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Abstract. Objective. Code-modulated visual evoked potentials (c-VEP)
have been consolidated in recent years as robust control signals capable of
providing non-invasive brain–computer interfaces (BCIs) for reliable, high-speed
communication. Their usefulness for communication and control purposes has
been reflected in an exponential increase of related articles in the last decade.
The aim of this review is to provide a comprehensive overview of the literature
to gain understanding of the existing research on c-VEP-based BCIs, since its
inception (1984) until today (2021), as well as to identify promising future research
lines. Approach. The literature review was conducted according to the Preferred
Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines.
After assessing the eligibility of journal manuscripts, conferences, book chapters
and non-indexed documents, a total of 70 studies were included. A comprehensive
analysis of the main characteristics and design choices of c-VEP-based BCIs was
discussed, including stimulation paradigms, signal processing, modeling responses,
applications, etc. Main results. The literature review showed that state-of-the-
art c-VEP-based BCIs are able to provide an accurate control of the system
with a large number of commands, high selection speeds and even without
calibration. In general, a lack of validation in real setups was observed, especially
regarding the validation with disabled populations. Future work should be focused
toward developing self-paced c-VEP-based portable BCIs applied in real-world
environments that could exploit the unique benefits of c-VEP paradigms. Some
aspects such as asynchrony, unsupervised training, or code optimization still
require further research and development. Significance. Despite the growing
popularity of c-VEP-based BCIs, to the best of our knowledge, this is the first
literature review on the topic. In addition to providing a joint discussion of the
advances in the field, some future lines of research are suggested to contribute to
the development of reliable plug-and-play c-VEP-based BCIs.
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1. Introduction

For decades, mankind has fantasized about the pos-
sibility of controlling devices with brain signals. De-
spite that there is still a long way to achieve this goal,
recent progress in computational neuroscience took a
step forward and contributed to the development of
the first non-invasive brain–computer interface (BCI)
systems. Through a real-time monitoring of the elec-
troencephalographic (EEG) signals, BCIs are able to
translate users’ intentions into application commands
[1]. Traditionally, BCIs have been aimed at improving
the quality of life of motor-disabled people by replac-
ing their central nervous system outputs. Recent stud-
ies have also been focused on applying BCIs for neu-
rorehabilitation [2], cognitive training [3], mental state
monitoring [4] and even leisure activities [5]. Unfor-
tunately, despite the efforts within the research com-
munity, BCIs are still considered an orphan technol-
ogy ; i.e., the BCIs have been tested in the laboratory
but do not provide sufficient incentives to be commer-
cially interesting in their current form [1]. Rarely is
the technological readiness level (TRL) high enough
for commercial applications, as the methods are often
not validated with either the target group of users or
in their own environment [1].

A major limitation of current BCIs is their incon-
sistent performance, which tends to vary substantially
during and between sessions and individuals [1]. Due
to the inherent limitations of the EEG (e.g., low spatial
resolution, poor signal-to-noise ratio, volume conduc-
tion), users’ intentions are not directly reflected in their
raw EEG signals, even in the rare cases where neu-
ral representation of cognitive processes is well-known
[1, 6]. Thus, decoding users’ intentions in real-time is a
challenge that the researcher should face. In practice,
BCI paradigms rely on the detection of measurable
changes in the EEG related to different tasks, known
as control signals [1, 7].

The selection of a control signal usually depends
on the purpose of the system. For instance, in thera-
peutic applications where an accurate and explicit con-
trol of the BCI may not be required, but the reinforce-
ment of neural pathways through neurofeedback train-
ing (e.g., neurorehabilitation, cognitive training), self-
regulated control signals such as sensorimotor rhythms
(SMR) or slow-cortical potentials (SCP) are more com-
mon [1, 6, 7]. On the other hand, BCIs for control and
communication purposes often rely on event-related
potentials (ERP), i.e., time-locked responses to cer-
tain events [1, 7], usually as visual evoked potentials
(VEP). Their modulation through the user’s volitional
attention to one of the possible targets allows the BCI
to detect the ERP and emit the corresponding com-
mand. Unlike SMR or SCP, these control signals al-
low the discrimination of a great amount of classes,

while requiring less training and achieving a higher de-
coding accuracy and information transfer rate (ITR)
[1]. For ERP-based BCIs, oddball paradigms that elicit
P300 responses have demonstrated their feasibility for
healthy users (HU, approx. accuracy >90%, ITR of
10–25 bpm) [8–10] and motor-disabled users (MDU,
approx. >80%, 10–25 bpm) [8, 9, 11, 12]. For VEP-
based BCIs, steady-state VEPs (SSVEP) have tradi-
tionally stood out due to their simplicity and speed.
The classical SSVEP system flickers each command
at a particular frequency, generating an oscillatory re-
sponse in the EEG that matches the frequency of the
command the user is looking at [1]. This methodology
has been mainly tested with HU (approx. >90%, 40-50
bpm) [13, 14], and seldom with MDU (approx. >80%,
10-40 bpm) [15, 16]. For a comprehensive review on
SSVEPs, see Vialatte et al. [17].

Whilst P300 and SSVEP-based BCIs are able to
provide a suitable level of system control, performances
do not approximate to a muscle-based control, nor
to the required level of reliability for a practical use
[1]. During the last decades, the research community
has proposed novel approaches toward the development
of plug-and-play, non-invasive BCIs; such as reduced
calibration, asynchronous systems, adaptive systems,
or variations of known paradigms. Among these
proposals, a growing interest in a novel control signal
arose due to its ability to reach excellent performances
and reduced calibration times: the code-modulated
VEPs (c-VEP). In this paradigm, commands flash
following pseudo-random noise codes, generating EEG
responses that are more correlated with the command
the user is paying attention to than with the rest [13].

The basis of c-VEP systems was proposed by
Sutter in 1984 [18] and tested with an amyotrophic
lateral sclerosis (ALS) patient in 1992 [19], reaching
communication rates of 10-12 words per minute
using an invasive electrocorticographic (ECoG) system.
These studies were ignored by the research community
until 2009, when Bin and colleagues [13] demonstrated
the feasibility of Sutter’s idea in an EEG-based BCI,
showing that the c-VEP approach (91%, 92.8 bpm)
outperformed the classical SSVEP paradigm (85%,
39.7 bpm) in HU using only one EEG channel (i.e., Oz)
[13]. These results caused an exponential outburst of
c-VEP-based studies in the literature, which reasserted
the efficacy of this control signal to achieve state-of-the-
art high-speed non-invasive BCIs. Notwithstanding its
popularity, to the best of our knowledge, there is no
literature review on c-VEP-based BCI systems.

Therefore, this literature review aims to gain a
comprehensive understanding of the existing research
about EEG-based BCIs that apply c-VEP as control
signal. In total, 70 studies have been included in this
review, which allowed us to draw joint conclusions
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Figure 1. (a) Flowchart of the study selection process as carried out in accordance with the PRISMA guidelines. (b) Distribution
of c-VEP-related publications per year during the last decade. (c) Number of c-VEP-related JCR-indexed journals, conferences,
book chapters and non-indexed records included in the literature review.

about past and current approaches, as well as to
identify current challenges and future research lines in
this exciting field.

The manuscript is organized as follows. Section 2
details the study selection process and the basis of
c-VEP systems. In section 3, an analysis of the main
aspects of c-VEP-based BCIs is shown: comparison
with other solutions, paradigms, signal processing,
sensor robustness, public databases, applications, etc.
State-of-the-art c-VEP BCIs, open questions, current
challenges and future research lines are discussed in
section 4. Finally, section 5 draws a joint conclusion
considering all the reviewed studies.

2. Methods

2.1. Study selection process

This literature review was conducted according to
the Preferred Reporting Items for Systematic reviews
and Meta-Analysis (PRISMA) guidelines [20]. A
systematic search within Web of Science (WOS) and
Google Scholar (GS) databases was performed to
identify BCI studies based on c-VEP. For WOS, the
advanced search query was ‘c-VEP’ OR ‘cVEP’ AND
‘BCI’, including all years and databases. For GS,
two separate searches were conducted using the terms
‘c-VEP BCI’ (GS1) and ‘cVEP BCI’ (GS2). In order
to provide a comprehensive review of the literature,
all types of records were screened, including journal
publications indexed in Journal Citation Reports
(JCR), conferences, book chapters and non-indexed
studies. Figure 1 details the study selection process

according to the PRISMA statement. As shown,
a total of 159 records were identified through the
aforementioned searches (WOS: 54, GS1: 57, GS2:
38). Ten additional records were identified through
other articles references. After duplication removal,
87 studies were screened for relevance via title and
abstract examination. Seven records were excluded in
this step, that were either unrelated to BCIs or EEG,
were not written in English or were only composed
by an abstract/poster. Thus, 80 publications were
assessed for eligibility by carefully reading the entire
manuscript. At this point, studies that were not
related to c-VEP or that lacked crucial information
(e.g., methods, results, discussion) were excluded.
After the selection process, a total of 70 studies
were included in this literature review. A table that
summarizes the main aspects of all the included studies
is available in the supplementary material.

2.2. The basis of c-VEPs

Interestingly, stimulus modulations of VEP-based
BCIs share many similarities with the channel access
methods used in telecommunications, which allow more
than two terminals to share bandwidth without causing
interference to their transmissions. Considering a
terminal as a selection command, SSVEP-based BCIs
work like frequency-division multiple access (FDMA),
assigning each command to a different stimulation
frequency. For that reason, SSVEP are also known
as frequency-modulated VEP (f-VEP). Similarly, c-
VEP-based BCIs use pseudorandom sequences to
encode each command, as code-division multiple access
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Figure 2. Codes and evoked responses of a c-VEP system with a monitor rate of 60 Hz. (a) Main code derived from a binary
m-sequence of 63 bits. (b) Delayed versions of the m-sequence using shifts of τ = 4 samples, which would be assigned to different
commands. (c) Main template, computed as the averaged EEG responses to 150 calibration cycles. (d) Periodic autocorrelation
function of the m-sequence. (e) Periodic autocorrelation function of the template. (f) Normalized power spectral density of the
template.

(CDMA) does [21]. As a result, the broadband
stimulation in c-VEP causes broadband responses that
can be decoded robustly even in the presence of
narrow-band interference (e.g., salient unrelated brain
oscillations, such as α waves). On the other hand,
SSVEP are based on narrow-band stimuli, so they can
be decoded in the presence of broadband noise [22].

Although each command could be modulated by
a different code, finding a family of codes with suitable
cross-correlation properties is not trivial [22]. Thus,
the classical approach relies on finding a pseudorandom
binary sequence that presents low auto-correlation
values for non-zero circular shifts, then encoding each
command with time-delayed versions of the original
sequence [13, 19]. Maximal length sequences (i.e., m-
sequences), easily generated by linear feedback shift
registers (LFSR), are often employed in c-VEP-based
BCIs due to their excellent autocorrelation properties;
i.e., 1 for a null shift, and −1/N otherwise, where N is
the length of the m-sequence [21].

Figure 2 summarizes the rationale behind a
c-VEP-based BCI system. A binary 63-bit m-sequence
(generated using a LFSR of length m = 6 with
taps 110000 and polynomial x6 + x5 + 1) is shown
in figure 2(a). A LFSR of length m = 6 generates
an m-sequence of length 2m − 1 = 63 bits. In this
case, the monitor rate was 60 Hz, so a complete cycle
lasted T = 1.05 s (i.e., 63/60). Figure 2(b) shows

the encoding of 5 possible commands, which would
flicker using time-delayed versions of the m-sequence,
whose lags increase with a step of τ = 4. Whenever
the screen is refreshed, each command lightens if
its current code sample is 1, and dims otherwise.
After recording, pre-processing and averaging all EEG
responses to complete calibration cycles of the original
m-sequence, a main template is computed, as shown in
figure 2(c). Several signal processing methods to create
this template will be discussed in the following sections.
The periodic autocorrelation of the m-sequence is
depicted in figure 2(d). Although the stimuli of
different commands will be uncorrelated, it cannot be
claimed that the EEG responses will be uncorrelated
as well. This effect can happen when brain is modeled
as a linear system, and even more when a nonlinear
dynamic system is assumed [23]. Figure 2(e) plots
the auto-correlation function of the EEG template.
For the case of time-shifted stimuli, despite responses
not being completely uncorrelated for certain lags
like in the underlying bit-sequence, usually there is
enough distinction to identify the time-shift of the EEG
responses. This is achieved by creating templates for
each command, circularly shifting the main template
according to their lags. In online sessions, whenever
an EEG response to several test cycles arrives, it is
pre-processed and compared with all the templates.
Hence, the selected command is identified as the one
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Figure 3. The reference processing pipeline for c-VEP-based BCIs. Calibration stage aims at computing the templates for each
command, according to their lags. In online sessions, the test stage projects the trial epochs and determines the selected command
through a correlation analysis. Variables Ns, Nc, kc and kt refer to the number of samples, channels, calibration cycles and test
cycles, respectively; while τ indicates the lag step.

whose template reaches the maximal correlation with
the processed EEG response [13]. Finally, figure 2(f)
shows the power spectral density of the EEG responses
used to build the template. Since the maximum
frequency component for a 60 Hz monitor is 30 Hz
(i.e., equivalent to the code 10101010 . . .), the gamma
band (i.e., γ ∈ 30 − 100 Hz) will be least affected by
the stimulation. Note that the peaks of the spectrum
correspond to the harmonics of the m-sequence period
(i.e., 1/T = 0.952 Hz), which are more pronounced
over the 1-10 Hz band.

3. Results

3.1. Equivalent terms

The term “c-VEP”, which either stands for code-
modulated or codebook VEP, has been used consistently
in 91.30% of the studies included in the review (i.e.,
63/70), consolidating as the main term over the years.
However, there are several subsidiary terms that should
be known to identify further research in the field. For
instance, Thielen et al. [24, 25] referred to them
as broad-band VEPs (BBVEPs), according to their
spectral properties. On the other hand, Nagel et al.
[26] initially used the term random VEPs (rVEPs) to
describe c-VEPs produced as responses to completely
random codes. Since c-VEPs do not refer specifically
to VEPs caused by m-sequences, but to pseudorandom
codes in general, rVEPs can be also considered a
synonym for c-VEPs. Of note, some authors used the
term ‘noise-tagging’ to refer to the general approach of
employing pseudorandom codes to modulate stimuli in
different paradigms [27].

3.2. A reference processing pipeline

Throughout the years, a great amount of methodolo-
gies have been proposed to improve the performance
of c-VEP-based BCIs. These approaches have targeted
all system stages, such as paradigm variations, stimu-
lus presentation, feature extraction and classification,
asynchrony, etc. Although all of these ideas will be dis-
cussed in the following subsections, we have identified a
reference signal processing pipeline that is exactly the
same in 24 out of 70 studies. We expect it to be im-
proved by other state-of-the-art methods, and to evolve
into a best practice or ‘gold standard’. However, we en-
courage its as-is implementation as reference pipeline
and as a first approximation to c-VEP-based BCIs.

The reference approach, depicted in figure 3, uses
a multi-channel EEG system (55/70), where commands
are encoded by delayed versions of a 63-bit m-sequence
(35/70). The lag step may be τ = 2 (20/70) or
τ = 4 (61/70) depending on the number of possible
commands, usually 32 or 16, respectively. During
training, the user is asked to focus on a reference target
(which can be any command, although it is usually the
one without lag for simplicity) for kc calibration cycles.
Then, EEG epochs are reshaped with dimensions
X0 ∈ Rkc,Ns,Nc , where Ns are the number of samples
of a complete cycle, and Nc the number of EEG
channels. A multi-channel response is computed by
averaging over the kc cycles, obtaining X̃t0 ∈ RNs,Nc .
Afterward, canonical correlation analysis (CCA) is
applied to maximize the correlation between individual
epochs and the averaged EEG response (44/70). CCA
finds linear projections of two signals A and B that
maximize the correlation between them [28]. In this
case, A ∈ Rkc·Ns,Nc would be the concatenated x0

epochs; and B ∈ Rkc·Ns,Nc the x̃t0 replicated kc times
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to match the dimensions. After optimizing:

max
Wa,Wb

W T
a ATBWb√

W T
a ATAWa ·W T

b BTBWb

, (1)

spatial filters Wa ∈ RNc,Nc and Wb ∈ RNc,Nc are
obtained. For c-VEP-based BCIs, only the filters
wa and wb that maximize the correlation coefficient
between the projected epochs (i.e., Awa) and template
(i.e., Bwb) are required; i.e., the first components
(columns) of Wa and Wb, respectively [29]. Then,
the multi-channel response is projected to obtain the
reference template xt0 = X̃t0 · wb, where xt0 ∈
RNs,1. Templates for the rest of the commands
(xt1,xt2, . . . ,xtm) are computed by circularly-shifting
xt0 according to their lags. In the test (i.e., online)
mode, EEG epochs are averaged and projected withwb

to obtain a spatially-filtered epoch; i.e., x̂test = X̃test ·
wb with x̂test ∈ RNs,1. Subsequently, the Pearson’s
correlation coefficients ρ between the resulting vector
and all the templates are calculated, identifying the
selected command as the one that reaches the maximal
correlation value; i.e., y = argmaxi ρ(x̂test,xti).

Another equivalent possibility to avoid online
averaging would be to concatenate the kt test EEG
epochs and use wa to obtain a spatially-filtered vector;
i.e., x̂′

test = X̃ ′
test · wb, where X̃ ′

test ∈ Rkt·Ns,Nc

and x̂′
test ∈ Rkt·Ns,1. Then, the correlation would

be computed between this resulting vector and the
replicated version of each template kt times (i.e., xti ∈
Rkt·Ns,1).

3.3. Comparison with SSVEP systems

One of the questions that arose when c-VEP-
based BCIs were proposed was whether they would
outperform SSVEP systems. Bin et al. [13] were
the first researchers to attempt to answer this by
comparing a system (12 HU, Oz) controlled by SSVEP
with one controlled with c-VEP. Results showed that c-
VEP (95.0%, 92.8 bpm) outperformed SSVEP (88.0%,
39.7 bpm) both in terms of accuracy speed. However,
care must be taken when interpreting these ITR
results, as the SSVEP system had 6 targets, while the
c-VEP included 16 commands. Since ITR depends
on the total number of possible selections, speed is
biased toward the c-VEP system. Years later, Kapeller
et al. [30] obtained similar performance results (c-
VEP: 98.2%, SSVEP: 91.4%) when controlling a 4-
command robot (11 HU, 8 channels). In 2019, Gembler
et al. [14] indirectly compared an 8-command system
(20 HU, 10 channels) using both quantitative (c-VEP:
94.0%, 92.7 bpm; SSVEP: 96.3%, 75.1 bpm) and
qualitative (i.e., questionnaire) measures. Although
the c-VEP system reached a higher speed, the SSVEP
system achieved a higher accuracy. In terms of user-
experience, some users slightly preferred the SSVEP

system. However, differences between both paradigms
in terms of performance and user-friendliness were not
significant. They concluded that, since performances
were similar, the optimal paradigm depends on users’
preferences. Recently, Volosyak et al. [31] compared
a 4-target system by performing an analysis of BCI
illiteracy (86 HU, 16 channels). All participants
were able to control the c-VEP (97.8%, 40.23 bpm)
system, while 3 users were not able to control
the SSVEP (95.3%, 37.87 bpm) one. They stated
that c-VEP performances (both accuracy and ITR)
were significantly higher than SSVEP ones. Users’
questionnaires did not show any difference in terms of
comfort between both systems.

In conclusion, c-VEP systems seem to be able
to achieve similar or even higher selection speeds
[13, 14, 30, 31] and accuracies [13, 30, 31] than SSVEP-
based BCIs. As mentioned above, Volosyak et al.
[31] reported statistical differences to support the
superiority of c-VEP, while Gembler et al. [14] did
not find significant differences between both paradigms
and the other studies did not perform any statistical
analysis [13, 30]. Even though a meta-analysis would
be beneficial to give insight into these results, unfolded
ITR and accuracy values for each user were not
available for most studies.

The particular aspects of SSVEP and c-VEP
paradigms may make a difference when designing a
BCI system. Although recommended, an SSVEP-
based BCI does not necessarily require a mandatory
calibration, while in general a c-VEP does [13]. On
the other hand, c-VEP is less sensitive to non-related
basal EEG activity than SSVEP, which presents a
narrow-band response [13, 22]. As SSVEP systems
usually encode each command with different carrier
frequencies, the number of targets is somewhat limited
by the monitor’s refresh rate [32]. Furthermore, carrier
frequencies over beta band are thought to be more
difficult to discriminate [33], making SSVEP-based
BCIs more suitable for applications that need fewer
commands. Of note, some state-of-the-art SSVEP-
based BCIs employs phase modulation as well. Even
though the number of commands of a circular shifting-
based c-VEP system is limited by the lag step τ and
the sequence length, it is usually less restrictive [13].

3.4. Comparison with eye tracking devices

Another interesting question is whether c-VEP BCIs
could compete against eye trackers. Nezamfar et
al. [34] asked 10 HU to solve maze tasks using
a 4-command system controlled by a single-channel
(i.e., Oz) c-VEP-based BCI and an eye tracker (ET).
Although mean accuracies were similar between both
modalities (92.6% c-VEP, 91.4% ET), c-VEP results
were more consistent over participants. Furthermore,
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Table 1. Bit-sequences employed in the reviewed studies.

Sequence
type

# References

M-sequences 58 [13, 14, 18, 19, 25, 29–31, 34, 35,
43–90]

Gold 9 [22, 24, 43, 44, 87, 88, 91–93]
Kasami 2 [88, 89]
Barker 2 [43, 44]
Golay 5 [23, 88, 90, 94, 95]
APA 4 [23, 88, 94, 95]
De Bruijn 1 [88]
Hand-crafted 5 [45, 82, 96–98]
Random 4 [26, 97–99]

#: number of studies, APA: almost perfect autocorrelation.

questionnaires showed that most users preferred c-VEP
over ET because the control was significantly faster
and required less total calibration time (ET needed
a re-calibration after each task). They also observed
difficulties of ET calibration for users that wore
eyeglasses [34]. Even though further research should
be conducted to validate these findings, it is worth
highlighting that c-VEP and ET systems seem to be
comparable in terms of accuracy and speed. Therefore,
c-VEP-based BCIs might be appropriate when ET
calibration is hindered (e.g., eyeglasses, contact lenses,
low ambient lighting, blepharoptosis). For the sake of
fairness, it should be mentioned that BCIs also present
some technical disadvantages, such as the EEG cap
setup (i.e., gel electrodes, impedance measurement)
and the fragility of the wired channels. It was also
suggested that ET information could supplement the
BCI system, improving the c-VEP decoding [35].

3.5. Bit-sequences

Generating bit-sequences, or codes, with appropriate
autocorrelation properties is not trivial. For that
reason, most of the studies (58/70) relied on binary
m-sequences [36], binary codes generated through a
LFSR using primitive polynomials over the Galois
Field of base 2; i.e., GF(2) [21]. As shown in figure 2,
m-sequences have overall minimum autocorrelation
values for non-zero circular shifts, which makes them
optimal for classic c-VEP-based BCIs. However, some
studies used alternatives such as Gold [37] (9/70),
Kasami [38] (2/70), Barker [39] (2/70), Golay [40]
(5/70), almost perfect autocorrelation (APA) [41]
(4/70), de Bruijn [42] (1/70), hand-crafted (5/70), or
random sequences (4/70). Table 1 enumerates the
studies that used these variations. In general, some
studies suggested that the performance of BCIs based
on time-delayed versions of a single bit-sequence does
not vary significantly when using different code types
[43–45].

As shown, a 63-bit m-sequence is usually sufficient

for modulating up to 32 commands. Applications
that require more commands, however, must rely
on longer m-sequences [73], increasing the selection
time; or on multi-sequence paradigms, in which
(1) different bit-sequences modulate subgroups of
commands [23, 89, 94, 95], or where (2) each command
is modulated by a different bit-sequence [22, 24, 26,
34, 35, 46, 48, 49, 55, 62, 64, 92, 93, 97–99]. In
the latter case, it is recommended to prevent cross-
talk between neighboring commands by distributing
each bit-sequence in function of their cross-correlation
properties [24].

For multi-sequence systems, using sets of m-
sequences is not convenient because they do not
guarantee low cross-correlations between them [21].
By contrast, Gold [22, 24, 43, 44, 87, 91–93] and
Kasami [89] sequence sets are easy to generate and
present acceptable auto-correlation and periodic cross-
correlation properties, making them especially suitable
for this purpose [21]. In a nutshell, both sets
are derived from combinations of preferred pairs of
m-sequences. For a preferred pair of m-sequences
generated with a polynomial of order m, there are
2m+1 Gold codes and 2m/2(2m+1) Kasami sequences
(e.g., 65 Gold and 520 Kasami sequences for a preferred
pair of 63-bit m-sequences). Note that the large set of
Kasami sequences contains both the Gold codes and
the so-called small set of Kasami sequences [21].

There are some single-sequence alternatives to m-
sequences. For instance, Barker and Golay sequences,
which obey a more restrictive rule: to present low
aperiodic correlation values (i.e., correlation over
incomplete periods of codes). Barker codes [43, 44]
guarantee a minimum aperiodic correlation, however,
only Barker codes of length ≤ 13 exist [21]. Golay
sequences [23, 90, 94, 95] are pairs of complementary
codes with low aperiodic correlations without length
restrictions, hence they are used in digital applications
for which Barker sequences are not available [21].
De Bruijn sequences also exist as a special class of
nonlinear shift register codes with maximal length,
whose cardinality behaves as a double exponential
growth (there are 2(2

m−1)−m de Bruijn sequences of
length 2m) [88, 100]. However, auto- and cross-
correlation properties vary among different codes [100].
APA sequences, defined as complex periodic sequences
such that all out-of-phase correlation coefficients are
zero except one, are also popular [23, 88, 94, 95].

Some studies claim that the use of different
sequence types does not appear to significantly
affect overall performances as long as low values of
auto- and/or cross-correlation are guaranteed [43–
45]. By contrast, Torres & Daly [88] recently
reported significantly higher performances for de
Bruijn, APA and Golay sequences in comparison with
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m-sequences, Gold and Kasami codes using simulated
data. Further analysis with real EEG data would
be recommended to validate these findings. Finally,
several authors recently opted to use fully random
codes (see section 3.13) [26, 97–99], or to create custom
codes [45, 82, 96] or modulations of known families
[24] to confine spectral density to high-frequency bands
(e.g., by xor-ing the bit-sequence with a bit-clock at a
doubled rate), reducing visual fatigue.

3.6. Stimuli variations and p-ary sequences

Binary sequences encoded as white/black (WB) flashes
are the most common stimulus presentation across the
reviewed studies (60/70)). However, some authors
opted to use different color combinations to display
the stimuli [29, 35, 57, 58, 62, 64, 68]. The
rationale behind these variations are user safety, visual
comfort or performance purposes. For instance,
Aminaka et al. [58, 68] used green/blue (GB) flashes
because it is known to be the combination with the
lowest risk of triggering photoparoxysmal responses
in users suffering from photosensitive epilepsy [101],
although the combination has demonstrated to perform
significantly worse (74%) than WB (79%) in c-VEP-
based BCIs [58]. Others based their studies [35,
57, 62, 64] on the opponent process theory of color
vision, which claims that neural channels for color
processing are composed of pairs of opponent colors:
yellow/blue (YB), red/green (RG) and WB [102].
Nezamfar et al. [62] compared the three combinations,
finding that RG elicited the strongest c-VEP responses
for rates of 60 Hz (YB: 94.5%, RG: 98.5%, WB:
89.2%) and 110 Hz (YB: 88.5%, RG: 89.5%, WB:
83.4%); as well as being less tiring for users due to
its equiluminance. Riechmann et al. [57] reinforced
those results by comparing RG (68.0%) versus WB
(66.0%), although performance differences were not
significant. Finally, Wei et al. [29] compared different
color/black combinations, finding that WB (99.0%)
and yellow/black (96.0%) achieved a significantly
higher accuracy than green/black (93.0%), red/black
(88.0%) or blue/black (84.0%); probably due to its
greater contrast and the joint stimulation of the cones
and rods of the retina.

Of note, some authors (5/70) employed alternat-
ing checkerboard patterns to encode each command,
rather than simple flashes [34, 35, 44, 62, 64]. In
SSVEP-based BCIs, these complex stimuli are believed
to elicit more pronounced responses than simple ones,
although inducing weaker high-frequency components
[17]. Whether this phenomenon is also present in c-
VEP-based BCIs remains as an open question, as no
study has compared performances using both types of
stimuli. Other stimuli variations, such as size and prox-
imity, were also studied by Wei et al. [29], concluding

that the larger and further apart the stimuli are, the
higher the accuracy. They recommended using stimuli
sizes greater than or equal to 3.8◦ visual angle, and
separations of at least 4.8◦ (measured from center to
center between consecutive targets) [29].

A recent approach that leads to display stimuli
with different color tones or intensities is the use of
p-ary sequences. Specifically, m-sequences are not
limited to the binary domain, but can be generated
using primitive polynomials of GF(p), where p must
be prime [103]. Gembler et al. [84] compared binary
(i.e., p = 2) and quintary (i.e., p = 5) m-sequences
with 60, 120 and 240 Hz refresh rates. To encode the
quintary sequence, they used white, black and three
additional shades of grey. Even though both achieved
similar results (binary vs. quintary: 99.4%, 98.5% at
60 Hz; 97.6%, 97.5% at 120 Hz; 97.9%, 97.6% at 240
Hz), quintary patterns were significantly less annoying
for users, especially for the 60 Hz condition [84].
The extra dimensions provided by p-ary sequences not
only allows to exploit color variations, but also other
characteristics such as stimuli sizes, changing images,
apparent motions, tactile textures, etc. However, to
the best of our knowledge, no study have explored these
kind of modulations yet.

3.7. Circular shifting vs. ensemble

Concerning signal processing topics, a widespread
approach to generate the template xti of the i-th
command is to circularly shift xt0, the reference
template, iτ samples apart (section 3.2). Even though
the c-VEP response does not necessarily share the
auto-correlation properties of the stimulation sequence
[23, 24, 62, 73], this method has repeatedly shown its
usefulness in c-VEP paradigms.

However, some studies (7/70) have trained all
templates separately, averaging c-VEP responses to
each of the bit-sequences individually, instead of using
the circular shifting method [14, 45, 51, 56, 66, 74, 76].
Gembler & Volosyak [74] showed that this ensemble
method achieved a significantly higher grand average
accuracy than the circular shifting one for window
decoding lengths of 150-450 ms (e.g., for 450 ms,
circular: 85.0%, ensemble: 93.0%). This may be due
to the additional response expected at the beginning
of each flashing, which is not modeled in the circular
approach but is captured using the ensemble method.
Despite the improvement in performance, the ensemble
method entails a significantly longer calibration (i.e.,
CT , where C is the number of commands and T is
the duration of the circular shifting calibration), which
might be counter-productive in practical applications.
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3.8. Presentation rates

In order to maximize the speed of command selection,
the presentation rate (i.e., sampling rate of the code)
generally matches the screen refresh rate. Therefore,
most of the studies display the bit-sequences at 60 Hz
(47/70). Over the years, some researchers compared
the performance of the system when using different
sequence rates (see table 2).

The studies of Aminaka et al. [58, 60, 61]
consistently showed higher performances of 60 Hz
(mean: 88.2%) over 80 Hz (mean: 83.1%) rates for
31-bit m-sequences in a BCI that used light emitting
diodes (LED) for stimulus presentation. Nezamfar et
al. [48, 49] compared 15 Hz and 30 Hz rates using
m-sequences of 31 bits, reporting higher accuracies for
the 30 Hz condition. Then, they also compared 30
Hz, 60 Hz and 110 Hz rates for m-sequences of 31,
63 and 127 bits [62]. They achieved a higher grand
average accuracy in the 60 Hz condition, although
the 110 Hz rate was perceived as less fatiguing by
the participants. On the contrary, Wittevrongel et
al. [66] compared 60 Hz (up to 5 cycles) and 120
Hz (up to 10 cycles) rates for a 63-bit m-sequence,
stating that the faster the presentation rate, the higher
the accuracy for equal-length stimulation duration.
Gembler et al. [69] observed the same behavior when
comparing 60 Hz (77.7%, 3 cycles), 120 Hz (78.6%,
6 cycles) and 200 Hz (75.9%, 12 cycles) for a 63-bit
m-sequence. As shown, the accuracy was comparable
when the same stimulation duration was used, which
implied more test cycles for the higher presentation
rates. Similarly, Başaklar et al. [73] tested a 127-
bit m-sequence using 60 Hz (1 cycle, 92.0%), 120 Hz
(2 cycles, 97.0%) and 240 Hz (4 cycles, 87.0%). The
accuracy at 120 Hz was significantly higher than at
other presentation rates. Additionally, they observed
a decrease in the number of distinguishable patterns
in the 240 Hz condition, where the c-VEP template
approximated to a sinusoid, presumably due to the
nonlinearity of the visual system. Finally, Gembler et
al. [76] studied the performance of 30 Hz, 60 Hz and
120 Hz for different age groups (young: 20-28 years,
elderly: 62-83 years). Interestingly, the presentation
rate did not affect the elderly, who obtained similar
results (30 Hz: 96.5%, 60 Hz: 98.6%, 120 Hz: 99.7%);
but 60 Hz achieved significantly higher results for
the young subgroup (30 Hz: 96.4%, 60 Hz: 97.9%,
120 Hz: 96.6%). Nevertheless, the authors suggested
the use of 120 Hz, which also achieved appropriate
performances and was preferred by the users in terms
of user-experience.

As shown, there is no consensus on which
presentation rate is most suitable for c-VEP-based
BCIs. The accuracy seems to depend on many
variables, such as the number of calibration and test

Table 2. Presentation rates employed in the reviewed studies

Rate # References

15 Hz 3 [48, 49, 75]
20 Hz 1 [75]
30 Hz 7 [48, 49, 57, 62, 66, 75, 80]
40 Hz 1 [19]
60 Hz 47 [13, 14, 22, 23, 26, 29, 31, 35, 43, 44, 47,

50, 51, 53, 54, 56, 62, 66–76, 78–80, 82–
94, 97–99]

62.5 Hz 1 [96]
70 Hz 1 [19]
80 Hz 5 [58–61, 68]
90 Hz 1 [45]

100 Hz 1 [46]
110 Hz 3 [34, 62, 64]
120 Hz 6 [24, 69, 71, 73, 80, 84]
200 Hz 1 [69]
240 Hz 2 [73, 84]

cycles, bit-sequence length, number of commands and
codes, etc. Presentation rates of 120 Hz may be
appropriate for some users, since they present twice
as many cycles as the 60 Hz rate [66, 69, 73], which
can lead to shorter calibration and selection times.
However, care must be taken when increasing the
presentation rate, since c-VEP templates may become
less orthogonal to each other [73]. Note that EEG
responses maintain the same spectral distribution even
if presentation rate increases, presumably due to (i) the
nonlinearity of the visual system [23, 24, 73] and (ii)
the fact that cones are less responsive to high frequency
stimuli [62]. Of note, there is a clear consensus that
the higher the sequence rate, the less fatiguing the
stimulation is for the user [48, 62, 69, 73, 76].

3.9. Equivalent neighbors

In 1992, Sutter [19] claimed that the flash patterns of
adjacent commands are also perceived by the visual
system and contributes to the joint EEG response.
Under this assumption, it was hypothesized that EEG
responses to the commands that are located at the
outer edges of a speller grid are different than the
other templates, potentially decreasing the accuracy.
According to this hypothesis, commonly known as the
principle of equivalent neighbors, many studies opted
to surround the boundary commands of the speller
matrix with non-selectable commands [13, 19, 23, 26,
47, 50, 52, 53, 65, 67, 69, 70, 88–90, 94, 97]. Targets
are placed in such a way that the relation among the
perceived delays (i.e., the target cell and the leak from
its contiguous neighbors) is homogeneous throughout
the matrix, at the expense of including additional rows
and columns. In 17 out of the 70 studies included
in this review this principle is followed. Despite its
widespread use throughout the literature, so far no
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study has demonstrated whether using it improves
the general performance of a c-VEP system. Further
research is necessary to determine if using equivalent
neighbors benefits the system or, on the contrary, it
causes an unnecessary waste of space including extra
rows and columns.

3.10. Raster latencies

The update of a frame is not performed simultaneously
for all pixels in the screen on standard monitors, but
use rasterization to update each line sequentially from
top to bottom (i.e., vertical blanking). This process
causes a raster latency that increases systematically
(e.g. from the upper left pixel to the lower right
pixel), generally resulting in latency variations among
c-VEP commands, as they are placed in different
positions across the screen. In 2018, Nagel et al.
[70] demonstrated that these variations affect to the
point of significantly improving the performance of
the system if they are corrected (92.0% vs. 95.4%).
Some of the studies (5/70) included in this review
employed this correction [22, 70, 97–99]. Although
maximal raster latency seems consistent at about 95%
of the refresh cycle for cathode ray tube and liquid-
crystal display monitors (i.e, 15.55 ms for 60 Hz)
[70], it is recommended to measure the delay between
top and bottom lines using an optical sensor of some
kind. The measured delays can be used to shift back
the estimated templates to improve overall system
accuracy.

3.11. Single-channel versus multi-channel approaches

Unlike other BCIs such as those relying on SMR
or the P300, c-VEP systems may achieve suitable
performances using only one EEG electrode [13, 34,
43, 44, 48, 49, 62, 64, 87, 96]. Some of the
studies in this review obtained an average accuracy
over 90% using only the Oz channel [13, 34, 48,
49, 62, 64, 87]. Several studies determined, via
brute force searches, that the most discriminative
channel was Oz [13, 48, 49], presumably because it
was the one that reflected more information about
the primary visual cortex, placed in the occipital
lobe [1]. However, several studies demonstrated that
using multi-channel recordings benefits the overall
c-VEP system [47, 52], outperforming the single-
channel approach significantly (98.0% vs. 95.0% [47];
96.3% vs. 92.3% [52]). Of note, the signal-to-noise-
ratio (SNR) of a localized relevant signal source can
be strengthened by mixing distant electrodes with
negative weights to reject common noise, under the
assumption that those electrodes may carry similar
noise patterns, but without the relevant signal (e.g.,
Laplacian spatial filtering) [1]. Therefore, most of

the studies (58/70) included in this review follow a
multi-channel approach. These multi-channel studies
typically used spatial filtering approaches discussed in
section 3.12. A method for finding a minimum number
of suitable channels and optimal montages (including
sensor pairing) was proposed by Ahmadi et al. [91].

3.12. Alternative spatial filters

As shown in section 3.2, CCA is the most popular
(42/70) algorithm to generate spatial filters for multi-
channel c-VEP-based BCIs [14, 23, 24, 26, 29–31,
45, 47, 52–54, 56–58, 60, 67, 69, 70, 72–75, 80, 82–
84, 88–91, 94, 95, 97, 98]. However, some authors
proposed other algorithms to (1) supplement CCA
(e.g., filter banks, multiple weighted components), or
to (2) replace it with alternative spatio-temporal filters
or encoding models (section 3.13).

Filter banks (4/70) are arrays of bandpass
filters that separate the input signal into multiple
components, each one carrying a sub-band of the
original signal. Gembler et al. [83, 83, 86, 92]
proposed a 3-length filter bank over 8-60 Hz, 12-
60 Hz, and 30-60 Hz. The EEG signal is filtered
with the bank, and the traditional processing pipeline
(detailed in section 3.2) is then applied for each sub-
band; i.e., computing its own CCA spatial filter. In
the end, a total of 3 correlation vectors ρ1, ρ2, and
ρ3 are obtained. A weighted [83, 86] or simple [84]
average can be used to obtain a unique ρ vector
and proceed to determine the selected command as
usual. The addition of filter banks reached a higher
accuracy (97%) than standard CCA (92%), possibly
because the 10 Hz visual α band was less dominant
in classification [83]. Another promising approach is
to use a combination of canonical variables, instead of
only one. As explained in section 3.2, the first column
of Wb is used as spatial filter. However, Mondini et al.
[104] recently hypothesized that relevant information
might be spread over more than one coefficient. For
that reason, several studies opted to concatenate
the projected responses of n filters wb1,wb2, . . . ,wbn

before computing the correlation coefficient with the
template [83, 86].

In recent years, some alternative spatio-temporal
filters have been proposed as substitute of CCA. For
instance, spatio-temporal beamformers (stBF) (3/70)
[45, 66, 71], which add temporal information by
averaging epoch segments. Shirzhiyan et al. [45]
reported a significantly higher accuracy using stBF
(94.0%) than CCA (91.1%). Dimitriadis et al. [71]
proposed the use of δ-α phase-amplitude coupling
(PAC) estimates after stBF, reaching significant
improvements in accuracy and speed in comparison
with Wittevrongel et al. [66]. Some authors
also performed regression with neural networks
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(NN) (2/70) [65, 88] and least mean square error
(LMSE) with lasso regularization (1/70) [65] to create
alternative spatio-temporal filters that outperformed
CCA in several studies (lasso: 94.1%, NN: 93.5% CCA:
92.1 % [65]; NN: 96.0%, CCA: 95.0% [88]). Over
the years, other methods such as principal component
analysis (PCA) or independent component analysis
(ICA) have been tested, but results could not compete
against the gold standard (PCA: 24.0%, ICA: 62.0%,
CCA: 95.0%) [88].

3.13. Modeling c-VEP responses

Recently, some studies (8/70) took the regression
approaches to another level by inferring EEG responses
to simple events (e.g., flashes) with the aim to predict
the c-VEP responses to different bit-sequences [22, 24,
26, 82, 93, 97–99].

Thielen et al. [24] proposed reconvolution, a
linear generative model composed by two stages:
(1) decomposition, in which the EEG response to
a training bit-sequence is decomposed into one or
several flash VEPs (e.g., one for each possible flash
duration); and (2) composition, where the response
to a potentially unknown bit-sequence is predicted by
combining these VEP responses. The combination of
this method and CCA (trained with 36 Gold codes)
achieved a mean online accuracy of 86.0% in a speller
encoded by a different set of 36 Gold codes [24].
An important aspect of this encoding model is that
the averaging, which is normally done at the level of
full bit-sequences (i.e., cycles), is done at the level
of individual events (e.g., flashes). Specifically, bit-
sequences are sequences of non-periodically placed
flashes. Assuming the linear superposition hypothesis
it is possible to model the response to a sequence
of events as the linear addition of the responses
to the individual events. Recently, reconvolution
was embedded in a CCA so that it simultaneously
optimizes a spatial filter as well as a temporal filter
(i.e., the transient responses to individual events)
[25, 93]. Furthermore, it was hypothesized that such
encoding model can limit the calibration data to less
than a minute up to none at all [22]. In fact, an
adaptive version of reconvolution was proposed to
investigate whether a zero-calibration c-VEP system
is feasible [22]. Results showed that the proposed
approach reached the same speed and accuracy as
a supervised calibrated version, with the benefit of
already selecting selected several commands while the
traditional approach was still calibrating [22].

Nagel et al. [26, 97, 98] employed linear ridge
regression models based on sliding windows to develop:
(1) EEG2Code, which takes the EEG response and
predicts the code used to generate it; and (2)
Code2EEG, which takes a sequence and predicts the

associated EEG response. Responses to commands
encoded with random sequences were used to calibrate
both models. Results of EEG2Code combined
with CCA reached performances around 90% when
predicting 1,000 different random stimuli. In online
experiments, their approach achieved mean accuracies
of 97.8% [97] and 99.3% [98] when discriminating
among 32 classes.

Yasinzai & Ider [82] studied single-edge VEP
responses (i.e., 1-0 and 0-1 transitions) and the
possibility to predict the complete c-VEP response
to bit-sequences using the superposition of these
individual events. Correlations between predicted and
real EEG responses to some bit-sequences were not
sufficient to ensure an adequate control of the BCI
(e.g., m-sequence ρ: 0.46). However, they found
a series of constraints that, provided they are met,
allow generating handcrafted superposition optimized
pulse (SOP) sequences that achieve high correlations
between the real and predicted c-VEP responses (e.g.,
ρ: 0.79). They tested the performance of a proposed
120-bit SOP sequence in a 35-target c-VEP-based
speller, achieving an average of 95.9% online accuracy
and 57.19 bpm. They concluded that, although there
are nonlinear interactions in the way the response to
a bit-sequence is generated, a linear superposition of
individual events could lead to acceptable predictions
for previously optimized bit-sequences.

Note that all these methods used linear models
(i.e., linear in their parameters) to predict unknown c-
VEP templates. Although assuming linearity in the
composition of single events into c-VEP templates
has proven to be sufficient for modeling these visual
responses, it is well-known that the brain behaves as a
nonlinear dynamic system [23, 82]. In fact, the actual
recognition of a specific event pattern in the stimulus
(which triggers the response) is a nonlinear aspect of
these approaches [24]. In this context, Nagel & Spüler
[99] combined EEG2Code with deep learning, allowing
the integration of nonlinear relationships between
events and c-VEP responses. The architecture, based
on a convolutional neural network (CNN) and trained
with 384 s of data, achieved an offline mean accuracy
of 84% when discriminating between 500,000 different
simulated random codes. In an offline analysis,
the model achieved an accuracy of 98.5% using a
speller composed of 32 targets. Although results
are promising, an additional online analysis with
more users is suggested to validate these preliminary
findings.

3.14. Alternative classification

As shown in section 3.2, finding the maximum
correlation coefficient between the spatially filtered
EEG responses and the c-VEP templates is the most
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common “classification” approach (54/70) to identify
the selected command in real-time. However, some
authors employed alternative classification methods for
this purpose, such as direct correlation of the EEG
responses with the bit-sequences [46], support vector
machines (SVM, 5/70) [59–61, 68, 85], one-class SVM
(OCSVM, 5/70) [50, 52, 53, 57, 70], linear discriminant
analysis (LDA, 4/70) [30, 78, 79, 85], or näıve Bayesian
classifiers [48] (1/70).

Even though there are some studies that used
multi-class linear SVMs [59–61, 85] or LDAs [30,
78, 79, 85] to discriminate between c-VEP targets,
performances typically decrease when the number of
commands increase. For that reason, the recommended
approach is to apply OCSVM and use distancies
between margins as a direct substitute for a correlation
comparison [50, 52, 53, 57, 70]. Once CCA is
trained, individual calibration epochs are averaged and
projected using wb (see section 3.2). Subsequently, the
projected epochs are processed by the OCSVM, which
creates a hyper-sphere that encloses a given percentage
of data, which makes it less sensitive to outliers than
the simple averaging method of the reference pipeline
(section 3.2). The center of the sphere is used as a
template, creating templates for the rest of commands
by shifting it. When an online epoch arrives, Euclidean
distances between the returned OCSVM score and the
centers of each target are calculated, selecting the
command that yields the minimum distance. Spüler et
al [52] obtained a significant improvement in decoding
accuracy using the OCSVM and Euclidean distance
(92.32%) compared to the standard averaging and
correlations (89.90%).

3.15. Calibration

In comparison with other BCIs, except SSVEP-based,
c-VEP-based systems do not require an excessive
amount of training trials to calibrate the signal
processing pipeline. As stated in section 3.3, SSVEP-
based systems do not require a mandatory calibration,
although recommended. P300-based BCIs, on the
other hand, require a copy-spelling stage of several
words, which usually lasts between 15-20 min [8, 9].
Even though many of the reviewed studies recorded
a large number of cycles to train their models to
perform offline analyses, it is well-known that c-VEP
based BCIs can yield a high accuracy with reduced
calibration times. For instance, Mohebbi et al. [87],
who achieved an average accuracy of 95.1% with 12.5 s
of calibration; Spüler et al. [50], reaching 95.0% with
1:08 min; or Gembler et al. [72], that achieved 91.7%
with 1:24 in, among others.

Despite that the duration of the calibration is
drastically reduced in comparison with other types of
BCIs, some authors proposed algorithms to eliminate

it completely [22, 53, 54]; i.e., unsupervised calibration
algorithms toward plug-and-play devices. Spüler et
al. [53, 54] proposed to use only two targets with a
great delay between them. After applying k-means
over the scores of OCSVM, two different clusters are
expected to be found. A cross-validation procedure is
continuously applied to detect the cluster that belongs
to each command, contributing to train the OCSVM
classifier without knowing the labels a priori. However,
only two targets are available until enough training
trials are recorded to create representative templates.
Although the achieved accuracy (85.1%) was lower
than using the typical supervised calibration (94.43%),
authors claimed the method might be useful for
completely locked-in patients [53, 54]. More recently,
Thielen et al. [22, 25] proposed an adaptive version
of reconvolution to investigate whether it is feasible
in zero-calibration contexts. Using the structure
matrices of each class, the label of an online epoch
is determined by maximizing the explained variance
among all models. They also used an early stopping
algorithm to vary the duration of each trial, which
decreases as the unsupervised calibration goes by.
Results showed that users achieved an online accuracy
of 99.6% with an average selection time of 4.2 s (using
12 s in the first trial), demonstrating that a zero-
calibration scenario is possible [22].

Although not calibration in a strict sense, Spüler
et al. [50] also proposed an unsupervised adaptation
of the classifier using error potentials (ErrP); i.e., a
predicted label is considered correct unless an ErrP is
detected. Using these unlabeled data to update the
templates proved beneficial for the system, as long as
the previous supervised calibration is appropriate.

Another interesting research line is the use of
transfer learning, which involves using models trained
in one setting and applying them in another setting
(e.g., inter-user, within users, etc). One of the most
common approaches involves training a model with
a set of users and testing it to unseen users. Then,
a refining of the model is applied to each user for
optimizing user-specific performances [12]. In spite
of the popularity of this technique nowadays, only
two studies tried to apply transfer learning using
LDA and SVM models. However, reported results
were not adequate to achieve a suitable generalization
[79, 85]. Whether deep learning based approaches such
as EEG2Code [99] are able to make transfer learning
feasible for c-VEP-based BCIs is still an open question.

3.16. Early stopping and asynchrony

Many of the reviewed studies (18/70) applied adaptive
early stopping techniques to dynamically choose in
real-time the time required to perform a selection in
online mode [14, 22, 24, 25, 50, 57, 67, 72, 74, 75, 80,
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83, 84, 86, 89, 93, 98, 99]. All of these studies based
their approaches on threshold comparisons, delivering
the selected command when an optimized measure
surpassed a predefined value.

These measures are usually derived from the
correlation coefficients ρ between the online trials
and the templates, such as direct comparison with
ρmax [14, 43, 44, 67, 72, 74, 80, 83, 84, 86,
87], cumulative correlation [75], logistic regression
models [89], comparisons between ρmax and a Beta
distribution fitted to the rest of coefficients [22, 25],
or transformations into p-values [98, 99]. Others used
a margin criterion: difference between the first and
second highest correlation [24, 93] or class margins
in OCSVM hyperplanes [57]. Generally, a properly
calibrated early stopping technique is beneficial for the
overall system performance to the point of yielding an
adequate accuracy without a drastic extension of the
selection time [67] (e.g., accuracies over 90% have been
achieved using a mean of 3.17 s [14], 3.26 s [74], or
5.17 s [72] per trial).

Interestingly, some of these studies (11/70) [14,
22, 24, 72, 74, 83, 84, 86, 93, 98, 99] applied their
algorithms under a sliding window strategy. The great
advantage of this approach is that it is not necessary to
wait to the end of a cycle to perform a selection, but the
system constantly makes decisions whenever a buffer of
EEG data is received. This could even lead to correct
classifications before completing a sequence cycle [14].
Furthermore, two of these algorithms were improved
toward an automatic threshold calibration, making
them completely unnoticeable to the user [14, 22].

Early stopping techniques could also be applied
to provide a self-paced control of the system. BCIs
are inherently synchronous systems; i.e., they are
constantly translating EEG activity into commands,
even without a voluntary intention from users. This
mode is unpractical in real contexts, as it requires
an expert to setup and control the application flow.
An asynchronous (i.e., self-paced, brain switch) system
would give the user the control of when trials should
start. This may be achieved by a non-control state
detection stage to monitor user’s attention and detect
whether the user wants to deliver a selection or not
[8, 9]. In this context, some of the studies adapted their
algorithms to provide an asynchronous stage, avoiding
command selections if threshold is not surpassed [14,
30, 43, 44, 57, 72, 74, 83, 86, 87, 98, 99]. However, more
efforts should be devoted to develop filter methods (i.e.,
independent of the classification stage) to guarantee
robustness against the inter-session variability due to
the non-stationarity of the EEG [10, 105]. Note that
static thresholds are wrapper methods that are prone
to be invalid whenever slightly different data from
training arrives, and must be also re-trained when the

decoding classifier is updated.

3.17. Dry electrodes

During the last years, several companies have
attempted to reduce hardware limitations that prevent
BCIs from being adopted commercially. A typical
limitation is the need of gel to improve the contact
between the scalp and the EEG sensors; i.e., to reduce
the electrode impedance [1]. Although necessary, gels
are not ideal for long-term recording because they
eventually dry out; nor are they practical, because
users rely on experts to set up the system. As an
alternative to wet electrodes, several materials have
been proposed to achieve dry (e.g., metal pins, spring-
loaded) or semi-dry (e.g., polymer wick-based) non-
invasive recordings, at the cost of normally exhibiting
worse SNRs [106]. In principle, the inherent robustness
of c-VEP stimulation would allow the use of these
types of electrodes (eventually at the expense of
trial duration). Of note, the non-stationarity of the
electrode-skin impedance would still need to addressed,
e.g., by recalculating the spatial filtering [1]. In this
context, active electrodes where pre-amplification is
performed locally at each electrode can perform well
in environments with noise and/or high electrode-skin
impedance [1].

In this context, Spüler [67] studied whether dry
electrodes are adequate for c-VEP-based BCIs. He
achieved an average accuracy of 75.9% (13.63 s per
trial) using a 15-channel dry system, observing a large
inter-user variability in performance. The accuracy,
however, was substantially lower than those reported
in previous studies with wet electrodes. Although a
direct comparison using the same user pool is necessary
to quantify this decrease in performance, the author
claimed that dry electrodes might be acceptable for
c-VEP-based BCIs.

3.18. Applications and portability

During the literature review, we have identified c-VEP-
based BCIs with different applications, such as control
of robots [30, 43, 44, 87], virtual agents [57], virtual
keyboard and mouse to control any Microsoft Windows
program [63], or even performing of psychological
experiments [78, 79]. However, most of the studies
have been devoted to provide spellers for alternative
communication purposes (for a comprehensive review
of speller BCIs, see [107]). Some of these implemented
virtual keyboards with word suggestions using n-gram
language models, favoring the communication speed
for final users [64, 72, 74, 83]. Of note, most of
these applications required a computer to display the
stimuli or process the EEG signal. Among the reviewed
studies, only two opted to implement a solution in a
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completely portable system such as an iPad Pro (Apple
Inc.) [22, 93].

3.19. Long-term use

An important but frequently ignored research line
in BCIs is the analysis of long-term viability of
classifiers. Owing to the high inter-session variability
and non-stationarity of the EEG, BCI classifiers should
be re-calibrated frequently in P300 or SMR-based
BCIs [12]. Gembler et al. [86] studied whether
c-VEP templates are still useful two weeks after the
calibration. They found that 8 out of 10 participants
could control the system with an average accuracy of
97.1%. They observed a slight non-significant decrease
in accuracy (first session: 98.5%), claiming that c-VEP
re-calibration from session to session might not be
needed for most users. Similarly, Yasinzai & Ider
[82] demonstrated that VEP responses to single flashes
do not show a significant inter-session variability two
weeks apart. Interestingly, no studies have focused on
analyzing the influence of user-learning on the decoding
performance.

3.20. Covert visual, auditory and tactile

Although systems based on P300, SSVEP and c-
VEP have been traditionally considered dependent
BCIs (i.e., depending on user’s muscle-based control
of gaze direction), some studies showed that this
statement is not entirely true [1]. Recently, researchers
have developed paradigm variations for controlling
P300 and SSVEP-based BCIs using covert attention;
i.e., attending to a target stimulus, while not gazing
directly at it [1]. Even though performances are
generally higher when using a typical overt control,
covert attention might be appropriate for users who
lack reliable gaze control [1].

For c-VEP-based BCIs, to date only one study by
Waytowich & Krusienski [56] designed an alternative
paradigm to explore non-foveal gaze fixation. They
proposed a ring-based distribution of 4 stimuli encoded
with an m-sequence (τ = 15), where commands were
slightly displaced from the stimulus locations (2–5◦

of visual angle from foveal center). Although direct
foveal fixation reached a higher accuracy (99.4%) than
parafoveal fixation (89.7%), it is claimed that covert
control is feasible. Nevertheless, further research
should be conducted to validate these findings and
study how the distance between stimuli and targets
affects system performance, as well as to give insight
into how many targets can be decoded.

Furthermore, so far only one study explored
another sensory modality other than vision. Farquhar
et al. [27] explored the use of noise-tagging, the
stimulus paradigm behind code-modulated evoked

potentials, within the auditory domain. Participants
were simultaneously presented with two stimuli, one
to each ear, and had to attend to either one of them.
For a total of three HU, they found an accuracy higher
than chance (about 56.3%), which was lower than using
frequency-tagging (about 64.3%); i.e., the stimulus
protocol underlying SSVEP. To our knowledge, the
tactile sensory modality has not been explored yet
with noise-tagging. The exploration of these auditory,
tactile and covert visual attention may be an important
future research direction to make code-modulated BCIs
generally accessible.

3.21. Motor-disabled users

Despite BCIs are generally developed with the aim of
improving the quality of life of motor-disabled users,
studies often fail to test their systems with target
users. In fact, among the 70 studies included in
this review, only two studies tested their c-VEP-based
BCIs with people with disabilities [19, 93]. In 1992,
Sutter tested an invasive ECoG system with an ALS
patient, reaching speeds of 10-12 words per minute [19].
Recently, a study from Verbaarschot et al. [93] tested
an EEG-based speller based on c-VEP composed by
29 commands with a population of 20 HU (12 young,
<35 years; 10 old, ≥ 35 years) and 10 ALS patients.
Copy-spelling results showed that the ALS patients
were able to control the system (79.3%, 20.3bpm),
although achieving lower overall performances than the
HU (young: 94.3%, 24.8bpm; old: 88.3%, 21bpm). Of
note, ALS results were more heterogeneous, since 2 of
them could not control the full keyboard. In general,
the use of c-VEP-based systems by ALS patients seems
feasible and promising to provide an alternative device
for communication in the early and middle stages of
the disease [93].

The rest of the studies (68/70) validated their
BCIs with healthy users, making it impossible to infer
their viability in a real-world context. Although the
c-VEP responses for ALS patients have been shown to
be very similar to those of HU [93], it has been widely
documented that people with disabilities tend to reach
lower BCI performances than control users. This issue
may be due to problems inherent to the disease [93],
and/or indirect such as mental disabilities, essential
tremors, nystagmus, etc [8, 9, 11]. Thus, c-VEP
systems have been shown to provide an excellent level
of control for healthy participants; however, more
efforts should be devoted to validate these systems with
target populations and to study its feasibility outside
the laboratory.
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3.22. Public databases

Five of the included studies (5/70) have made available
their datasets to the public [22, 24, 66, 91, 98]. Details
of these databases are summarized in table 3. Note
that two of them offer raw data [22, 24], while the
other two provide pre-processed data [66, 91, 98]. To
the best of our knowledge, these are the only open
datasets available for c-VEP-based BCIs, helpful for
other researchers to develop and benchmark novel
methodologies to improve the performance of these
systems. Additionally, we encourage researchers to
open up their analysis scripts alongside their data to
improve open science.

4. Discussion

Throughout the manuscript, a comprehensive litera-
ture review on c-VEP-based systems since its incep-
tion (1984) until today (2021) has been performed. In
section 3, the main aspects of 70 related studies have
been analyzed in 22 subsections. In the following, all of
these are taken into account to discuss the level of de-
velopment of current state-of-the-art c-VEP BCIs, the
immediate challenges and promising research lines.

4.1. State-of-the-art c-VEP systems

Over the years, c-VEPs have been consolidated as
a robust control method to achieve reliable and
high-speed BCIs. In the early studies, c-VEPs
were validated as a suitable alternative to P300 and
SSVEP-based BCIs [13, 19], even to eye tracking
devices [56]. Soon, multi-channel single circularly
shifted m-sequence CCA-based approaches became
established as the preferred signal processing pipeline
[47]. Although other classification alternatives such
as OCSVM were proposed [50], traditional template
matching correlation-based methods prevailed. Frame
rate (often limited by the display hardware) was also
identified as a trade-off between performance and
speed, finding that presentation rates in the range of
60-120 Hz maintain a suitable balance between both
variables [73, 76]. Regarding sequence generators,
system performances did not vary significantly in
real EEG data as long as adequate auto-correlation
properties were guaranteed [44, 45]. Of note, filter
banks [83] and stBF [66, 71] also arose as promising
supplements and alternatives to CCA, respectively.

Even though c-VEP-based BCIs were able to
reach high performances when using a single-sequence,
its length restricts the number of commands that
can be decoded (e.g., using a 63-bit sequence: 16
for τ = 4, 32 for τ = 2). Thus, multi-sequence
systems emerged to increment the maximum number
of discriminative classes [23, 95]. Due to the need

to consider not only appropriate auto-correlation
properties, but also minimal cross-correlation between
sequences, BCI performances were prone to decrease
[23]. In order to encode more commands, some
authors opted to implement nested selection matrices
[72], or control a “virtual mouse” over the keyboard
layout [64]. Recently, modeling c-VEP responses using
linear regression [22, 98] and deep learning [99] has
made it possible to discriminate random flashing codes.
The possibility to decode more than 500,000 different
simulated classes has also suggested a change in the
paradigm and a possible solution to decode a large
number of commands [99].

Once performances in terms of accuracy and speed
are guaranteed even for systems that encompass a great
amount of different classes, efforts might be focused
to improve other practical aspects such as adaptation,
asynchrony or user-friendliness. For instance, plug-
and-play c-VEP-based BCIs are becoming a reality
due to the development of cutting-edge zero-calibration
algorithms [22]. Early stopping techniques based on
sliding windows have also been shown to be beneficial
to adapt the selection time [14, 22, 99], as well as to
provide an asynchronous control of the system [14, 99].
Informing the user about the adaptive confidence of the
classifier in real-time via colored frames [24] or progress
bars [74] makes the experience more immersive and
may favor the user to attend to the stimuli. Another
simple but effective recent proposal is to correct for
raster latencies, which can degrade the overall system
performance if not corrected [70].

Reducing user-fatigue has also been a priority in
recent years. Under the assumption that traditional
c-VEP-based systems do not depend significantly on
the type of sequence provided a low auto-correlation
is guaranteed, some authors proposed hand-crafted
sequences with tuned spectral components that are
more pleasant to the user [45, 96]. Higher presentation
rates have also been repeatedly shown to be less
fatiguing for users, although the aforementioned trade-
off concerning accuracy should be taken into account
[62, 69, 73, 76]. In this context, non-binary sequences
emerged as a promising approach to reduce user-
fatigue, since encoding different labels with shades of
greys would substantially reduce subjective discomfort
caused by flicker patterns [84]. In addition to the
intensity levels, the use of colors instead of a simple
black and white contrast is promising, although results
are not conclusive.

Owing to the increase of wireless EEG equipment,
the possibility of developing completely portable
c-VEP-based systems lays on the table. Most
smartphones and tablets work on 60 Hz rates, although
there are some on the market that are able to reach
120 Hz. Favoring portability is a key aspect for
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Table 3. Available public databases of c-VEP-based BCI studies

Article Ref. Data type Users Nc
Sampling Sequence

Bit-sequence(s)
ratea rate

Thielen et al. (2015) [24] Raw 12 HU 64 2048 Hz 120 Hz 65 Gold codes (126 bits)b

Wittevrongel et al. (2017) [66] Pre-processed 17 HU 32 100 Hz 60 Hz M-sequence (63 bits)
200 Hz 120 Hz M-sequence (63 bits)

Nagel & Spüler (2019) [98] Pre-processed 10 HU 32 600 Hz 60 Hz 150 random codes (15 bits)b

Ahmadi et al. [91] Pre-processed 5 HU 256 360 Hz 60 Hz 65 Gold codes (126 bits)b,1

10 HU 8 360 Hz 60 Hz 65 Gold codes (126 bits)b,2

Thielen et al. (2021) [22] Raw 41 HU 8 512 Hz 60 Hz 65 Gold codes (126 bits)b

a EEG sampling rate; b The full set of codes was not used, only the required subset to encode each command with a unique sequence.

Nc: number of recorded channels, HU: healthy users. Direct links: Thielen et al. (2015) [doi.org/10.34973/1ecz-1232], Wittevrongel

et al. (2017) [kuleuven.app.box.com/v/CVEP], Nagel & Spüler (2019) [doi.org/10.6084/m9.figshare.7611275.v1], Ahmadi et al.

(2019) [1: doi.org/10.34973/psaf-mq72, 2: doi.org/10.34973/ehq6-b836] Thielen et al. (2021) [doi.org/10.34973/9txv-z787].

practical BCIs, however, only one study implemented
the system on a tablet [22]. Note that because of
the ubiquity of the Internet nowadays, a client/server
architecture would solve any computational cost issue
that might arise with regards to signal processing [108].

As shown, the exponential increase in c-VEP-
based studies in the last decade has led to a
substantial advance in the field. Nowadays, the
implementation of the aforementioned ideas and
algorithms would guarantee a high control accuracy
and speed. Therefore, it is suggested that research
in the next few years could be more focused toward
practical use of these systems in real word scenarios.

4.2. Current challenges and future directions

4.2.1. Bit-sequences. Arguably, one of the most
important aspects of a c-VEP-based BCI is the choice
of stimulation sequence(s) used to evoke the c-VEP.
As demonstrated throughout this review, the original
studies as well as many studies after have used a single
m-sequence that exhibits a favorable autocorrelation
function [13]. By circularly shifting the m-sequence,
the stimulation sequences of the other commands are
created. As discussed in section 3.5, this circular
shifting approach is also used with other bit-sequences
such as APA, Barker, de Bruijn, Golay, Gold, and
Kasami sequences. Alternatively, several studies
utilized Gold and Kasami sets, which present low
cross-correlation properties. In general, the reason for
using these types of bit-sequences is to exploit the low
correlation between them, which is assumed to lead
to low cross-talk between the evoked c-VEP responses,
which in turn should optimize decoding accuracy [22].
Note that the circular-shifting approach requires a
reliable timing signal between stimulus presentation
and EEG acquisition; whereas the use of code families
(e.g., Gold, Kasami) does not require such an exact
synchronization, since they can be detected regardless
of time shifts.

Despite all of them having good correlation
properties, several studies have investigated whether
the choice of bit-sequences and code families can
substantially affect the decoding accuracy. Although
some studies found that most of them yield a similar
accuracy [43–45], Torres & Daly [88] claimed that
de Bruijn, Golay, and APA sequences outperformed
m-sequences, Gold codes, and Kasami sequences in
simulated EEG data. Additionally, other studies have
investigated custom made bit-sequences [45, 82, 96].
For example, random bit-sequences showed a similar
performance as m-sequences [26]. In a subsequent
study, a non-significant increase was observed for
slightly optimized bit-sequences taking into account
a specific number of bit-changes versus the random
bit-sequences [97]. Furthermore, chaotic codes were
shown to yield a similar accuracy as compared to m-
sequences while reducing user-fatigue [45]. Similarly,
codes that were optimized by taking into account some
aspects of the visual system physiology increased the
accuracy as compared to m-sequences [82, 96]. In
general, further research is needed to study which
predefined or manually optimized bit-sequences yield
the best performance, and what are the properties that
make one bit-sequence favorable over another.

Apart from reaching higher decoding performance,
care should be taken to make the stimulation patterns
as convenient for the user as possible. Throughout the
literature, we have identified several attempts to make
the flash patterns less irritating and fatiguing. For
instance, modulating any bit-sequence to limit low-
frequency content [24], using alternative colors than
the high-contrast black-white [58, 62], or using higher
presentation rates [58, 66, 69]. Additionally, care must
be taken on the size and proximity of the different
commands in the speller grid [29]. Furthermore, within
other paradigms than c-VEP, the appearance of the
stimuli has been shown to substantially affect ERP
components and the decoding performance, such as

https://doi.org/10.34973/1ecz-1232
https://kuleuven.app.box.com/v/CVEP
https://doi.org/10.6084/m9.figshare.7611275.v1
https://doi.org/10.34973/psaf-mq72
https://doi.org/10.34973/ehq6-b836
https://doi.org/10.34973/9txv-z787
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the use of checkerboards [17], specific overlays such
as famous faces [109], or motion-onset [110], among
others. Again, additional research is required to make
the external stimulation that is necessary to evoke
c-VEP responses more practical and optimal for robust
and long-term adoption of these BCIs.

Finally, in section 3.9, we showed that many
studies apply the principle of equivalent neighbors [19],
assuming that c-VEP responses to the outer commands
are sufficiently different to entail a decrease in accuracy
with respect to the inner commands. However, this
assumption has never empirically tested to be true or
not, despite its widespread use in the literature. The
use of equivalent neighbors severely limits the choice of
stimulus parameters and might increase confusion, but
may potentially increase overall decoding performance.
Additionally, this setup is a opportunity that arises
when using the circular shifting method to homogenize
time-shifts throughout the matrix, which is argued to
require a better time synchronization than paradigms
that do not rely on circular shifting.

4.2.2. Signal processing pipeline. Another important
ingredient in the design of a c-VEP-based BCI is the
decoding stage. As discussed in this review, many
of the studies rely on a type of template-matching
algorithm in which, by some similarity (e.g., Pearson’s
correlation) or distance metric (e.g., Euclidean), the
current EEG is compared to certain learned templates
(i.e., the c-VEP responses to each candidate bit-
sequence underlying each potential command). These
templates are either built by some standard pooling
approach (e.g., an average), or by means of a
modeling approach (e.g., reconvolution, EEG2Code).
Additionally, most studies used CCA to optimize
spatial filters to combine the information obtained from
multiple EEG channels. But still, several exciting
future directions to improve the signal processing
pipeline are identified below.

Firstly, deep learning has shown its potential in
common domains like image classification and language
processing, and is starting to be adopted in the BCI
community as well (see e.g., [12, 111, 112]). Within
c-VEP-based BCIs, the typical convolutional neural
network architecture that performs both spatial and
temporal convolutions has been explored as well, with
positive results over standard regression approaches
[99]. Aside its nonlinear characteristic, applying deep
learning in this context has the benefit of integrating all
components that are otherwise optimized sequentially.
Specifically, these networks are designed to optimize
both a spatial filter as well as a cascade of temporal
filters and a hierarchical classification in an end-to-end
fashion.

Since deep learning is a rapidly progressing field,

many of its novel developments are ready to be adopted
in the BCI field to improve performances. One con-
crete future direction would be to explore the temporal
characteristics of the c-VEP response. Specifically, cur-
rently models predict whether an on-state (or a flash)
happened or not. Given the highly nonlinear nature
of the brain (i.e., neuronal adaptation, habituation,
neural entrainment), incorporating temporal structure
might benefit the decoding, e.g. by adopting recurrent
neural networks. A second concrete example concerns
transfer-learning. Despite that c-VEP templates show
a low inter-session variability [82, 86] and calibration
is not as tedious as for other types of BCIs, it would
be interesting to study whether applying cross-subject
transfer learning (e.g., using deep learning) is feasible,
providing enough data is available. In that case, a pre-
trained network might serve any new user, employing
an unsupervised adaptive strategy to refine the classi-
fier as more trials are recorded. Furthermore, it would
be also interesting to evaluate the influence of user-
learning on the overall decoding performance of the
system.

Another important aspect in the classification
pipeline, related to the aforementioned, is the adop-
tion of adaptive methods. First and foremost, EEG is
a non-stationary signal, reflected in changing data dis-
tribution over time that may be caused by many factors
such as loss of electrode connectivity, user-learning, as
well as user-fatigue. Additionally, considering a pre-
trained cross-subject classifier, adaptation and fine-
tuning to the current user might be an important as-
pect to take into account.

In spite of their excellent decoding performances,
some of the modeling approaches introduced in
section 3.13 also allow to give insight about the
underlying generation of c-VEPs [22, 82, 99]. The
sliding window mechanism of EEG2Code [99] and
reconvolution [22] try to mimic the actual behavior of
our brains in response to noise-like bit-sequences. In
particular, reconvolution learns responses to individual
events that constitute the bit-sequence, instead of
learning responses to the full time series. Apart from
the benefit of reducing the amount of training data
toward a zero-calibration system [22], the framework
also poses a fundamental neuroscientific question:
what is the basic element (i.e., event) that the brain
responds to? Several open questions around the
assumption of linearity still remain. Specifically,
is it possible to model the c-VEP response by the
convolution of one basic flash VEP, or should the
duration of the flash be considered to take into account
neural adaptation? In particular, Yasinzai & Ider
[82] have exploited the influence of basic VEP linear
superpositions in generating full c-VEP responses to
bit-sequences, although they stated that nonlinear
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interactions appear to play an important role in this
process. Giving answers to these questions would be
of importance to those models which typically predict
flash versus no-flash, as they could predict the length
of a flash as well. The application of explainable deep
learning on models such as EEG2Code [99] could be
also an interesting future research line to give insight
into the presumably nonlinear generation of the c-VEP
response.

Finally, several aspects along the signal processing
pipeline tend to remain on the background. For
instance, CCA is a linear subspace method that finds
linear projections of the data to achieve maximal
correlation between two variables. Like any other
subspace method, CCA returns multiple components,
which in CCA are orthogonal. Typically, in a c-VEP
classification pipeline, only the first component is used
as spatial filter, while the other components might
contain relevant information [83, 86]. Analyzing the
relevance of these components could also pose an
interesting research line.

4.2.3. Toward practical plug-and-play BCIs. Apart
from the limitations of non-invasive recordings, which
c-VEPs try to bypass as control signals to reach
suitable performances, EEG equipment should ideally
not require gel, be comfortable, cheap, easy to setup,
portable, robust to movements and perform well in
real-world environments. Even though some studies
focused on developing c-VEP-based BCIs without
calibration [22], with reduced user-fatigue [84], fully
portable and using water-based [22] or dry electrodes
[67], more efforts should be made to propose final
self-paced systems that can be applied in a real
context without intervention of an expert. Although
out of the scope of this manuscript, EEG hardware
improvements should play an essential role in making
BCIs commercially interesting. Further endeavors
could also be directed to develop practical applications
with low-cost hardware. Due to the robustness of
c-VEPs against inter-session variability [82, 86] and
poor signal quality [67], as well as the possibility to
accurately decode them using a single EEG channel
[13]; the use of wireless EEG equipment with reduced
channel sets [91] appears to be feasible.

Furthermore, to make c-VEP-based BCIs practi-
cal, a considerable effort should be made to make the
exogenous stimulation more user-friendly. As discussed
above and owing to the fact that increasing the pre-
sentation rate (>120 Hz) seems to affect to the sys-
tem performance negatively [73], non-binary sequences
have emerged as promising alternatives to reduce vi-
sual fatigue [84]. Another interesting research line to
improve users comfort could be focused on testing sys-
tems with different p-ary sequences, such as non-binary

Golay pairs, or m-sequences over GF(p).
Additionally, a fully practical BCI setup should

include an asynchronous stage (e.g., non-control
detection) so that the user can use the system when
needed, avoiding false selections to be made whenever
the user gazes away from the application [44, 86, 98].
Ideally, the asynchronous detection method should rely
on filter-based approaches (i.e., independent of the
classification stage) to favor the robustness of the BCI
against the inter-session variability of the EEG.

Finally, current c-VEP-based BCIs are mostly
gaze-dependent, implying some form of muscle control
(i.e., directing one’s gaze) is required. Developing
alternative covert paradigms, e.g., by using covert
visual attention or other sensory modalities such
as auditory or tactile BCIs; might be required to
make c-VEP-based BCIs accessible to late-stage ALS
patients or any disease that impair gaze control. We
identified only two studies that attempted to use
c-VEP with covert visual attention [56] or auditory
responses [27]. Typically, decoding accuracy suffers
substantially when these types of interaction are used,
which emphasizes the need for further research.

4.2.4. Applications. From the onset of the research
field, most BCI applications were focused on improving
the quality of life of severely disabled people, e.g.,
locked-in patients, ALS, multiple sclerosis, cerebral
palsy, stroke, etc. However, although the majority
of the reviewed studies emphasizes this objective to
justify the relevance of their proposals, only two
studies validated the system with disabled users [19,
93]. As it is well-known that performances tend
to decline in motor-disabled populations [8, 9, 93],
ensuring the robustness of these systems with target
users is currently essential to take the leap from
laboratories to real applications. Particularly, the
study of Verbaarschot et al. [93] demonstrated that
the use of non-invasive c-VEP-based spellers by ALS
patients is feasible. We would like to encourage new
research applied in target populations to analyze the
viability of c-VEP decoding in other diseases, as well
as to reaffirm these findings.

Of note, noise-like sequences are not only used in
the BCI field to effectively encode commands. Many
of these sequences are used in telecommunication do-
mains because of their error correcting characteristics.
Additionally, they have shown their value in measur-
ing stimulus responses in complex nonlinear dynam-
ical systems. For instance, narrow-band and broad-
band noise have been used to characterize hearing abil-
ities or to select appropriate parameters of hearing-aids
[113]. Furthermore, the use of noise-like patterns have
greatly improved the assessment of the eye and the
optic tract with multifocal VEP [114]. The estima-
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tion of specific evoked responses has been shown to
benefit a randomization based on m-sequences [115],
and to estimate impulse responses in general [116]. Fi-
nally, a general framework that allows the character-
ization of VEPs with continuous signals was devised
(unlike the discrete ones in this review) in the visual
domain, known as visually evoked spread spectrum re-
sponse potential (VESPA) [117]; and in the auditory
domain, the auditory evoked spread spectrum response
potential (AESPA) [118]. In general, these noise-like
methods facilitate the estimation of evoked potentials,
which can be exploited for various applications.

Finally, we would like to encourage new re-
searchers to open up their data and analysis pipelines,
as well as to use the currently available open datasets
[22, 24, 66, 91, 98] to serve as benchmark for offline
analyses. In such a way, new research can easily be
compared quantitatively to favor improvements in ex-
isting algorithms and the development of novel pro-
posals. In addition, proper results reports would al-
low for further meta-analyses to combine the results of
different studies and draw joint conclusions about the
state-of-the-art in c-VEP-based BCIs.

5. Conclusion

The ability of c-VEPs to achieve reliable high-
speed control is well-known in the non-invasive BCI
community. In this manuscript, a comprehensive
literature review of 70 studies since its inception (1984)
until today (2021) has been performed, including
journal publications, conferences, book chapters and
non-indexed documents. As a result, multi-channel
circularly shifted m-sequence CCA-based systems were
identified as the preferred approach in most studies.
However, this reference pipeline might be improved
by implementing c-VEP response modeling, raster
latency correction, adaptive calibration, or early
stopping approaches. Recently, some studies have
also devoted efforts to make c-VEP-based BCIs more
user-friendly, e.g. reducing visual fatigue using high-
frequency stimulation, hand-crafted codes or non-
binary sequences. A detailed table of all the included
studies is available in the supplementary material.

Nowadays, most of the initial challenges of c-VEP-
based BCIs have been overcome. The implementation
of some of the discussed cutting-edge algorithms
allows to provide a reliable control of a BCI
with a large number of commands, high selection
speeds and even without calibration. Although this
technology is beginning to make the leap to its
commercialization, a general lack of validation with
motor-disabled populations was observed. Therefore,
future research should focus on developing c-VEP-
based BCIs toward real applications, emphasizing their

portability, asynchrony, and validation with target
users.
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[12] Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-
Cagigal, Fernando Vaquerizo-Villar, and Roberto
Hornero. EEG-Inception: A Novel Deep Convo-
lutional Neural Network for Assistive ERP-Based
Brain-Computer Interfaces. IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
28(12):2773–2782, 2020.

[13] Guangyu Bin, Xiaorong Gao, Yijun Wang, Bo Hong,
and Shangkai Gao. VEP-based brain-computer
interfaces: Time, frequency, and code modulations.
IEEE Computational Intelligence Magazine, 4(4):22–
26, 2009.

[14] Felix Gembler, Piotr Stawicki, Abdul Saboor, and
Ivan Volosyak. Dynamic time window mechanism
for time synchronous VEP-based BCIs-Performance
evaluation with a dictionary-supported BCI speller
employing SSVEP and c-VEP. PLoS ONE, 14(6):1–
18, 2019.

[15] Adrien Combaz, Camille Chatelle, Arne Robben,
Gertie Vanhoof, Ann Goeleven, et al. A Comparison
of Two Spelling Brain-Computer Interfaces Based on
Visual P3 and SSVEP in Locked-In Syndrome. PLoS
ONE, 8(9), 2013.

[16] Betts Peters, Steven Bedrick, Shiran Dudy, Brandon
Eddy, Matt Higger, et al. SSVEP BCI and
Eye Tracking Use by Individuals With Late-Stage
ALS and Visual Impairments. Frontiers in Human
Neuroscience, 14(November):1–15, 2020.
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II: How many (and What Kinds of) people can use
a high-frequency SSVEP BCI? IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
19(3):232–239, 2011.

[34] Hooman Nezamfar, Seyed Sadegh Mohseni Salehi,
Matt Higger, and Deniz Erdogmus. Code-VEP vs.
eye tracking: A comparison study. Brain Sciences,
8(7), 2018.

[35] Berkan Kadioglu, Ilkay Yildiz, Pau Closas,
Melanie B. Fried-Oken, and Deniz Erdogmus.
Robust Fusion of c-VEP and Gaze. IEEE Sensors
Letters, 3(1):2019–2022, 2019.

[36] Solomon W Golomb. Shift register sequences:
secure and limited-access code generators, efficiency
code generators, prescribed property generators,
mathematical models. World Scientific, 2017.

[37] Robert Gold. Optimal binary sequences for spread
spectrum multiplexing (corresp.). IEEE Transactions
on Information Theory, 13(4):619–621, 1967.

[38] Tadao Kasami. Weight distribution formula for some
class of cyclic codes. Coordinated Science Laboratory
Report no. R-285, 1966.

[39] RH Barker. Group sysnchronizing of binary digital
systems. Communication Theory, pages 273–287,
1953.

[40] Marcel Golay. Complementary series. IRE
Transactions on Information Theory, 7(2):82–87,
1961.

[41] Jacques Wolfmann. Almost perfect autocorrelation
sequences. IEEE Transactions on Information
Theory, 38(4):1412–1418, 1992.

[42] Nicolaas Govert De Bruijn. A combinatorial problem.
In Proc. Koninklijke Nederlandse Academie van
Wetenschappen, volume 49, pages 758–764, 1946.

[43] Jonas Isaksen, Ali Mohebbi, and Sadasivan
Puthusserypady. A comparative study of pseu-
dorandom sequences used in a c-VEP based BCI
for online wheelchair control. In Proceedings of
the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS,
volume 2016-Octob, pages 1512–1515. IEEE, 2016.

[44] Jonas L. Isaksen, Ali Mohebbi, and Sadasivan
Puthusserypady. Optimal pseudorandom sequence
selection for online c-VEP based BCI control
applications. PLoS ONE, 12(9):1–13, 2017.

[45] Zahra Shirzhiyan, Ahmadreza Keihani, Morteza
Farahi, Elham Shamsi, Mina GolMohammadi, et al.
Introducing chaotic codes for the modulation of
code modulated visual evoked potentials (c-VEP) in
normal adults for visual fatigue reduction. PLoS
ONE, 14(3):1–29, 2019.

[46] K. Momose. Evaluation of an eye gaze point detection
method using VEP elicited by multi-pseudorandom
stimulation for brain computer interface. Annual
International Conference of the IEEE Engineering
in Medicine and Biology - Proceedings, 3:5063–5066,
2007.

[47] Guangyu Bin, Xiaorong Gao, Yijun Wang, Yun Li,
Bo Hong, and Shangkai Gao. A high-speed BCI
based on code modulation VEP. Journal of Neural
Engineering, 8(2), 2011.

[48] Hooman Nezamfar, Umut Orhan, Shalini Purwar,
Kenneth Hild, Barry Oken, and Deniz Erdogmus.
Decoding of Multichannel EEG Activity from the
Visual Cortex in Response to Pseudorandom Binary
Sequences of Visual Stimuli. International Journal
of Imaging Systems and Technology, 21(2):139–147,
2011.

[49] H. Nezamfar, U. Orhan, D. Erdogmus, K. E. Hild,
S. Purwar, et al. On visually evoked potentials
in EEG induced by multiple pseudorandom binary
sequences for brain computer interface design. In
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 2044–2047. IEEE, 2011.
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[52] Martin Spüler, Wolfgang Rosenstiel, and Martin
Bogdan. One class SVM and canonical correlation
analysis increase performance in a c-VEP based
brain-computer interface (BCI). In ESANN 2012
proceedings, 20th European Symposium on Artificial
Neural Networks, Computational Intelligence and
Machine Learning, number April, pages 103–108,
2012.
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