from Proposition 4.4(ii) that αλ collides with 0 on a residual set of points
asλ ↓ λ+, soTheorem3.1(i) ensures thatβλ− is a continuous strictly positive τλ− -equilibrium
whose graph is the attractive hyperbolic τλ− -minimal set Mu

λ− . Since the Sacker and Sell
spectrum ofM0 for τλ− is the nondegenerate interval [−λ+ + λ−, 0], there exists a measure
m such that

∫
�
( fx (ω, 0)+λ−) dm < 0 (see Sect. 2.5), and hence Lemma 3.2 ensures that the

lower delimiter κ2
λ− of the basin of attraction of βλ− vanishes on its residual set of continuity

points R2. Let us take ω0 ∈ R1 ∩ R2, a sequence {tn} ↑ ∞ such that limn→∞ ω0·tn = ω0

and λ ∈ (λ+, λ+ + δ] such that κ2
λ−(ω0) = 0 < β̂λ(ω0) < βλ−(ω0), which guarantees

that limn→∞(uλ−(tn, ω0, β̂λ(ω0)) − βλ−(ω0·tn)) = 0. Since β̂λ is a continuous strong τλ− -
superequilibrium, there exist t0 > 0 and e0 > 0 such that uλ−(t, ω0, β̂λ(ω0))+e ≤ β̂λ(ω0·t)
for all t ≥ t0, and hence (uλ−(tn, ω0, β̂λ(ω0))−βλ−(ω0·tn))+βλ−(ω0·tn)+e ≤ β̂λ(ω0·tn) for
n large enough. Taking limits as n → ∞ we obtain βλ−(ω0) + e ≤ β̂λ(ω0), a contradiction.
This completes the proof. ��
Proposition 4.9 (A criterium ensuring generalized pitchfork bifurcation) If

r1(λ+ − λ−)2 + 4 r2(λ+ + k1)(λ+ + k2) > 0 , (4.4)

and

2
√
r2(−λ+ − k1) < a2(ω) <

(λ+ − λ−)
√
r1√

λ+ + k2
(

resp. − (λ+ − λ−)
√
r1√

λ+ + k2
< a2(ω) < −2

√
r2(−λ+ − k1)

) (4.5)

for all ω ∈ �, then (4.1)λ exhibits the generalized pitchfork bifurcation of minimal sets
described in Theorem 3.1(iii), with αλ (resp. βλ) colliding with 0 on a residual σ -invariant
set as λ ↓ λ+.

Proof Condition (4.4) ensures that a1 has band spectrum and that the intervals inwhich a2 can
take values are nondegenerate. Propositions 4.8 and 4.7(ii) respectively preclude situations
(i) and (ii) of Theorem 3.1, and Proposition 4.4(ii) ensures the stated collision property for
αλ (resp. for βλ). ��

4.3 Cases of Generalized Pitchfork Bifurcation

As said after Theorem 3.1, there are autonomous cases presenting either the local saddle-node
and classical transcritical bifurcations or the classical pitchfork bifurcation of minimal sets
described in cases (i) and (ii) of that theorem. These two possibilities are also the unique
ones in nonautonomous examples when a1 has point spectrum, and we have classified them
if a1 ∈ CP(�) in Sect. 4.1, where in addition we have shown simple ways to construct
examples fitting in each one of these two situations. In Sect. 4.2, we have observed that cases
(i) (with a local nonclassical transcritical bifurcation) and (ii) of Theorem 3.1 can also occur
when a1 has band spectrum. In addition, Propositions 4.4(i) and 4.7(i) provide simple ways
to construct such examples by choosing a suitable a2 once fixed a1 and a3. In the same line,
Proposition 4.9 establishes conditions ensuring the generalized pitchfork case of Theorem
3.1(iii). But the existence of polynomials satisfying these last conditions is not so obvious.

Therefore, our next objective is to develop systematic ways of constructing third degree
polynomials giving rise to families (4.1) for which the bifurcation diagram is that of
Theorem 3.1(iii). Hence, all the situations described in that theorem actually realize.
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Lemma 4.10 Let m1, . . . ,mn be different elements of Merg(�, σ ) with n ≥ 1, and let 0 <

ε < 1 be fixed. For every i ∈ {1, . . . , n}, there exists a continuous function ci : � → [0, 1]
with minω∈� ci (ω) = 0 and maxω∈� ci (ω) = 1 such that, if i, j ∈ {1, . . . , n} and j �= i ,
then ci · c j ≡ 0 and

1 − ε <

∫

�

ci (ω) dmi ≤ 1 , 0 ≤
∫

�

ci (ω) dm j < ε . (4.6)

Proof Let ε > 0 be fixed. As explained in Remark 1.10 of [15] and Sect. 6 of Chapter
II of [22], there exist disjoint σ -invariant sets �1, . . . , �n ⊆ � such that mi (� j ) = δi j
for i, j ∈ {1, . . . , n}, where δi j is the Kronecker delta: just take �i as the so-called ergodic
component ofmi .We take compact sets Ki ⊆ �i such thatmi (Ki ) > 1−ε for i ∈ {1, . . . , n}.
Let d = min1≤i< j≤n d(Ki , K j ) and let Ui be an open set such that Ki ⊂ Ui ⊆ B(Ki , d/3),
mi (Ui\Ki ) < ε and m j (Ui ) = m j (Ui \ Ki ) < ε for i, j ∈ {1, . . . , n} with i �= j . The
choice of d ensures thatU1, . . . ,Un are pairwise disjoint. Finally, Urysohn’s Lemmaprovides
continuous functions ci : � → [0, 1] with ci (ω) = 1 for all ω ∈ Ki and ci (ω) = 0 for all
ω /∈ Ui , for i ∈ {1, . . . , n}. All the statements follow easily. ��
Proposition 4.11 Let m1, . . . ,mn be different elements of Merg(�, σ ) with n ≥ 2. Take
r ≥ 1 and ε > 0 with

ε < ε1 = n + 2r(n − 1) − 2
√
r(n − 1) (r(n − 1) + n)

n2
,

(so that 0 < ε < 1/n). Let c1 . . . , cn : � → R be the functions given by Lemma 4.10 for
m1, . . . ,mn and ε. Take constants α1 ≤ α2 ≤ · · · ≤ αn with α1 < 0 and αn > 0, and define
a1 = ∑n

i=1 αi ci , so that α1 ≤ a1(ω) ≤ α2 for all ω ∈ �. Then, a1 has band spectrum
sp(a1) = [−λ+,−λ−] ⊂ (α1, α2) and

(λ+ − λ−)2 + 4r(λ+ + α1)(λ+ + αn) > 0 . (4.7)

Consequently, if a3 takes values in [r1, r2] for r1 > 0 and r2 = rr1, and if a2 satisfies (4.5)
for k1 = α1 and k2 = αn, then (4.1) exhibits the generalized pitchfork bifurcation of minimal
sets described in Theorem 3.1(iii).

Proof It is easy to check that 0 < ε1 < 1/n. In addition, according to Lemma 4.10,
∫

�

a1(ω) dm1 = α1

∫

�

c1(ω) dm1 +
∑

i≥2

αi

∫

�

ci (ω) dm1 < α1(1 − ε) + (n − 1)αnε ,

∫

�

a1(ω) dmn = αn

∫

�

cn(ω) dmn +
∑

i≤n−1

αi

∫

�

ci (ω) dmn > αn(1 − ε) + (n − 1)α1ε .

These inequalities ensure that α1 ≤ −λ+ < α1(1 − ε) + (n − 1)αnε and αn(1 − ε) +
(n − 1)α1ε < −λ− ≤ αn . Then, λ+ − λ− > (1 − nε)(αn − α1) > 0 (which shows the
nondegeneracy of sp(a1)), 0 > λ+ + α1 > ε(α1 − (n − 1)αn) and 0 < λ+ + αn ≤ αn − α1,
which in turn yield

(λ+ − λ−)2 + 4r(λ+ + α1)(λ+ + αn)

> (αn − α1)
2(1 − nε)2 + 4rε(αn − α1)(α1 − (n − 1)αn) .

So, it is enough to check that the right-hand side is strictly positive; that is,

αn((1 − nε)2 − 4εr(n − 1)) > α1((1 − nε)2 − 4εr) .
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Since (1− nε)2 − 4εr(n − 1) ≤ (1− nε)2 − 4εr and α1 < 0 < αn , it suffices to check that
(1 − nε)2 − 4rε(n − 1) > 0. That is, n2ε2 − 2(n + 2r(n − 1))ε + 1 > 0. And this follows
from ε < ε1, since ε1 is the lowest root of the polynomial.

Since α1 = minω∈� a1(ω) and αn = maxω∈� a1(ω), Lemma 4.5 ensures that
[−λ+,−λ−] ⊂ (α1, α2). Finally, note that all the hypotheses of Proposition 4.9 are ful-
filled with k1 = α1 and k2 = αn . This proves the last assertion. ��

Note that every function a1 constructed by the procedure of Proposition 4.11 takes positive
and negative values. But this is not a real restriction to get a generalized pitchfork bifurcation
diagram, since that corresponding to a1 + μ for any constant μ ∈ R is of the same type.

Proposition 4.11 shows that the occurrence of families (4.1) with generalized pitchfork
bifurcation diagram only requires the existence of two different ergodic measures. The func-
tions a1 constructed as there indicated are intended to satisfy (4.4); that is, their extremal
Lyapunov exponents are near its maximum and minimum. But in fact this is not a necessary
condition for a function a1 to be the first order coefficient of a polynomial giving rise to a
generalized pitchfork bifurcation. Theorem 4.14 proves this assertion in the case of a finitely
ergodic base flow. Its proof in based on Proposition 4.12 and Corollary 4.13.

Proposition 4.12 Assume thatMerg(�, σ ) = {m1, . . . ,mn} with n ≥ 1. There exists ε2 > 0
such that, if 0 < ε ≤ ε2 and c1, . . . , cn : � → R are the functions constructed in Lemma 4.10
for m1, . . . ,mn and ε, then

C(�) = 〈c1, . . . , cn〉 ⊕ C0(�)

as topological sum of vector spaces, where C(�) is endowed with the uniform topology,
given by ‖a‖ = maxω∈� |a(ω)|. In particular, the Sacker and Sell spectrum of a ∈ C(�)

coincides with that of its projection onto 〈c1, . . . , cn〉.

Proof LetMn×n(R) be the linear space of n×n real matrices, which we endowwith the norm
‖C‖∞ = max1≤i, j≤n |ci j |, where C = {ci j }1≤i, j≤n . The set of regular n × n real matrices
GLn(R) is an open subset of Mn×n(R), and the identity matrix I belongs toGLn(R). Hence,
there exists ε2 ∈ (0, 1) such that, if ‖C−I‖∞ ≤ ε2, thenC is regular. Therefore, if ε ∈ (0, ε2],
then the corresponding functions c1, . . . , cn of Lemma 4.10 provide a regular matrix

C =
⎛

⎜
⎝

∫
�
c1(ω) dm1 . . .

∫
�
cn(ω) dm1

...
. . .

...∫
�
c1(ω) dmn . . .

∫
�
cn(ω) dmn

⎞

⎟
⎠ .

Let us consider the continuous linear functionals Ti : C(�) → R, f �→ ∫
�

f (ω) dmi for
i ∈ {1, . . . , n}, and note that Ker(Ti ) has codimension 1. Therefore, the codimension of the
setC0(�), which coincides with

⋂
i∈{1,...,n} Ker(Ti ), is at most n. In addition, the linear space

〈c1, . . . , cn〉 has dimension n, since the supports of c1, . . . , cn are pairwise disjoint. Let us
check that 〈c1, . . . , cn〉∩C0(�) = {0}: if c = ∑n

i=1 αi ci ∈ C0(�), then 0 = ∫
�
c(ω) dm j =∑n

i=1 αi
∫
�
ci (ω) dm j for every j ∈ {1, . . . , n}. These n equations provide a homogeneous

linear system for α1, . . . , αn with regular coefficient matrix C ; so α1 = · · · = αn = 0 and
hence c = 0. Consequently, C(�) is the algebraic direct sum of 〈c1, . . . , cn〉 and C0(�). We
will check that the projections ofC(�) onto each one of the subspaces are continuous, which
will complete the proof of the first assertion. Given a ∈ C(�), its projection P〈c1,...,cn〉a =
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∑n
i=1 αi ci onto 〈c1, . . . , cn〉 is given by

⎛

⎜
⎝

α1
...

αn

⎞

⎟
⎠ = C−1

⎛

⎜
⎝

∫
�
a(ω) dm1

...∫
�
a(ω) dmn

⎞

⎟
⎠ .

Therefore, ‖αi ci‖ = |αi | ≤ n‖C−1‖∞‖a‖ for every i ∈ {1, . . . , n}, and hence
‖P〈c1,...,cn〉a‖ = ‖ ∑n

i=1 αi ci‖ ≤ n2‖C−1‖∞‖a‖. So, P〈c1,...,cn〉 : C(�) → 〈c1, . . . , cn〉 is
continuous. Finally, as PC0(�)a = a − P〈c1,...,cn〉a, also the projection PC0(�) is continuous,
as asserted. The second assertion is an easy consequence of the first one. ��
Corollary 4.13 Assume that Merg(�, σ ) = {m1, . . . ,mn} with n ≥ 2, and take r ≥ 1. Let
a1 ∈ C(�) have Sacker and Sell spectrum sp(a1) = [−λ+,−λ−] with λ− < 0 < λ+.
Then, there exist ã1 ∈ C(�) with Sacker and Sell spectrum sp(ã1) = [−λ+,−λ−] and
a1 − ã1 ∈ C0(�), and k1, k2 ∈ R such that k1 ≤ ã1(ω) ≤ k2 for all ω ∈ � and

(λ+ − λ−)2 + 4 r(λ+ + k1)(λ+ + k2) > 0 . (4.8)

Proof We take ε < min(ε1, ε2), with ε1 and ε2 respectively provided byPropositions 4.11 and
4.12. Let c1, . . . , cn be the functions given by Lemma 4.10 form1, . . . ,mn and ε. Proposition
4.12 provides α1, · · · , αn such that themap ã1 = α1c1+· · ·+αncn satisfies sp(ã1) = sp(a1).
Hence, since λ− < 0 < λ+, ã1 takes positive and negative values, and therefore there exist
i1 with αi1 < 0 and i2 with αi2 > 0. The result follows from Proposition 4.12 by reordering
the measures m1, . . . ,mn . ��
Theorem 4.14 Assume that Merg(�, σ ) = {m1, . . . ,mn} with n ≥ 2. Let a1 ∈ C(�) have
Sacker and Sell spectrum sp(a1) = [−λ+,−λ−] with λ− < λ+. Then, there exist strictly
positive functions a2, a3 ∈ C(�) such that (4.1) exhibits the generalized pitchfork bifurcation
of minimal sets described in Theorem 3.1(iii).

Proof We take any strictly positive ã3 ∈ C(�) and 0 < r1 ≤ r2 with r1 ≤ ã3(ω) ≤ r2 for
all ω ∈ �, and call r = r2/r1. There is no loss of generality in assuming that λ− < 0 < λ+,
since the bifurcation diagrams for a1 and a1 + μ coincide for any μ ∈ R. We associate ã1
to a1 and r by Corollary 4.13. Note that there exists δ0 > 0 such that, if |λ+ − μ+| < δ0
and |λ− − μ−| < δ0, then μ− < μ+ and (4.8) holds for μ+, μ− instead of λ+, λ− and
k1 + δ0, k2 − δ0 instead of k1, k2. That is, if c ∈ C(�) satisfies |c(ω)| < δ0 for all ω ∈ �,
then sp(ã1 + c) = [−μ+,−μ−] with μ− < μ+, k1 − δ0 ≤ ã1(ω) + c(ω) ≤ k2 + δ0 for all
ω ∈ �, and

(μ+ − μ−)2 + 4 r(μ+ + k1 − δ0)(μ+ + k2 + δ0) > 0.

Since CP(�) is dense in C0(�) (see Sect. 2.2), there exists b ∈ C1(�) such that
maxω∈� |a1(ω) − ã1(ω) − b′(ω)| < δ0. We take c = a1 − ã1 − b′ and call sp(ã1 + c) =
[−μ+,−μ−]. Now, in order to apply Proposition 4.9, we take ã2 ∈ C(�) satisfying
2
√
r2(μ+ − k1 − δ0) < ã2(ω) <

√
r1(μ+ −μ−)/(

√
(μ+ + k2 − δ0)) for allω ∈ �. Hence,

the parametric family

x ′ = −ã3(ω·t)x3 + ã2(ω·t)x2 + (ã1(ω·t) + c(ω·t) + λ)x , ω ∈ � (4.9)

presents a generalized pitchfork bifurcation of minimal sets. As explained in the proof of
Proposition 4.2, the family of changes of variables y(t) = eb(ω·t)x(t) takes (4.9) to

y′ = −e−2b(ω·t)ã3(ω·t)y3 + e−b(ω·t)ã2(ω·t)y2 + (ã1(ω·t) + c(ω·t) + b′(ω·t) + λ)y

= −e−2b(ω·t)ã3(ω·t)y3 + e−b(ω·t)ã2(ω·t)y2 + (a1(ω·t) + λ)y
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without changing the global structure of the bifurcation diagram. That is, the strictly positive
functions a3 = e−2bã3 and a2 = e−bã2 fulfill the statement. ��

5 Criteria in aMore General Framework

The ideas of Sects. 4.2 and 4.3 can be used to construct examples of all the three possible
types of bifurcation diagrams described in Theorem 3.1 for families of differential equations
of a more general type. Let us consider

x ′ = (−a3(ω·t) + h(ω·t, x))x3 + a2(ω·t)x2 + (a1(ω·t) + λ)x , ω ∈ �, (5.1)

whereai ∈ C(�) for i ∈ {1, 2, 3},a3 is strictly positive, h ∈ C0,2(�×R, R), and h(ω, 0) = 0
for allω ∈ �. Throughout the section, wewill represent the Sacker and Sell spectrum of a1 as
sp(a1) = [−λ+,−λ−],withλ− ≤ λ+. In addition, k1 ≤ k2 represent real constants satisfying
k1 ≤ a1(ω) ≤ k2, and 0 < r1 ≤ r2 represent real constants satisfying r1 ≤ a3(ω) ≤ r2 for
all ω ∈ �.

In the line of part of the results of Sect. 4, we fix a1, a3 and h satisfying the mentioned
hypotheses as well as a fundamental extra condition which relates the behavior of h for small
values of x to the properties of a1 and a3, and such that the function

f (ω, x) = (−a3(ω) + h(ω, x))x3 + a2(ω)x2 + a1(ω)x (5.2)

is (Co) and (SDC)∗. The goal is to describe conditions on a2 determining each one of the
possible bifurcation cases described in Theorem 3.1 for (5.1). The function a2 will be sign-
preserving under all these conditions. Note the sp(a1) is the Sacker and Sell spectrum of fx
on M0.

Proposition 5.1 Assume that the function f given by (5.2) is (Co) and (SDC)∗, and that

(H) there exist ρ0 > 0 and 0 < ε0 < r1 such that |h(ω, x)| ≤ ε0 for all ω ∈ � if |x | ≤ ρ0,√
(λ+ + k2)/(r1 − ε0) < ρ0, and

√
(−λ− − k1)/(r2 + ε0) < ρ0.

We call s1 = r1 − ε0 and s0 = r2 + ε0. Then,

(i) if a2(ω) = 0 for all ω ∈ �, then (5.1) exhibits the classical pitchfork bifurcation of
minimal sets described in Theorem 3.1(ii).

(ii) If k1 < −λ+ and

a2(ω) > 2
√
s2(−λ− − k1) (resp. a2(ω) < −2

√
s2(−λ− − k1) )

for all ω ∈ �, then (5.1) exhibits the local saddle-node and transcritical bifurcations
of minimal sets described in Theorem 3.1(i), with αλ (resp. βλ) colliding with 0 on a
residual σ -invariant set as λ ↓ λ+.

(iii) If k1 < −λ+ and

a2(ω) > 2
√
s2(−λ+ − k1) (resp. a2(ω) < −2

√
s2(−λ+ − k1) )

for all ω ∈ �, then (5.1) does not exhibit the classical pitchfork bifurcation of minimal
sets described in Theorem 3.1(ii).

(iv) If 0 ≤ a2(ω) < (λ+−λ−)
√
s1/(λ+ + k2) (resp.−(λ+−λ−)

√
s1/(λ+ + k2) < a2(ω) ≤

0) for all ω ∈ �, then (5.1) does not exhibit the local saddle-node and transcritical
bifurcations of minimal sets described in Theorem 3.1(i).
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(v) If
s1(λ+ − λ−)2 + 4 s2(λ+ + k1)(λ+ + k2) > 0 ,

and

2
√
s2(−λ+ − k1) < a2(ω) <

(λ+ − λ−)
√
s1√

λ+ + k2
(

resp. − (λ+ − λ−)
√
s1√

λ+ + k2
< a2(ω) < −2

√
s2(−λ+ − k1)

)

for all ω ∈ �, then (5.1) exhibits the generalized pitchfork bifurcation of minimal sets
described in Theorem 3.1(iii).

Proof (i) This property is proved in Proposition 6.5(ii) of [11].
(ii)-(iii) We define ρ± = √

(−λ± − k1)/s2 and observe that ρ+ ≤ ρ− < ρ0. Hence,
a3(ω) + h(ω, ρ±) ≤ r2 + ε0 = s2. This allows us to check the assertions of Lemma 4.6 for
λ = λ+ and λ = λ− − δ (for some small δ > 0 for which

√
(−(λ− − δ) − k1)/s2 < ρ0) and

with r2 replaced by s2, just by repeating the same proof. Once this is done, the arguments of
Proposition 4.7(i) and (ii) prove assertions (ii) and (iii).

(iv) The proof is analogous to that of Proposition 4.8. We sketch it in the case of positive
a2 and refer to Proposition 4.8 for the details. Condition (H) and the hypothesis in (iv) allow
us to take δ > 0 such that, if λ ∈ [λ+, λ+ + δ], then √

(λ + k2)/(r1 − ε0) < ρ0 and a2(ω) ≤
(λ+ − λ−)

√
s1/(λ + k2) for all ω ∈ �. We fix one of these values of λ and take ρ satisfying√

(λ + k2)/s1 < ρ ≤ ρ0 in order to deduce from the bound a3(ω)+ h(ω, ρ) ≥ r1 − ε0 = s1
(ensured by (H)) that ρ is a strict global upper solution of x ′ = (−a3(ω·t) + h(ω·t, x))x3 +
(a1(ω·t) + λ)x . Let β̂λ be the upper delimiter equilibrium of the global attractor of the
corresponding skew-product flow. The next step is checking that β̂λ(ω) ≤ √

(λ + k2)/s1 for
all ω ∈ � if λ ∈ (λ+, λ+ + δ]. Once this is done, we can deduce that β̂λ is also a strong
τλ− -superequilibrium and that the limit β̂λ+ = limλ↓λ+ β̂λ takes the value 0 on a residual set
of points. Finally, we assume that (5.1) is in case (i) of Theorem 3.1 and use the previous
properties to get a contradiction.

(v) As in Proposition 4.9, this follows from (iii), (iv) and Theorem 3.1. ��
We complete this short section by analyzing ways to guarantee the initial hypotheses of

Proposition 5.1: f is (Co) and (SDC)∗, and (H) holds. The first objectives are achieved, at
least, in the following situations:

Proposition 5.2 Assume that (−a3(ω)+h(ω, x))x3 is (Co)2 and (SDC)∗. Then, the function
f defined by (5.2) is (Co)2 and (SDC)∗. Moreover, if (−r + h(ω, x))x3 is (Co) and (DC)

for some r < r1 (or r ≤ r1 if a3 is not constant), then (−a3(ω) + h(ω, x))x3 is (Co)2 and
(SDC)∗.

Proof Consider f (ω, x) = ((−a3(ω) + h(ω, x))x3) + (a2(ω)x2 + a1(ω)x) and recall that
any quadratic polynomial is (DC); that the sum of a (SDC)∗ function and a (DC) one is
(SDC)∗ (see Sect. 3 of [11]); and that the sum of a (Co)2 function and a second degree
polynomial is (Co)2.

Let us check the second assertion. Since (r − a3(ω))x3 is (SDC)∗ (see Sect. 2.6) and
(−r + h(ω, x))x3 is (DC), the sum is (SDC)∗. In addition, the (Co) property of (−r +
h(ω, x))x3 means that lim|x |→∞(−r + h(ω, x))x2 = −∞ uniformly on �, and hence there
exists ρ > 0 such that h(ω, x) < r for all ω ∈ � and x ≥ ρ. Consequently,

lim sup
x→∞

(−a3(ω) + h(ω, x))x ≤ lim sup
x→∞

(−a3(ω) + r)x = −∞
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for all ω ∈ �, and hence limx→∞(−a3(ω)+ h(ω, x))x = −∞ for all ω ∈ �. The compact-
ness of� ensures that the limit is uniform.Analogously, limx→−∞(−a3(ω)+h(ω, x))x = ∞
uniformly on �. Hence, (−a3(ω) + h(ω, x))x3 is (Co)2. ��

Regarding (H), notice that the included inequality
√

(−λ− − k1)/(r2 + ε0) < ρ0 is ful-
filled by taking a large enough upper bound r2 for a3 (although the smaller r2 is, the less
restrictive the conditions in points (ii), (iii) and (v) of Proposition 5.1 are). The following
results indicate three ways to get the rest of the conditions in (H). Recall that h is always
assumed to belong to C0,2(� × R, R) and to satisfy h(ω, 0) = 0 for all ω ∈ �. And recall
also the meaning of λ−, λ+, k1, k2, r1 and r2.

Proposition 5.3

(i) Assume that a3 and h are fixed, take 0 < ε0 < r1 and ρ0 > 0 such that |h(ω, x)| ≤ ε0
for all ω ∈ � if |x | ≤ ρ0, and call s1 = r1 − ε0. Let k1 < 0 < k2 satisfy k2 − k1 < ρ2

0 s1
and a1 ∈ C(�) satisfy k1 ≤ a1(ω) ≤ k2 for all ω ∈ �, choose the upper bound r2 for
a3 large enough to get

√
(k2 − k1)/(r2 + ε0) < ρ0, and call s2 = r2 + ε0. Then, (H)

is fulfilled. If, in addition, (�, σ ) is not uniquely ergodic, then a1 can be chosen to get
λ− < λ+ and s1(λ+ −λ−)2 +4 s2(λ+ +k1)(λ+ +k2) > 0. Consequently, if the function
f given by (5.2) is (Co) and (SDC)∗, suitable choices of a1 and a2 provide the three
possible bifurcation diagrams for (5.1).

(ii) Assume that a1 and h are fixed and take ε0 > 0 and ρ0 > 0 such that |h(ω, x)| ≤ ε0 for
all ω ∈ � if |x | ≤ ρ0. If r1 > (λ+ + k2)/ρ2

0 + ε0 and a3 ∈ C(�) satisfies r1 ≤ a3(ω)

for all ω ∈ �, then (H) is fulfilled for large enough r2.
(iii) Assume that a1 and a3 are fixed, and take ρ0 and m with 0 < ρ0 <

√
(λ+ + k2)/r1 and

0 < m < r1/ρ0 − (λ+ + k2)/ρ3
0 . If h ∈ C0,2(� × R, R) satisfies h(ω, 0) = 0 and

|hx (ω, x)| ≤ m for all ω ∈ � if |x | ≤ ρ0, then (H) is fulfilled with ε0 = ρ0m and a large
enough r2.

Proof

(i) Notice that
√

(−λ−−k1)/(r2+ε0)≤√
(k2−k1)/s2<ρ0 and also

√
(λ++k2)/(r1−ε0)≤√

(k2 − k1)/s1 < ρ0. This proves the first assertion.
To prove the second one, we apply Proposition 4.11 with α1 = k1 and αn = k2. It shows
that a1 has band spectrum [−λ+,−λ−] and that (λ+−λ−)2+4s(λ++k1)(λ++k2) > 0.
Lemma4.5 shows that sp(a1) ⊂ (k1, k2). The last assertion in (i) follows fromProposition
5.1.

(ii) If r1 > (λ+ + k2)/ρ2
0 + ε0, then

√
(λ+ + k2)/(r1 − ε0) < ρ0.

(iii) It is clear that 0 < ε0 < r1, and easy to check that
√

(λ+ + k2)/(r1 − ε0) < ρ0.
A large enough s2 ensures

√
(−λ− − k1)/(r2 + ε0) < ρ0. The equality h(ω, x) =

∫ 1
0 xhx (ω, sx) ds yields |h(ω, x)| ≤ ρ0m = ε0 for |x | ≤ ρ0. ��

6 A Second Bifurcation Problem

The ideas and methods developed in [11] and in the previous sections of this paper allow us
to classify and describe all the possibilities for the bifurcation diagram of a problem different
from that analyzed in Sects. 3, 4 and 5, namely

x ′ = f (ω·t, x) + μx2 , ω ∈ � . (6.1)
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Besides its own interest, this analysis allows us to go deeper in the construction of patterns
for the three bifurcation possibilities described in Theorem 3.1, as explained at the end of
this section.

As before, f is assumed to beC0,2(�×R, R) and (Co)2 (see Sect. 2.4) with f (ω, 0) = 0
for all ω ∈ �, and μ ∈ R is the bifurcation parameter. We expect not to generate risk of
confusion while denoting by τμ : Uμ ⊆ R × � × R → � × R the local skewproduct
flow (t, ω, x0) �→ (ω·t, uμ(t, ω, x0)) defined from the maximal solutions Iμ

ω,x0 → R,
t �→ uμ(t, ω, x0) of (6.1)μ. Note that the set M0 = � × {0} is τμ-minimal for all μ ∈ R,
and that the Sacker and Sell spectrum of fx + 2μx on M0 (see Sect. 2.5) is independent of
μ. We represent it by sp( fx (·, 0)).

Note that f + μx2 is (Co)2 if f is (unlike what happens with the (Co) condition).
We will denote by Aμ the corresponding global attractor. As recalled in Sect. 2.4, Aμ =⋃

ω∈�

({ω} × [αμ(ω), βμ(ω)]), where αμ and βμ are (lower and upper) semicontinuous
τμ-equilibria. The following proposition analyzes the behavior of these maps as μ varies.

Proposition 6.1 Let f ∈ C0,1(� × R, R) be (Co)2. Then,

(i) for any ω ∈ �, the maps μ �→ βμ(ω) and μ �→ αμ(ω) are nondecreasing on R and they
are, respectively, right- and left-continuous. If βμ0 (resp. αμ0 ) is strictly positive (resp.
strictly negative) for some μ0 ∈ R, then βμ(ω) < βμ0(ω) (resp. αμ(ω) < αμ0(ω)) for
all μ < μ0 and ω ∈ �, and βμ0(ω) < βμ(ω) (resp. αμ0(ω) < αμ(ω)) for all μ > μ0

and ω ∈ �.
(ii) limμ→−∞ αμ(ω) = −∞ and limμ→∞ βμ(ω) = ∞ uniformly on �.

Proof

(i) Let ξ < μ. Since β ′
ξ (ω) = f (ω, βξ (ω)) + ξβ2

ξ (ω) ≤ f (ω, βξ (ω)) + μβ2
ξ (ω), βξ is

a global lower solution of (6.1)μ. Consequently, βξ (ω) ≤ βμ(ω) for all ω ∈ � (see
Sect. 2.4). Moreover, if βμ0 is strictly positive, the previous inequalities are strict. The
case of αμ follows analogously. To show the one-side continuity, we proceed as in the
proof of Theorem 5.5(i) of [11].

(ii) Let ρ > 0 be fixed. There existsμρ > 0 such that f (ω, ρ)+μρρ2 ≥ 0 for allω ∈ �, and
f (ω,−ρ)−μρ(−ρ)2 < 0 for allω ∈ �, and henceω �→ ρ is a global lower τμ-solution
and −ρ is a global upper τ−μ-solution for μ ≥ μρ . This ensures that ρ ≤ βμ(ω) for all
ω ∈ � and −ρ ≥ α−μ(ω) for all ω ∈ � if μ ≥ μρ (see again Sect. 2.4), as we wanted
to prove.

��
The proof of Theorem 6.3, which describes the possible bifurcation diagrams for (6.1)
(depicted in Figs. 3 and 4), requires the next technical result, similar to Proposition 4.4
of [11].

Proposition 6.2 Let f ∈ C0,2(� × R, R) be (DC), let us fix m ∈ Merg(�, σ ), λ0 > 0
and ν < μ (resp. μ < ν), let κ1

μ : � → R be an m-measurable τμ-equilibrium, and let

κ2
ν : � → R be an m-measurable equilibrium of x ′ = f (ω·t, x) − λ0x + νx2 such that
0 < κ2

ν (ω) < κ1
μ(ω) (resp. κ1

μ(ω) < κ2
ν (ω) < 0) for m-a.e. ω ∈ �. Then,

∫

�

(
fx (ω, κ1

μ(ω)) + 2μκ1
μ(ω)

)
dm +

∫

�

(
fx (ω, κ2

ν (ω)) − λ0 + 2νκ2
ν (ω)

)
dm < 0 .
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Proof We define the m-a.e. positive (resp. negative) function k(ω) = κ1
μ(ω) − κ2

ν (ω) and

F(ω, y) = ∫ 1
0 fx (ω, sy + κ2

ν (ω)) ds. Then, it is not hard to check that

k′(ω·t)
k(ω·t) = F(ω·t, k(ω·t)) + (μ − ν)

(κ1
μ(ω·t))2
k(ω·t) + ν(κ1

μ(ω·t) + κ2
ν (ω·t)) + λ0

κ2
ν (ω·t)
k(ω·t) .

Notice that κ1
μ, κ2

ν and k are bounded (see Sect. 2.4), that k′(ω)/k(ω) − F(ω, k(ω)) −
ν(κ1

μ(ω) + κ2
ν (ω)) is strictly positive for m-a.e. ω ∈ �, and that F(ω, k(ω)) and ν(κ1

μ(ω) +
κ2
ν (ω)) are in L1(�). Then, Birkoff’s Ergodic Theorem (see Theorem 1 in Sect. 2 of Chapter
1 of [10] and Proposition 1.4 of [15]) yields

0 =
∫

�

F(ω, k(ω)) dm + (μ − ν)

∫

�

(κ1
μ(ω))2

k(ω)
dm

+ ν

∫

�

(κ1
μ(ω) + κ2

ν (ω)) dm + λ0

∫

�

κ2
ν (ω)

k(ω)
dm .

(6.2)

The d-concavity of f and Taylor’s Theorem ensure that F(ω, k(ω)) − F(ω, 0) ≥
k(ω)Fy(ω, k(ω)) for allω ∈ �. Now,we derive yF(ω, y) = f (ω, y+κ2

ν (ω))− f (ω, κ2
ν (ω))

with respect to y and evaluate at y = k(ω), obtaining F(ω, k(ω)) + k(ω)Fy(ω, k(ω)) =
fx (ω, κ1

μ(ω)). Since F(ω, 0) = fx (ω, κ2
ν (ω)), the last equality and the previous inequality

yield fx (ω, κ1
μ(ω)) + fx (ω, κ2

ν (ω)) ≤ 2F(ω, k(ω)). In turn, this inequality and (6.2) yield
∫

�

( fx (ω, κ1
μ(ω)) + 2μκ1

μ(ω)) dm +
∫

�

( fx (ω, κ2
ν (ω)) − λ0 + 2νκ2

ν (ω)) dm

≤ 2
∫

�

F(ω, k(ω)) dm + 2
∫

�

(μκ1
μ(ω) + νκ2

ν (ω)) dm − λ0

= −2(μ − ν)

∫

�

κ1
μ(ω)κ2

ν (ω)

k(ω)
dm − λ0

∫

�

κ1
μ(ω) + κ2

ν (ω)

k(ω)
dm < 0 ,

which proves the statement in any of the two stated situations. ��
Theorem 6.3 Let f ∈ C0,2(� × R, R) be (Co)2 and (SDC)∗.

(i) (No bifurcation). If sp( fx (·, 0)) ⊂ (0,∞), then for allμ ∈ R there exist three hyperbolic
τμ-minimal sets Ml

μ < M0 = � × {0} < Mu
μ, where Ml

μ and Mu
μ are respectively

attractive hyperbolic copies of the base and given by the graphs of αμ and βμ, M0 is
a repulsive hyperbolic copy of the base, and limμ→∞ αμ(ω) = limμ→−∞ βμ(ω) = 0
uniformly on �.

(ii) (Two local saddle-node bifurcations). If sp( fx (·, 0)) ⊂ (−∞, 0), thenM0 is an attractive
hyperbolic τμ-copy of the base for all μ ∈ R and there exist μ1 < μ2 such that:
for all μ < μ1 (resp. μ > μ2), there exist three hyperbolic τμ-copies of the base
Ml

μ < Nμ < M0 (resp. M0 < Nμ < Mu
μ) which are hyperbolic copies of the base,

given by the graphs of αμ < κμ < 0 (resp. 0 < κμ < βμ), where Ml
μ (resp. Mu

μ) is
hyperbolic attractive andNμ is hyperbolic repulsive, and μ �→ κμ is strictly decreasing
on (−∞, μ1) (resp. (μ2,∞)); the graphs of αμ and κμ (resp. κμ and βμ) collide on
a residual σ -invariant set as μ ↑ μ1 (resp. μ ↓ μ2), giving rise to a nonhyperbolic
minimal setMl

μ1
(resp.Mu

μ2
); for μ ∈ (μ1, μ2),Aμ = M0; and limμ→±∞ κμ(ω) = 0

uniformly on �.
(iii) (Weak generalized transcritical bifurcation). If 0 ∈ sp( fx (·, 0)), thenM0 is a nonhyper-

bolic τμ-copy of the base for all μ ∈ R. In addition, there exist μ1 ≤ μ2 such that: for
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all μ < μ1 (resp. μ > μ2) there exist exactly two τμ-minimal sets Ml
μ < M0 (resp.

M0 < Mu
μ), whereMl

μ (resp.Mu
μ) is an attractive hyperbolic copy of the base given by

the graph of αμ (resp. βμ); and if M0 is the unique τμ1 -minimal set (resp. τμ2 -minimal
set), then αμ and 0 (resp. 0 and βμ) collide on a residual σ -invariant set as μ ↑ μ1

(resp. μ ↓ μ2). In addition, if 0 �= inf sp( fx (·, 0)), then μ1 < μ2 and M0 is the unique
τμ-minimal set for any μ ∈ (μ1, μ2); and if 0 = inf sp( fx (·, 0)), thenM0 is the unique
τμ-minimal set for all μ ∈ [μ1, μ2].

Proof We call Ml
μ and Mu

μ the lower and upper τμ-minimal sets, defined as in Sect. 3, and
recall that they are attractive if they are hyperbolic, in which case they respectively coincide
with the graphs of the continuous maps αμ and βμ.

(i) Since every Lyapunov exponent ofM0 is strictly positive for any μ ∈ R (see Sect. 2.5),
M0 is a repulsive hyperbolic τμ-minimal set for every μ ∈ R. Consequently, there
exist three different hyperbolic τμ-minimal sets Ml

μ < M0 < Mu
μ (see Sect. 2.6),

with Ml
μ and Mu

μ given respectively by the graphs of αμ < βμ, which are continuous.
The hyperbolic continuation of minimal sets (see Theorem 3.8 of [28]) guarantees the
continuity of the maps R → C(�), μ �→ βμ and R → C(�), μ �→ αμ in the uniform
topology.

To check that limμ→−∞ βμ(ω) = 0 uniformly on�, we take any ε > 0, use coerciv-
ity to find ρ > ε > 0 such that f (ω, x) ≤ 0 for all x ≥ ρ and ω ∈ �, and chooseμε < 0
such that f (ω, x) + μεx2 ≤ 0 for all x ∈ [ε, ρ] and ω ∈ �. Then, f (ω, x) + μεx2 ≤ 0
for all x ≥ ε and ω ∈ �. According to Theorem 5.1(i) of [11], βμ(ω) ≤ ε for all ω ∈ �

if μ ≤ με , which proves the assertion. The argument is analogous for αμ.
(ii) Since every Lyapunov exponent of M0 is strictly negative, M0 is always an attractive

hyperbolic τμ-minimal set for all μ ∈ R. We fix ρ > 0 and look for μ+
ρ such that

f (ω, ρ) + μ+
ρ ρ2 > 0: if μ ≥ μ+

ρ , then ρ is a global strict lower solution of (6.1)μ,
and hence its graph is strictly below (resp. strictly above) a minimal set Mu

μ (resp. Nμ)
contained in the ω-limit (resp. α-limit) of any point (ω, ρ) (see Sect. 2.3). The attractive
hyperbolicity ofM0 precludesNμ = M0. That is, there exist three distinct τμ-minimal
sets, so they are hyperbolic copies of the base, with Mu

μ attractive (and given by the
graph of βμ) and Nμ repulsive. A similar argument works for −ρ and μ ≤ μ−

ρ if
f (ω,−ρ) + μ−

ρ ρ2 < 0, providing three different hyperbolic τμ-copies of the base
Ml

μ < Nμ < M0, withMl
μ attractive (and given by the graph of αμ) andNμ repulsive.

Let κμ be τμ-equilibrium whose graph is Nμ, both for μ ≥ μ+
ρ and μ ≤ μ−

ρ . Since the
initially fixed ρ > 0 is as small as desired, limμ→±∞ κμ(ω) = 0 uniformly on �.

Let us define I1 = {μ ∈ R : Ml
ξ is hyperbolic and Ml

ξ < M0 for all ξ < μ}
and I2 = {μ ∈ R : Mu

ξ is hyperbolic and Mu
ξ > M0 for all ξ > μ}, and observe

that μ−
ρ ∈ I1 and μ+

ρ ∈ I2. We also define μ1 = sup I1 and μ2 = inf I2 and note
that μ1 /∈ I1 and μ2 /∈ I2: I1 = (−∞, μ1) and I2 = (μ2,∞). The existence of at
most three τμ-minimal sets for any μ ensures μ1 ≤ μ2, and hence they are finite. If
μ ∈ I1 (resp. μ ∈ I2) then Ml

μ (resp. Mu
μ) is attractive and coincides with the graph

of αμ (resp. βμ), which is continuous, and there exists a repulsive hyperbolic copy of
the base Nμ for τμ with Ml

ξ < Nμ < M0 (resp. M0 < Nμ < Ml
ξ ): see Sect. 2.6.

Let κμ be the continuous τμ-equilibrium whose graph is Nμ for μ ∈ I1 ∪ I2. As in (i),
the hyperbolic continuation of minimal sets guarantees the continuity with respect to the
uniform topology of the maps μ �→ αμ, κμ on I1 and μ �→ κμ, βμ on I2. In addition, if
ξ1 < ξ2 < μ1 or μ2 < ξ1 < ξ2, then κξ1 is a strong time-reversed τξ2 -superequilibrium,
and hence the α-limit set for τξ2 of a point (ω, κξ1(ω)) contains a τξ2 -minimal set which
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is strictly below the graph Nξ1 of κξ1 , and which (see again Sect. 2.3), as above, must
coincide withNξ2 . That is, μ �→ κμ(ω) is strictly decreasing on I1 and I2 for all ω ∈ �.

The maps αμ1(ω) = limμ↑μ1 αμ(ω) and κμ1(ω) = limμ↑μ1 κμ(ω) satisfy αμ1 ≤
κμ1 < 0 and respectively define lower and upper semicontinuous τμ1 -equilibria which
must coincide on the residual set of its common continuity points: otherwise they would
define two different τμ1 -minimal sets Ml

μ1
< Nμ1 < M0 (see Proposition 2.3 of [11]),

so Ml
μ1

would be hyperbolic attractive and μ1 ∈ I1, which is not the case. Therefore,
μ1 is a local saddle-node bifurcation point of minimal sets and a point of discontinuity
of the global attractor. In addition, the unique τμ1 -minimal set Ml

μ1
that they define is

nonhyperbolic, which also follows from μ1 /∈ I1. Similar arguments apply to μ2. In
addition, notice that μ1 < μ2, as otherwise there would exist three τμ1 -minimal sets,
contradicting the nonhyperbolicity of Ml

μ1
.

Letμ ∈ (μ1, μ2), and letω0 be a common continuity point ofαμ,αμ1 and κμ1 , so that
αμ1(ω0) = κμ1(ω0). Since κμ1 is a strong τμ-subequilibrium and αμ1 ≤ αμ, there exists
t0 > 0 such that κμ1(ω0· · t0) < uμ(t0, ω0, αμ1(ω0)) ≤ αμ(ω0·t0). Let us callω1 = ω0·t0
and assume for contradiction thatαμ(ω0) < 0 or, equivalently,αμ(ω1) < 0. The previous
property combined with limξ→−∞ κξ (ω1) = 0 and the continuity of ξ �→ κξ (ω1) on
I1 provides αμ(ω1) = κξ1(ω1) for a ξ1 ∈ I1. Since κξ1 is a strong (and continuous)
τμ-subequilibrium, there exists s1 > 0 and e1 > 0 such that αμ(ω1·t) > κξ1(ω1·t) + e1
for all t ≥ s1 (see Sect. 2.3), and we obtain the contradiction αμ(ω1) ≥ κξ1(ω1) + e1
by taking {tn} ↑ ∞ with ω1 = limn→∞ ω1·tn . This means that Ml

μ = M0, and a
similar argument shows Mu

μ = M0. Consequently, M0 is the unique τμ minimal set
for μ ∈ (μ1, μ2) and, since it is hyperbolic attractive, Theorem 3.4 of [11] proves that
Aμ = M0.

(iii) In this case,M0 is nonhyperbolic for allμ ∈ R (see Sect. 2.5), and this fact precludes the
existence of three τμ-minimal sets (see Sect. 2.6). Let us check that Mu

μ is an attractive
hyperbolic copy of the base if μ is large enough. To this end, we choose λ0 > 0 such that
the Sacker and Sell spectrum of fx (ω, 0) − λ0 is contained in (−∞, 0). Consequently,
the bifurcation diagram of minimal sets of

x ′ = f (ω·t, x) − λ0x + νx2 (6.3)

with respect to ν is that described in (ii). Let ν2 be the upper bifurcation point, fix ν > ν2,
and let κ̂ν and β̂ν be the equilibria giving rise to the repulsive and attractive hyperbolic copies
of the base for (6.3)ν . Then, if μ > ν,

f (ω, β̂ν(ω)) + μβ̂2
ν (ω) > f (ω, β̂ν(ω)) − λ0β̂ν(ω) + νβ̂2

ν (ω) ,

which means that β̂ν is a global strict lower τμ-solution and hence that κ̂ν(ω) < β̂ν(ω) <

βμ(ω) for all ω ∈ � (see Sect. 2.4). The definition of Mu
μ ensures that it is above the graph

of β̂ν , and hence κ̂ν(ω) < γμ(ω) for any τμ-equilibrium γμ : � → R with graph contained
in Mu

μ. Since κ̂ν defines a repulsive hyperbolic copy of the base of (6.3)ν , Proposition 6.2
ensures that

∫
�
( fx (ω, γμ(ω))+2μγμ(ω)) dm < 0 for allm ∈ Merg(�, σ ). This means that

Mu
μ is an attractive hyperbolic minimal set for all μ > ν2. An analogous argument shows

that Ml
μ is an attractive hyperbolic minimal set if −μ is large enough.

Now, we define I1, I2, μ1 and μ2 as in (ii). Note that μ1 ≤ μ2: otherwise there would be
three τμ1 -minimal sets. The definition of these two values of the parameter shows the first
assertion in (iii), concerning μ /∈ [μ1, μ2]. In addition, the definition on Ml

μ (resp. Mu
μ)

shows that, ifM0 is the unique τμ1 -minimal set (resp. τμ2 -minimal set), then αμ and 0 (resp.
0 and βμ) collide on a residual σ -invariant set as μ ↑ μ1 (resp. μ ↓ μ2).
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Let us prove that M0 is the unique τμ-minimal set if μ ∈ [μ1, μ2] in the case
inf sp( fx (·, 0)) = 0, which means that

∫
�

fx (ω, 0) dm ≥ 0 for all m ∈ Merg(�, σ ). In
this case, any τμ-minimal set different from M0 is hyperbolic attractive for any μ ∈ R:
Proposition 4.4 of [11] ensures that all the Lyapunov exponents of such a minimal set are
strictly negative, from where the assertion follows. Hence, Ml

μ1
and Mu

μ2
coincide with

M0 to not contradict the definition of μ1 and μ2. The monotonicity properties of αμ and βμ

established in Proposition 6.1 ensure thatMl
μ = M0 for all μ ≥ μ1 andMu

μ = M0 for all
μ ≤ μ1, and this proves the assertion.

In the rest of the proof, we work in the remaining case, inf sp( fx (·, 0)) < 0, which implies
the existence of a measure m ∈ Merg(�, σ ) with

∫
�

fx (ω, 0) dm < 0.
Let us prove that μ1 < μ2. We fix m ∈ Merg(�, σ ) with

∫
�

fx (ω, 0) dm < 0. For
μ > μ2, Lemma 3.2 ensures that

∫
�
( fx (ω, κ2

μ(ω))+ 2μκ2
μ(ω)) dm > 0, where κ2

μ is them-
measurable τμ-equilibriumproviding the lower delimiter of the basin of attraction of the graph
of βμ, which satisfies 0 ≤ κ2

μ < βμ. Reasoning as in Theorem 3.1, we check thatμ �→ κ2
μ(ω)

is nonincreasing on I2 for all ω ∈ �. Hence, there exists the limit κ2
μ2

= limμ↓μ2 κ2
μ ≥ 0.

Lebesgue’s Convergence Theorem ensures that
∫
�
( fx (ω, κ2

μ2
(ω)) + 2μκ2

μ2
(ω)) dm ≥ 0.

In particular, κ2
μ2

is different from 0 with respect to m. A symmetric procedure performed
for μ < μ1 (now defining κ1

μ as the upper delimiter of the basin of attraction of the graph
of αμ, so that μ �→ κ1

μ is nonincreasing on I1) shows the existence of a τμ1 -equilibrium
κ1
μ1

≤ 0 with is different from 0 with respect to m. Finally, we assume for contradiction that
μ1 = μ2, observe that κ1

μ1
≤ 0 ≤ κ2

μ2
define three τμ1 -equilibria which are different with

respect to m, and conclude that
∫
�

fx (ω, 0) dm > 0 (see Sect. 2.6), which is not the case.
This contradiction proves the assertion.

It remains to check that Ml
μ = M0 for μ > μ1 and Mu

μ = M0 for μ < μ2, which
ensures that M0 is the unique τμ-minimal set for μ ∈ (μ1, μ2). We begin by assuming that
Mu

μ2
= M0, which means that βμ2 vanishes on the residual set of its continuity points.

Proposition 6.1(i) ensures that, if μ < μ2, then 0 ≤ βμ(ω) ≤ βμ2(ω) = 0 at a common
continuity point of both maps, and this ensures that Mu

μ = M0, as asserted. Now, let us
work in the case Mu

μ2
> M0. The argument adapts to this situation that of the two last

paragraphs of the proof of Theorem 3.1, as we sketch in what follows. First, for μ > μ2, we
consider the τμ-equilibrium κ2

μ of the previous paragraph, which satisfies κ2
μ(ω) > 0 m-a.e.

if
∫
�

fx (ω, 0) dm < 0 for an m ∈ Merg(�, σ ). Second, we combine this property with the
nonhyperbolicity of Mu

μ2
to deduce that there are points in the graph of κ2

μ2
= limμ↓μ2 κ2

μ

which are between the delimiter equilibria ofMu
μ2
. And third, we deduce from this fact that

βμ(ω) = 0 on its residual set of continuity points if μ < μ2, which proves that Mu
μ = M0

also in this case. The argument is analogous forMl
μ and μ > μ1, and the proof is complete.

��
Autonomous cases x ′ = f (x)+λx2 fitting the possibilities described in Theorem 6.3 are

very easy to find, since they just depend on the sign of f ′(0). For example, x ′ = −x3+x+λx2

for the first one, x ′ = −x3 − x + λx2 for (ii) for the second one, and x ′ = −x3 + λx2 for
the third one. Note also that the model analyzed in Proposition 4.1 fits in the situation of
Theorem 6.3(iii), and that in that case we can determine the values of μ1 and μ2.

The two first diagrams described in Theorem 6.3 (the absence of bifurcation points and
the occurrence of two local saddle-node ones) are depicted in Figs. 3, and 4 shows several
cases of weak generalized transcritical bifurcations.

We close this paper by using the information just obtained to go deeper in the analysis of the
bifurcation possibilities for our initial problem (3.1), i.e., x ′ = f (ω·t, x)+λx .More precisely,
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Fig. 3 The no bifurcation (left) and two local saddle-node bifurcation (right) diagrams described in Theorem
6.3(i) and (ii). The meaning of the different elements is explained in Fig. 1

Fig. 4 Some possibilities for the weak generalized transcritical bifurcation diagrams described in Theorem
6.3(iii). See Figs. 1 and 2 to understand the meaning of the different elements. For the first two diagrams,
sp( fx (·, 0)) is a nondegenerate interval which contains 0. The first one corresponds to inf sp( fx (·, 0)) < 0 <

sup sp( fx (·, 0)) (which yields μ1 < μ2), and the second one to inf sp( fx (·, 0)) = 0 with μ1 < μ2 (the
diagram for μ1 = μ2 is obtained by deleting the vertical strip given by (μ1, μ2)). In these diagrams, the
existence of m ∈ Merg(�, σ ) such that

∫
� fx (ω, 0) dm > 0 and Proposition 5.2 of [11] (see the caption of

Fig. 1) yield αμ and βμ not identically 0 for all μ. (If sup sp( fx (·, 0)) = 0, we can just say αμ ≤ 0 if μ ≥ μ1
and 0 ≤ βμ if μ ≥ μ2.) The third diagram corresponds to sp( fx (·, 0)) = {0} with μ1 < μ2 (again, erasing
the vertical strip given by (μ1, μ2) provides the diagram for μ1 = μ2 in this point spectrum case). For this
case, Theorem 4.1 of [11] ensures the existence of a set �0 with m(�0) = 1 for all m ∈ Merg(�, σ ) such
that αμ(ω) = 0 and βμ(ω) = 0 for ω ∈ �0 if μ > μ2 and μ < μ1, respectively, which we represent as

αμ
m= 0 and βμ

m= 0

Corollary 6.5 shows that for any λ0 ≤ − inf sp( fx (·, 0)) there exists a suitable μ0 ∈ R such
that λ0 is the lower bifurcation point of the modified family x ′ = f (ω·t, x)+μ0x2+λx , and
that the three different possibilities of Theorem 3.1 correspond to λ0 < − sup sp( fx (·, 0)),
λ0 = − inf sp( fx (·, 0)) and − sup sp( fx (·, 0)) ≤ λ0 < − inf sp( fx (·, 0)). To this end, we
consider the two-parametric bifurcation problem of minimal sets

x ′ = f (ω·t, x) + μx2 + λx , (6.4)
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where f ∈ C0,2(� × R, R) is (Co)2 and (SDC)∗ and f (ω, 0) = 0 for all ω ∈ �. Let
Aλ,μ be the global attractor of the local skewproduct flow τλ,μ induced on � × R by
(6.4)λ,μ, with delimiter equilibria αλ,μ(ω) = inf(Aλ,μ)ω and βλ,μ(ω) = sup(Aλ,μ)ω, and
let sp( fx (·, 0)) = [−λ+,−λ−]. We define

μ̂ : (−∞, λ+] → R , λ �→ inf{μ ∈ R : the graph of βλ,ξ defines a

hyperbolic minimal set Mu
λ,ξ �= M0 for all ξ > μ} ,

λ̂ : R → (−∞, λ+] , μ �→ inf{λ ∈ R : the graph of βξ,μ defines a

hyperbolic minimal set Mu
ξ,μ �= M0 for all ξ > λ} .

(6.5)

Notice that, for any fixed λ1 ≤ λ+, sp( fx (·, 0) + λ1) = [λ1 − λ+, λ1 − λ−] �⊂ (0,∞),
which ensures that the bifurcation diagram for the μ-parametric family (6.4)λ1 is not that of
Theorem 6.3(i) and hence that μ̂(λ1) is well defined. In addition, Theorem 3.1 ensures that
λ̂ is well defined and satisfies λ̂(μ1) ≤ λ+ in the three bifurcation cases which may arise for
the λ-parametric family (6.4)μ1 , for any μ1 ∈ R.

Proposition 6.4 Let λ̂ and μ̂ be the maps defined in (6.5). Then,

(i) λ̂ ◦ μ̂ = Id(−∞,λ+], and consequently, λ̂ is onto.
(ii) λ̂ is nonincreasing, and consequently, λ̂ is continuous.

Proof

(i) We fix λ0 ∈ (−∞, λ+] and call μ0 = μ̂(λ0) and λ0 = λ̂(μ0). The goal is to check
that λ0 = λ0. The definition of μ0 ensures that the graph of βλ0,μ0 does not define
a hyperbolic τλ0,μ0 -minimal set distinct from M0, so λ0 ≤ λ0. By contradiction, we
assume that λ0 < λ0, and fix λ ∈ (λ0, λ0). Observe that μ0 is the upper bifurcation
point of the diagram described by Theorem 6.3(ii) or (iii) for the μ-family of (6.4)λ0 ,
and that, for any ε > 0, the upper delimiter βλ0,μ0+ε of Aλ0,μ0+ε is continuous and
strictly positive. Then, if ε ∈ (0, 1) satisfies ε < (λ−λ0)/ supω∈� βλ0,μ0+1(ω), we have
λ0 − λ + εβλ0,μ0+ε(ω) < 0 for all ω ∈ �, and hence

β ′
λ0,μ0+ε(ω) = f (ω, βλ0,μ0+ε(ω)) + λ0βλ0,μ0+ε(ω) + (μ0 + ε)β2

λ0,μ0+ε(ω)

= f (ω, βλ0,μ0+ε(ω)) + λβλ0,μ0+ε(ω) + μ0β
2
λ0,μ0+ε(ω)

+ βλ0,μ0+ε(ω)(λ0 − λ + εβλ0,μ0+ε(ω))

< f (ω, βλ0,μ0+ε(ω)) + λβλ0,μ0+ε(ω) + μ0β
2
λ0,μ0+ε(ω) .

That is, βλ0,μ0+ε is a global strict lower solution for (6.4)λ,μ0 . This ensures that 0 <

βλ0,μ0+ε < βλ,μ0 (see Sect. 2.4), which in particular implies the existence of a strictly
positive τλ,μ0 -minimal set. But this is not possible: Theorem 3.1 and the definition of λ̂

show that there is no τλ,μ0 -minimal set above M0 if λ < λ0. This contradiction shows
that λ0 = λ0.

(ii) By contradiction, we assume that there exist μ1 < μ2 such that λ1 = λ̂(μ1) < λ̂(μ2) =
λ2. We take λ ∈ (λ1, λ2). As λ > λ1, Theorem 3.1 and the definition of λ1 ensure that
the upper delimiter βλ,μ1 of Aλ,μ1 is continuous and strictly positive. Notice that

β ′
λ,μ1

(ω) = f (ω, βλ,μ1(ω)) + λβλ,μ1(ω) + μ2β
2
λ,μ1

(ω) + (μ1 − μ2)β
2
λ,μ1

(ω)

< f (ω, βλ,μ1(ω)) + λβλ,μ1(ω) + μ2β
2
λ,μ1

(ω) ,

so βλ,μ1 is a global strict lower solution for (6.4)λ,μ2 . Therefore, 0 < βλ,μ1 < βλ,μ2 (see
Sect. 2.4), which in particular implies the existence of a strictly positive τλ,μ2 -minimal

123



Journal of Dynamics and Differential Equations

set. But the definition of λ2 ensures that M0 is the unique τλ,μ2 -minimal set, since
λ < λ2. Hence, λ̂ is nonincreasing. Finally, a nondecreasing and onto function defined
from an interval to an interval is always continuous.

��
Corollary 6.5 Let sp( fx (·, 0)) = [−λ+,−λ−] and λ0 ≤ λ+. The λ-parametric family

x ′ = f (ω·t, x) + μ̂(λ0)x
2 + λx (6.6)

exhibits

– the local saddle-node and transcritical bifurcations of Theorem 3.1(i) if λ0 < λ−, with
λ0 as local saddle-node bifurcation point and αλ colliding with 0 as λ ↓ λ+;

– the classical pitchfork bifurcation of Theorem 3.1(ii) if λ0 = λ+, with unique bifurcation
point λ0;

– and the generalized pitchfork bifurcation of Theorem 3.1(iii) if λ0 ∈ [λ−, λ+), with λ0
as lower bifurcation point and αλ colliding with 0 as λ ↓ λ+.

Proof Proposition 6.4(i) ensures that λ̂(μ̂(λ0)) = λ0. That is, λ0 = inf{λ ∈ R : the graph of
βξ,μ̂(λ0) defines a hyperbolicminimal setMu

ξ,μ̂(λ0)
�= �×{0} for all ξ > λ}. The conclusions

follow from the description of the three cases made in Theorem 3.1 applied to (6.6). ��
By taking the lower delimiters of the global attractors instead of the upper ones in (6.5), we
get a result analogous to Corollary 6.5, with βλ colliding with 0 at the upper bifurcations
points.
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