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Abstract. We characterize, in terms of its idempotents, the Leavitt path algebras of an
arbitrary graph that satisfies Condition (L) or Condition (NE). In the latter case, we also
provide the structure of such algebras. Dual graph techniques are considered and demon-
strated to be useful in the approach of the study of Leavitt path algebras of arbitrary graphs.
A refining of the so-called Reduction Theorem is achieved and is used to prove that I(Pc(E)),
the ideal of the vertices which are base of cycles without exits of the graph E, a construction
with a clear parallelism to the socle, is a ring isomorphism invariant for arbitrary Leavitt
path algebras. We also determine its structure in any case.

Introduction

Leavitt path algebras LK(E) of row-finite graphs were recently introduced in [2] and [10].
They have become a subject of significant interest, both for algebraists and for analysts
working in C∗-algebras. For a field K, the algebras LK(E) are generalizations of the algebras
investigated by Leavitt in [22], and are generated by the quotients of the so-called (CK1) and
(CK2) relations applied to path K-algebras associated to graphs E. Moreover, as established
in [25], LK(E) is always an algebra of right quotients of KE. The family of algebras that
can be obtained as the Leavitt path algebras of some graph includes, but is by no means
limited to, matrix rings Mn(K) for n ∈ N∪{∞} (where M∞(K) denotes the ring of matrices
of countable size with only a finite number of nonzero entries), the Laurent polynomial ring
K[x, x−1], the algebraic Toeplitz algebra and the classical Leavitt algebras L(1, n) for n ≥ 2.
Constructions such as direct sums, direct limits and matrices over the previous examples can
also be realized in this setting.

Since Leavitt path algebras are constructed from graphs, it is natural to try to understand
how the properties of the graph E restrict and shape that of LK(E). In this approach, maybe
the first noticeable restrictions are those related to the cardinality of the graph. In this sense,
the first breakthrough was to remove the hypothesis of row-finiteness in the underlying graphs
in the original definition. This was first done for Leavitt path algebras in [4] and [27]. It
is often the case that the row-finite results are no longer valid for not necessarily row-finite
graphs, and when they are, they may come up from totally different proofs, because the
existence of infinite emitters (vertices that emit an infinite number of edges) disrupts the
application of the (CK2) condition, fundamental to many established proofs, and therefore it
causes new phenomena and forces the necessity of finding new tools to circumvent either the
application of (CK2) or the appearance of infinite emitters. For example, in [4] it is shown
that from a row-infinite countable graph E one can construct a row-finite countable graph
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F , a desingularization of E, in such a way that LK(E) and LK(F ) are Morita equivalent and
there is a monomorphism of K-algebras from LK(E) to LK(F ). Finally and very recently,
Leavitt path algebras have entered their final stage in terms of cardinality restrictions: by
dropping also the countability assumption, arbitrary graphs are now the subject of study, a
road started in [20] and [8].

But cardinality is by no means the only graph property relevant to the study of Leavitt
path algebras. Because of the handy pictorial representation that the graph provides, a great
deal of effort has been focused on trying to figure out the algebraic structure of LK(E) in
terms of the graphical nature of E. Concretely, necessary and sufficient conditions on a graph
E have been given so that the corresponding Leavitt path algebra LK(E) is simple [2], purely
infinite simple [3], exchange [14], finite dimensional [6], locally finite (equivalently noetherian)
[7], semisimple [5], prime or primitive [15] and von Neumann regular (equivalently π-regular)
[8]. Reciprocally, there is some interest on finding ring theoretic characterizations for the
Leavitt path algebras of graphs that satisfy properties that are recognizable just by visual
inspection, since this implies that if LK(E) ∼= LK(F ) as rings for two graphs E and F , then
those graph features are to be satisfied by either or none of the graphs. For example, as was
established recently, acyclic graphs are precisely those whose Leavitt path algebras are von
Neumann regular rings ([8]); also, graphs whose closed simple paths are never found alone,
a graph property known as Condition (K), were characterized in the row-finite [14] and the
general case [20] as those whose Leavitt path algebras are exchange rings. In this paper we
are interested on two graph properties known as Condition (NE) and Condition (L). The first
of them asks for all the cycles of the graph to have no exits, while the second one, in full
contrast, demands that every cycle has an exit (an exit for a cycle being an edge that allows
us to get “untrapped” from the cycle). Both conditions showed up, jointly with other graph
properties, in the characterization of locally noetherian [7] and simple Leavitt path algebras
[2], respectively; and necessary and sufficient conditions on LK(E) in order for Condition (L)
to be satisfied by E are known too, but they involve some relation between vertices and ideals
(e.g., [15, Proposition 2.8 (ii)]). We present ring theoretic characterizations of both conditions
for arbitrary graphs, in terms of idempotents. Concretely, in Theorem 3.2 we establish that
E satisfies Condition (NE) if and only if LK(E) does not present infinite idempotents (and
identify the algebraic structure of LK(E)), while in Theorem 4.8 we show that E satisfies
Condition (L) if and only if LK(E) has no non-minimal primitive idempotents.

Conditions (NE) and (L) can be seen as two particular aspects of a more general setting.
Consider the set of vertices which are in cycles without exits, Pc(E), and the ideal it generates
in LK(E), I(Pc(E)). Then it is to be expected that if E satisfies Condition (NE), the main
algebraic features of LK(E) will be comprised in this ideal, while it is easy to see that E
satisfies Condition (L) if and only if I(Pc(E)) = 0. So, we study this ideal in Section 5 with
the purpose of generalization. Furthermore, in the context of Leavitt path algebras (which
are always semiprime, [4, Proposition 6.1]) the socle acquires the form I(Pl(E)), where Pl(E)
is the set of line points of E ([13, Theorem 5.2]), which comprises the sinks and the vertices in
infinite paths without bifurcations or cycles. Hence, there is an a priori eventual relationship
between I(Pc(E)) and Soc(LK(E)). We prove that this relationship is in fact deep, existing
a clear algebraic parallelism between them at other levels as well. In particular, in Theorem
5.10 we show that I(Pc(E)) is also a ring isomorphism invariant for Leavitt path algebras of
arbitrary graphs.
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To achieve our main results we develop two different tools: Condition (L) is determined
thanks to an study of primitive idempotents, Condition (NE) by dual graph techniques.
I(Pc(E)) is studied by combining both and by refining, in Theorem 5.8, a useful result about
Leavitt path algebras.

In Section 4 we establish, in Proposition 4.3, that the primitive vertices of any Leavitt
path algebra are precisely those whose tree does not contain any bifurcations. This contrasts
with the path algebras setting even in the finite context, where any vertex is automatically
primitive ([19, page 4, (7)]). Since minimal vertices are known to be those whose tree does
not contain any bifurcations or cycles without exits, non-minimal primitive vertices allow us
to detect the presence of cycles without exits in the Leavitt path algebra.

In Section 2 we follow some ideas introduced by G. Abrams and K. M. Rangaswamy in
[8] in the setting of Leavitt path algebras, slightly changing their notation and definitions.
Given a graph, we define the dual graph of any of its subgraphs and study its properties. The
dual construction acts as a localization technique, allowing to isolate any subset X of LK(E),
with E an arbitrary graph, into another Leavitt path algebra LK(DX) which shares much of
the relevant structure of LK(E) while having DX row-finite or even finite (in particular, the
behavior of the cycles without exits is respected, as shown in Lemma 5.7). Moreover, the
Leavitt path algebra of any graph can be seen as the direct limit of the Leavitt path algebras
of the duals of its finite subgraphs. This one belongs to a series of results which serve to
study the Leavitt path algebra of a “complex” graph by studying a sequence of Leavitt path
algebras of “simpler” graphs. This series was started in [10], where it was shown that a row-
finite graph (resp. its Leavitt path algebra) is the direct limit of its finite complete subgraphs
(resp. their Leavitt path algebras), and continued in [20], where it is shown that any arbitrary
graph (resp. its Leavitt path algebra) is the direct limit of its countable CK-subgraphs (resp.
their Leavitt path algebras).

1. Preliminaries

We present the graph-theoretic notation that will be needed in what follows, together with
the Leavitt path algebra definition and some basic results about it. Our notation coincides
with the standard one encountered along the literature.

Definitions 1.1 (Graph concepts). A graph E = (E0, E1, r, s) consists of two (disjoint)
sets E0, E1 of arbitrary cardinal and maps r, s : E1 → E0. The elements of E0 are called
vertices and the elements of E1 edges. For each edge e, s(e) is called the source of e and r(e)
is called the range of e. If v := s(e) and w := r(e), we say that v emits e and w receives e.

If F is a set of edges and V is a set of vertices of E, we denote s(F ) = {v ∈ E0 | v = s(e), e ∈
F} and s−1(V ) = {e ∈ E1 | s(e) = v, v ∈ V }. We define r(F ) and r−1(V ) analogously.

We say that E is countable if E0, E1 are both countable; if both are finite, we say that E
is finite. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite. This
amounts to saying that each vertex in E emits only a finite number of edges.

A vertex which emits no edges is called a sink. A vertex which emits an infinite number of
edges is called an infinite emitter. A vertex that is neither a sink nor an infinite emitter is
said to be regular. A vertex which receives no edges is called a source. An isolated vertex is
at the same time a source and a sink.
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A path µ in a graph E is either a vertex or a sequence of edges µ = e1 . . . en such that
r(ei) = s(ei+1) for i = 1, . . . , n−1. In this case, s(µ) := s(e1) is the source of µ, r(µ) := r(en)
is the range of µ and l(µ) := n is the length of µ (being 0 the length of a vertex by definition).
If s(µ) = v and r(µ) = w we say that µ starts at v and ends in w. We denote by µ0 the set of its
vertices and by µ1 the set of its edges, that is: µ0 = {s(e1), r(ei) | i = 1, . . . , n}, µ1 = {ei}ni=1.
A bifurcation for a path µ is a vertex v ∈ µ0 such that |s−1(v)| > 1. The set of paths of E of
length n is denoted by En. The set of all paths of E is denoted as Path(E).

A cycle is a path c = e1 . . . en (ei ∈ E1) such that s(c) = r(c) 6= s(ei) for i ∈ {2, . . . , n}, i.e.,
such that it starts at and ends in the same vertex and does not go twice through the same
vertex. A loop is a cycle of length one. If v := s(c), we say that v is the base vertex of c or,
equivalently, that c is based at v. If E is a graph such that Path(E) does not contain any
cycles, we say that E is acyclic. Note that for every cycle c = e1 . . . en ∈ Path(E) there are
other n − 1 “equivalent” cycles in Path(E) formed by cyclic permutation of the edges of c:
e2 . . . ene1, e3 . . . ene1e2, etc., and that these cycles are all based at different vertices. An edge
e is an exit for a cycle c = e1 . . . en if there exists i such that s(e) = s(ei) and e 6= ei. The
subset of vertices of E which are base of cycles without exits is denoted by Pc(E).

Recall that E satifies Condition (NE) if no cycle of E has exits, while it satisfies Condition
(L) if everyone of its cycles has an exit.

Given two vertices v, w ∈ E0, if there is a path µ ∈ Path(E) such that s(µ) = v and r(µ) = w,
we say that v connects to w and denote it by v ≥ w (this relation is a preorder, but not a
partial order if there are cycles).

A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. The tree of a vertex
v is the set T (v) = {w ∈ E0 | v ≥ w}, which is the smallest hereditary set of E0 containing
v. A hereditary set is saturated if every vertex which (finitely) “feeds” into H and only into
H is again in H, that is, if 0 < |s−1(v)| < ∞ and r(s−1(v)) ⊆ H imply v ∈ H. The set of
all hereditary and saturated subsets of E is denoted HE. The hereditary saturated closure of
X ⊆ E0 is defined as the smallest hereditary and saturated subset of E0 containing X, and
is denoted as X. It is shown in [17, Remark 3.1] that X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X) := {v ∈ E0 | x ≥ v for some x ∈ X},
Λn(X) := Λn−1(X) ∪ {y ∈ E0 | 0 < |s−1(y)| <∞ and r(s−1(y)) ⊆ Λn−1(X)}, for n ≥ 1.

Definition 1.2 (Leavitt path algebra). For a graph E and a field K we define the Leavitt
path K-algebra of E, denoted LK(E), to be the K-algebra generated by a set {v | v ∈ E0} of
pairwise orthogonal idempotents, together with a set of variables {e | e ∈ E1}∪{e∗ | e ∈ E1}
which satisfy the following relations:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 which is regular.

Relations (3) and (4) are called, respectively, (CK1) and (CK2) (CK stands for Cuntz-
Krieger).
The elements of E1 are called real edges while for e ∈ E1 we will call e∗ a ghost edge. We let
r(e∗) denote s(e) and s(e∗) denote r(e). If µ = e1 . . . en is a path, by µ∗ we denote the element
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e∗n . . . e
∗
1 of LK(E) and call it a ghost path. For any subset X ⊆ LK(E), we will denote by

I(X) the (two-sided) ideal of LK(E) generated by X.

The following constitute “small”, interesting examples of Leavitt path algebras.

(i) The loop is the following graph:
•
��

It represents the simplest graph (nontrivially) satisfying Condition (NE). Its associated
Leavitt path algebra is isomorphic to K[x, x−1], the ring of Laurent polynomials in one
variable.

(ii) The (algebraic) Toeplitz algebra is the Leavitt path algebra associated to the following
graph:

•
��

// •
This very simple graph satisfies Condition (L) nontrivially.

We recollect now two fundamental facts about Leavitt path algebras, which are valid in
the general case.

Any element in a Leavitt path algebra can be written as a sum of monomials of a specific
form ([2, Lemma 1.5]): If x ∈ LK(E), then x =

∑n
i=1 kipiq

∗
i , where n ∈ N, ki ∈ K and

pi, qi ∈ Path(E) with r(pi) = r(qi) for every i ∈ {1, . . . , n}. (†)

Note that this kind of expression is usually not unique (e.g., apply (CK2) to a vertex v
with 0 < |s−1(v)| <∞).

Leavitt path algebras are also Z-graded algebras ([2, Lemma 1.7]), with grading induced
by deg(v) = 0 for all v ∈ E0, deg(e) = 1 and deg(e∗) = −1 for all e ∈ E1. That is,
LK(E) =

⊕
n∈Z LK(E)n, where LK(E)n = {

∑
kpq∗ | k ∈ K, p, q ∈ Path(E), l(p)− l(q) = n}

(note that E0 ⊆ LK(E)0).

Later, it will be of importance to know the ring structure of the corner generated by a
vertex which is base of a cycle without exits ([13, Lemma 1.5], which is actually valid in full
generality):

Proposition 1.3. Let E be an arbitrary graph and let v ∈ Pc(E) be the base of the cycle
without exits c. Then vLK(E)v ∼= K[x, x−1] as K-algebras (via the identification x ≡ c, x−1 ≡
c∗).

Finally, we recall the useful result that follows, which will appear thoroughly in this paper,
and whose proof, as done in [12, Proposition 3.1], is also valid in full generality:

Theorem 1.4 (Reduction Theorem). Let E be an arbitrary graph. Then for every nonzero
element z ∈ LK(E) there exist µ, ν ∈ Path(E) such that:

(i) µ∗zν = kv for some k ∈ K \ {0} and v ∈ E0, or
(ii) there exists a vertex w ∈ Pc(E) such that µ∗zν is a nonzero element in wLK(E)w ∼=

K[x, x−1].

Both cases are not mutually exclusive.
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2. Dual graphs

We present the notion of dual of a subgraph in a graph, which is a generalization of the
usual notion of dual graph found in the literature, and explore some of its properties. We also
propose a new definition of the dual of a graph, which extends the well-behaved properties
of the usual one to a wider class of Leavitt path algebras.

Definition 2.1 (Usual dual). Let E be an arbitrary graph. The usual dual of E, D(E),
is the graph formed from E by taking its length-one paths as the vertices and its length-two
paths as the edges; that is,

D(E)0 = {e | e ∈ E1}
D(E)1 = {ef | ef ∈ E2}

sD(E)(ef) = e, rD(E)(ef) = f for all ef ∈ E2.

The interest on the usual dual graph notion in the context of Leavitt path algebras lies on
the fact that, if E is a row-finite graph without sinks, then there is an algebra isomorphism
LK(E) ∼= LK(D(E)) ([1, Proposition 2.11]). The same is true in the context of graph C∗-
algebras; i.e., we have C∗(E) ∼= C∗(D(E)) for E row-finite and with no sinks ([18, Remark
3.3]). Unfortunately, these statements are untrue for the usual dual of a graph with sinks. In
what follows, we will propose a new definition of dual graph which generalizes this important
property to row-finite graphs with sinks.

Definition 2.2 (Dual of F in E). Let E be a graph and let F be a subgraph of E. Denote
F 0

1 = {v ∈ F 0 | s−1
F (v) = ∅}, F 1

1 = r−1
F (F 0

1 ) and F 0
2 = s(F 1) ∩ s(E1 \ F 1), F 1

2 = r−1
F (F 0

2 ). We
define the graph DE(F ), the dual of F in E, as follows:

DE(F )0 = D(F )0 ∪ F 0
1 ∪ F 0

2

DE(F )1 = D(F )1 ∪ F 1
1 ∪ F 1

2

sDE(F )|D(F ) = sD(F ), rDE(F )|D(F ) = rD(F )

For all e ∈ F 1
i with i ∈ {1, 2}, sDE(F )(e) = e ∈ D(F )0, rDE(F )(e) = rF (e) ∈ F 0

i .

That is, the dual of F in E extends the usual dual of F , by adding to it two kinds of
vertices that we will collectively call vertex-vertices, together with some edges that we will
call vertex-edges ; concretely, we add:

(i) The sinks of F with their natural connections. That is, for every vertex v which is a
sink of F and every edge e which arrives at v in F , we have in DE(F ) a vertex v and
an edge (e, v) starting at the vertex e and ending in v.

(ii) The “non-full emitters” of F , also with their natural connections. That is, for every
vertex v of F which is not a sink of F and emits more edges in E than it does in F , and
every edge e which arrives at v in F , we have in DE(F ) a vertex v and an edge (e, v)
starting at the vertex e and ending in v. We will call any vertex of this kind, in F , an
intermediate vertex.

In addition, we will refer as edge-vertices and edge-edges, respectively, to the vertices and
the edges of the dual which come from the usual dual.
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Example 2.3 (Dual of a subgraph in graph). Consider the following graph E:

•v1

e1

��

UU e2
// •v2

��

e3
// •v3

e4

��
e5
// •v4

•
Let F be the subgraph of E formed by the vertices {vi}4

i=1 and the edges {ei}5
i=1. Then the

dual graph DE(F ) is •e1

e1e1

��

(e1,v1)

��

e1e2
// •e2

(e2,v2)

��

e2e3
// •e3

e3e5

44
e3e4 // •e4

e4e4

�� e4e5 // •e5
(e5,v4)

��
•v1 •v2 •v4

�

We expose, without proof, some elementary properties of the dual graph of a subgraph:

Lemma 2.4. Let F be a subgraph of a graph E. Then:

(i) If F is finite, so is DE(F ).
(ii) If F is row-finite, so is DE(F ).

(iii) Every loop e in F generates a loop ee (with base e) in DE(F ).
(iv) All the vertex-vertices of DE(F ) are sinks, and those are its only sinks.
(v) The isolated vertices of F remain isolated in DE(F ).

(vi) The intermediate vertices which are also sources in F are isolated in DE(F ).

Now we can define what we will call the dual of a graph (redefining thus the notion of usual
dual) by taking the graph as a subgraph of itself:

Definition 2.5 (Dual graph). Given a graph E, we define d(E) = DE(E) and call it the
dual graph of E.

When E has no sinks, the usual dual D(E) and the dual d(E) coincide, but they do not
when there are sinks present. The advantage of the latter definition has already been stated:

Proposition 2.6 (Isomorphism with the dual’s graph algebra). Let E be a row-finite
graph. Then:

(i) LK(d(E)) ∼= LK(E) as graded algebras.
(ii) C∗(d(E)) ∼= C∗(E) as ∗-algebras.

Proof. We will show that d(E) coincides with the outsplit formed from E by using the maximal
partition (see [1, 2.6, 2.9] for the relevant definitions). The proofs follow then from the fact
that there is a graded isomorphism (resp. C∗-algebra isomorphism) between the Leavitt path
algebra (resp. C∗-algebra) of a graph and that of any of its outsplits ([1, Theorem 2.8] and
[18, Theorem 3.2], respectively).

Let E be a row-finite graph and let P be the partition of E1 having m(v) = |s−1(v)| for every
v that is not a sink (i.e., the partition of E1 which admits no refinements). Let Es(P) be the
outsplit graph formed from E using the partition P . Since P is maximal, we have

Es(P)0 = {ve | s(e) = v} ∪ {v | v is a sink}
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Es(P)1 = {ef | s(f) = r(e)} ∪ {e | r(e) is not a sink}, while

d(E)0 = {e | e ∈ E1} ∪ {v | v is a sink}
d(E)1 = {ef | e, f ∈ E1, r(e) = s(f)} ∪ {e | r(e) is not a sink}.

The maps φ0 : Es(P)0 → d(E)0 such that φ0(ve) = e, φ0(v) = v and φ1 : Es(P)1 → d(E)1

such that φ1(ef ) = ef, φ1(e) = e are easily shown to commute with the source and range
maps, whence they induce a graph isomorphism from Es(P) to d(E). �

Remark 2.7. Note that this proof provides us with another way to compute the maximal
outsplit of a graph E (other than by definition), namely by constructing its dual d(E), what
perhaps is easier and clearer to do, since we just have to put a vertex for every edge of E,
an edge for every length-two path of E, a vertex v for every sink of E and an edge (e, v)
starting at e and ending in v for every edge e with range v in E (observe that there are no
intermediate vertices to consider, since d(E) = DE(E)).

The result above generalizes to any row-finite subgraph, in the sense that the Leavitt path
algebra of the dual of the subgraph is a subalgebra of the Leavitt path algebra of the graph:

Proposition 2.8. Let E be a graph and F be a row-finite subgraph of E. Then there is a
graded monomorphism θ : LK(DE(F ))→ LK(E). In addition, F 0 ∪ F 1 ⊆ θ(LK(DE(F ))).

Proof. The proof is essentially a rewriting, in the dual graphs language, of the proofs for
[8, Proposition 1] and [8, items (1),(2) of Proposition 2]. The specific construction of the
monomorphism will be of use in later sections and for that reason we include it here.

For clarity, denote G = DE(F ). For any vertex-vertex v ∈ G0, denote

uv = v −
∑

{e∈F 1 | sF (e)=v}

ee∗ ∈ LK(E),

understanding an empty sum to be 0. Note that uv 6= 0 because either v is a sink, or it is an
intermediate vertex and thus there exists f ∈ E1 such that s(f) = v and f 6∈ F 1. Note also
that {uv | v ∈ G0 \ F 1} is a set of pairwise orthogonal idempotents.

Now, define on the generators and extend to an algebra homomorphism the map θ : LK(G)→
LK(E) in the following way:

If e is an edge-vertex, then θ(e) = ee∗.
If v is a vertex-vertex, then θ(v) = vuv = uv.
If ef is an edge-edge, then θ(ef) = eθ(f) = eff ∗.
If (e, v) is a vertex-edge, then θ((e, v)) = eθ(v) = euv = e−

∑
{f∈F 1 | sF (f)=v} θ(ef).

If µ ∈ G1 then θ(µ∗) = (θ(µ))∗.

Now, to check that θ is compatible with the Leavitt path algebra relations is a matter of
simple algebraic manipulations. Moreover, it is not difficult to see that θ(v)∗ = θ(v) and
θ(e)∗ = θ(e). Note that every generator is mapped to an element of its same degree, so that
the homomorphism will be a graded homomorphism. Note also that all the vertices have
nonzero images and thus, by the Graded Uniqueness Theorem ([27, Theorem 4.8]), θ will in
fact be a graded monomorphism. �
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Remark 2.9. It may prove useful for the future to write down, defined on generators, the
inverse isomorphism of θ, Φ : θ(LK(DE(F ))) → LK(DE(F )), in order to know explicitly
where are mapped, in its dual, the vertices and edges of F :

If v ∈ F 0, then Φ(v) = δvv +
∑
{e∈F 1 | sF (v)=e} e,

where an empty sum is 0 and δv =

{
1, if v is a sink or an intermediate vertex of F
0, otherwise.

If e ∈ F 1, then Φ(e) =
∑
{f∈DE(F )1 | sDE(F )(f)=e} f .

If e ∈ F 1, then Φ(e∗) = (Φ(e))∗.

A subgraph F of a graph E is said to be complete when for each regular vertex v of F we
have |s−1

F (v)| = |s−1
E (v)|. Complete subgraphs are precisely those subgraphs that naturally

induce a subalgebra LK(F ) of LK(E). In the same spirit, given a set X of elements of LK(E)
satisfying suitable conditions, Proposition 2.8 allows us to find a subalgebra A of LK(E) such
that X ⊆ A and which is a Leavitt path algebra that inherits several important properties
from LK(E), in the following manner: we decompose every element of X as an expression
on some generators, find a subgraph F of E which contains all those generators and, if F
is row-finite, we conclude that X ⊆ θ(LK(DE(F ))). The mentioned ‘suitable conditions’ are
precisely those which allow the existence of such a row-finite subgraph F . For example, this
is trivially achieved if X is finite. Thus, this result is useful for graphs which do not contain
“nontrivial” finite complete subgraphs enveloping the generators of our set X of interest, as
happens with any subset containing edges of the infinite clock (ℵ being an infinite cardinal):

• •

ℵ

OO ??

//

��

•

•
It is clear that the only finite complete subgraphs of the infinite clock are the empty graph,
the graph consisting just of the central vertex, and any subset of the set of sinks.

The following notation will be useful:

Definition 2.10. Given a graph E, and given a subset X ⊆ LK(E), we express every x ∈ X
in a convenient form (as in (†)). Then we define FX , an enveloping subgraph for X, as
the subgraph of E formed by taking all the vertices and all the edges appearing in those
expressions, as well as all the sources and ranges of these edges. Concretely, if X = {xl}l∈Λ,
write

xl =
∑
n

kln v
l
n +

∑
m

klm p
l
m +

∑
j

klj p
l∗
j +

∑
i

kli p
l
i q

l∗
i ,

where for every l ∈ Λ we have kln, k
l
m, k

l
j, k

l
i ∈ K \ {0}, vln ∈ E0 and plm, p

l
j, p

l
i, q

l
i ∈ Path(E),

which are such that r(pli) = r(qli), and such that we have pli = eli,1 . . . e
l
i,rli

and qli = f l
i,1 . . . f

l
i,sli

,

with eli,m, f
l
i,n ∈ E1 and rli, s

l
i ≥ 1 for every i (i.e., we can assure that these paths are not

vertices).
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Then FX is formed by F 1
X = {eli,m | l ∈ Λ, i, m ∈ {1, . . . , rli}}∪{f l

i,n | l ∈ Λ, i, n ∈ {1, . . . , sli}}
and F 0

X = {vli | l ∈ Λ} ∪ s(F 1
X) ∪ r(F 1

X).

Note that the enveloping subgraph for X is not unique, as its structure depends heavily on
the selected expressions (as in (†)) of the elements of X, which are not unique themselves.

In the same spirit, we give the following definition which is central for our purposes:

Definition 2.11. We denote DX := DE(FX) and

AX := θ(LK(DX)),

as constructed in Proposition 2.8. In particular, if X = {x} is a singleton set, we will forget
the braces and simply write Fx, Dx and Ax.

Our last result about dual graphs is the following proposition (the adaptation of [8, Propo-
sition 2, (4)]), which states that the Leavitt path algebra of a graph can be viewed as the
direct union t of the Leavitt path algebras of the duals of its finite subgraphs.

Theorem 2.12. Let E be an arbitrary graph. Then LK(E) =
⊔

{X⊆LK(E) | |X|<∞}

AX .

Proof. Let X ⊆ LK(E) be finite, say X = {xn}Nn=1, and assume a convenient expression as a
sum of monomials (as in (†)) for every xn . By construction, xn is in the subalgebra of LK(E)
generated by FX for every n ∈ {1, . . . , N}, which implies by Proposition 2.8 that xn ∈ AX

for every n ∈ {1, . . . , N}. In addition, since FX is finite, DX is finite as well; in particular,
LK(DX) and thus AX are finitely generated K-algebras.

Now let X1, X2 be two finite subsets of LK(E) and let T1, T2 denote respective finite sets of
generators for AX1 and AX2 . Then T = T1∪T2 is, by construction, such that AX1∪AX2 ⊆ AT .
This proves that the collection {AX | X ⊆ LK(E), |X| < ∞} is an upward directed set of
subalgebras of LK(E). The claim follows now taking into account that X ⊆ AX for any finite
subset X of LK(E). �

A direct application of Theorem 2.12 would for instance yield the von Neumann regular
characterization of Leavitt path algebras given in [8, Theorem 1].

3. Infinite idempotents and Condition (NE)

We characterize in full generality the Leavitt path algebras associated to graphs that sat-
isfy Condition (NE) in terms of idempotents, and establish their structure via dual graph
techniques.

The following lemma establishes that the cycles without exits of DE(F ) cannot come from
cycles with exits of E, even from those whose exits are “hidden” to F :

Lemma 3.1. Let E be an arbitrary graph and F be a row-finite subgraph of E. Then there
is an injective map from the set of cycles without exits of DE(F ) to the set of cycles without
exits of E.
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Proof. Let c = (e1, e2)(e2, e3) . . . (en, e1) be a cycle without exits of DE(F ), where c0 =
{e1, . . . , en} and (ei, ej) denotes the edge joining the vertices ei and ej. By construction
of the dual, any vertex ei must come from an edge ei of F . Also by construction, in F , en
connects (directly) to e1, ei connects to ei+1 for i ∈ {1, . . . , n− 1} and r(ei) 6= r(ej) for i 6= j,
so that c′ = e1 . . . en is a cycle of F . Suppose that c′ has an exit e ∈ E1 at a vertex v = r(ej);
then either e is in F 1, which is impossible because in DE(F ) the cycle c would have an exit
(ej, e) at the vertex ej, or e ∈ E1 \ F 1, in which case v would be an intermediate vertex
of F and, in DE(F ), the vertex ej would have an exit (ej, v) (with range v), which is also
impossible. Thus, every cycle without exits of DE(F ) comes from a cycle without exits of E.
That no two of these cycles of DE(F ) come from the same one of E is again clear from the
construction of the dual. �

Recall that, given a ring R, an idempotent e ∈ R is an infinite idempotent if eR is iso-
morphic as a right R-module to a proper direct summand of itself (equivalently, if Re is
isomorphic as a left R-module to a proper direct summand of itself).

We remember also that two idempotents p, q ∈ R are (Murray-von Neumann) equivalent,
and denote it by p ∼ q, if there exist x, y ∈ R such that p = xy and yx = q or, equivalently,
if pR and qR are isomorphic as right R-modules (equivalently, if Rp and Rq are isomorphic
as left R-modules).

The following characterization of infinite idempotents in terms of elements of the ring is
well known: e ∈ R is an infinite idempotent if and only if there exists a pair of nonzero
orthogonal idempotents x, y ∈ R such that e = x+ y and e ∼ x.

Theorem 3.2. (Structure Theorem for the Leavitt path algebra of an (NE) graph)
Let E be any graph. The following conditions are equivalent:

(i) E satisfies Condition (NE).

(ii) LK(E) =
⊔

{X⊆LK(E) | |X|<∞}

AX , where AX is given in Definition 2.11 and is isomorphic

to
(⊕rt

i=1 Mnt
i
(K)

)
⊕
(⊕st

j=1 Mmt
j
(K[x, x−1])

)
, with rt, st, n

t
i, m

t
j ∈ N.

(iii) LK(E) has no infinite idempotents.

Proof. (i) ⇒ (ii). Let E be a graph satisfying Condition (NE). By Theorem 2.12,
LK(E) =

⊔
{X⊆LK(E) | |X|<∞}AX . Since E satisfies Condition (NE), any of its enveloping

subgraphs FX satisfies it too, and so does DX by Lemma 3.1. In addition, FX is finite, which
implies that its dual DX is also finite. Therefore, by the Structure Theorem of noetherian
Leavitt path algebras ([7, Theorem 3.8]),

LK(DX) ∼=

(
rX⊕
i=1

Mn
rX
i

(K)

)
⊕

(
sX⊕
j=1

Mm
sX
j

(K[x, x−1])

)
,

what implies the claim, as AX
∼= LK(DX).

(ii) ⇒ (iii). Suppose that

LK(E) ∼=
⊔
t∈T

((
rt⊕
i=1

Mnt
i
(K)

)
⊕

(
st⊕
j=1

Mmt
j
(K[x, x−1])

))
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contained an infinite idempotent. Then there should exist e, x, y, a, b ∈ LK(E) such that
e is an infinite idempotent, x, y are nonzero orthogonal idempotents, e = x + y, e =
ab and x = ba. But then there should exist, for a t0 big enough, similar elements in(⊕rt0

i=1 Mn
rt0
i

(K)
)
⊕
(⊕st0

j=1 Mm
st0
j

(K[x, x−1])
)

. Because of this element-wise characteriza-

tion of infinite idemponents, we see that any infinite idempotent in a subring would also be
an infinite idempotent in any overring of it. Thus, for the aforementioned matrix ring, its

classical ring of quotients
(⊕rt0

i=1 Mn
rt0
i

(K)
)
⊕
(⊕st0

j=1 Mm
st0
j

(K(x))
)

does contain an infinite

idempotent. This is impossible because in a semisimple artinian ring there are no infinite
idempotents.
(iii) ⇒ (i). Suppose that LK(E) does not satisfy Condition (NE). Then there exists a cycle
c ∈ LK(E) with exits based at a vertex v, and this implies that v is an infinite idempotent
since v = cc∗ + (v − cc∗) with v − cc∗ 6= 0 (because c has exits), cc∗(v − cc∗) = 0 and
v = c∗c ∼ cc∗. This is a contradiction with the hypothesis. �

Remark 3.3. In particular, we have shown that Condition (NE) is a ring isomorphism
invariant for Leavitt path algebras; that is, if E,F are graphs such that LK(E) ∼= LK(F ) as
rings and E satisfies Condition (NE), then F satisfies Condition (NE) too.

4. Primitive idempotents and Condition (L)

Non-minimal primitive idempotents are introduced and an algebraic characterization for
Condition (L) is achieved consequently. In this manner, we add the characterization of
Condition (L) alone to the already known ones of Condition (L) plus Condition (MT3) in the
row-finite context (which give rise to primitive Leavitt path algebras, see [15, Theorem 4.3])
and Condition (L) plus cofinality (which give rise to simple Leavitt path algebras, see [20,
Theorem 3.11]). As a corollary, we give a new algebraic characterization of simple Leavitt
path algebras.

Proposition 4.1. Let e be an idempotent in a ring R (not necessarily unital). The following
conditions are equivalent:

(i) eR is an indecomposable right R-module (equivalently, Re is an indecomposable left R-
module).

(ii) eRe is a ring without nontrivial idempotents.
(iii) e has no decomposition into a+ b, where a, b are nonzero orthogonal idempotents in R.

Proof. As in [21, Proposition 21.8]. �

Definition 4.2. Following [21], if an idempotent 0 6= e ∈ R satisfies any of these conditions,
we say that e is a primitive idempotent.

We recall that a vertex v is called a line point if there are neither cycles nor bifurcations
at any vertex w ∈ T (v). We denote, as usual, the set of all line points of E by Pl(E).

Proposition 4.3. Let E be an arbitrary graph and let v ∈ E0. Then v is a primitive
idempotent of LK(E) if and only if its tree T (v) has no bifurcations.
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Proof. Suppose that T (v) has its first bifurcation at w, with µ being the path which connects
v to w. Let e and f be two different edges emitted by w; then ee∗ 6= w and therefore
0 6= µee∗µ∗ 6= v. It is easy to verify that µee∗µ∗ is a (nontrivial) idempotent living in
vLK(E)v and thus, by item (ii) of Proposition 4.1, v cannot be a primitive idempotent.
Now let v be a vertex of E such that T (v) has no bifurcations. Two cases can occur:

Case 1: T (v) does not contain vertices in cycles. In this case, v ∈ Pl(E), what means that v
is minimal ([9, Theorem 1.9]) and therefore primitive.

Case 2: T (v) ∩ Pc(E) 6= ∅. Since T (v) has no bifurcations, there can be only one cycle
c ∈ LK(E) such that T (v)∩c0 6= ∅, which in addition has no exits. Furthermore, every vertex
of T (v) is either in c0 or connects to another vertex in c0 via a path without bifurcations.
Thus, by [12, Lemma 2.2] (which is valid in our context), there exists w ∈ c0 such that
LK(E)v ∼= LK(E)w as left LK(E)-modules. Since w is in a cycle without exits, by Proposition
1.3 we have wLK(E)w ∼= K[x, x−1], which is a ring without nontrivial idempotents. Now
Proposition 4.1 gives that w and v are both primitive and finalizes the proof. �

Remark 4.4. If vLK(E)v is a ring with no nontrivial idempotents (e.g., a domain) then v
is a primitive idempotent and, as seen as a consequence of the proof above, we have either
vLK(E)v ∼= K (if v is minimal) or vLK(E)v ∼= K[x, x−1] (if it is not).

We have found a close relationship between the primitive and the minimal vertices of
the Leavitt path algebra of any graph: the minimal vertices are those whose trees do not
contain bifurcations nor bases of cycles, while the primitive vertices see this second condition
suppressed. Thus, the following definition is of interest:

Remark 4.5. Hence, v ∈ E0 is a non-minimal primitive vertex of LK(E) if and only if
vLK(E)v ∼= K[x, x−1]. In particular, the vertices in Pc(E) are non-minimal primitive.

Note that while infinite idempotents pass from subrings to rings, this is not the case for
non-minimal primitive idempotents.

Proposition 4.3 provides us with a tool to distinguish between cycles with and without
exits in a graph, giving us a characterization of Condition (L) in terms of primitive vertices:

Corollary 4.6. Let E be any graph. The following conditions are equivalent:

(i) E satisfies Condition (L).
(ii) LK(E) has no non-minimal primitive vertices.

Proof. By Proposition 4.3, LK(E) contains a non-minimal primitive vertex if and only if E
contains a cycle without exits. �

As far as we know, a ring-theoretic characterization of Condition (L) is lacking in the
literature. We provide one below, extending Corollary 4.6 from the non-minimal primitive
vertices to the non-minimal primitive idempotents of the Leavitt path algebra. Hence, we
show that Condition (L) is an invariant of ring isomorphisms, in the sense that if E,F are
two graphs such that LK(E) ∼= LK(F ) as rings and E satisfies Condition (L), then F satisfies
it too.
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Proposition 4.7. If z ∈ LK(E) is a primitive idempotent such that we can write αzβ = kv
for α, β ∈ LK(E) with α or β a monomial, k ∈ K \ {0}, and some vertex v ∈ E0, then
LK(E)z ∼= LK(E)v. If, moreover, z is non-minimal primitive, then zLK(E)z ∼= K[x, x−1].

Proof. Consider a = 1
k
αz, b = zβ (note that either va = a or bv = b because either α

or β is a monomial). Then ab = v, and e := ba = 1
k
zβαz is in zLK(E)z. Moreover,

e2 = baba = bva = ba = e and thus e ∼ v. Since z is a primitive idempotent, zLK(E)z is
a ring without nontrivial idempotents, so that e ∈ {0, z}; and since αeβ = kv 6= 0 implies
e 6= 0, we have z = e ∼ v, what means, as desired, that LK(E)z ∼= LK(E)v. If in addition z
is non-minimal primitive, so is v, and hence zLK(E)z ∼= vLK(E)v ∼= K[x, x−1]. �

Theorem 4.8. Let E be any graph. The following conditions are equivalent:

(i) E satisfies Condition (L).
(ii) LK(E) has no non-minimal primitive idempotents.

Proof. If LK(E) has no non-minimal primitive idempotents, in particular it has no non-
minimal primitive vertices, so that by Corollary 4.6, E satisfies Condition (L).
Now suppose E satisfies Condition (L) and let x be a non-minimal primitive idempotent of
LK(E). By the Reduction Theorem there exist a vertex v, a nonzero scalar k and elements
µ, ν ∈ Path(E) such that µ∗xν = kv. Note that, by Corollary 4.6, v cannot be non-minimal
primitive. But this is a contradiction since by Proposition 4.7, LK(E)v ∼= LK(E)x. �

The tools developed above will allow us to reformulate, in terms of idempotents, the known
simplicity and purely infinite simplicity results for Leavitt path algebras.

In [20, Theorem 3.11], arbitrary Leavitt path algebras LK(E) which are simple are char-
acterized as those whose graphs simultaneously satisfy these two conditions:

(i) HE = {∅, E0}.
(ii) E satisfies Condition (L).

Since condition (i) above happens to be equivalent to saying that there are no (two-sided)
ideals generated by idempotents in LK(E) ([10, Proof of Theorem 5.3]), Theorem 4.8 allows
us to state the following:

Corollary 4.9. Let E be an arbitrary graph. Then LK(E) is simple if and only if it has no
non-minimal primitive idempotents and no nontrivial two-sided ideals generated by idempo-
tents.

If we add a third condition to the characterization of simplicity exposed before the former
corollary, we characterize the purely infinite simple Leavitt path algebras; namely, as those
whose graphs E satisfy ([4, Theorem 4.3]):

(i) HE = {∅, E0}.
(ii) E satisfies Condition (L).

(iii) Every vertex of E connects to a cycle.

Note that if E is a finite graph, then condition (iii) can be changed by the condition that
there are no minimal idempotents: on the one hand, if every vertex connects to a cycle, there
are no minimal vertices and, on the other hand, if there are no minimal vertices then there
are no sinks, and since E is finite, every vertex must connect to a cycle. Now, Soc(LK(E)) =
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I(Pl(E)) ([12, Theorem 4.2]) and Pl(E) = ∅ (because E is finite and there are no sinks)
imply that if there are no minimal vertices, then there are no minimal idempotents at all (the
converse is obvious). Therefore, we can establish a result similar to the corollary given above:

Corollary 4.10. Let E be a finite graph. Then LK(E) is purely infinite simple if and only
if it has no primitive idempotents and no nontrivial ideals generated by idempotents.

5. The Reduction Theorem and I(Pc(E))

I(Pc(E)), the ideal generated by the vertices in cycles without exits, bears a clear paral-
lelism with I(Pl(E)), the ideal generated by vertices in line points, which is known to be the
socle of the Leavitt path algebra LK(E). That makes this ideal interesting to be studied on its
own. In this section we do so by relating non-minimal primitive idempotents with I(Pc(E)),
what serves us to prove that this ideal is invariant under ring isomorphisms between Leavitt
path algebras. We achieve this by a refinement of the Reduction Theorem (see Section 1).
First we will work in the row-finite case; next we will build on this one, using again dual graph
techniques, to achieve the general case. In the last part we will also provide the structure of
I(Pc(E)), revealing a bit more of its parallelism with Soc(LK(E)).

5.1. The row-finite case. Under certain conditions, we can construct ‘quotient’ Leavitt
path algebras by means of quotient graphs, what will be of use in our next proposition. We
recollect their definition:
Let E be a row-finite graph and consider H ∈ HE. The quotient graph E/H is defined as

(E/H)0 = E0 \H

(E/H)1 = {e ∈ E1 | r(e) 6∈ H}
rE/H := r|E0\H and sE/H := s|E0\H

We note that I(Pc(E)) cannot contain any polynomials in cycles with exits:

Lemma 5.1. If E is an arbitrary graph and c is a cycle with exits of LK(E), then p(c, c∗) 6∈
I(Pc(E)) for any polynomial p.

Proof. Suppose on the contrary that there exists a cycle with exits, c, such that p(c, c∗) ∈
I(Pc(E)) for some polynomial p. Write p(c, c∗) =

∑n
i kic

i +
∑m

j k
′
j(c
∗)j. As I(Pc(E)) =

I(Pc(E)) (by the first part of [14, Lemma 2.1], which is valid in full generality), I(Pc(E)) is
a graded ideal by [27, Lemma 5.6] (taking S = ∅), and therefore every monomial of p(c, c∗)
is in I(Pc(E)). In particular, for some i, we either have ci ∈ I(Pc(E)) or (c∗)i ∈ I(Pc(E)). In

any case we get (c∗)ici = r(c) ∈ I(Pc(E)), so that r(c) is in Pc(E) (because by [27, Proof of
Theorem 5.7 (1)], which is valid in general, I(H)∩E0 = H for H ∈ HE, taking S = ∅). Let n
be the smallest nonnegative integer having Λn(Pc(E))∩ c0 6= ∅. Choose v in this intersection.
If n > 0 then Λn−1(Pc(E))∩ c0 = ∅ and therefore ∅ 6= r(s−1(v)) ⊆ Λn−1(Pc(E)). In particular
Λn−1(Pc(E))∩c0 6= ∅, a contradiction, so n = 0 and consequently T (Pc(E))∩c0 = Pc(E)∩c0 6=
∅ (note that Pc(E) is hereditary). But this is another contradiction, because no vertex can
be simultaneously a base for a cycle with exits and for a cycle without exits. �
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Recall that, when using the Reduction Theorem for an element x, we get in I({x}) either
a vertex or a polynomial in a cycle without exits; the following proposition gives a sufficient
condition to guarantee that we can actually get a vertex.

Proposition 5.2. If E is a row-finite graph and x ∈ LK(E) \ I(Pc(E)) then there exist
k ∈ K \ {0}, µ, ν ∈ Path(E) and v ∈ E0 such that µ∗xν = kv.

Proof. Denote I = I(Pc(E)). Since Pc(E) is a hereditary subset of E0, I is a graded ideal,
and since E is a row-finite graph, by [14, Lemma 2.3 (i)], LK(E)/I is graded isomorphic to

the Leavitt path algebra with associated graph F = E/Pc(E). Denote by [x] the class of
the element x ∈ LK(E) in LK(E)/I. Suppose x 6∈ I. Then, 0 6= [x] ∈ LK(E)/I and by
the Reduction Theorem we can find k ∈ K \ {0} and two paths [µ], [ν] in LK(E)/I (coming
from paths µ, ν of LK(E)) such that either [µ]∗[x][ν] = k[v] for some vertex [v] ∈ F 0 (coming
from a vertex v ∈ E0) or [µ]∗[x][ν] = [p] for some polynomial [p] based at a cycle without
exits [c] of F . But then [µ∗xν] = [kv] or [µ∗xν] = [p] (the conjugation can go inside the class
because of the specific construction of the epimorphism between LK(E) and LK(E)/I) and
thus µ∗xν = kv + y or µ∗xν = p+ y′ in LK(E), for some y, y′ ∈ I. We can write y and y′ in
the form ∑

n

kn vn +
∑
m

km pm r(pm) +
∑
j

kj r(pj) p
∗
j +

∑
i

ki pi r(pi) q
∗
i ,

where the set of vertices V = {vn, r(pm), r(pj), r(pi)} is contained in I and all the paths have
nonzero lengths. We will study these two cases separately.

Case 1: [kv] 6= 0 implies v 6∈ I, so either v is a sink (in which case vyv = 0) or there exists
e1 ∈ s−1(v) such that e1 6∈ I. Moreover, u1 = r(e1) 6∈ I either (because e1 = e1u1). Consider

z1 = vyv; if z1 = 0 we are done (vµ∗xνv = kv). If z1 6= 0 it must be z1 =
∑N

i=1 kipiq
∗
i with

l(pi), l(qi) ≥ 1, since V ⊆ I while v 6∈ I. Now consider z′1 = e∗1z1e1: if z′1 = 0 we are done

(e∗1µ
∗xνe1 = ku1); if not, we can rearrange z1 in the form z1 =

∑N1

i=1 kie1p
′
iq

′∗
i e
∗
1 + z

′′
1 , with

N1 ≤ N , l(p′i) = l(pi) − 1, l(q′i) = l(qi) − 1 and e∗1z
′′
1 e1 = 0, so that z′1 =

∑N1

i=1 kip
′
iq

′∗
i and

e∗1µ
∗xνe1 = ku1 + z′1. But z′1 ∈ I, u1 6∈ I; then either u1 is a sink (and we are finished) or

there exists e2 ∈ s−1(u1) such that e2 6∈ I and therefore we can consider z2 = u1z
′
1u1 and

z′2 = e∗2z2e2 and reason as above; it is clear that we can extend this process analogously until
we arrive to a vertex un and a zn ∈ I which is either 0 or a linear combination of vertices
(when l(pi) = l(qi)), paths (when l(pi) > l(qi)) and ghost paths (when l(pi) < l(qi)), and
whence unznun = 0 because un 6∈ I. Then e∗n . . . e

∗
1µ
∗xνe1 . . . en = kun.

Case 2: Since [p] is a polynomial in a cycle without exits [c] of F , c must be a cycle with
exits in E such that all of its exits belong to I (otherwise [c] would be 0 or have an exit in
LK(E)/I). Fix one of these exits e and denote v := s(e), w := r(e). We can suppose that c
is based at v, because we can cyclically permute [c] = [e1 . . . el] in LK(E)/I as we please, by
sandwiching it between [e∗j . . . e

∗
1] and [e1 . . . ej].

First suppose that z := vy′v = 0. Write p =
∑N

i=1(aic
ti + bi(c

∗)ti) where ti ∈ N (ti 6= tj
whenever i 6= j) and a1 or b1 is nonzero (or both). Take µ′ = ct1 , ν ′ = v if a1 6= 0 and
µ′ = v, ν ′ = ct1 otherwise, to get, respectively, µ

′∗pν ′ = a1v + p′ or b1v + p′′, where p′, p
′′

are
polynomials in {c, c∗} without independent term. Now, e∗µ

′∗pν ′e = a1w or b1w implies that
e∗µ

′∗vµ∗xνvν ′e is a nonzero multiple of a vertex, as desired.
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If z 6= 0, as before, it must be of the form z =
∑n

j=1 kjpjq
∗
j with l(pj), l(qj) ≥ 1. Write

z =
∑n

j=1 kj c
rj p′jq

′∗
j (c∗)sj , where rj, sj ∈ N ∪ {0} and c is not a left factor of any p′j or q′j.

Denote r := max{r1, . . . , rn}+ 1 and s := max{s1, . . . , sn}+ 1 (note that r > rj and s > sj).
Then

(c∗)rzcs =
n∑

j=1

kj(c
∗)r−rjp′jq

′∗
j c

s−sj .

We claim that, in fact, this sum equals to zero. To see it, write c = e1 . . . el and consider how
must p′jq

′∗
j be in order for the j-th term to be nonzero. Since r− rj > 0, s− sj > 0 and pj, qj

cannot be of the form p′j = cp
′′
j , q
′
j = cq

′′
j (with p

′′
j , q

′′
j ∈ Path(E)) because c is not a left factor

of them, c must be of the form c = p′jc
′, c = q′jc

′′
(with c′, c′′ ∈ Path(E)), what implies that

p′j = e1 . . . el1 , q
′
j = e1 . . . el2 (l1, l2 < l, with li = 0 denoting that the path involved is actually

the vertex v). The j-th term of the sum would then read

kj(c
∗)r−rj−1c∗p′jq

′∗
j c(c

s−sj−1) = kj(c
∗)r−rj−1e∗l . . . e

∗
1e1 . . . el1e

∗
l2
. . . e∗1e1 . . . elc

s−sj−1,

which equals kj(c
∗)r−rj−1e∗l . . . e

∗
l1+1el2+1 . . . elc

s−sj−1 due to (CK1) cancelations. Since it is
not 0, it is necessary that l1 = l2 (this also applies in the special case l1 = 0 or l2 = 0),
in which case the j-th summand simplifies to kj(c

∗)r−rj−1cs−sj−1; and this is a multiple of a
power of either c or c∗ (depending on the sizes of r, s, rj and sj). But then (c∗)rzcs would
be a nonzero polynomial in {c, c∗} with c a cycle with exits, what contradicts the fact that
z ∈ I(Pc(E)), because of Lemma 5.1. Hence, (c∗)rzcs = 0.
To finish the proof, consider the polynomial (c∗)r(vµ∗xνv)cs = (c∗)r(p + z)cs = (c∗)rpcs and
apply to it the process defined for the case when z = 0. �

Note that the result [14, Lemma 2.3 (i)] used in the previous proof is not valid for arbitrary
graphs. In order to consider the direct generalization of this result for arbitrary graphs, one
may use the machinery of admissible pairs as explained in Tomforde’s paper [26]. Concretely,
for H the hereditary and saturated subset generated by the vertices in cycles without exits,
LK(E)/I(H) is isomorphic to the Leavitt path algebra of a graph in which breaking vertices
appear, as shown in [26, Theorem 5.7 (2)]; but since the use of infinite emitters and breaking
vertices would, in our opinion, obscure the underlying ideas and would enlarge the proofs
with some distracting technicalities, we have preferred to switch to a dual graphs approach,
which we tackle in the following subsection.

Remark 5.3. Note that in Proposition 5.2 either the vertex is not in the ideal I(Pc(E)) or
is in a cycle with exits such that all the ranges of the exits are in I(Pc(E)).

Examples 5.4. We illustrate the two situations of the previous result and describe I(Pc(E))
in each case.

(i) Let E be the graph represented by:

•u •v
e //foo •w

��

Consider the idempotent x = ff ∗+w of LK(E)\I(Pc(E)), whose class in LK(E)/I(Pc(E))
is [x] = [ff ∗] = [v]. Now, [v][x][v] = [v] means that we can take µ = v = ν. In LK(E),
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µ∗xν = vxv = v(ff ∗+w)v = ff ∗ = v− ee∗ 6= v (ee∗ ∈ I(Pc(E))). Finally, sandwiching
by f ∗ and f , we get that f ∗µ∗xνf = f ∗ff ∗f = u ∈ E0.

Using the construction HE, one can see that, in this case, I(Pc(E)) ∼= M2(K[x, x−1])
since there is only one path e ending at w.

(ii) Now let E be the graph represented by

•v3
e3

!!
•
��

•v2
goo

e2
==

•ve1
oo e // •w

f

��

and consider the element

x = c5 + c2 + ee∗ + c3efe∗(c∗)5 + ce1e
∗
1 + ce1e2 + ce1e2e

∗
2e
∗
1(c∗)2

of LK(E) \ I(Pc(E)), where c = e1e2e3. Its class in LK(E)/I(Pc(E)) is [x] = [c5 +
c2 + c + ce1e2 + c∗], since [e1e

∗
1] = [v], [e2e

∗
2] = [v2]. We can take µ = v = ν to get

[µ∗xν] = [vxv] = [c5 + c2 + c+ c∗], which is a polynomial [p] in {[c], [c]∗} with [c] a cycle
without exits. In LK(E),

µ∗xν = vxv = c5 + c2 + ce1e
∗
1 + ce1e2e

∗
2e
∗
1(c∗)2 + c3efe∗(c∗)5 + ee∗ =

= p+ y + c3efe∗(c∗)5 + ee∗,

where p is the already mentioned polynomial c5 + c2 + c + c∗ and y ∈ I(Pc(E)) is
such that p + y = c5 + c2 + ce1e

∗
1 + ce1e2e

∗
2e
∗
1(c∗)2, the monomials which give rise to

[p] in LK(E) \ I(Pc(E)). So, we must have y = c5 + c2 + ce1e
∗
1 + ce1e2e

∗
2e
∗
1(c∗)2 − p =

(ce1e
∗
1 − c) + (ce1e2e

∗
2e
∗
1(c∗)2 − c∗) = A+B. By an application of (CK2), we see, on the

one hand, that c = cv = ce1e
∗
1 + cee∗ so that A = ce1e1 − c = −cee∗.

On the other hand, by adding c(c∗)2 − c(c∗)2 to B, we get B = ce1e2e
∗
2e
∗
1(c∗)2 − c∗ =

ce1e2e
∗
2e
∗
1(c∗)2−c(c∗)2 +c(c∗)2−c∗. Taking into account that, by (CK2), v = e1e

∗
1 +ee∗ =

e1v2e
∗
1 + ee∗ = e1(e2e

∗
2 + gg∗)e∗1 + ee∗ = e1e2e

∗
2e
∗
1 + e1gg

∗e∗1 + ee∗, we get:

(i) c(c∗)2 = cv(c∗)2 = ce1e2e
∗
2e
∗
1(c∗)2 + ce1gg

∗e∗1(c∗)2 + cee∗(c∗)2, what implies that
ce1e2e

∗
2e
∗
1(c∗)2 −c(c∗)2 = −ce1gg

∗e∗1(c∗)2 − cee∗(c∗)2.
(ii) c∗ = vc∗ = e1e2e

∗
2e
∗
1c
∗ + e1gg

∗e∗1c
∗ + ee∗c∗ with e1e2e

∗
2e
∗
1c
∗ = e1e2e3e

∗
3e
∗
2e
∗
1c
∗ = c(c∗)2

(because e3e
∗
3 = v3), so that c(c∗)2 − c∗ = −e1gg

∗e∗1c
∗ − ee∗c∗.

(iii) Therefore, B = −ce1gg
∗e∗1(c∗)2 − cee∗(c∗)2 − e1gg

∗e∗1c
∗ − ee∗c∗.

Then, vxv = p + A + B + c3efe∗(c∗)5 + ee∗ = p − cee∗ − ce1gg
∗e∗1(c∗)2 − cee∗(c∗)2

−e1gg
∗e∗1c

∗− ee∗c∗+ c3efe∗(c∗)5 + ee∗ = p− ce1gg
∗e∗1(c∗)2 −cee∗(c∗)2 + c3efe∗(c∗)5 + z′.

We do not really have to take into account z′ = −cee∗− e1gg
∗e∗1c

∗− ee∗c∗+ ee∗ because
c∗z′c = 0. Now we take r = max{1, 1, 3}+ 1 = 4 and s = max{2, 2, 5}+ 1 = 6, so that

(c∗)rvµ∗xνvcs =

= (c∗)4pc6 − (c∗)4ce1gg
∗e∗1(c∗)2c6 − (c∗)4cee∗(c∗)2c6 + (c∗)4c3efe∗(c∗)5c6 =

= (c∗)4pc6 = c+ c2 + c4 + c7,

because c∗e = 0 and (c∗)2e1g = c∗e∗3e
∗
2e
∗
1e1g = c∗e∗3e

∗
2g = 0. Hence, t1 = 1 for the

monomial c and we just have to multiply by (c∗)t1 = c∗ on the left to get the polynomial
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c∗(c∗)4vµ∗xνvc6 = c∗(c + c2 + c4 + c7) = v + c + c3 + c6, which has independent term.
Finally, e∗(c∗)5vµ∗xνvc6e = e∗(v + c+ c3 + c6)e = e∗e+ e∗(c+ c3 + c6)e = w.

Again, using the construction HE, one can see that, in this case,

I(Pc(E)) ∼= M∞(K[x, x−1])⊕M∞(K[x, x−1])

since there are countably many paths ending at r(g) and w. �

Proposition 5.5. Let LK(E) be a Leavitt path algebra:

(i) If E is an arbitrary graph and v ∈ E0 is a non-minimal primitive vertex of LK(E) then
v ∈ I(Pc(E)).

(ii) If E is a row-finite graph and x ∈ LK(E) is a non-minimal primitive idempotent then
x ∈ I(Pc(E)).

Proof.

(i) Since v is non-minimal primitive, T (v) has no bifurcations and ends in a cycle without
exits (Proposition 4.3) with base, say, w ∈ E0. Then w ∈ I(Pc(E)). The saturated

condition on I(Pc(E)) ∩ E0 = Pc(E) and the fact that T (v) has no bifurcations give
v ∈ I(Pc(E)).

(ii) Suppose x 6∈ I(Pc(E)) is a non-minimal primitive idempotent of LK(E). Then by
Proposition 5.2 there exist µ, ν ∈ Path(E), v ∈ E0 and k ∈ K\{0} such that µ∗xν = kv.
By Proposition 4.7 LK(E)v ∼= LK(E)x, so that v is a non-minimal primitive idempotent
and whence v ∈ I(Pc(E)) by (i). Defining, as in Proposition 4.7, a = 1

k
µ∗x, b = xν, we

see that x = e = bva ∈ I(Pc(E)) is a contradiction that finishes our proof. �

This proposition implies that I(Pc(E)) is an invariant of ring isomorphisms between Leavitt
path algebras of row-finite graphs:

Proposition 5.6. If E,F are row-finite graphs and φ : LK(E)→ LK(F ) is an isomorphism
of rings, then φ(I(Pc(E))) = I(Pc(F )).

Proof. I(Pc(E)) is generated by the vertices of Pc(E), which are non-minimal primitive idem-
potents by Remark 4.5. Thus, φ(Pc(E)) is a set of non-minimal primitive idempotents of
LK(F ) as well. By Proposition 5.5 above, φ(Pc(E)) ⊆ I(Pc(F )) and so φ(I(Pc(E))) ⊆
I(Pc(F )). By symmetry, we get φ(I(Pc(E))) = I(Pc(F )) as desired. �

5.2. The general case by means of dual graphs. The jump to the general case (that
is, proving the results of the previous subsection for the case of arbitrary graphs) passes
through the dual graph techniques introduced in Section 2 (in particular, θ will denote the
monomorphism defined in Proposition 2.8).

To start, we will see that the ideal generated by the vertices in cycles without exits of the
dual of a subgraph goes, via θ, into the ideal generated by the vertices in cycles without exits
of the whole graph:

Lemma 5.7. If E is an arbitrary graph and F is a row-finite subgraph of E, then
θ(I(Pc(DE(F )))) ⊆ I(Pc(E)).



20 G. ARANDA PINO, J. BROX & M. SILES MOLINA

Proof. Since I(Pc(DE(F ))) is generated by the set of vertices Pc(DE(F )), it suffices to show
that for one of them, say v, we have θ(v) ∈ I(Pc(E)). Note that v cannot be a vertex-
vertex, since those are sinks; thus v ≡ e must be an edge-vertex. So, θ(e) = ee∗ where, by
Lemma 3.1, e is an edge in a cycle without exits of E and therefore r(e) ∈ Pc(E). Now,
ee∗ = er(e)e∗ ∈ I(Pc(E)) implies the desired result. �

Theorem 5.8 (Refinement of Reduction Theorem). If E is an arbitrary graph and
x ∈ LK(E) \ I(Pc(E)) then there exist k ∈ K \ {0}, µ, ν ∈ Path(E) and v ∈ E0 such that
µ∗xν = kv.

Proof. Take x ∈ LK(E) \ I(Pc(E)) and express it as a convenient sum of monomials (as in
(†)). Observe that Fx and Dx are finite and that x ∈ Ax\I(Pc(E)). An application of Lemma
5.7 shows that θ−1(x) 6∈ I(Pc(Dx)). Now, since Dx is finite and θ−1(x) ∈ LK(Dx)\I(Pc(Dx)),
by the refinement of the Reduction Theorem for the row-finite case (Proposition 5.2), there
exist k ∈ K \ {0}, µ, ν ∈ Path(Dx) and v ∈ D0

x such that µ∗θ−1(x)ν = kv (‡). We will see
that this relation in LK(Dx) provides us with a similar one in LK(E).
Note that r(µ) = v = r(ν). Write µ = (µ1, µ2)(µ2, µ3) . . . (µn, y) and ν =(ν1, ν2)(ν2, ν3)
. . . (νm, y), with (µi, µi+1), (νj, νj+1) and (µn, y), (νm, y) edges of Dx, µi, νj edges of Fx and
y ∈ F 0

x ∪ F 1
x . There exist three possible cases for y:

Case (i). The vertex v comes from a sink of Fx. In this case y = v with θ(y) = uv = v
and θ(µ) = µ1µ2µ

∗
2µ2µ3µ

∗
3 . . . µnv = µ1µ2 . . . µn, θ(ν) = ν1 . . . νm. Thus, the application of θ

to (‡) gives
(µ1 . . . µn)∗x(ν1 . . . νn) = kv.

Case (ii). The vertex v comes from an intermediate vertex of Fx. In this case y = v with
θ(y) = uv =
= v −

∑
{s(e)=v,e∈Fx} ee

∗ and θ(µ) = µ1µ2 . . . µnuv, θ(ν) = ν1ν2 . . . νmuv, so that

(µ1µ2 . . . µnuv)
∗x(ν1ν2 . . . νmuv) = kuv.

Since v comes from an intermediate vertex of Fx, there exist f ∈ E1 \F 1
x such that s(f) = v;

this means that uvf = f, f ∗u∗v = f ∗ and f ∗uvf = r(f), which implies that

f ∗(µ1µ2 . . . µnuv)
∗x(ν1ν2 . . . νmuv)f = kf ∗uvf

gives us finally
(µ1µ2 . . . µnf)∗x(ν1ν2 . . . νmf) = kr(f).

Case (iii). The vertex v ≡ e comes from an edge of Fx. In this case y = e with θ(y) = ee∗

and θ(µ) = µ1 . . . µnee
∗, θ(ν) = ν1 . . . νmee

∗, so that (µ1 . . . µnee
∗)∗x(ν1 . . . νmee

∗) = kee∗.
Now, sandwiching with e∗, e and knowing that e∗e = r(e) we get

(µ1µ2 . . . µne)
∗x(ν1ν2 . . . νme) = kr(e). �

We are now in position to prove that no non-minimal primitive idempotent of any Leavitt
path algebra can live outside the ideal generated by the vertices in cycles without exits.
Moreover, we will see immediately that this ideal can be used for classification purposes, as
it remains invariant under isomorphisms of rings:

Corollary 5.9. If E is an arbitrary graph and x ∈ LK(E) is a non-minimal primitive
idempotent then x ∈ I(Pc(E)).
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Proof. As in Proposition 5.5 but building on Theorem 5.8. �

Theorem 5.10. If E,F are arbitrary graphs and φ : LK(E)→ LK(F ) is an isomorphism of
rings, then φ(I(Pc(E))) = I(Pc(F )).

Proof. As in Proposition 5.6 but building on Theorem 5.8. �

The structure of I(Pc(E)) was determined for the Leavitt path algebras of row-finite graphs
in [5, Proposition 3.5 (iii)]. We show that this structure is essentially the same for any Leavitt
path algebra. We note that in spite of it coming from the row-finite context, it is a particular
case of the general definition (specifically, the case with S = ∅) as stated in [16], where it is
used to study the structure of the graded ideals of an arbitrary Leavitt path algebra.

Let E be a graph, and let ∅ 6= H ∈ HE. Define

FE(H) = {µ = µ1 . . . µn | µi ∈ E1, s(µi) ∈ E0 \H for i ≤ n, r(µn) ∈ H}.

Denote by FE(H) another copy of FE(H). For µ ∈ FE(H), we write µ to denote a copy of µ
in FE(H). Then, we define the graph HE = (HE

0,HE
1, s′, r′) as follows:

(HE)0 = H ∪ FE(H)

(HE)1 = {e ∈ E1 | s(e) ∈ H} ∪ FE(H).

For every e ∈ E1 with s(e) ∈ H, s′(e) = s(e) and r′(e) = r(e).

For every µ ∈ FE(H), s′(µ) = µ and r′(µ) = r(µ).

We also need to know that an infinite path in a graph E is an infinite sequence of edges
µ = e1e2 . . . such that s(ei+1) = r(ei) for every i ∈ N, and that an infinite path is said to end
in a cycle if there exist a cycle c and an n ∈ N such that µ = e1 . . . enccc . . . .

Theorem 5.11. Let E be an arbitrary graph. Then I(Pc(E)) ∼=
⊕

j∈J Mnj
(K[x, x−1]), where

nj is an arbitrary cardinal and J is an arbitrary set.

Proof. Suppose I(Pc(E)) 6= 0, otherwise the result becomes trivial. By [14, Lemma 2.1]

(which first part is valid in full generality), I(Pc(E)) = I(H), where H = Pc(E), and by [16,
Proposition 3.7] (taking S = ∅ in that proposition), I(H) ∼= LK(HE). Thus, we can reduce
the problem to study the structure of LK(HE). We claim that it is a locally noetherian
Leavitt path algebra with zero socle, and hence the result follows from [5, Theorem 3.7 (iv)]
dropping the countability result on the index sets, which comes exclusively as a result of the
authors restricting their context to countable graphs. More concretely, the quoted result was
proved for row-finite and countable graphs, giving matrices of countable size. For row-finite
non-necessarily countable graphs, by following the same proof, matrices of arbitrary size may
appear.

To prove this, we will show that HE is row-finite with no sinks, satisfies Condition (NE) and
that any of its possible infinite paths must end in a cycle (whence LK(HE) satisfies [5, condi-
tion (iii) of Theorem 3.7]). The latter condition is easily seen to be true by construction. Also
by construction, HE contains no sinks, as any vertex in HE must connect to some vertex in
Pc(E), and hence Soc(LK(HE)) = I(Pl(HE)) = 0. That HE is row-finite is proved as follows:
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as H = Pc(E), by the inductive construction of the hereditary saturated closure, H (and sub-
sequently HE) could contain an infinite emitter v if and only if v ∈ Λ0(Pc(E)) = T (Pc(E)).
But since Pc(E) is hereditary, T (Pc(E)) = Pc(E), and since it contains no bifurcations (recall
that it is formed by the vertices which are base of cycles without exits), it cannot contain
any infinite emitter.
It remains to show that HE satisfies Condition (NE). Suppose on the contrary that there
exists a cycle with exits, c, in HE. By the definition of HE, c must be a cycle with vertices
in H. But this is impossible by Lemma 5.1. �

Note that this structure theorem keeps further the parallelism between I(Pc(E)) and
Soc(LK(E)), since by [13, Theorem 5.6] (dropping again the countability assumption),

Soc(LK(E)) = I(Pl(E)) ∼=
⊕
j∈J

Mnj
(K), where nj ∈ N ∪ {∞} and J is an arbitrary set.

It is well-known that if x ∈ Soc(R) for a semiprime ring R, then the right (resp. left)
R-module xR (resp. Rx) is semisimple. To finish, we use again the facts showed in the proof
above to establish that the LK(E)-modules generated by vertices of I(Pc(E)) can be written
as a direct sum of indecomposable modules:

Proposition 5.12. Let E be an arbitrary graph, and let v ∈ I(Pc(E)). Then vLK(E) (resp.
LK(E)v) is completely decomposable as a right (resp. left) LK(E)-module.

Proof. Since Pc(E) has no sinks and no infinite emitters, every v ∈ I(Pc(E)) is regular. Let
s−1(v) = {ei}ni=0. By [11, Proof of Lemma 7.3], vLK(E) ∼=

⊕n
i=0 r(ei)LK(E). Knowing that

the only infinite paths in I(Pc(E)) end in a cycle, we can repeat this process (now with
every r(ei)) until every vertex in our sum is the base of a cycle without exits, what happens
in a finite number of steps, to get vLK(E) ∼=

⊕m
i=0 uiLK(E) with ui ∈ Pc(E). Now, by

Proposition 4.3, every ui is primitive (T (ui) has no bifurcations) and hence every uiLK(E)
is an indecomposable left LK(E)-module, proving the claim. The argument for LK(E)v is
analogous. �
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