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Abstract: This article analyzes the relationship between artificial intelligence (AI) and photovoltaic
(PV) systems. Solar energy is one of the most important renewable energies, and the investment of
businesses and governments is increasing every year. AI is used to solve the most important problems
found in PV systems, such as the tracking of the Max Power Point of the PV modules, the forecasting
of the energy produced by the PV system, the estimation of the parameters of the equivalent model
of PV modules or the detection of faults found in PV modules or cells. AI techniques perform better
than classical approaches, even though they have some limitations such as the amount of data and
the high computation times needed for performing the training. Research is still being conducted
in order to solve these problems and find techniques with better performance. This article analyzes
the most relevant scientific works that use artificial intelligence to deal with the key PV problems by
searching terms related with artificial intelligence and photovoltaic systems in the most important
academic research databases. The number of publications shows that this field is of great interest to
researchers. The findings also show that these kinds of algorithms really have helped to solve these
issues or to improve the previous solutions in terms of efficiency or accuracy.

Keywords: PV; artificial intelligence; MPPT; forecasting; parameter estimation; faults detection

1. Introduction

Energy is essential in our society, being the motor of almost every sector. Fossil-fuels
are historically the most important source of energy, representing 80.2% in 2019 [1] These
kinds of energies have different problems; one of them is their scarcity, since they are
limited resources that have been exploited for a long time. Another critical problem is
the pollution caused by the burning and extraction of these fuels, which is hazardous for
people [2] and the environment [3]. To solve these problems, other energy sources can
be used. These alternative energies, renewable energies, have two main benefits. First
of all, they are based on unlimited resources that will not run out, even with extensive
exploitation. Their exploitation is also nonpolluting. Investment in these energies has been
rising in the last years, even with a crisis such as the COVID-19 pandemic [1,4].

One of the most important green energies is solar energy. This energy is composed
of solar, thermal and photovoltaic (PV). The latter has been found to be more useful and
profitable for industry production [5,6] and has been growing steadily in recent years. As
we can see in Figure 1, the share of PV systems is increasing, and it is expected to be one of
the prime energy sources in the next years [7].
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PV energy is produced by photovoltaic modules. Each module is composed of different
sub-units, called solar cells, which absorb the energy emitted by the sun [8]. PV panels
are usually connected in series to each other, this is known as a PV array. Each PV array
is connected to a power inverter to control the production and check the performance
of the array [9]. PV farms (also known as PV plants) are usually composed of many PV
arrays. The maintenance of these factories is extremely complex. The production of the
modules depends on different conditions, this makes mechanisms of control to optimize
the production necessary. Solar modules are also vulnerable to physical defects, which can
reduce or even nullify the production of one cell, or even the whole modules in the worst
cases. This is usually dealt with by human labor, checking each module in a certain period
of time.

Figure 1. Evolution of the importance of PV sector (adapted from [7]). (a) Evolution of the energy
share of PV systems; (b) evolution of the investment in PV energy; (c) evolution of employment in
the PV sector.

Solutions to maintenance problems in PV systems have been traditionally circumscribed
either to simplistic automatic supervision approaches [10] or costly direct human supervision.

In the past recent years, however, artificial intelligence (AI)-based approaches have
emerged. AI techniques are being applied in almost every research field or industry to
improve services or solve problems which are impossible for traditional methods [11].

These techniques can also be applied to solve the problems of PV systems. In this
review, we analyze how AI is being applied to the PV sector. PV systems face different
problems during installation but also during exploitation, since PV modules are vulnerable
to the climate conditions’ unpredictable events. An analysis of the problems found in PV
plants can be found in [12,13]; also, the maintenance of the modules is key in order to
secure maximum production and to improve the security of the installations [14]. In order
to reduce the scope of this review, only the four most critical problems related to energy
optimization and maintenance are considered:

• Max Power Point Tracking: Vital for optimizing the production.
• Output Power Forecasting: Critical for predicting possible problems in production

related to climate conditions.
• Parameter Estimation: Extremely important for optimizing the production of PV modules.
• Defect Detection: Important for finding bad-performing modules or faults that can

be fatal for overall system performance and security.

The most important problems and the technologies that have been used for dealing
with each one of these problems are addressed. The final objective of this review is to
analyze the most important techniques used and how they have improved the solutions of
the problems in order to have a clear understanding of the state of the art in the area.

The paper is structured as follows: First, an explanation of the problem is described in
Section 2, in order to provide more information to readers who are not familiarized with
this topic. After that, the artificial intelligence techniques used of each of the problems are
explained. The Maximum Power Point Tracking is discussed in Section 3.2; Section 3.3 is
about the forecasting; Section 3.4 presents the parameter estimation, and defect detection
problems are discussed in Section 3.5. Finally, an analysis of the different problems is
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performed in Section 4, identifying the tendencies and flaws in the research of each one
of them.

2. Relevant PV Problems

As we explained before, PV installations have to face a large amount of problems.
The most important ones are related to optimizing energy production, since it is the final
objective of an energy installation. They are also related to the maintenance of equipment,
mostly the solar modules. In this section, four problems related to this issue are explained
in order to give the reader a basic context of the different problems.

2.1. Maximum Power Point Tracking (MPPT)

PV cells have a complex relationship between their environment and the power they
can produce. Along the IV curve (Figure 2) of solar cells there is a point where the power
will be maximized, this is called the Maximum Power Point (MPP). This point usually
changes depending on conditions such as irradiation, temperature or the state of the PV
cell. These conditions can change the shape of the curve, making the problem nonlinear
and time-varying due to the changes produced by the atmospheric and load conditions.

Another problem is that it is not possible to directly obtain the IV curve of a single PV
cell. The IV curves are usually taken from one single module or even from a PV array. The
measured curves are more complex than the IV curve of a cell. The more complex a curve
is, the harder it is to track the MPP.

Figure 2. Different IV curves. Green circle: Max Power Point; Red Star: Open-Circuit Voltage (VOC);
Yellow Square: Short-Circuit Current (ISC).

The algorithms to solve this problem can be classified according to different criteria;
one of the most important ones is according to the number of variables used for measuring
the tension. Another interesting approach is to classify the method according to the control
strategy used. A brief explanation of the most important traditional methods can be found
in Table 1, and more information can be found in works such as [15,16].
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Table 1. Traditional Methods for MPPT.

Methods Features

Perturbation and Observation [15,16]

This algorithm does not depend on previous
knowledge, it is the simplest and is widely
used due to its balance between efficiency and
simplicity. It disturbs the operating point of the
system, causing the PV voltage to fluctuate
near the MPP voltage.

Incremental Conductance [15,16]

This method is based on the basis that the slope
of a PV curve is zero at MPP. The algorithm
tracks the MPP by searching for the peak of the
PV curves. This algorithm uses the
instantaneous conductance I/V and the
incremental conductance dI/dV.

Curve Fitting [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in
the irradiance.

Open Circuit [15,16]

This method implements a mathematical
function to describe the output of the generator.
The disadvantage of this method is that it
requires a high memory capacity and is not
optimum for high-speed changes in the
irradiance. This method is simple, and it uses a
single control loop.

Feedback Tension [15,16]

This method can be used with the feedback of
the voltage of the panels, which is compared
with the tension of constant reference to adjust
the word cycle. This system is unable to adapt
to changes in irradiance or climate.

Measurement of the Current of the PV
Generator [15,16]

This method is based on one variable, the
output current of the PV Generator, which is
the input current of the generator. The control
of the output optimizes the maximum
output current.

2.2. Forecasting Problems

There are several variants of the forecasting problem which arise in PV: weather
forecasting, solar irradiance forecasting and energy production forecasting, which is to
estimate the energy production of the system. This is really important to optimize the
real-time management of systems that use this kind of energy (smart cities, villages, etc.).
This problem has high priority for electric companies because they want a more robust and
reliable system to predict the changes in energy loads and demands. Another important
aspect is the amount of time that has to be predicted.

• Short-term forecasting is usually from 1 hour to a week ahead and is used for schedul-
ing energy transfer, economic load dispatch and demand response.

• Mid-term forecasting is usually considered between 1 month and 1 year ahead, usually
for planning the near-forthcoming power plans and to show the dynamics of the
system in that interval.

• Long-term forecasting is considered between 1 year and 10 years. Its function is to
plan the generation power plant so as to satisfy future requirements and cost efficiency.

Another important factor for forecasting is the number of parameters, the amount of
information and data is key when it comes to obtaining a precise forecasting model, but it
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is also true that sometimes too much data can provide noise or misleading information that
can injure performance.

Each kind of forecasting is usually tacked as a different problem, since the amount of
data and precision required are highly different. More information about forecasting can
be found in [17].

2.3. Estimation of Parameters of Model Circuits

The simulation of PV systems is important to optimize the production of the real
systems. It is know that any PV can be modeled and represented by an equivalent electric
circuit, whose parameters control the predicted or estimates operation of the PV cell or
module. The single-diode circuit presents five unknown parameters [18,19] (Iph, Isd, Rl , Rsh
and n), and the output current is evaluated as follows:

I = Iph − Isd ×
[

exp
(

q × (VL + Rs × IL)

n × k × T

)
− 1

]
− VL + RS × IL

Rsh

where IL, Iph, Id and Ish are the solar cell output current, total current, diode current and
shunt current, respectively. Rs represents the series, and Rsh denotes the shunt resistances.
In addition, VL means the cell output voltage; n is the ideal factor of diode. k represents the
Boltzmann constant, which is set as 1.3806503 × 1023 J/K; q is set as 1.60217646 × 1019 C,
which is the electron charge, and T means the cell absolute temperature.

The double-diode model presents seven unknown parameters [18,19] (Iph, Isd1, Isd2, Rl , Rsh,
n1 and n2 ), and the output current is evaluated as follows:

IL =Iph − Isd1 ×
[

exp
(

q × (VL + Rs × IL)

n1 × k × T

)
− 1

]
− Isd2 ×

[
exp

(
q × (VL + Rs × IL)

n2 × k × T

)
− 1

]
− VL + RS × IL

Rsh

where Isd1 and Isd2 represent the diffusion and saturation currents, while n1 and n2 represent the
ideal factors of diffusion and recombination diode. The other parameters have the same meaning
as the previous equation.

This problem is presented as a optimization problem, where the output to optimize is IL,
and the variables to be found are the unknown parameters.

2.4. Defect Detection

Solar modules are vulnerable to modifications in their surface; therefore, it is required to
have a system to find faults. These kinds of faults and defects affect to the production of the
module, making it not work at all in the worst cases. The problem is that the majority of faults
are not detected with typical cameras (Figure 3), so it is necessary to apply different techniques
such as thermography (Figure 3) or electroluminiscence (Figure 3).

The traditional way of finding faults is by performing a manual visual inspection, but
the size of the solar farms has made this method almost unmanageable. In order to solve this
problem, different techniques have been proposed, most of them using electroluminiscence.
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Figure 3. Different techniques for photography modules. (a) Visual spectrum; (b) thermography; (c) electro-
luminiscence.

3. Artificial Intelligence Applied to PV Systems
3.1. Methodology

With an intention to provide the most relevant and comprehensive review, a proper selection
criterion is needed; therefore, different bibliographic databases were searched: Web of Science,
Scopus, Google Researcher and Arxiv. With the aim of finding relevant works, a selection was
performed searching keywords related with AI and PV systems. The articles with fewer than
8 citations were excluded since they were not considered relevant enough to the state of the art.
As a exception to this rule, the articles published in 2021 were selected even if they did not have
enough citations. After removing duplicates and nonrelated papers, 250 articles were obtained.
The articles tackled different problems found in PV systems, but most of them were focused on
four different problems due to their importance:

• Max Power Point Tracking.
• Forecasting of the energy production.
• Estimation of parameters of model circuits.
• Detection of defects and faults in solar modules.

In this section, these different problems are addressed by explaining the contributions of
each paper in order to provide a global vision of the state of the art of each problem.

3.2. Maximum Power Point Tracking (MMPT)

The tracking of the Maximum Power Point is vital to optimize the PV systems, and it is
probably the most interesting problem for research. Different techniques have been used to
solve this problem, as it can be seen in Figure 4. Some classical techniques include Incremental
Conductance and Perturb and Observe. Recent trends show that AI techniques are also used to
solve this problem. Metaheuristics and Neural Networks were found as the most used techniques
after surveying the literature.
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Figure 4. Taxonomy of most used IA method for MPPT.

3.2.1. Fuzzy Logic

Traditional Logic [20] is limited to only two values of truth (True and False), this limits its
versatility and makes it difficult to model some systems. Fuzzy Logic (FL) [21] is an extension of
Traditional Logic. The main benefit of FL is that it can give a true value between 0 and 1. FL is
specialized in addressing uncertainty in inputs and obtaining high performance under rapidly
changing conditions, such as atmospheric ones. These kinds of techniques can also be used to
aid other systems in order to improve their performance. In this section, the most important
techniques related to FL are reviewed.

The first implementation focused on MPPT can be found in [22]. This system uses 7 mem-
bership functions for each variable with two input variables: error in the power and the change
in error; the output inferred by the fuzzy system is the change in duty cycle that controls the
pulse width generation block. The main benefit of FL control is that it does not require changes
or variations in its membership functions.

In order to evolve these systems, it was necessary to find a method to modify the parameters
of the fuzzy systems. In [23], a Fuzzy Controller that is able to perform online parameter auto-
tuning is found. This system used 2 kinds of control. First, a traditional PID control to manage
the small deviations and an Adaptive Fuzzy Controller to deal with the larger deviations, since
this system is ideal for obtaining rapid responses. A switching function was set to determine the
controller to be used. The initial fuzzy controller used triangular-shape functions as membership
functions, changing the curve depending on the error. This system reduces the oscillation near
the Maximum Power Point, reducing the loss of power.

Another implementation of the adaptive behavior can be found in [24]. This proposal
combines Fuzzy Cognitive Networks (FCN) with Fuzzy Logic Control (FLC). FCN is constructed
as an extension of another system called Fuzzy Cognitive Maps (FCM) [25]. FCMs are composed
of nodes and weighted arcs. Nodes represent the concepts represented, and the arcs represent the
causal relationships between them. FCN relies on the knowledge of experts for the description of
the nodes and the construction of the graph but does not need an initial estimation of the weights
of the arcs. The combination of FLC and FCN makes the system able to track and adapt to any
kind of physical variation. A Fuzzy controller needed 12 iterations to reach the same MPP that
this algorithm found with 5.
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In order to further improve the tracking speed and accuracy of FLC, the classic Open-Circuit
Technique [26] is used to find an initial estimation of the MPP voltage. The implemented system
showed a good response even under variable atmospheric conditions.

The work in [27] used Type-2 Fuzzy Logic [28], an extension of classical FL [29]. The main
feature of Type-2 FL is that membership functions are also fuzzy, and it is used in applications
where determining the exact function of a set is difficult [30]. The Type-2 FL functions are three-
dimensional, they depend on three different parameters, allowing them to directly model and
handle uncertainties. The changes in PV power and voltage are set as the input variables, each one
using seven membership functions. The simulation showed that the system tracked MPPT even
in irradiance and load variation. Oscillations around MPPT are greatly reduced and are useful for
rapidly changing conditions. The overall output energy due to the proposed MPPT method was
around 27.7%. The implementation and simulation were performed with MATLAB/Simulink
simulation studies [31]. Type-2 Fuzzy Logic is also used for MPPT in [27,32–34].

Another important FL extension used in MPPT is the Takagi–Sugeno Fuzzy Model (T-S
FM) [35–37], T-S FM [38] is usually used in approximating complex nonlinear systems [39] and is
really important due to the fact that they enable a kind of control called parallel distributed control.
The results of these systems present better settling time than classical FL, fewer oscillations
and accurate output. The tracking is achieved even for abrupt insulation variations. The
implementation and simulation are usually conducted with MATLAB.

One of the most popular trends is to use fuzzy logic as a complement of other techniques.
In [40], it is used to tune the PID controller parameter. In [41], the fuzzy behavior of the
PSO algorithms improves the system. Fuzzy Logic has also been used along with Neural
Networks [42–45]. These works demonstrate that this combination improves the original
algorithms, improving the results of the fuzzy systems but reducing the data and time needed
to train neural networks.

A summary of the Fuzzy Logic methods applied to MPPT can be seen in Table 2.

Table 2. Fuzzy Methods for MPPT.

Method Features

FLC [22–24,26,46]

FLC systems provide quick responses to changes
and low oscillations near MPPT that reduce the
power loss compared with traditional systems.
The combination with FCN or the initial
estimation of the MPP voltage further improves
the results.

Type-2 [27,32–34]
Type-2 FL provides the methods to model and
handle uncertainties, boosting the robustness of
the system and hence its results.

T-S [35–37]

The parallel distributed control provided by the
T-S FL further improves the results of FL systems,
having an acceptable settling time, less oscillations
and an accurate output.

Combined with other methods [40–45] Other methods can take advantage of the benefits
of FLC systems to improve their results in MPPT.

3.2.2. Metaheuristics

Metaheuristics [47] are algorithmic approaches specialized in solving problems that are
not possible to directly find the best solution in a feasible amount of time. They will search the
solution space in order to identify the best solution that they can find. In this section, the most
important metaheuristics applied to this problem are reviewed. These kinds of algorithms can be
used alone or with the aid of other algorithms.

One of the most common classifications for metaheuristics [47] is the differentiation between
the algorithms that try to imitate the behavior of animals or things of nature (ants, bees, particles,
etc.) and the algorithms which are focused on imitating the basis of genetics.
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Genetic Algorithms (GA) [48] are one of the most important genetic metaheuristics because
of their capacity to find great solutions to many problems, commonly used as a way to improve
the performance of other Artificial Intelligence techniques. In [49], GA are used to optimize the
training data for an ANN of 5 hidden nodes. The objective of the GA was to produce a smaller
and more effective input dataset. The GA is used to remove the unnecessary data, reducing the
error at the end of the network training. This technique can be also used with other techniques,
as it is independent of the model that is applied afterward. In [50], a GA is used to determine the
number of neurons of an ANN. The number of hidden neurons is one of the key problems of
optimizing an ANN since it can improve its performance but can also slow its training. Three
different objective functions were tried on the GA. The best neural network was found with
5 hidden nodes. In [51], they are used to optimize the membership functions on an FLC system.
The chromosomes decode the shape of these functions; the algorithm will try to minimize the
quadratic function based on the error between the desired power and the maximum power
delivered by the system. The results show faster convergence and a more stable tracking, which
leads to reduced oscillations.

Behavior-oriented metaheuristics can also be used to solve MPPT. Particle Swarm Opti-
mization (PSO) [52] is also used for this. Each particle is initialized with a value in the voltage
search interval. Each particle is evaluated by the inverse of the PV power; after that, each
particle will have its position and velocity updated. Finally, a new evaluation will be performed
until all iterations have been carried out. Ref. [53] showed a better performance than other
methods, being able to operate even on rapidly changing atmospheric conditions. The work
by [54] proposed the use of an Accelerated PSO. This algorithm combines PSO and Permute
and Observe to accelerate MPP searching. It also offers a higher convergence speed and better
dynamic response compared with PSO.

Another important metaheuristic is the Firefly Algorithm (FA), developed by [55] for solving
multimodal problems, and it has also been used to solve MPPT. The algorithm mimics how
fireflies interact with each other using their lights. The attractiveness of the light will depend
on its brightness and distance. For solving MPPT, the position of the firefly is related to the PV
voltage [56]. This algorithm assures fast convergence, with almost zero steady-state oscillations,
providing good tracking speed.

Artificial Bee Colony (ABC) [57] is focused on simulating the behavior of honey bees and
was used for MPPT in [58,59]. ABC consists of three different kinds of agents: workers, onlookers
and scouts. First of all, worker bees go to the food sources, estimate their utility value and dance
back in the hive. Every onlooker observes the dances, chooses one of their sources and goes there.
Abandoned food sources are located by scouts and are exchanged with the new food sources
found by them. The fitness function is set as the generated power when this algorithm is used
for MPPT. The algorithm will continue until the solutions do not change. The main advantage of
ABC is that it does not need hyper-parameter tuning as in the case of other metaheuristics such
as GA. In MPPT, this algorithm provides quick convergence and accuracy in tracking.

Ant Colony Optimization (ACO) [60] is used in [61] for optimizing neural networks in
order to solve the MPPT problem more efficiently. The ACO method was adopted in the learning
algorithms for adjusting the weights and biases of the neurons in the process of training. The
final network had a single hidden layer with 20 nodes. The results show an improvement over
the networks which are not optimized and over other traditional methods.

Other metaheuristics have been used for MPPT as can be seen in other reviews, such
as [62,63]. A summary of the commented methods can be found in Table 3.
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Table 3. Metaheuristic Algorithms for MPPT.

Algorithm Features

GA [49–51] Genetic Algorithms improves the results of other
methods such as ANN or FPSO

PSO [53,54] PSO is used to optimize Neural Network learning

FA [56]
This algorithm is used directly to solve MPPT. It
assures fast convergence with almost zero
oscillations

ABC [58,59,64] In MPPT, this algorithm provides quick converge
and accuracy in tracking.

ACO [62]
ACO is used in the learning process for adjusting
weights and biases or the neural networks in other
to improve its results

3.2.3. Neural Networks

Neural Networks have shown excellent adequacy and high capabilities for complex learning
problems and, thus, they are ideal for tracking the Max Power Point. They can be used alone
or helped by other methods. The hybrid techniques are usually focused on improving the
performance of the neural networks by optimizing the hyper-parameters of the networks since
it is a really complex task. In [65], the proposed NN was composed of a single hidden layer
of twenty nodes, two inputs and one or two outputs, all of them using tangent sigmoid. Two
networks are built, one for approximating the voltage and current curves and the second for
estimating the optimal voltage factors. The input of both networks is temperature modules and
solar irradiation. The outputs for the first networks are the optimal PV voltage and optimal PV
and optimal voltage factor for the second. This method improves the deficiency of traditional
algorithms and improves its results.

The work in [49] presents an NN composed of 5 nodes on a single hidden layer but with the
novelty of prepossessing of the data via genetic algorithms, using the same inputs (irradiance and
temperature) but with only one output: the Voltage at VMPP. The model improves the transitional
state and reduces the oscillations in the steady state compared with traditional methods.

The approach presented by [66] uses a hyperbolic activation function. The structure is
defined by 4 inputs, 1 output and 3 hidden layers with 8,7,7 neurons, respectively. The inputs are
composed of three irradiation levels and the temperature. The output is a prediction of the PV
voltage corresponding to the MPP; this output goes to a calculation block where it is converted
for the traditional P&O algorithm. The training was carried out with a Bayesian regulated
back-propagation, which performed better than standard BP. The results provide better efficiency
compared with classical methods, even under partial shading. The authors used MATLAB for
the implementation and simulations.

The technique presented in [67] combines Fuzzy Logic and Neural Networks, building the
system known as the Adaptive Neural Fuzzy System Interface (ANFIS). The ANFIS does not
need any prior knowledge of the system like the other NN methods. The structure is composed
of 5 layers: inputs (irradiance and temperature), output and three intermediate layers which
maintain the fuzzy logic system and provide the output based on the rules. Each input has
three membership functions that are generated by the ANFIS method. The results show that
the system is efficient to track MPP even under varying weather conditions. The method was
designed with MATLAB/Simulink.

The work in [40] provides a different approach using recurrent neural networks along with
fuzzy logic. The structure of the networks is composed by a hidden layer, a context layer storing
the results of the previous outputs of the hidden layers, the output layer (solar radiation intensity)
and the input layer (voltage of PV cell and the current of PV cell at the operational point. With
the solar radiation intensity and temperature, the VMPP is computed using the mathematical
model. Another improvement found in this work is how a metaheuristic is used to optimize
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the structure and the weights/bias of the RNN. The results show an improvement over other
competitive methods.

Another important hybrid is the method in [68], which combines ANN with Support
Vector Machines (SVM) [69]. The Course Gaussian Support Vector Machine (CGSVM) is used to
improve the dataset before sending the dataset to the neural network. The CGSVM is a type of
nonlinear SVM and is usually used on optimization tasks. The NN was composed of 2 inputs
(temperature and irradiance), 1 output (PV current) and a single hidden layer with 13 neurons.
The results are slightly worse on power than the ANFIS, but the required time was significantly
less than the ANFIS.

The work presented in [41] shows a new way of optimizing the ANN for MPPT. The
ANN is composed of a 2-3-3-1 structure in order to make real-time applications and to avoid
memorization events. The ANN takes input as irradiance and temperature and gives output as
maximum voltage and is optimized with a metaheuristic called FPSOGSA. The method compares
different activation functions in order to maximize performance. The results are compared with
P&O and traditional NN; it is found that the method provides more stability and efficiency. A
similar approach is presented in [70]. A PSO algorithm is used to find the best topology, find the
best 20 hidden nodes and to optimize the initial weights of the neural network. Two inputs are
used (G—level of irradiance and T—temperature), and a single output (predicting power of PV
array at MPP). The model proved to be more effective under various weather conditions than
other ANN or FLC techniques.

The work in [61] attempts to optimize an ANN using ACO. Using this algorithm for ANN
training results in quicker training. Tangent sigmoid is chosen as the activation function. Six
different topologies were evaluated in order to find the best structure, the best being a single
hidden layer with 20 neurons. Two inputs are transmitted to the ANN, PV array voltage and
current. The output is set as the duty cycle (d). The model tracks MPP efficiently even under
irradiation changes.

The approach found in [71] uses the concept of Deep Reinforcement Learning (DRL), which
tries to implement Reinforcement Learning (RL) through NN. The advantage of RL for MPPT is
that RL techniques are model-free, they do not require knowing the behavior of the PV source or
predefining its dynamics. A continuous state space is defined, corresponding to the current (I)
values. The action space is also continuous, so it contains all the actions that can be applied to
generate a change in the system. Finally, the reward function is computed directly proportional
to the power, and no prior knowledge about the system is needed to define it. The system uses
four networks, one for computing the policy, one for the critic and two called targets that are used
to stabilize the learning procedure. The model can learn highly efficient policies from scratch,
and the results show higher performance than other models.

With the aim of improving ANFIS, a new hybrid was proposed in [42]. The ANFIS is trained
using the BAT algorithm [72]. The use of metaheuristic improves the training of metaheuristic
compared with back-propagation; the BAT algorithm provides better convergence, simplicity
and faster tracking speed than other techniques. The results show an improvement over standard
ANFIS or ANFIS optimized with other metaheuristics such as PSO. Similar work is found in [73],
where an ANFIS-CPHO is presented. The Crowded Plant Height Optimization [74] is in charge
of training the ANFIS. The results are compared with standard ANFIS and show an increase in
the speed and efficiency of the tracker.

A summary of the analyzed models in this section can be found in Table 4.



Appl. Sci. 2022, 12, 10056 12 of 31

Table 4. Neural Network Models for MPPT.

Type Reference Features

FeedForward
Neural Network

[65] 2 networks. Each one with a single hidden layer of
20 nodes.

[49] 5 Nodes on a single layer. Data preprocessed by Genetic
Algorithm.

[66] Three hidden layers with 8,7,7 nodes, respectively.
Bayesian-Regulated back-propagation for training.

[68] A Single hidden layer with 13 neurons. Data created by a
Course Gaussian Support Vector Machine.

[41] 2-3-3-1 structure. The NN is optimized by FPSOGSA.

[70] The topology and best weights are optimized by a PSO
algorithm.

[61] ACO is used to optimize the neural network.

Adaptive Neural Fuzzy
System Interface

[42] Bat Algorithm is used to train the network.

[73] Crowded Plant Height Optimization is in charge of
performing the learning of the network.

[67]
Combines Fuzzy Logic and Neural Networks. Three
intermediate layers in which the output is based on fuzzy
rules.

Recurrent Neural Network [40]
A hidden layer and a context layer storing the results of
the previous outputs of the hidden layer. A metaheuristic
is used to optimize the structure and weights.

Deep Reinforcement
Learning [71]

Four networks, one for computing the policy, one for the
critic and two called targets that are used to stabilize the
learning procedure

3.3. Forecasting

Energy production forecasting has been an important problem, even in traditional systems,
and it has been tackled with different techniques, as it can be seen in Figure 5.

In [75], we found a system that uses Support Vector Machines (SVM) [69]. SVM is mostly
used for regression. The model uses two different inputs: solar irradiance and environmental
temperature, with energy production as the output. This work included the use of a parameter
to tune the number of support vectors during the training. The results show a low error, with a
Mean Absolute Percentage Error (MAPE) of 0.1143, but it was really intolerant at errors in the
input data. The method was implemented using MATLAB. Another approach related with SVM
is found in [76]. The authors propose a multi-input support vector. Three different inputs were
tested. Only solar power, solar power and solar irradiance combined and finally solar power,
temperature and irradiance. The best predictions were made when the third vector was used
to train the network with. The model showed better results than analytical methods with a
MAPE of 36%, but it was found that it was weak against changes in the climate. The method
was implemented using MATLAB.

In [77], a Neural Network was used for Short-Term Forecasting. The input data were
composed of the the deviation of load power and temperature of 30 days before the forecast day
and the same data of 60 days before and after the forecast day in the previous year. If the forecast
day is changed, the neural network needs to be retrained. The network is composed of 9 inputs
nodes, 20 hidden nodes and one output neuron. The results show a Mean Absolute Percentage
Error (MAPE) of 1.63% on average.
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Figure 5. Taxonomy of most used IA methods for forecasting.

The work of [78] tries to go further, presenting a neural network of 2 hidden layers, one of
6 nodes and the second with 4. This model has nine inputs (Day, Time, Cloud Cover Index, Air
Temperature, Wind speed, Air Humidity, UV index, precipitation and air pressure) and is trained
using a hybrid metaheuristic, which combines PSO and GA [79]. This hybrid is faster and more
robust than back-propagation for this problem.

Neural Networks have been found to be sensitive to many factors, including the architecture
or the initialization of weights. Combining different NNs in an ensemble has been found to
be a strategy to reduce these problems. The work of [80] tested different combinations using
temperature and solar irradiance as inputs. Every combination was found to be better than using
only a single NN. The data were composed of 7300 data from 365 different days. The findings
were that the best architecture for forecasting is the one which uses an iterative methodology to
find the outputs, forecasting one at a time with a Mean Absolute Error (MAE) of 51.48% and
Mean Relative Error (MRE) of 17.24%.

The work in [81] used a fixed methodology, changing activation functions, learning rules
and architecture in order to find the best neural network for their dataset. The data were acquired
along a period of 70 days, obtaining 11,200 examples. The best network had 1 hidden layer
with a Linear Sigmoid Activation Function. The learning rule as Conjugate Gradient [82], which
uses second derivatives to determinate the weight update, inputs temperature and photovoltaic
power and outputs next-day forecasting of PV power output. The validation study indicates that
this network is simple and versatile and can precisely forecast with a minimum MAPE of 0.8655.
The experiments were implemented using the NeuroSolutions [83].

Another problem of NN is that training can be slow since back-propagation is highly
demanding. For solving this problem, the work in [84] used the extreme learning machine (ELM)
technique to train the network. ELM [85] has a faster learning speed while obtaining better
generalization performance, and it also optimizes the number of hidden neurons. The system is
composed of three networks, one for each kind of weather. The network is trained with the PV
output history and the weather history data. Based on the weather report of the next day, the
model is chosen to forecast the day-ahead PV. The results show that ELM networks outperformed
BP networks with a MAPE of 2.78% in the best case. The experiments were implemented using
MATLAB.

Another improvement can be found in [86]; the neural network is aided by a technique
known as Wavelet Transform (WT) [87]. This algorithm is specialized in isolating the spikes
produced by continuous fluctuations of the PV data. It has two stages: decomposition of the
input signal, which is performed before the neural networks, and reconstruction, which is
performed with the output of the NN. The model used is a Radial Basic Neural Networks
(RBNN) [88], which needs less computation time and is more effective than Back-propagation
Neural Networks and takes as input the PV, solar irradiance and temperature of the current
hour, twelve hours before and twenty hours before in order to predict the one-hour-ahead power
output. The results show that the proposed model outperformed RBNN without WT for hourly
PV for the horizon of 12 hours with a MAPE of 2.38% in the best case.
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WT is used along other architectures as in [89]. RNNs are probed to be useful in order
to predict from time series and WT deals with the fluctuations on the data provided by the
meteorological time series obtained from sampling at intervals of 10 min and stored as time
series. This combination proved to be able to forecast 2 days ahead more accurately than other
Neural Networks.

A recent use of WT is found in [90]. This work presents a hybrid algorithm composed of WT,
PSO and RBFNN used to forecast from 1 to 6 hours ahead. The inputs that are used in the model
are set as Actual PV, irradiance and temperature. The WT is used to perform an data filtering on
the past 15 days before the forecast day. The RBFNN is optimized by the PSO algorithm. The
network performed better than the compared methods, with an MAE of 4.22% on average for a
1-hour-ahead forecast, 7.04% for a 3-hour-ahead one and 9.13% for 6-hour- ahead one.

Recurrent Neural Networks are also used in [91]. Deep Recurrent Neural Networks
(DRNN), RNNs with many hidden layers, are used to forecast. These networks are capable of
representing complex functions more efficiently than RNNs. The input data are composed of
high-resolution time series, which are preprocessed and normalized to obtain a high-resolution
time-series dataset of four different days. The architecture used was a DRNN with Long Short-
Term Memory (LSMT) [92] units with two hidden layers of 35 neurons. Other models showed
lower accuracies and more bias error than the proposed method that obtained an RMSE of 0.086.
The experiments were implemented using MATLAB and the Keras library (now on tensorflow)
in Python.

Another RNN method is found in [93]. The authors compared 5 different architectures of
RNN: A basic LSTM, an LSTM with the window technique, an LSTM with time steps, an LSTM
with memory between batches and stacked LSTMs with memory between batches. Two datasets
of different cities were used to test the 3 models. The results show the third proposal with an
RMSE of 82.15 in the first dataset and an RMSE of 136.87 in the second, which uses prior time
steps in the PV series as inputs, is the most accurate and reliable, even compared with other
methods such as ANN. The experiments were implemented using Keras.

The authors of [94] present an interesting modification of RNN. This work used the net-
works know as Echo State Network [95]. ESN presented a dynamical reservoir instead of the
traditional hidden layers of RNN. Their main advantage is that only the output weights need
to be trained since the reservoir and input ones are random. These networks can obtain better
results than typical RNN. A restricted Boltzmann machine (RBM) [96] and principal component
analysis (PCA) [97] are used in order to determine the number of reservoirs and inputs. The
network parameters are found by a DFP Quasi-Newton algorithm [98]. Compared with other
PV forecasting methods, the results show that the proposed model could outperform other
forecasting systems with a MAPE of 0.00195%.

A complex hybrid is found in [99]. This system uses NN aided by different algorithms
trained on data obtained during a year. Random Forest (RF) [100] is used to rank the different
factors that affect PV in order to eliminate the less important ones. This importance degree,
computed by RF, is transferred to Improved Gray Ideal Value Approximation (IGIVA) [101] as
weights to determine the similar days of different climates type. The objective of this is to improve
the quality of datasets. After that, the original sequence is decomposed by Complementary
Ensemble Empirical Mode Decomposition (CEEMD) [102] to reduce the fluctuation of the original
data. Finally, the neural network is optimized by a modification of PSO known as dynamic
inertial factor particle swarm optimization (DIFPSO) [103,104]. The proposed model reduced
training time and improved the forecasting accuracy with an MAE of 2.84 on sunny days, 10.12
on cloudy days and 13.01 on rainy or snowy days.

Another interesting approach is the Neuro-Fuzzy hybrid found in [105]. Fuzzy Logic is
applied as a filter to the input data obtained in the energy production and weather forecast for
12 months (day, irradiance, temperature, humidity, pressure, wind speed and cloud clover) in
order to speed up the system. The neural structure is composed of 7 inputs, 2 hidden layers of 9
and 5 nodes, respectively, and input. The network is trained by BP aided by a combination of
PSO and GA, known as Genetic Swarm Optimization [106]. This method improved convergence
speed and the predictive performance over other hourly forecast methods. The experiments
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were implemented using MATLAB Convolutional Neural Networks have also been applied to
time-series data since they are able to learn filters that represent repeated patterns in the data
without needing any prior knowledge. They also work well with noisy data. In [107], CNNs are
applied for forecasting PV power using Solar Data and Electricity Data as inputs. The CNNs used
the ReLu activation function, Adam optimizer and dropout to avoid overfitting. The parameters
were selected by testing different architectures and choosing the most promising. The models
were compared of an FFNN and an RNN of 128 hidden nodes. The results show that CNN
performed similarly to LSTM and better than MLP with an MAE of 114.38.

An interesting approach mixing Big Data and Deep Learning is found in [108]. This method
was used to next-day-ahead forecast in 30 min intervals. It used a multistep methodology that
decomposes the forecasting problem in different subproblems. For the Big Data, Spark Apache
was used. The neural Network parameters were searched using the grid search strategy. The
best structure was found with 3 hidden layers with between 12 and 32 neurons. The method
demonstrated that DL is suitable for big solar data since it has a linear increase in training time
and performs better than other methods.

The work of [109] makes use of a new kind of Neural Network, the Dendritic Neuron
Network [110], in order to forecast PV power. These kinds of neurons have 4 types of layers:
synaptic layer, branch layer, membrane layer and cell-body layer. The input data (temperature
and irradiance of the actual moment and the last) are transferred to the synaptic layers where
they are converted by the sigmoid function and summarized to the branch layer. The results
are transported to the cell-body layer for numerical judgment. This layer will transmit the data
thought the axon to other neurons when the data exceed a given threshold. This new kind of
network provides higher convergence speed and enhanced fitting ability. The network is also
aided by WT. The results show that the model outperformed typical Feed-Forward models
with an average MAPE of 10.9, with strong fluctuations and 4.55 on weak fluctuations. The
experiments were run using MATLAB.

In Table 5, a summary of the reviewed models is presented.

Table 5. Models for forecasting.

Type Features

Feed-Forward Neural Network

Nine inputs, 20 hidden nodes on a single
layer. [77]
Nine inputs, 2 hidden layers with 6 and 4 nodes,
respectively. Trained by a hybrid PSO GA
algorithm. [78]
Two inputs, creates ensembles of neural
networks. [80]
Two inputs, 1 hidden layer, Conjugate Gradient as
learning rule. [81]
Three neural networks, one for each kind of
weather. Uses Extreme Learning to optimize the
parameters and architecture. [84]
Fuzzy Logic is applied as a filter to the input data.
Seven inputs, 2 hidden layers of 9 and 5 nodes,
respectively. Trained by a hybrid of PSO and
GA. [105]
Uses Big Data. Multistep methodology
decomposes the problems into subproblems. [108]
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Table 5. Cont.

Type Features

Convolutional Neural Networks Two inputs. Parameters are selected by testing
different combinations. [107]

Dendritic Neural Networks Aided by WT. Provides better convergence speed
and better fitting ability. [109]

Radial Basis Network

Two inputs, aided by Wavelet Transform to
preprocess the input data. [86]
High-resolution time series as input. Aided by
Wavelet Transform to preprocess input data and
PSO to optimize the neural network. [90]

Recurrent Neural Network

Aided by Wavelet Transform to deal with
fluctuation in time series input data. [89]
Preprocessed and normalized high-resolution
time series as input. Two hidden layers of
35 neurons. [91]
Tested Different RRN architectures. LSTM, which
uses previous time steps, found the best one. [93]
Uses Echo State Networks aided by Restricted
Boltzmann Machine, Principal Component
Analysis and DFP Quasi-Newton Algorithm to
optimize the network. [94]

Support Vector Machines

Two inputs. A parameter to tune the number of
SVM during training. [75]
SMV compared with KNN. SMV was found to be
better. [111]
Multi-input SV. Different combinations of inputs
were tested. Three inputs was the best one
found. [76]

3.4. Parameter Estimation

Finding the parameters of the PV models is vital to simulate their behavior and to optimize
their production. This problem is simplified by finding the unknown parameters in order to
optimize the output power. Different techniques, most of them metaheuristics, have been used
to solve this problem, as can be seen in Figure 6.

Figure 6. Taxonomy of most used metaheuristics for parameter estimation.

Metaheuristics are the most used techniques to estimate PV parameters. Different kinds
of algorithms have been evaluated in recent years. The work in [112] compares different
evolutionary algorithms, comparing Genetic Algorithms [48], Particle Swarm Optimization [52]
and differential evolution [113]. DE is an evolutionary algorithm similar to Genetic Algorithms
but which uses real numbers to codify the problem, this solves the problem of GA when it
comes to converging speed. The fitness function was computed as the sum of the absolute errors
in current and voltage. The findings showed that the best results were given by DE and the
worst ones by GA. The authors also implemented different hybrids: Tabu Search [114] assisted
differential evolution to avoid falling in local minimums, PSO assisted DE in which PSO is
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activated after 5 generations of DE and DE assisted by Tabu Search where DE is used to search
for the optimal solution in a subset of the whole search space, while TS is used to move the local
search within the global space. These hybrids performed better than the originals and provided
more stability. DE assisted TS and provided the best results, and it was the fastest.

In [18], an ABC-based approach is proposed. This method combines Extreme Optimization
(EO) with 2 different versions of ABC. EO provides new insights into the optimization of
metaheuristics due to the fact that only the worst variables in the suboptimal solutions are
selected to be mutated, instead of favoring the good ones; this is provided by the strong local-
search capability of EO. The introduction of EO to ABC is applied when the global optimum
is not becoming better for several iterations. The results show that the addition of EO to ABC
outperformed other metaheuristics such as PSO on the single-diode model (mean RSME of
1.1678 × 10−3) and on the double-diode model (mean RSME of 1.1479 × 10−3). The major
drawback is that EO has a higher computation cost than other methods. The experiments were
run in MATLAB.

The authors of [115] presented a variant of the Covariance Matrix Adaptation Evolu-
tion Strategy. CMA-ES is an efficient derivative-free optimization algorithm. It operates
using the 3 typical evolutionary operations (recombination, mutation and selection). The
proposed variant combines CMA-ES with 2 strategies that can adjust the evolutionary
directions and enrich the population diversity (Anisotropic Eigenvalue Adaptation and
Local Search). The results show that the algorithm was competitive in terms of convergence
efficiency and accuracy, with a mean RSME of 9.8603 × 10−4 and Standard Deviation of
1.6550 × 10−17 on the single-diode model and mean RSME of 9.8402 × 10−4 and Standard
Deviation of 1.3398 × 10−12 on the double-diode model. It also had a good balance of
exploration and exploitation. The simulation and experiments were implemented with
MATLAB.

The Whale Optimization Algorithm is a recent metaheuristic that simulates the hunting
behavior of humpback whales. The basic WOA is composed of three consecutive stages:
encircling prey, bubble-net attacking and searching for prey. In [116], a variant of WOA is
used to estimate the parameters of a PV system. The proposed method, RLWOA, adopts a
modified conversion parameter update rule and relies on the Logistic Model to balance
between exploration and exploitation. This algorithm mitigates the slow convergence
and ease of being trapped in local optima of the original. The results show that RLWOA
performed better or at least competitively with standard WOA, other WOA variants and
other metaheuristics with a mean RSME of 9.8602 × 10−4 on single-diode. The experiments
were run in MATLAB.

The work in [117] presents a new optimization method called backtracking search
algorithm with competitive learning (CBSA). The principle basis of BSA is composed of
4 parts: the initialization of the population, selection, genetic operators such as mutation or
crossover and second selection in order to select the best candidate. The main idea of CBSA
is to increase the chance of the backtracking algorithm to jump out of the local optimum by
the designed competitive learning machine. Each population is divided in two subgroups,
then each subgroup has three different search operations in order to update its individuals.
Unlike other metaheuristics, CSBA does not need any extra control parameters. The results
show the superiority of CBSA for complex optimization problems with a mean RSME of
9.8602 × 10−4 on the single-diode model. The experimentation was performed in MATLAB.

Another interesting metaheuristic is found in [118]. The author presents an advanced
version of the Gray Wolf Optimizer [119] applied to parameter estimation. GWO is moti-
vated by gray wolf behavior. Wolves are divided into four categories: Alpha wolves, which
are dominant, and beta wolves, which are used to assist alpha wolves in decision making
or in other activities. The order given by alpha and beta is followed by the delta wolves.
Finally, the omega wolves play the role of scapegoat. The presented method is known as
the Intelligent Gray Wolf Optimizer, which incorporates sinusoidal truncated functions as
a bridging mechanism and opposition-based learning. The results show that the algorithm
was competitive with other optimizers, with a mean error of 4.65 × 10−13 on single-diode
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mono-crystalline, a mean error of 1.07 × 10−12 on double-diode mono-crystalline, a mean
error of 8.50 × 10−12 on single-diode poly-crystalline and a mean error of 1.95 × 10−12 on
double-diode poly-crystalline. Additionally, execution time was not compromised.

A hybrid between PSO and GWO is found in [120]. The fundamental principle of this
hybridization is to ingrate the social thing capability of PSO with the local search ability of
GWO. After performing PSO, each particle position with a certain probability is updated
using the average of the three best wolves. This method reduces the drawbacks of PSO,
increasing the possibility of the running of local optimums and improving the balance
between exploration and exploitation. The results confirm the superiority of PSO–GWO
compared with other competitive methods, with an RMSE of 3.06 × 10−3 and an MAE of
2.43 × 10−3 on a PV module model.

In [121], a variant of the Chicken Swarm Optimization is used to solve this problem.
CSO [122] is inspired by the foraging behavior and hierarchy of chicken flocks. In CSO,
each chicken is considered a potential solution. The chicken flock is divided into the rooster
subflock, hen subflock and chick subflock according to the fitness of each individual. Each
group uses a different update mechanism to update its position. The algorithm is upgraded
by using a Spiral Movement Strategy. The spiral movement allows each hen to bypass the
rooster and explore a wider space instead of being limited to the search space between
them. The experimental results show that the algorithm performs better in robustness
and accuracy than other metaheuristics with a mean RSME of 9.8602 × 10−4 and standard
deviation of 2.3517 × 10−12 on a single-diode model and a mean RSME of 9.8366 × 10−4

and standard deviation of 1.4171 × 10−6 on single-diode model.The experimentation was
performed in MATLAB.

Another interesting proposal is found in [123]. An Enhanced JAYA (EJAYA) is pre-
sented. The basis of the original JAYA [124] algorithm is as follows: After initializing the
solutions, the algorithm identifies the best and worst solutions and modifies all the solu-
tions based on them. All of the solutions that have better performance than the originals
are kept. This process is repeated until the stop criteria are achieved. EJAYA presents three
improvements: A modified evolution operator to increase the probability of approaching
the victory. A simple deterministic population resizing to control the convergence rate
during the search and a generalized opposition-based learning mechanism to avoid being
trapped on local optima. The results indicate that the algorithm can estimate the most
accurate model parameters with a mean RSME of 9.8602 × 10−4 on a single-diode model
and a mean RSME of 9.8248 × 10−4 on a double-diode model. It also provided a high
computational efficiency among the compared methods.The method was implemented in
MATLAB.

The work in [125] presents a Marine Predator Algorithm [126] applied to parameter
estimation. The optimization process of MPA is divided into three main phases: The first is
in high-velocity ratio or when prey is moving faster than the predator. The second is when
both are moving at the same pace and the third is in a low-velocity ratio when the predator
is faster than the prey. The algorithm extracted PV parameters in an accurate manner, fast
speed, less time of computation and high reliability and robustness with a mean RSME of
7.73 × 10−4 on a single-diode for a France Solar cell and a mean RSME of 7.65 × 10−4 on
double-diode for a France Solar cell. The examination and test occurred via MATLAB.

A novel approach is found in [127] presenting a variant of P system Optimization
Algorithms (POAs). POAs are helpful and reliable search techniques that abstract the
structure and function of living cells. The proposed Micro-change Field Effect P System is a
deeper exploration of the standard POA. The experiments showed that the method can pro-
duce solutions of high quality and has great stability with a mean RSME of 9.8606 × 10−4

on the single-diode model and a mean RSME of 9.8256 × 10−4 on the double-diode model.
The method was implemented in MATLAB.

In the Table 6, a summary of the reviewed models is presented.
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Table 6. Models for parameter estimation. SD: single diode, DD: double diode, MC: monocrystalline,
PC: polycrystalline.

Type Features Error

ABC and CE

Combines Extreme
Optimization with ABC. EO is
introduced in ABC when the
global optimum is not
improving. EO has a high
computation cost. [18]

RMSE: SD: 1.1678 × 10−3 DD:
1.1479 × 10−3

CMA-ES

This evolutionary algorithm
brings a good balance
between exploration and
exploitation and is
competitive with other
methods. [115]

RMSE: SD: 9.8603 × 10−4 DD:
9.8402 × 10−4

WOA and LM

A variant RLWOA changes
the parameter update rule and
relies on the Logistic Model to
balance exploration and
exploitation [116]

RMSE: SD: 9.8602 × 10−4 DD:
—

CBSA

Combines the exploratory
capacities of WOA and
convergence capacities of
Social Group Optimization.
[117]

RMSE: SD:9.8602 × 10−4 DD:

GWO

Improves basic GWO with a
new bridging mechanism and
opposition-based
learning. [118]

MAE: SD-MC: 4.65 × 10−13

DD-MC: 1.07 × 10−12 SD-PC:
8.50 × 10−12 DD-PC:
1.95 × 10−12

GWO and PSO

This method combines the
social thing capability of PSO
with the local search ability of
GWO. [120]

RMSE: SD: 3.06 × 10−3 DD: —

CSO
CSO is improved by a Spiral
Movement Strategy in order
to improve the results. [121]

RMSE: SD: 1.1678 × 10−3 DD:
—

JAYA

This method improves basic
JAYA with an improved
evolution operator, control of
the size of the population and
generalized opposition-based
learning. [123]

RMSE: SD: 9.8602 × 10−4 DD:
9.8248 × 10−4

MPA

The algorithm extracted the
parameters faster and with
high reliability and
robustness. [125]

RMSE: SD: 7.73 × 10−4 DD:
7.65 × 10−4

POA

Proposes an extension of
standard POA. The results
show that the method
produces solutions of high
quality. [127]

RMSE: SD: 9.8606 × 10−4 DD:
9.8256 × 10−4

GA, PSO, DE and others

Propose a comparison of
different algorithms and
crossover between them;
differential evolution assisted
by Tabu Search is found to be
the best. [112]

RMSE:— SD: — DD: —
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3.5. Defects Detection

Finding defects on the surface of the PV cells is a problem completely related to com-
puter vision. As observed in the bibliography, the most used technique for photographing
the images is electroluminescence. The datasets are usually private, but there are some
exceptions. We can see in Figure 7 the most used techniques for detecting defects.

Figure 7. Most used IA method for defect detection.

Classical approaches as found in [128], which tried to detect defects in the solar
modules using image processing techniques. In order to segment the different modules,
they used the first derivative of the statistic curve in order to find the division line between
each chip. After that, they used another technique, the otsu method, to obtain a binary
image. Finally, the algorithm tries to identify the state of the module using the geometry
of the resulting image. This algorithm produced interesting results, with a recognition
rate of 80% on cracked modules, 95% on fragmented and 99% on good state modules.
The recognition was also quite fast. The algorithms were implemented and applied via
MATLAB.

Another approach is found in [129]. This method combines the image processing
techniques with Support Vector Machines. The dataset featured 13,392 samples of EL
images of solar cells. The images are preprocessed in order to reduce spatial noises and
to accurately highlight crack pixels in images. After that, binary processing is performed,
and finally, the features are extracted from the image. These features are used by different
SVMs in order to classify the cells. The results present that the SVM with penalty parameter
weighting is the best SVM, with a correct detection rate of 91%, with specificity and accuracy
of more than 97%. The experiments were run in MATLAB.

In [130], the author compare Convolutional Neural Networks with SVM. The SVM
is trained with data from the ELPV dataset, composed of 2624 EL images of solar cells,
obtained by finding the features of the images using different feature descriptors. The
CNN used was a pretrained VGG19 with the upper layers changed and trained with
the examples. The models were tested with both monocrystalline and polycrystalline
modules. The results show that both classifiers were useful for visual inspection, both with
an average accuracy of 82.4%. The algorithms were implemented in Python, using Keras
for the Neural Network.

The work in [131] presented a similar approach using SVM and CNN. The CNN was
composed of two convolutional layers with leaky-relu and max-pooling. The convolutional
part was aided by two leaky-relu dense layers and the output layer. The SVM was trained
with different features extracted from the images. The dataset was built with 90 images of
full-sized commercial modules that were segmented afterward, obtaining 540 cells. The
results show similar behavior in both methods, with an accuracy of 98%. The article also
tackled unsupervised learning, trying to cluster the images by two features. This resulted
in a model that was able to assign the correct label in 66% of cases.The algorithms were
implemented in Python, using Tensorflow and OpenCV.

The work found in [132] presents a CNN with 13 convolutional layers, an adaptation
of the VGG16 architecture. The dataset was obtained by photographing solar modules of
6 × 12 cells with an EL camera. The network was trained using oversampling and data
augmentation in order to reduce the error. The results show that the network performed
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the best when both oversampling and data augmentation were presented with a Balance
Error Rate of 7.73% on binary classification problems of quick convergence. The method
was implemented with Keras. The preprocessing was performed with OpenCV.

The authors of [133] present new models that are trained not only with images with
cracks but also with corrosion. The images were obtained by photographing modules with the
EL technique and performing segmentation afterward, obtaining 5400 images. The models
are SVM and CNN. The CNN is composed of two convolutional layers. The SVM parameters
are optimized by a grid search. The results show a precision of 99%, an improvement over
other methods. The experiments were conducted via Keras and Tensorflow.

A variation of convolutional networks is found in [134]. A multichannel CNN is
presented. This network has different convolutional layers for each kind of input. This
network also can use inputs of different sizes. After each convolutional layer, a dense layer
is applied. Finally, a final dense layer combines all the previous data in order to classify the
image. This multichannel CNN improves the feature extraction of single-channel CNNs.
The dataset was made by 8301 different EL images of cells. The results show a 96.76%
accuracy, much more than the 86% presented by single-channel CNNs. The algorithms
were implemented in Python using Keras.

The model presented in [135] is composed of six convolutional layers using different
regularization techniques such as batch optimization. The dataset used was the ELPV
dataset, with 2624 images. The resulting network is a light architecture that achieved high
performance using few parameters with an accuracy of 93%.The experiments were run
on Tensorflow.

In order to further improve the results, a new approach is presented in [136]. The
authors use Fully Convolutional Neural Networks. An FCNN is a CNN without any dense
layer. The model used is the U-net, which has been used previously in biomedical image
problems with low data. This dataset was composed of 542 EL images. It is composed
of 21 convolutional layers of different sizes. The results show that it was better to accept
a slight decrease in the performance in order to improve the speed of the system. The
algorithms were implemented in python using Keras and Tensorflow.

Wavelet Transform is used in [137]. This method combines two kinds of WT: Discrete
WT and Stationary WT in order to extract textural and edge features from solar cells that
have been previously preprocessed. The dataset was composed of 2300 EL images. Finally,
two different classifiers are used: An SVM and an FFNN. The best model was the FFNN
with 93.6% accuracy, over the 92.6% presented by the SVM.

Another Neural Network used is the Complementary Attention Network in [138].
The CAN is composed of a channel-wise attention subnetwork connected with a spatial
attention subnetwork. This CAN can be grouped with any CNN, Fast R CNN [139] being
the one chosen by the authors. Two datasets were used, one composed of 2029 images
and another of 2129 EL images. The network was used for classification and detection,
obtaining an accuracy of 99.17% for classification and a mean average precision of 87.38%.
The network was faster and had similar parameter numbers to other commercial methods.
The algorithms were implemented using Python.

A very interesting approach is presented in [140]. This method is Deep-Feature-Based,
extracting features through convolutional neural networks that are classified afterward for
classification algorithms such as SVM, KNN or FNN. The particularity of this system is
that it used features from different networks. These features are combined using minimum
redundancy and maximum relevance for feature selection. The dataset used was the ELPV
dataset, with 2624 images. The selected CNNs for feature extraction are Resnet-50, VGG-16,
VGG-19 and DarkNet-19. The best method was found with SVM, selecting 2000 features
with an accuracy of 94.52% in two-class classification and 89.63% in four-class classification.

In the Table 7, a summary of the reviewed models is presented.



Appl. Sci. 2022, 12, 10056 22 of 31

Table 7. Models for detection of faults.

Type Features Accuracy Dataset Size

Image Processing Techniques

Segmentation +
obtention of binary
image +
classification. [128]

from 80% to 99% —

SVM + Image Processing Techniques

Images are preprocessed
and features are
extracted from the
image. These features
are used in an SVM with
penalty parameter
weighting. [129]

97% 13,392

SVM and CNN

Pretrained VGG19 using
different feature
descriptors. Similar
results for both
methods. [130]

82.4% 2624

CNN is composed of
2 layers using leaky-relu.
SVM trained with
different features
extracted from the
images. Similar behavior
in both models. [131]

98% 540

CNN is composed of
2 convolutional layers.
SVM parameters
optimized by search
grid. [133]

96%. 2840

CNN

Thirteen convolutional
layers, an adaptation of
VGG16. Uses
oversampling and data
augmentation. [132]

Uses a different
measurement 5400

Multichannel CNN.
Accepts inputs of
different sizes. Improves
the feature extraction of
single-channel
CNN. [134]

96.76% 8301

Six convolutional layers.
Regulation techniques
such as batch
optimization. [135]

93% 2624

Fully Convolutional
Neural Network.
Pretrained u-net,
composed of
21 convolutional layers.
[136]

Uses a different
measurement 542

CNN aided by a
Complementary
Attention Network,
composed of a
channel-wise attention
subnetwork connected
with a spatial attention
subnetwork. Usable
with different
CNNs. [138]

99.17% 2300

WT+ SVM and FFNN

Combines discrete WT
and stationary WT to
extract features and
SVM and FFNN to
classify them. [137]

93.6% 2029

CNN + SVM, KNN, etc.

Extracts features from
different networks,
combining them with
minimum redundancy
and maximum relevance
for feature selection.
Uses Resnet-50, VGG-16,
VGG-19 and
DarkNet-19. [140]

94.52% 2624



Appl. Sci. 2022, 12, 10056 23 of 31

4. Discussion

In Section 3, the different IA techniques applied are reviewed for each problem by
explaining various important works. In this section, a discussion about the state of the
art is performed, summarizing the trends of research and some possible new approaches
to consider.

The tracking of the Maximum Power Point has been considered in numerous ways,
from traditional and simple methods to methods that use complex technology such as
neural networks. The most simple methods still have importance, since a large amount of
systems do not need complex MPPT algorithms in order to optimize production. The most
complex algorithms are used only in the biggest power plants, where the configuration of
the PV arrays, and the large amount of them, makes the process of tracking the Maximum
Power Point more complex. Comparing the different techniques presented, it is clear that
the most used technologies are the Feed-Forward Neural Networks and the FLC systems
(Figure 8). Neural Networks perform better than Logic Systems, but they have some flaws.
Neural Networks are highly demanding in terms of computational cost compared with FL
systems. The need for large amounts of data is an intrinsic problem of Neural Networks,
but it is not as important as it used to be thanks to the high availability of data. Another
important problem is the complexity in the optimization of the hyper-parameters, since
Neural Networks have a large amount of them. The solution has been found by using
optimization algorithms, such as metaheuristics. These algorithms can be used to find the
best combinations of parameters or even to find the optimal architecture. As we observed,
the problem is still regarded nowadays, since there are ways to improve the efficiency and
performance of the most complex systems. To fulfill this objective, more of the newest
technologies applied in other sectors should be tried, since as it has been confirmed with the
previous works that these kinds of algorithms perform really well on this problem. The FL
methods and metaheuristics are usually implemented with MATLAB, but Neural Networks
can be implemented with Python as well, using libraries such as Tensorflow [141].

(a) (b)

(c) (d)

Figure 8. Different algorithms for each of the problems. (a) MPPT; (b) forecasting; (c) parameter
estimation; (d) defects detection.
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Forecasting is a key problem in PV systems. The estimation of the energy produced by
solar plants has been approached as a regression problem in the majority of papers. Due to
the availability of data, neural models are highly suitable for solving this problem (Figure 8).
The trend is to use the newest neural architectures while optimizing their parameters and
their architectures using other methods such as metaheuristics. As observed, an increase
in the complexity of the networks improves the results, but this is not the only way of
increasing performance. The combination with other systems such as Wavelet Transform
increases reliability. Alternative network systems such as Recurrent Networks or Dentritic
Networks further improve the results of traditional Neural Networks. This area also has
some room for improvement since forecasting is a tricky problem due to its dependence
on a large amount of variables. For future research, it would be interesting to test a
new combination of parameters, improve the datasets or even try the most innovative
technologies that have been used in similar problems. Most of the works are run on
MATLAB, but there is an increase in the presence of Python in the latest years due to the
Deep Learning Libraries.

Estimating the parameters of the PV models has been conducted with a large number
of different algorithms, most of them from the family of metaheuristics (Figure 8). The
results are quite similar between them in terms of error (Figure 9); this fact shows that
trying to further minimize error is not a worthy effort. The most promising works present
a mixture of different metaheuristics, solving the problems or flaws of one metaheuristic
by using others. The focus of research should be moved towards finding algorithms with
lower computational cost while maintaining the same levels of error. The majority of the
methods can be found implemented in MATLAB [141].

(a) (b)

Figure 9. RMSE of the different models for parameter estimation. (a) Single-diode; (b) double-diode.

Analyzing the state of modules or cells has always been important for optimizing
production since damaged modules are not as productive as they should be. As it seen, this
problem has been applied mostly to the cell level, segmenting images previously taken of
solar modules. Some author have even presented open datasets in order to test the models
with a more regular amount of data. The main reason for this problem is related to its
nature. The majority of models are trained with unbalanced datasets since the number
of damaged modules is usually considerably smaller than good state modules. Another
different way of improving the neural models is using pretrained neural networks such
as VGG-19 in order to make use of the patterns found in other datasets. Even with their
problems, in the bibliography, a considerable amount of models are presented, and they
obtain good results (Figure 10); the Convolutional Neural Networks being the most used
ones (Figure 8). However, there is a lot to do in this area, mostly, all of the models only use
electroluminescence images; the utilization of other techniques such as thermography could
bring more information and better results to the models. Another interesting new approach
could be fixing the unbalance in the data. Some studies have tried to use simple methods
such as flips or rotations, but it is necessary to implement more complex algorithms to
generate images that can be used to better train the models. The deep learning methods are



Appl. Sci. 2022, 12, 10056 25 of 31

mostly implemented with Tensorflow, and OpenCV is usually used for preprocessing the
images. MATLAB is used for traditional methods.

Figure 10. Accuracy of the different models for detection.

5. Conclusions

In this article, the relationship between Artificial Intelligence and Photovoltaic Systems
is explained. Numerous problems in this sector can be solved with the use of AI techniques.
These techniques present better performance than traditional methods.

Different techniques are applied to the MPPT problem, Neural Networks being the
ones which provided better results, even considering their limitations such as high compu-
tational requirements or the need for large amounts of data, other approaches involve Fuzzy
Logic and Metaheuristics. The forecasting problem is key for PV installations, different
models have been created to solve this problem, most of them related to Artificial Neural
Networks. These models are usually aided by other algorithms such as metaheuristics to
optimize the architecture or the hyperparameters. The estimation of model parameters is
also a really important problem, a large variety of metaheuristics have been used to solve
this problem with notably good results in terms of error and efficiency. The detection of
faults in PV modules has been proved to be vital for the maintenance of PV installations.
This is mostly conducted at the cell level and usually only with electroluminescence images.
Convolutional Neural Networks are the most used technology for the classification of
images, but they need to be empowered with some techniques such as Data Augmentation
or Knowledge Transfer.

Research in these areas is not finished, and it is still a hot topic nowadays as it can be
seen from the number of publications in recent years; the ways of improving performance
and efficiency are still being researched to adapt to every Photovoltaic System. It is observed
that one of the most important issues is the quality and quantity of the data. Machine
Learning methods need big amounts of data to be able to find patterns for predicting. This
issue is even more critical in Deep Learning methods. This research group is addressing
this issue for defect detection, creating synthetic EL images of photovoltaic cells to obtain
more examples to train models. These images could even be used in other problems of
PV systems.
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