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Abstract: Vitamin D substantially influences sports performance and post-exercise recovery
because it offers anti-inflammatory, antioxidant and cellular protective properties. However,
deficient levels of 25-hydroxyvitamin D 25(OH)D (25(OH)D) (<30 ng/mL) could impact the
health of individuals, lead to musculoskeletal disorders and decrease athletic performance.
Therefore, it would be appropriate to know the interactions between genes and vitamin D. We
evaluated whether 25(OH)D had a possible connection to the presence of certain SNPs in CYP2R1
(rs10741657), GC (rs2282679) and muscle VDR (rs2228570) genes, with serum 25(OH)D concentra-
tions and the degree of WOD performance in highly trained CrossFit® practitioners. Knowing
these relationships could be instrumental for personalized vitamin D supplementation and train-
ing strategies. Using a standardized commercial enzyme-linked immunosorbent assay procedure,
the concentrations of 25(OH)D were determined and the genotyping procedures for each SNPs
were carried out using specific assays with the KASpar® test. The 25(OH)DA performance level
in grades was established based on the CrossFit® Total score (sum in kilograms of one Repetition
Max Squat, Press and Deadlift). Significant differences (p < 0.05) in 25(OH)D concentration were
found between each of the SNPs of CYP2R1 and GC with 25(OH)D. We discovered statistically
significant weak positive correlations (p < 0.05) between 25(OH)D and AA-alleles of the CYP2R1
and VDR genes, and TT-alleles of the GC gene. Additionally, AA (rs10741657 and rs2228570) and
TT (rs2282679) have a probability between 2 and 4 of having major concentrations of 25(OH)D
and 25(OH)D25(OH)D. Conversely, GG alleles present a probability of suboptimum values of
25(OH)D of 69%, 34% and 24% for VDR, GC and CYP2R1, respectively, showing a strong moderate
positive correlation (r = 0.41) between the degrees of sports performance and 25(OH)D25(OH)D
plasma levels. The different polymorphisms of our three candidate genes CYP2R1 (rs10741657),
GC (rs2282679) and VDR (rs2228570) disturb 25(OH)D concentration and play a critical role in
the sports performance of elite CrossFit® practitioners. These results could highlight that the
evaluation of genetic factors is key to designing a vitamin D supplementation strategy to improve
sports performance.
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1. Introduction

CrossFit® is a gimmick with very high-intensity-interval exercise (HIIT) [1], performed
through the so-called “Workouts of the Day” (WODs) [1], that allow training with stan-
dardized routines [2]. The extreme physical and energetic demands of CrossFit® training
necessitate high nutritional requirements. CrossFit® athletes seem to take their bodies to
the physical limit and achieve maximum sports performance, requiring supplementation
with nutrients, vitamins and minerals [3–5]. Consequently, nutritional practices must be
implemented allowing the specific requirements of CrossFit® practitioners to be covered [3].

In this way, vitamin D is of particular importance to athletes [6] because of its multi-
modal role in the nervous, immune, muscular and skeletal systems [7]. Especially optimal
levels of vitamin D seem to acquire a more relevant role in CrossFit® athletes by protecting
bone, immune and muscle health [6]. Athletes who are deficient in vitamin D and perform
high-intensity and -duration training are at high risk of musculoskeletal injuries, immuno-
suppression or arthritis [8,9]. In addition, optimal levels of serum 25-hydroxyvitamin D
(25(OH)D) correlate positively with sports performance, including strength and power,
running, endurance and aerobic abilities [10]. These physical capacities and physiological
demands correspond to CrossFit® [11].

Genetic determinants that may influence circulating 25-(OH)D should be consid-
ered [12]. Recently, Fernández-Lázaro et al. described that single-nucleotide polymor-
phisms (SNPs) influence nutrients, including the behavior of vitamin D [12], and could
specifically condition each athlete’s healthy state and sports performance [13]. Therefore,
certain SNPs could modulate (increase or decrease) the concentration of bioactive nutrients
in plasma [14]. Regarding vitamin D, SNPs in CYP2R1 gene have an impact on vitamin D
metabolism. CYP2R1 codes for the hepatic 25-hydroxylase of the cytochrome P450 fam-
ily [15], responsible for the first hydroxylation to the active form of vitamin D. In addition,
SNPs in the GC gene coding for vitamin D-binding protein (VDBP) have an influence in
vitamin D transport. VDBP is a protein belonging to the albumin family and is the main
carrier of vitamin D in blood [16,17]. Finally, SNPs in the vitamin D-receptor (VDR) gene
influence vitamin D biological activity in many tissues, with muscle being of particular
interest in sport performance (25(OH)D) [16–20].

In view of the foregoing information, we conducted a pilot study to assess the possible
connection between the presence of certain SNPs in CYP2R1 (rs10741657), GC (rs2282679)
and muscle VDR (rs2228570) genes, with serum 25(OH)D concentrations and the degree of
WOD performance in highly trained CrossFit® practitioners. Knowing these relationships
could be instrumental for personalized vitamin D supplementation and training strategies.

2. Material and Methods
2.1. Study Design

A multicenter epidemiological, observational, longitudinal, pilot study was conducted
in 2 CrossFit® Boxes and we report it here according to the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) statement [21]. This study’s participants
were highly trained CrossFit® athletes (n = 126) training in CrossFit® Boxes in Spain
(Figure 1). This study was approved by the Clinical Research Ethics Committee (CREC)
of Valladolid Clinical Hospital (PI-19-1350) (Spain). Following the Declaration of Helsinki
and the 2013 Fortaleza Revision [22], the informed consent document was drafted that all
CrossFit® practitioners read, accepted and signed.
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Figure 1. STORBE flow diagram for recruitment.

2.2. Inclusion Criteria

Healthy adults of legal age made up the study sample of highly trained CrossFit®

athletes in 2 CrossFit® Boxes in Salamanca (Spain) and Soria (Spain). Our athletes met the
following criteria: (i) ≥20 months of experience training CrossFit®; (ii) ≥2 participations in
CrossFit® competitions in the last season; (iii) completed “Fran” WODs < 250 s; (iv) passed a
pre-study medical exam to rule out pre-existing illnesses or injuries; (v) do not use products
or drugs from “The List of Prohibited Substances and Methods of 2023” established by the
World Anti-Doping Agency (WADA), including vitamin D supplementation; (vi) knew
and signed the informed consent where the potential benefit/risk of our pilot study was
exhaustively explained.

2.3. Data Collection

Table 1 shows the sociodemographic data, anthropometric measurements, sports
performance parameters and dietary evaluation of CrossFit® practitioners.

Table 1. Characteristics of the study participants.

Characteristics CrossFit® Athletes

Sample size (n) 50

Age (years) 35.7 ± 11.3

Gender n (%)
Male 50 (100)

Female 0 (0)
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Table 1. Cont.

Characteristics CrossFit® Athletes

Nationality n (%)
Spanish 38 (76)

Other 12 (24)

Body mass (kg) 77.6 ± 10.9

Fat Mass (kg) 9.7 ± 2.9

Fat Mass (%) 12.5 ± 2.3

Free Fat Mass (kg) 67.9 ± 4.1

Free Fat Mass (%) 65.2 ± 2.6

Height (cm) 171.5 ± 5.6

VO2max (mL/kg/min) 43.5 ± 4.4

Crossfit® experience (months) 35.3 ± 11.7

Fran 1 WODs (seconds) 231 ± 15
Data are expressed as mean ± standard deviation (SD). Abbreviations = SD: standard deviation; WODs: Workouts
of the day; VO2max: maximum amount of oxygen; n: sample size; %: percentage; kg: kilograms; cm: centimeters;
mL: milliliters; min: minutes. 1 Three rounds of thrusters and pull ups for 21, 15 and 9 repetitions.

2.4. Sociodemographic and Anthropometrics

Gender, age, nationality (Spanish or other), body mass, fat mass, free fat mass and
height were included as sociodemographic and anthropometric characteristics. Bioelectrical
impedance (BC-730; Tanita, Japan) was used to assess body mass, fat mass and free fat
mass [23]. The height was measured with a tape measure from the base of the floor to the
measurement marked on the wall, read and recorded to the nearest millimeter.

2.5. Physical Performance

Fran and CrossFit® Total WODs, and maximum amount of oxygen (VO2max) were
assessed as physical performance variables. Fran and CrossFit® Total tests were evaluated
following the CrossFit® training guide by Glasman [1,2]. VO2max was determined using a
modified Bruce treadmill protocol [24].

2.6. Dietary Assessment

The nutritional evaluation was carried out following our planned studies in elite
athletes [25,26].

2.6.1. Quantification of Plasma 25(OH)D Concentration Level

Quantification of plasma 25(OH)D concentration level of DNA was carried out fol-
lowing the methodology of our previous studies [12]. According to Larson-Mayer et al. [8],
which establishes 5 levels and reference ranges of based on 25(OH)D level for athletes:
(i) <20 ng/mL deficiency; (ii) <30–32 ng/mL insufficient; (iii) >30–32 ng/mL sufficient;
(iv) 40–100 ng/mL optimum; (v) >150 ng/mL + hypercalcemia toxic.

2.6.2. Single-Nucleotide Polymorphism (SNP) Determination by DNA Isolation and
Genotyping

We evaluated 3 SNPs of the genes rs10741657 to CYP2R1, rs2282679 to GC and
rs2228570 to VDR. The 3 candidate genes, CYP2R1, GC and VDR, with all their bial-
lelic varieties have an influence on the bioactive concentration of 25(OH)D [16,18]. Isolation
and genotyping of DNA were carried out following the methodology of our previous
studies [12].
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2.6.3. CrossFti® Total Level

CrossFit® Total degree was evaluated following the CrossFit® training guide level 1 by
Glassman [1,2], which establishes the following levels: (i) <270 kg beginner; (ii) 271–360 kg
intermediate; (iii) 361–450 kg advanced; (iv) ≥451 kg elite. The mandatory requirement to
be able to compete locally and as an amateur in CrossFit® is ≥360 kg, which is the cut-off
point in CrossFit® Total [27].

2.6.4. CrossFit Training

The training routine consisted of non-consecutive days of the week (Monday, Wednes-
day, Friday and Saturday). The 80 min CrossFit® training consisted of 4 parts: specific
warm up of the working muscle groups, a technique part based on strength and skills, the
main part of WODs and a cool down through muscle stretching. All training was planned
and led by a certified CrossFit® trainer with a Grade I or II certificate.

2.6.5. Statistical Analysis

Statistical analyses were performed using StataCorp. 2023. Stata Statistical Software:
Release 18 (StataCorp LLC: College Station, TX, USA). We calculated means and standard
deviations (continuous variables) and frequencies and percentages (categorical variables)
in the descriptive statistical analyses. A general univariate linear test of fixed factors
was performed by comparing each SNP of the 3 genes and 25(OH)D. Subsequently, a
Bonferroni post hoc test correction was applied to determine the differences between the
polymorphisms. Spearman’s rank correlation coefficient was used to obtain correlations
between polymorphisms and 25(OH)D.

Analyses were performed to determine odds ratios (ORs) and 95% confidence
intervals (CIs) to quantify the association between the different variables, each SNP
evaluated and 25(OH)D. We considered a two-sided p-value less than 0.05 to be consid-
ered statistically significant. Regression models were used and the Pearson correlation
coefficient (r) was calculated according to the coefficient of determination (R2), for the
different sports levels of CrossFit and 25(OH)D. p values less than 0.05 were considered
statistically significant.

3. Results

3.1. CrossFit® Athlete’s Characteristics and Dietary Assessment

The sociodemographic and anthropometric characteristics, physical performance and
nutritional characteristics are shown in Table 1. Table 2 records the energy and micronutri-
ent consumption in CrossFit® athletes.

Table 2. Macronutrients, energy and micronutrient consumption in CrossFit® athletes.

CrossFit® Athletes n = 50

Energy (kcal/kg) 40.3 ± 4.8

Proteins (g) 141.3 ± 37.9

Fats (g) 134.3 ± 43.2

Carbohydrates (g) 341.2 ± 97.6

Ca (mg) 1026.3 ± 224.1

Mg (mg) 544.3 ± 97.2

P (mg) 2120.6 ± 67.1

Fe (mg) 23.1 ± 3.6

Zn (mg) 13.4 ± 1.1

Vitamin A (µg) 1862.3 ± 1177.1
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Table 2. Cont.

CrossFit® Athletes n = 50

Vitamin E (mg) 16.0 ± 1.8

Vitamin B1 (mg) 2.9 ± 0.4

Vitamin B2 (mg) 2.6 ± 0.3

Vitamin B (mg) 40.9 ± 6.1

Vitamin B6 (mg) 4.3 ± 0.5

Vitamin B9 (mg) 637.2 ± 172.1

Vitamin B12 (µg) 9.6 ± 2.7

Vitamin C (µg) 351.1 ± 140.2
Data are expressed as mean ± standard deviation. Abbreviations = kg: kilograms; g: grams; mg: milligrams; µg:
micrograms; Kcal: kilocalories.

3.2. 25(OH)D Plasma Level

The 25(OH)D plasma level of highly trained CrossFit® males was 34.7 ± 5.2 ng/mL
and 68.0% had 25(OH)D level sufficiency, as described in Table 3.

Table 3. Distribution of CrossFit® athletes according to 25-hydroxy vitamin D ranges for sports population.

Age
(Years) Sample (n) 25-OH/D (ng/mL)

Mean (SD)
1 Deficiency n (%)

<20 ng/mL
1 Insufficiency n (%)

<30–32 ng/mL
1 Sufficiency (%)

>30–32 ng/mL
1 Optimum (%)
40–100 ng/mL

1 Toxic (%)
>150 ng/mL +

Hypercalcemia

<35 19 36.2 (4.3) - 2 (10.5) 14 (73.7) 3 (15.8) -

>35 31 33.1 (6.8) - 6 (19.3) 20 (64.5) 5 (16.2) -

35.7 (11.3) 50 34.7 (5.2) - 8 (16.0) 34 (68.0) 8 (16.0) -

Values are expressed as mean (standard deviation) for quantitative variables and as frequency (percentage) for
categorical variables. Abbreviations = SD: standard deviation; ng: nanograms; mL: milliliters; %: percentage.
1 Characterization of 25-hydroxy vitamin D levels and ranges in athletes´ populations by Larson-Mayer et al. [25].

3.3. CrossFit® Total Degrees

The description of the SNPs, 25-OH/ and CrossFit® Total degrees is shown in Table 4.
Seventeen athletes were classified as competitors according to Competition RuleBook
CrossFit® Games 2023 [27].

Table 4. CYP2R1, GC and VDR gene polymorphism; 25-hydroxy vitamin D plasma level; and sports
performance levels in the CrossFit® Total.

Gen SNPs Allele n (%)

Degrees of CrossFit® Total (Level n) 1 CrossFit® Athletes

Beginner
(Level 0)
< 270 kg

Intermediate
(Level 1)

271–360 kg

Advanced
(Level 2)
361–450

Elite
(Level 3) ≥ 451

Competitors 2

(+360 kg/+1000 lb)

CYP2R1 rs10741657

AA 17 (34.0) 0 6 8 3 11

GA 25 (50.0) 2 18 4 1 5

GG 8 (16.0) 4 3 1 0 1

AA/GA/GG 50 (100.0) 6 27 13 4 17

GC rs2282679

TT 19 (38.0) 1 8 7 3 10

GT 22 (44.0) 3 15 4 0 4

GG 9 (18.0) 2 4 2 1 3

TT/GT/GG 50 (100.0) 6 27 13 4 17
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Table 4. Cont.

Gen SNPs Allele n (%)

Degrees of CrossFit® Total (Level n) 1 CrossFit® Athletes

Beginner
(Level 0)
< 270 kg

Intermediate
(Level 1)

271–360 kg

Advanced
(Level 2)
361–450

Elite
(Level 3) ≥ 451

Competitors 2

(+360 kg/+1000 lb)

VDR rs2228570

AA 21 (42.0) 0 11 6 4 10

GA 18 (36.0) 2 10 6 0 6

GG 11 (22.0) 4 6 1 0 1

AA/GA/GG 50 (100.0) 6 27 13 4 17

Values are expressed as frequency (percentage) for categorical variables. Abbreviations = SNPs: Single-nucleotide
polymorphisms; 25(OH)D: 25-hydroxy vitamin D; %: percentage; kg: kilograms; lb: pounds. 1 Glassman G.
CrossFit training guide level 1; 2 Competition RuleBook CrossFit® Games 2023.

3.4. Comparisons between 25-Hydroxy Vitamin D and Single-Nucleotide Polymorphisms of the
CYP2R1, GC and VDR Genes

Table 5 shows the existence of significant differences (p < 0.05) in the plasma concentra-
tion of 25(OH)D between the three biallelic combinations of the SNPs r2228570 (VDR) and
rs2282679 (GC). Furthermore, statistically significant differences (p < 0.05) were observed
in the concentration of 25(OH)D between athletes carrying the GG genotype with respect
to the homozygous bialleles TT (rs2282679 (GC)) and AA (r2228570 (VDR)). Also, the
heterozygous biallele GA compared to AA for the SNP r2228570 (VDR) showed significant
differences (p < 0.05) in 25OH/D plasma level.

Table 5. Comparisons between 25-hydroxy vitamin D and single-nucleotide polymorphisms of the
CYP2R1, GC and VDR genes.

Gen SNPs Alleles 25(OH)D (ng/mL), Mean (SD) p-Value

CYP2R1 rs10741657

AA 38.2 (11.2)

0.076GA 26.9 (7.5)

GG 21.5 (4.7)

GC rs2282679

TT 42.6 (3.2)
<0.05GT * 25.4 (5.7)

GG * 21.6 (5.1)

VDR rs2228570

AA 35.9 (8.3)

<0.05GA 24.4 (5.6)

GG $ 18.9 (4.9)
Notes: Values are expressed as mean (SD) for quantitative variables. Statistically significant values at p-value level
<0.05. Abbreviations = SNPs: single-nucleotide polymorphisms; 25(OH)D: 25-hydroxy vitamin D; ng: nanograms;
mL: milliliters. The multiple comparisons test is based on the Bonferroni test. *: Significant differences with
respect to TT. $: Significant differences with respect to AA.

3.5. Correlations between 25-Hydroxy Vitamin D and Single-Nucleotide Polymorphisms of the
CYP2R1, GC and VDR Genes

For homozygous AA (rs1074165; rs2228570) and TT (rs2282679), bialleles showed
remarkably weak positive correlations (p < 0.05). Moreover, mild negative correlations
(p < 0.05) were obtained for all homozygous GGs of rs1074165 (r = −0.34; p = 0.016),
rs2282679 (r = −0.33; p = 0.012) and rs2228570 (r = −0.43 (p < 0.001) (Table 6).

3.6. Single-Nucleotide Polymorphisms of the CYP2R1, GC and VDR Genes Associated with
25-Hydroxy Vitamin D Plasma Level

Table 7 shows the set of results of the multivariate logistic regression analysis to gener-
ate a diagnostic/predictor model of the plasma concentration of 25(OH)D that consisted
of three variables that were the three SNPs of our study: CYP2R1, GC and VDR. Athletes
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who include AA homozygous biallelic genotypes (rs10741657 [OR 2.01, 95% CI 0.77–5.48],
rs2228570 [OR 2.88, 95% CI 1.43–5.92]) and TT (rs2282679[OR 3.67 95% CI 2.11–6.41]) could
be more prone to having higher levels of 25(OH)D than other genotypes of these SNPs. On
the contrary, our results have shown that athletes carrying the homozygous biallele GG
(CYP2R1, GC and VDR) were associated with a lower concentration of 25(OH)D, being
more relevant in VDR rs2228570 (OR 0.31, 95% CI 0.12–1.27).

Table 6. Correlations between 25-hydroxy vitamin D and single-nucleotide polymorphisms of the
CYP2R1, GC and VDR genes.

Gen (SNPs)

Full Cohort
(n = 50)

r p-Valor

CYP2R1 (rs10741657)

AA 0.17 0.034

GA 0.089 0.424

GG −0.34 0.016

GC (rs2282679)

TT 0.29 0.041

GT 0.07 0.526

GG −0.33 0.012

VDR (rs2228570)

AA 0.15 0.030

GA 0.06 0.172

GG −0.43 <0.001
Notes: Bold type equals statistically significant values at p-value level < 0.05. Correlations (r) are based on
Spearman’s rank correlation coefficient. Abbreviations = SNPs: single-nucleotide polymorphisms.

Table 7. Participant study characteristics and single-nucleotide polymorphisms of the CYP2R1, GC
and VDR genes associated with 25-hydroxy vitamin D concentration. Odds ratio (OR) and 95%
confidence intervals (95% CI).

Variable
Full Cohort (n = 50)

OR (IC 95%) Crude OR (IC 95%) Multivariate 1

Body mass index (BMI) (kg/m2) 1.00 (ref.) --

VO2 max (mL/kg/min) 1.62 (0.81–3.27) 1.77 (0.54–3.65)

Age (years) 0.91 (0.71–1.18) 0.92 (0.62–1.46)

Free Fat Mass (kg) 0.97 (0.84–1.191) 1.14 (0.86–1.52)

CYP2R1 (rs10741657) 1.00 (ref.) --

AA 1.44 (0.74–2.87) 2.01 (0.77–5.48)

GA 0.93 (0.782–1.05) 1.02 (0.83–1.27)

GG 0.83 (0.74–0.93) 0.76 (0.65–0.89)

GC (rs2282679) 1.00 (ref.) --

TT 3.69 (2.28–5.99) 3.67 (2.11–6.41)

GT 0.83 (0.68–1.02) 0.76 (0.49–1.21)

GG 0.67 (0.53–0.85) 0.66 (0.51–0.89)
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Table 7. Cont.

Variable
Full Cohort (n = 50)

OR (IC 95%) Crude OR (IC 95%) Multivariate 1

VDR (rs2228570) 1.00 (ref.) --

AA 2.93 (1.58–5.47) 2.88 (1.43–5.92)

GA 1.01 (0.42–2.64) 1.24 (0.29–6.11)

GG 0.53 (0.23–1.42) 0.31 (0.12–1.27)
Notes: Bold letter equals statistically significant values at p-value level < 0.05. 1 Multivariate model: adjusted
for all variables in the table. Abbreviations: CI: confidence interval; BMI: body mass index; OR: odds ratio;
ref: reference.

3.7. Correlation of Sports Level Degree in CrossFit® Total and 25-Hydroxy Vitamin D (25(OH)D)
Plasma Level

Figure 2 shows the correlation of sports level degree in CrossFit® Total and 25(OH)D
plasma level. Figure 2 shows R2 = 0.23 indicating that at least 23% of the changes in
the CrossFit® Total score are reliable for the 25(OH)D level. In addition, a positive
correlation (r = 0.41) is shown between the sports level degree in CrossFit® Total and
25(OH)D concentration.
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4. Discussion

Vitamin D substantially influences sports performance and post-exercise recovery
because it offers anti-inflammatory, antioxidant and cellular protective properties [28], on
muscle cells [9]. The described pathways that reveal the effects of vitamin D in restoring
and sustaining the optimal healthy condition of skeletal muscle are genomic and/or non-
genomic [29], in the same way as other nuclear steroids [30], through the vitamin D receptor
(VDR) based on myocytes [31]. Henceforth, adequate expression of VDR is essential,
because vitamin D alone could not control or modulate the mass and/or functionality of
skeletal muscle [32]. The loss or decrease in VDR expression is related to muscle pathologies
and aging [33]. However, increases in VDR expression are related to regeneration after
muscle damage [34]. Thus, the increased expression of VDR and the higher vitamin D
plasma levels would favor this interaction (Vitamin D-VRD) [31]. In humans, rs2228570
is the only VDR polymorphism that has distinct structural consequences for the VDR
protein [35]. Also, 25(OH)D ≥ 30 ng/mL induces the muscular-positive regulation of
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VDR [31,32] and exogenous vitamin D induces the upregulation of VDR in the systemic
extracellular matrix in primary muscle cells [34,36].

We have identified that VDR genotype variants (rs2228570) have significant differences
(p < 0.05) in blood levels of 25(OH)D. Our results showed a negative correlation (r = −0.43;
p < 0.001) between the total concentration of 25(OH)D and the homozygous GG biallele.
Furthermore, CrossFit® athletes carrying AA (rs2228570) were three times more likely (OR
2.88, 95% CI 1.43–5.92) to have higher levels of vitamin D. VDR with the homozygous
FokI AA genotype results in increased VDR protein activity compared to GA or GG
genotypes [37]. Thus, the VDR gene’s polymorphisms may condition VDR expression
and protein stability [38]. In this sense, the A allele of VDR rs2228570 was associated with
VDR mRNA copy number [18,39]. Also, VDR expression is elevated acutely (1 to 3 h) after
resistance exercise [31], although low levels of VDR expression in skeletal muscle do not
rule out direct actions on its physiological effects [31]. Our findings suggest that the A
allele is an element that safeguards the achievement of optimal levels of 25(OH)D [12] and
full VDR protein acquisition with optimal physiological functioning [35], which enables
improved sports performance. In this sense, we identified 12 advanced athletes and 4 elite
athletes’ carriers with the A allele of VDR (rs2228570), which means that 16 athletes were
defined as level competitors in CrossFit® games, based on their sports performance.

The steps prior to the binding of 1-25OH/D and VDR require the hydroxylation of
vitamin D by CYP2R1 [15] and 1-25OH/D transport to the target VDR, by DBP [16,17].
Both SNPs, GC and CYP2R1, substantially affect vitamin D status [13]. The GG genotype of
CYP2R1 (rs10741657) was significantly more likely to have inadequate 25(OH)D levels [16]
and GG and GT bialleles (GC rs2282679) were associated with lower 25(OH)D concentra-
tions [17]. Consistent with these studies [16,17], in our CrossFit® athletes, the A allele of
CYP2R1 rs10741657 and the T allele of GC rs2282679 were associated with a 2–3 times
higher likelihood to present higher levels of 1-25OH/D, as in older adult patients [12].
In fact, we found that 16 and 14 “competitive” sports-grade athletes carried the A allele
(rs10741657) and the T allele (rs2282679), respectively.

On the other hand, non-genomic VDR pathways should be considered due to the
direct action of vitamin D that optimizes the contractile process of skeletal muscle through
the greater mobilization of calcium towards the sarcoplasmic reticulum [40,41]. Plasma
levels in physiological ranges (>30 ng/mL of 25(OH)D), as in the athletes in our study, will
potentially improve skeletal muscle functionality [42] indirectly, which is key to athletic
performance in CrossFit®.

Optimal 25(OH)D plasma levels act by promoting the improvement in neuromuscular
function in older people [8,41]. In this way, increases in skeletal muscle strength and phys-
ical capacity are linked to levels in the adequate physiological range of 25(OHD) [12,43].
These results are consistent with those reported in our CrossFit® athletes in the strength
performance test. The influence of the blood concentration of 25(OH)D in the skeletal mus-
cle of our athletes will be responsible for 23% of the effects on the sports level, establishing
a moderate positive correlation (r = 0.41) between the CrossFit® Total grade and 25(OH)D
plasma levels. In our study, allelic variations in the SNPs GG (rs10741657), GC (rs2282679)
and VDR (rs2228570) affect the plasma concentration of vitamin D in CrossFit® athletes,
which may condition their level of sports performance, especially the effects induced by
the 1,25OH/D-VDR complex, through genomic and non-genomic pathways, leading to
progress in muscle health, muscle functionality, strength, muscle recovery and potentially
physical work [8,41]. In fact, rs2228570 (FokI) is the only polymorphism that perturbs
the length and functionality of the VDR protein. Furthermore, deficient (>10 ng/mL) or
toxic (>150 mg) levels of 25(OH)D inactivate the biologically active form of VDR [44]. Our
athletes maintained an adequate plasma concentration of 25(OH)D (34.7 ± 5.2 ng/mL),
which would not structurally affect the VDR, maintaining its activity mediated by genomic
and non-genomic pathways on skeletal muscle.

The possible practical applications of our findings, through SNPs, could allow athletes,
coaches and/or sports nutritionists to recognize persons at potential risk of hypovitaminosis
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D and adjust possible nutritional actions by improving intake or supplementation. With
the purpose of improving health, functionality and muscle performance in athletes, these
tips are important for precision personalized nutrition and/or supplementation.

5. Conclusions

This research proved that those allelic variations in the CYP2R1 (rs10741657), GC
(rs2282679) and VDR (rs2228570) SNPs disturb the (OH)D behavior in CrossFit® athletes.
Thus, genetic polymorphisms of the genes (CYP2R1, GC and VDR) could be the key
elements in the modulation of plasma 25(OH)D concentration. This will depend on its
availability to modulate the expression of genes involved in skeletal muscle performance
and/or health, such as VDR. Finally, we stated that the concentration of 25(OH)D has a
moderate positive correlation (r = 0.41) with sports level degree in CrossFit® Total.
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