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Abstract

Background: A relatively large percentage of patients with chronic obstructive pulmonary disease (COPD) develop
systemic co-morbidities that affect prognosis, among which muscle wasting is particularly debilitating. Despite
significant research effort, the pathophysiology of this important extrapulmonary manifestation is still unclear. A key
question that remains unanswered is to what extent systemic inflammatory mediators might play a role in this
pathology.
Cigarette smoke (CS) is the main risk factor for developing COPD and therefore animal models chronically exposed
to CS have been proposed for mechanistic studies and biomarker discovery. Although mice have been successfully
used as a pre-clinical in vivo model to study the pulmonary effects of acute and chronic CS exposure, data suggest
that they may be inadequate models for studying the effects of CS on peripheral muscle function. In contrast,
recent findings indicate that the guinea pig model (Cavia porcellus) may better mimic muscle wasting.

Methods: We have used a systems biology approach to compare the transcriptional profile of hindlimb skeletal
muscles from a Guinea pig rodent model exposed to CS and/or chronic hypoxia to COPD patients with muscle
wasting.

Results: We show that guinea pigs exposed to long-term CS accurately reflect most of the transcriptional changes
observed in dysfunctional limb muscle of severe COPD patients when compared to matched controls. Using network
inference, we could then show that the expression profile in whole lung of genes encoding for soluble inflammatory
mediators is informative of the molecular state of skeletal muscles in the guinea pig smoking model. Finally, we show
that CXCL10 and CXCL9, two of the candidate systemic cytokines identified using this pre-clinical model, are indeed
detected at significantly higher levels in serum of COPD patients, and that their serum protein level is inversely
correlated with the expression of aerobic energy metabolism genes in skeletal muscle.

Conclusions: We conclude that CXCL10 and CXCL9 are promising candidate inflammatory signals linked to the
regulation of central metabolism genes in skeletal muscles. On a methodological level, our work also shows that a
system level analysis of animal models of diseases can be very effective to generate clinically relevant hypothesis.
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Background
Chronic obstructive pulmonary disease (COPD), one of
the top five deadliest diseases worldwide [1], is an in-
flammatory condition of the lungs that predominantly
affects people with a long history of cigarette smoking
(CS) [2]. In addition to the clinical manifestations in the
lung, COPD is also associated with several extra pul-
monary manifestations. Skeletal muscle wasting and dys-
function is one of the most severe of these pathologies
[3]. This muscular deconditioning, which is partly inde-
pendent of the severity of airflow limitation, is a promin-
ent contributor to exercise intolerance [4] as well as being
an independent predictor of morbidity and mortality [5].
Long-term CS exposure has a clear potential to contribute
to the systemic effects of COPD, as similar findings have
been observed in healthy smokers (for example, a decrease
in lean muscle mass and force reduction) [6]. However,
the direct effects of CS on peripheral muscle function, at
the molecular level, are poorly understood.
Although we do not still fully understand the mecha-

nisms that contribute to muscle dysfunction in COPD,
there is evidence that multiple factors are likely to influ-
ence clinical outcome, such as systemic inflammation,
reduced capillary density, tissue hypoxia and subsequent
oxidative stress [7]. However, it is not known to what ex-
tent increased levels of inflammatory cytokines play a
role in muscle wasting. Likewise, hypoxaemia has been
linked to several drivers of muscle dysfunction in COPD
such as downregulation of energy-consuming processes
(for example, protein synthesis, mitochondrial respiration),
impaired myogenesis, fibre type shifting [8] and increased
serum levels of cytokines [9], but the exact molecular
mechanisms through which chronic or intermitted hypoxia
affects muscle maintenance are unclear.
Animal models, particularly mouse models, are widely

used to study the effects of acute and chronic CS. Im-
portantly, long-term CS exposure in rodent models may
be the best approximation of the more acute aspects of
lung responses in human COPD [10]. However, the
current literature suggests that mice chronically ex-
posed to CS develop either none or only mild peripheral
muscle dysfunction [6,11,12]. For example, only two
studies have to our knowledge reported a significant de-
crease in hindlimb muscle weight following long-term
whole-body exposure using very high smoking doses
(≥20 cigarettes/day) [11,13].
The guinea pig (Cavia porcellus), one of the most

popular animal models to study infectious diseases [14],
has been shown to tolerate CS exposure without the
rapid weight loss observed in other pre-clinical models
[15]. However, promisingly long-term CS-exposed guinea
pigs fail to appropriately gain body weight compared to
age-matched sham controls [6,16]. Further, in accordance
with previous findings in COPD patients [6], guinea pigs
demonstrate CS-induced oxidative stress in limb muscles
within 3 months of exposure [6,16], potentially highlight-
ing the relevance of the guinea pig model for studying
extrapulmonary co-morbidities that characterise human
COPD.
However, the guinea pig is a rather challenging model

organism to determine the molecular response due to
the lack of a fully annotated genome. This paucity of
genetic information is unfortunate since gene expression
profiling has shown to be a very promising approach to
formulate hypotheses on complex molecular mecha-
nisms underlying pathology [17,18]. Here, we report the
development of the first transcriptome-sequencing for
guinea pigs representing lung and skeletal muscles, as well
as the development and validation of a novel genome-wide
microarray platform. With this novel platform, we profiled
the transcriptional response of lung and muscle tissues
chronically exposed to CS, hypoxia (CH) or to combined
stimuli (CSCH). The overarching aim of our study was to
assess whether guinea pig hindlimb muscles (both oxida-
tive and glycolytic) show a transcriptional response to these
exposures, and whether such gene signatures can be corre-
lated to the expression of lung secreted proteins.
We discovered that indeed skeletal muscles of guinea

pigs exposed to all experimental interventions accurately
mimic the transcriptional state of human limb muscle
sampled from COPD patients with muscle atrophy. Using
a relatively simple network inference method we then iden-
tified systemic cytokines whose mRNA and serum protein
levels are inversely correlated with the transcriptional state
of energy metabolism pathways in guinea pig and human
COPD patients, respectively.
These results provide further evidence for the utility of

the guinea pig smoking model to study muscle wasting
in COPD and support the hypothesis that systemic in-
flammation plays an important role in altering the energy
metabolic state in peripheral muscles causing them to
dysfunction.

Methods
Guinea pig smoking model
Sixteen male Hartley guinea pigs were divided into four
groups: one group was exposed to CS for 3 months (n = 4);
a second group was kept in normoxia for 10 weeks and
subsequently placed in an hypoxic environment (12% O2)
for 2 weeks (n = 4); a third group (n = 4) was CS-exposed
for 3 months and to chronic hypoxia the last 2 smoking
weeks; finally we included a fourth group (n = 4) of sham
controls remaining in normoxia for the whole study period.
To avoid problems related to ageing, young adults were
used (8 weeks of age), and to avoid scaling effects body
mass was similar (approximately 300 g/animal). All proce-
dures involving animals and their care were approved by
the Ethics Committee of the University of Barcelona and
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by the University of Valladolid Institutional Committee for
Animal Care and Use, and were conducted following insti-
tutional guidelines that comply with national (Generalitat
de Catalunya decree 214/1997, DOGC 2450) and inter-
national (Guide for the Care and Use of Laboratory
Animals, National Institutes of Health, 85-23, 1985) laws
and policies.
Whole lung as well as soleus and lateral gastrocnemius

hindlimb muscles were isolated from each animal at the
end of the study period. The soleus muscle and the lat-
eral gastro were selected to represent oxidative and
glycolytic muscles, respectively. It should be noted that
although the gastrocnemius as a whole is a mixed muscle,
the lateral portion is predominantly glycolytic.
Animals receiving CS were daily exposed to the smoke

of four cigarettes (2R4F; Kentucky University Research;
Lexington, KY, USA, 11 mg tar, 0.8 mg nicotine per
cigarette), 5 days/week using a nose-only inhalation
system (Protowerx Design Inc; Langley, BC, Canada).
Sham-exposure to CS was done daily by placing control
animals in the nose-only exposure chamber for the same
duration (1 h) without cigarettes being lighted. In this ex-
perimental model, neither nutritional status (determined
via measurements of plasma cholesterol, protein and
lipids) nor whole-body weight gain at the end of the
study period is significantly different between CS-exposed
and sham animals [16]. Moreover, no changes in the pro-
portion of Type I and Type II fibres can be detected be-
tween CS-exposed and shams [6]. Detailed information on
exposure protocols, pulmonary function data and histo-
logical assessments from this study, which demonstrate
that observations in lung function and pulmonary struc-
tural changes of COPD patients are indeed replicated in
the CS-exposed guinea pigs, have been reported in two
separate publications [15,19].

RNA isolation from guinea pig samples
Total RNA was extracted using the RNeasy Mini extrac-
tion kits (Qiagen, USA) according to the manufacturer’s
recommendations. RNA purity and quality was evaluated
using a NanoDrop (Thermo Scientific) and a BioAnalyzer
2100 instrument (Agilent Technologies), respectively. All
samples had a RIN score >7.

Definition of the guinea pig transcriptome by mRNA
sequencing and microarray design
In 2008 the guinea pig genome was sequenced to a
depth of approximately 7X full coverage, and last up-
dated in 2010. However, because of the lack of cDNA
and protein resources the guinea pig genome is at
present poorly annotated. Thus, in order to address this
issue we performed an in-depth mRNA sequencing of
the lung and skeletal muscles transcriptomes and used
this to annotate the available guinea pig genome for
transcribed sequences. We then used this information to
design and validate the custom Agilent microarray plat-
form used in this study.
Transcriptome sequencing was performed using Illu-

mina sequencing. Briefly, NCBI and Ensembl transcripts
of guinea pig were combined with transcripts constructed
from Illumina paired end reads using the TopHat and
Cufflinks algorithms [20,21]. Microarray probe sequences
were then chosen based on the combined transcriptome
assembly. The raw RNAseq data have been deposited at
the Gene Expression Omnibus (GEO) under the reference
number GSE56099. A full description of the procedure is
provided in Additional file 1.

Guinea pig microarray gene expression profiling
One hundred nanograms of total RNA from each sample
was amplified and converted into labelled cRNA using
Agilent’s Low Input Quick Amp Labelling Kit according
to the manufacturer’s recommendations. Cy3-labelled
cRNA (600 ng/sample) was hybridised to our custom
Cavia porcellus oligonucleotide microarray (manufactured
by Agilent) in randomised sample order, which generated
61,657 measures per sample (18,073 annotated genes).
Hybridisation, washing and scanning of arrays were per-
formed according to manufacturer’s protocol. Three sam-
ples (one from each tissue) were lost during the process of
generating raw data. All scanned microarrays passed all 11
of the Agilent’s quality metrics. Capture probes that were
flagged (that is, did not pass Agilent’s ‘well above back-
ground’ condition) on at least 80% of the chips were re-
moved prior to data analysis, such that only those capture
probes with a raw signal greater than 99% of the back-
ground population signal, for at least 20% of the samples,
were retained (29,333 probes were discarded).
Raw microarray data were then normalised against

sham controls for each of the three tissues using loess in
the ‘marray’ [22] and ‘limma’ [23] Bioconductor packages.
Arrays were examined using hierarchical clustering and
principal component analysis (PCA) to identify outliers
prior to statistical analysis.
The statistical significance of differential expression

of each gene was determined using the significance
analysis of microarray (SAM) algorithm [24] with a
false discovery rate (FDR) cutoff of 1%. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment in differentially expressed genes was
examined using the web-based tool DAVID [25]. Disease
KEGG pathways were excluded from the analysis to
maximise biological interpretability. Therefore the ana-
lysis was restricted to KEGG group 1-4 (Metabolism,
Genetic Information Processing, Environmental Infor-
mation Processing and Cellular Processes). The microarray
data have been deposited in GEO under accession number
GSE56099.
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RT-qPCR validation of custom guinea pig array
Reverse transcription of 1 ug of isolated total RNA from
whole-lung tissue (same RNA as were used for the
microarray part) was performed using the Tetro cDNA
synthesis kit (Bioline) with random hexamer primers fol-
lowing the manufacturer’s instructions. The resulting
cDNA was diluted 10-fold and 2.5 uL of this was used to
perform qPCR in triplicate (25 uL reaction mixture vol-
ume) using the Maxima SYBR green (Thermo Scientific)
and 300 nM of primers according the manufacturer’s
instructions. To adjust for variations in the cDNA synthe-
sis, each gene was normalised to that of 18S ribosomal
RNA and beta-actin mRNA, respectively. All reactions
were run in singleplex on a StepOnePlus Real Time System
(Applied Biosystems) at 95°C for 10 min, followed by 40 cy-
cles at 95°C for 15 s and 60°C for 1 min. Two-fold dilution
series were performed for all primer pairs to verify the lin-
earity of the assay. In addition, dissociation curve analysis
was performed after each PCR to check for unspecific sig-
nals. Quantification was performed using the comparative
cycle threshold (2-ΔΔCt) method.
The following primers were used: CXCL9 fwr: 5′-

AGGCACCCCAGTAATGAG-3′; CXCL9 rev: 5′-TGA
TTTCTGTTTTCTCACACG-3′; CXCL10 fwr: 5′-TCT
GAGTGGGACTCAAGGAATACC-3′; CXCL10 rev: 5′-
TCCAGACATCTCTTCTCCCCATTC-3′; beta-actin fwr:
5′-GAGGCACCAGGGAGTCATG-3′; beta-actin rev: 5′-
AAGGTGTGGTGCCAGATCTTCTC-3′; 18S rRNA fwr:
5′-GTACAGTGAAACTGCGAATGGCTC-3′; 18S rRNA
rev: 5′-CCGTCGGCATGTATTAGCTCTAG-3′.

Human COPD clinical studies
In order to assess the clinical relevance of the findings
in respect to the guinea pig dataset, we took advantage
of a human microarray dataset we have previously pub-
lished [26]. This defined the baseline/resting transcrip-
tional state of the vastus lateralis muscle in severe
COPD patients with either a normal (n = 9) or low
(n = 6) body mass index (BMI) and healthy controls
matched for age and smoking history (n = 12). In addition,
the low BMI COPD group also had a significantly lower
fat free mass index (FFMI) (on average 16.7 kg/m2;
Additional file 2), a clear surrogate for muscle wasting.
All participants signed a written, informed consent ap-
proved by the Ethics Committee on Investigations Involv-
ing Human Subjects at the Hospital Clinic, Universitat de
Barcelona, and the study was conducted in accordance
with principles of the Declaration of Helsinki. Briefly, raw
Affymetrix CEL files were RMA normalized following re-
moval of probes that were termed ‘absent’ in more than
80% of the samples by the MAS5 algorithm inside the affy
package (26,197 probes were discarded). Following probe
summarization, a two-class unpaired SAM analysis was
performed using the R package ‘samr’ comparing gene
expression levels between COPD patients with a muscle
wasting phenotype and matched controls. Enrichment of
KEGG terms (group 1 to 4) in the resulting gene lists was
assessed using DAVID. Enriched terms used to define the
‘true response’ in the cross-species overlap analysis were
defined as having an EASE score P value <0.2. Further, de-
tailed demographic data on the human subjects, including
pulmonary measurements are provided in Additional
file 2. The raw microarray CEL files are deposited under
the reference number GSE27536.
In addition, we also analysed a public microarray data-

set published by the Ronald Crystal lab [27] examining
transcriptional changes in small airway epithelium from
healthy non-smokers (n = 47), healthy smokers (n = 58)
and smokers with COPD (n = 22), respectively (GSE19407).
Due to a clear scan date batch issue (Additional file 3,
Figure A), we focused our analysis on the data generated
in years 2006 and 2007 (hence excluding the two samples
scanned in 2005 as well as the 36 samples processed in
2008). As both human studies were conducted on the
Affymetrix U133 + 2 platform, the data analysis strategy of
the raw CEL files representing the pulmonary data was
identical to that of the human dataset in skeletal muscle
presented in this paper (see above) (see Additional file 4
for the list of regulated transcripts with fold-changes as
well as functional enrichment analysis).

Summarising the molecular state of skeletal muscle using
indices of pathway transcriptional activity
In order to reduce the complexity of the genome-wide
transcriptional state of guinea pig skeletal muscles, thereby
increasing statistical power, we computed indices of the
overall pathway transcriptional activity [28,29]. For each of
the two guinea pig hindlimb muscles, we first mapped the
thousands of individual gene expression measures onto
KEGG pathways using DAVID [30]. We then summarised
the transcriptional activity for the enriched pathways
(FDR <10%) by computing the first three principal compo-
nents (PCs), a procedure that allowed us to retain between
50% and 78% of the total variance (63% on average). Com-
putation of the PCs was performed using the ‘prcomp’
function within the statistical programming environment
R (script available on request).

Inference of biological networks linking lung and skeletal
muscles in guinea pigs
An exhaustive list of genes annotated to the cytokine
superfamily (n = 72) was compiled from the SABiosciences
PCR Array Web Portal [31] (see Additional file 5, work-
sheet 1 for the complete list). Such an approach has been
used previously for compiling gene-lists [32]. Among these
candidates we identified 33 genes coding for cytokines,
which were differentially expressed in guinea pig lung tis-
sue (Additional file 5, worksheet 2). These were selected
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for further analysis. Correlation between the expression
of these cytokines and skeletal muscle pathway indexes
were computed using the Spearman correlation coeffi-
cient, which allows the identification of linear and non-
linear monotone relationships [33]. Resampling of samples
(10,000 permutations) was conducted to obtain P values
for each correlation coefficient. Pair-wise associations
within the regulatory network were defined as statistically
significant when P <0.01.
The resulting sparse network was visualised using a

force-directed layout as implemented in the network
visualization tool Cytoscape v2.8 [34].

Creating and visualising a KEGG pathway map
To visually represent the relationship between enriched
KEGG pathways in the clinical dataset, we computed a
pathway similarity matrix based on the Jaccards Index of
overlap. This matrix was used as input to a hierarchical
clustering procedure (average linkage).

Measurement of inflammatory mediators in human serum
from COPD patients and healthy controls and validation
of the guinea pig lung-muscle cross-talk network
Previously published multiplex protein profiling data
from COPD serum samples (n = 26) and healthy controls
(n = 23) were included [26]. Briefly, data were log2 trans-
formed followed by imputation of missing values using K
nearest neighbours in the R package ‘impute’ [35]. Finally,
the full data matrix was Z-scored.
A Mack-Skillings test with two factors (disease and

training) was used to identify overall main effects across
groups in serum protein levels (P <0.05). A Gene Set
Enrichment Analysis (GSEA) was used to establish statis-
tical functional enrichment by ranking all Pearson correl-
ation coefficients between serum protein levels and global
muscle mRNA expression [36].

Results
Sequencing of the guinea pig transcriptome and
development of a genome-wide guinea pig
microarray platform
Illumina RNA sequencing (RNAseq) in this study has fa-
cilitated the construction of a comprehensive transcrip-
tome for guinea pig lung and skeletal muscles, with
much higher coverage than attainable purely by public
available data. In combination with public domain data,
Ensemble cDNAs and Genscan gene predictions, we
have generated the first comprehensive annotation of the
genome-wide transcriptome consisting of 151,072 tran-
script sequences (of which 81,074 were derived solely from
the RNAseq data). The number of transcripts annotated
with a RefSeq sequence, by stringent BLAST searching
against mouse transcripts from NCBI’s RefSeq collection,
was 97,822. This represented 17,907 non-redundant mouse
gene symbols. Annotated genes were classified according
to GO categories: cellular component (CC), biological
process (BP) and molecular function (MF). Additional
file 1: Figure S1 and S2 depict the distribution of the
major GO categories at level 1; for comparison we also
included level 1 GO terms for the mouse transcriptome.
Overall, the guinea pig GO term representation is very
comparable to that of the genes annotated in the full
mouse genome, highlighting the generality of the as-
sembled guinea pig transcriptome (Additional file 1:
Figure S1 and S2). Only reproduction processes and
extracellular region are poorly represented in the guinea
pig transcriptome. In addition, by Human ortholog iden-
tification, it was shown that the guinea pig transcrip-
tome assembled in this work contained genes included
in the entire set of Human KEGG pathways available
for download via the Broad Institute’s MSigDB Collec-
tions (see ‘KeggGPandMouseCounts.xlsx’ associated to
Additional file 1).
Using the transcript assembly we have developed the first

genome-wide microarray platform for the guinea pig
model species. Based on the probe performance using an
initial 180 K, we developed a 60 K custom Agilent micro-
array, representing 17,896 unique genes. Importantly, we
are able to demonstrate a high concordance between our
custom 60 K array platform and RNAseq data (Additional
file 1: Figures S5, S6 and S7), particularly when the ratio
between gene expression in lung and muscle tissue is com-
pared (Additional file 1: Figures S8 and S9).

Chronic exposure to smoking and/or hypoxia induces
transcriptional changes in both lung and skeletal muscle
in guinea pigs
To access whether the current guinea pig model show a
transcriptional response, we used our newly developed
microarray platform (Additional file 1) with mRNA ex-
tracted from whole lung and two metabolically distinct
hindlimb muscles (gastro and soleus) sampled from
shams and nose-only CS exposed animals approximately
1 month after a significant (P <0.01) decrease in body
mass gain could first be detected [15]. Indeed, we were
able to identify a relatively large number of genes differ-
entially expressed in all three tissues from all experimen-
tal groups (Figure 1; see Additional file 6 for individual
gene changes). Notably, both hindlimb muscles examined
displayed a marked response, with the oxidative soleus
muscle showing the largest number of changes following
exposure to CS alone (Figure 1).

Lung response to the different stressors is comparable in
magnitude, but involves different subsets of functional
pathways
Having shown that both lung and muscles mount a quanti-
tatively comparable transcriptional response following the
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different experimental challenges, we then compared and
characterised such responses at the functional pathway
level. We first focused on lung tissue and performed a
functional enrichment analysis, which identified 15 KEGG
pathways (see Additional file 7 for the result of the
GO analysis) that were enriched in genes differentially
expressed in lungs, in at least one experimental condition
(Figure 2). Only genes annotated to the ribosome path-
way were significantly modulated by all three experimen-
tal conditions. Instead the vast majority of differentially
modulated pathways were equally distributed between
the specific exposure conditions. The six pathways (40%)
unique to the CSCH group could be grouped into two
main functional categories: (1) biosynthetic pathways,
and (2) pathways with a strong signalling component
such as ErbB- and Wnt signalling as well as tight junction.
In contrast, all three pathways (that is, cytochrome P450
drug-, glutathione-, and arginine and proline metabolism)
enriched in genes upregulated by long-term smoking
per se could be associated to metabolic processes pri-
marily involved in detoxification of oxidative stress.
Finally, the four enriched terms specific to hypoxia can
be broken down into two main functional classes: (1) an
oxygen-dependent bioenergetic component (Oxidative
Phosphorylation) enriched in genes downregulated by
hypoxia, and (2) pathways with a strong signalling com-
ponent also negatively affected by hypoxia (that is, phos-
phatidylinositol signalling, inositol phosphate metabolism
and gap junction).

Glycolytic and oxidative limb muscles respond differently
to either smoking or hypoxia
The lateral gastrocnemius modulated a larger number of
genes following hypoxia, whereas the soleus (an oxidative
muscle) responded preferentially to the smoking challenge
(Figure 1). This trend was even more evident when testing
for functional pathway enrichment. The soleus muscle
responded to CS exposure by modulating 10 of the 13
pathways (77%) identified as differentially regulated in at
least one sample group, making this muscle the most sen-
sitive to this stressor (Figure 3A). Of these, eight were spe-
cifically modulated by CS.
The response to hypoxia only involved two pathways

of which one was specific to CH (TGF-beta signalling).
However, hypoxia has a considerable effect in the CSCH
exposure, effectively reducing the impact of CS (only
five pathways were enriched when both stimuli were
combined).
Consistent with the gene-level analysis, the gastro-

cnemius muscle primarily showed functional pathway
enrichment in response to hypoxia (Figure 3B). Genes
differentially regulated in this condition, were enriched
in 15 of the 19 KEGG pathways (79%) modulated in
this muscle in at least one of the experimental chal-
lenges. These could be grouped in to three main
functional clusters: (1) bioenergetic pathways such as
glycolysis and TCA cycle, (2) metabolic pathways (for
example, fatty acid-, propanoate-, purine- and pyrimi-
dine metabolism), and (3) pathways exerting degradative
processes such as proteasome and ubiquitin-mediated
proteolysis. Only three pathways, all with a tissue-
remodelling component, were specific to the CS group
(focal adhesion, VEGF- and ECM-receptor signalling;
Figure 3B). As a further contrast to the oxidative soleus
muscle (Figure 3A), aerobic energy metabolism in gastro,
represented by OxPhos, was only enriched among down-
regulated genes when hypoxia was added on top of the
CS challenge.
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The guinea pig smoking model recapitulates the
transcriptional changes observed in human COPD
skeletal muscles
Having described the pulmonary as well as extrapulmonary
transcriptional response to long-term CS and/or hypoxia,
we assessed their clinical relevance with an initial primary
focus on peripheral skeletal muscle. This was achieved by
comparing the enriched transcription-based functional
profiles derived from the guinea pig model with the func-
tional profile of genes differentially expressed in quadriceps
muscle biopsies from COPD patients relative to matched
controls (see Additional file 4 for the list of regulated tran-
scripts as well as functional enrichment analysis) [37].
First, we defined the transcriptional signature repre-

senting muscle wasting in human COPD by comparing a
cohort of COPD patients with low FFMI to matched
healthy individuals. This identified 1,861 differentially
regulated genes (1,416 up- and 445 downregulated), which
represented 19 unique functionally enriched KEGG path-
ways (Figure 4C). In order to assess which experimental
challenge best mirrored human COPD, we performed a
sensitivity and specificity analysis where ‘true response’
was defined by the 19 KEGG terms (KEGG group 1-4)
representing dysfunction human COPD muscle. This
analysis, performed ignoring the direction of change,
showed that a large percentage of enriched KEGG
terms in guinea pigs did overlap with the COPD pathway
signature - irrespective of the exposure (specificity scores
ranging from 91% to 98%, P <0.01) (Figure 4A). Soleus
muscle derived from CS-exposed guinea pig showed the
highest sensitivity, with 13 out of 19 (68%) KEGG pathways
in common (Figure 4A; additionally regulated genes have
been mapped to key pathways (Additional file 8)). The gas-
tro muscle from hypoxic guinea pigs followed by a short
measure with a sensitivity of 53% and 10 KEGG pathways
in common. The pathway overlap was statistically signifi-
cant in all six experimental conditions (P <0.01).
The same comparison, this time only considering

those KEGG pathways that were enriched in genes with
the same direction of regulation as the human dataset
(Figure 4B), still revealed a significant overlap with the
human dataset for five out of six experimental challenges
(only CSCH-exposed gastro had a P >0.01). On average
the sensitivity only decreased by 14% (Figure 4B) indicat-
ing that most of the response is in the same direction.
We conclude that the transcriptional response of guinea

pig limb muscle to long-term CS accurately reflects the
transcriptional state of dysfunctional limb muscles in
COPD patients. From a biological standpoint, many of the
KEGG pathways in common between the guinea pig model
and human COPD relate to (Figure 4C):

1) increased tissue remodelling (VEGF signalling, focal
adhesion, apoptosis)



Figure 3 Overlap analysis of enriched KEGG pathways in two guinea pig hindlimb muscles with discrete metabolic profiles. Rectangles
coloured in green indicate pathways unique to a specific experimental condition (that is, CS, CH or CSCH). Grey-coloured rectangles indicate
pathways that are regulated by more than one condition. (A) Soleus muscle; (B) gastrocnemius muscle.
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Figure 4 Muscle specific pathway-level comparisons between the guinea pig model and a clinical COPD study (GSE27536). The figure
displays the result of the sensitivity and specificity analysis for each of the six experimental conditions at the KEGG pathway level, where ‘true
response’ is defined by the 19 enriched KEGG pathways in the vastus lateralis of muscle-wasted COPD patients when compared to matched
healthy controls. (A) Plot where the x-axis represents the experimental conditions in the guinea pig model. The two y-axes represent (1) the true
positive rate as a fraction, and (2) the actual number of overlapping pathways with the human COPD cohort. In this panel specificity and sensitivity is
computed without considering the direction of change in expression (up- and downregulation). (B) The equivalent of the plot in (A) where specificity
and sensitivity is computed taking into consideration the direction of change. The grey-coloured crosses indicate the sensitivity values from the
undirected approach presented in (A). (C) represents the specific pathways regulated in the guinea pig model (columns 2 to 4) when contrasted
against COPD patients with a muscle-wasting phenotype (column 1). Green-coloured cells indicate enrichment among downregulated transcripts;
red-coloured cells indicate enrichment among the upregulated transcripts; and yellow-coloured cells indicate enrichment for transcripts enriched
in both directions.
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2) altered energy metabolism (oxidative
phosphorylation, glycolysis)

3) increased proteolysis

Thus, we demonstrate the validity of the guinea pig
smoking model as the basis for further mechanistic in-
vestigation, to facilitate better clinical therapy.
Noteworthy, a similar approach comparing guinea

pig and human lungs from healthy and COPD smokers
highlighted a less striking, albeit significant response
(P <0.05) (Additional file 3: Figures B and C). Of the 2,584
genes regulated in small airway epithelium from smokers
with COPD compared to healthy non-smokers (832 up-
and 1,752 downregulated), which represented 20 unique
functionally enriched KEGG pathways (Additional file 4 -
worksheets 3 and 4), only six pathways (30%) were in
common with the CSCH group in our guinea pig model.
Whereas this animal model does capture the CS-induced
oxidative stress response (that is glutathione metabolism
and metabolism of xenobiotics by cytochrome P450 are
both induced), our functional gene-level comparison indi-
cates a ‘metabolic gap’ in the current guinea pig smoking
model, which is particularly pronounced for amino acid
metabolism (Additional file 3: Figure B).



Davidsen et al. Genome Medicine 2014, 6:59 Page 10 of 16
http://genomemedicine.com/content/6/8/59
A significant fraction (60%) of the enriched pathways
in smokers with COPD are also modulated in healthy
smokers without COPD. Of the pathways regulated in
healthy smokers compared to non-smokers, three path-
ways (25%) overlapped with the smoking guinea pig model
(that is, glutathione metabolism, pentose phosphate- and
the proteasome pathways) (Additional file 3: Figure B).

Gene expression of lung soluble inflammatory mediators
correlate with skeletal muscle gene expression
Having demonstrated that the transcriptional state of
guinea pig hindlimb muscles following CS exposure rep-
resents that of dysfunctional COPD muscle well, we then
determined whether we could reverse engineer [33] the
structure of a gene regulatory network, linking gene
expression of lung soluble factors to pathway indices
representing the muscle transcriptional state. Thirty-
three of the 72 genes annotated to the cytokine super-
family (46%, Additional file 5) were differentially expressed
in at least one of the experimental groups and were se-
lected for reverse engineering. We next computed the
Spearman correlation coefficients between the profile of
expression of each factor in lung and indexes of KEGG
pathway activity in skeletal muscles. After removing corre-
lations with P >0.01, the union of the soluble factors
neighbourhoods was visualised using a force-driven layout
(Figure 5).
Analysis of the gastro network (Figure 5A) revealed

two cytokines each with six edges (that is, Cntf and
Cxcl10), indicating that these hub genes could exert an
effect on multiple pathways within the network. The
topological analysis also revealed a dense connected area
within the network that was enriched of energy metabol-
ism pathways (OxPhos, TCA cycle and glycolysis). Inter-
estingly, Cxcl10, whose expression level was significantly
increased in both the CSCH and CH groups (observed
with both microarray and qPCR - see Additional file 9),
was connected to both members within this energy
metabolism dense area of the network that comprised
aerobic respiration (that is, OxPhos and TCA cycle).
Noteworthy, Cxcl9, which targets the same receptor as
Cxcl10, also linked to both oxidative phosphorylation
and glycolysis.
Visual inspection of the soleus network (Figure 5B)

revealed that Cxcl9 was still linked to bioenergetic pro-
cesses via the glycolysis pathway. Notably, Cxcl10 was
now unconnected to energy metabolism pathways. In-
stead, this cytokine among others linked to the ribosome
component within the network, which had the highest
number of connections (11 edges) (Figure 5B).
We may thus hypothesise that some of the cytokines

we have identified in the guinea pig may also act as sys-
temic signals in COPD patients and be responsible for
reducing energy provision in skeletal muscle.
Serum cytokine profiling in human COPD patients
confirms the predictions of the guinea pig model
Having shown a remarkable similarity between the tran-
scriptional state of guinea pig and human COPD muscles,
we next assessed whether the link between expression of
selected pulmonary cytokines and the transcriptional ac-
tivity of enriched KEGG pathways in peripheral guinea pig
muscles was of clinical relevance. For this analysis we took
advantage of relevant measures from a COPD serum pro-
filing dataset (that is, CXCL9, CXCL10, CCL4, CCL5,
CCL11, IL1beta and VEGF) used in a previous publication
from our group [26] in order to test whether (1) serum
cytokine protein levels were affected by disease and/or
prolonged endurance training, and (2) if they were corre-
lated with skeletal muscle gene expression. Of the seven
cytokines included, we could indeed verify that the serum
protein level of both CXCL9 and CXCL10 were signifi-
cantly modulated in COPD patients, irrespective of their
FFMI, compared to healthy controls (Additional file 10).
More specifically, CXCL10 human protein levels were
higher in COPD patients. This increase was consistent
with the observed up regulation of mRNA in the guinea
pig lung. However, the increase in CXCL9 human protein
levels only fit with the increase in mRNA levels in guinea
pig lungs exposed to CH.

Training did not modulate any of the tested cytokines
We next correlated all mRNA transcripts expressed above
background (12,783 genes) in skeletal muscle in the same
cohort with serum cytokine levels and tested whether spe-
cific KEGG pathways were significantly enriched between
the positively or negatively correlated genes. Encouragingly,
these results were remarkably similar to the guinea pig cor-
relation networks shown in Figure 5. The similarity was
particularly evident in respect to the inverse correlation be-
tween CXCL9 and CXCL10 serum protein levels and the
expression of aerobic energy metabolism genes in muscle
(OxPhos and TCA cycle) (Figure 6). Importantly, these
strong negative associations to aerobic energy metabolism
genes were still present if we ignored the control samples,
demonstrating that VO2max difference is not a main com-
ponent of the correlations (Additional file 11).

Discussion
The most important finding of this study is the discovery
that mRNA levels in CS-exposed guinea pig lungs, as
well as human serum protein levels of CXCL9 and
CXCL10, are significantly inversely correlated to the ex-
pression of aerobic energy metabolism genes in skeletal
muscles. In addition, we demonstrate that the guinea pig
smoking model can mimic many of the transcriptional
changes observed in limb muscle of atrophic COPD pa-
tients, making this an extremely useful in vivo experi-
mental model.
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The role of systemic inflammatory cytokines in controlling
the molecular state of skeletal muscles
Several human studies have demonstrated that COPD is
associated not only to inflammation of the lungs, but
also with increased levels of circulating pro-inflammatory
cytokines [38,39]. Notably, there is a clear trend toward sig-
nificant induction of TNF-α plasma levels of CS-exposed
guinea pigs, suggestive of a similar systemic inflammatory
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Figure 6 Network representing the correlation between serum cytokine levels and skeletal muscles gene expression in the human
COPD study. (A) The force-directed network representation linking the serum level of selected chemokines/cytokines (round nodes) with
enriched KEGG pathways (yellow hexagons). Each circular node has been divided into two sectors, representing COPD patients with (1) a normal
FFMI and (2) a low FFMI. A red sector indicates that the cytokine level is significantly higher compared to matched controls, and a grey-coloured
sector indicates that the serum protein level is stable between groups. Blue edges mean negative correlation, whereas red edges mean positive
correlation. (B, C) Scatterplots representing the association between serum levels of CXCL9 (x-axis) and muscle mRNA expression (y-axis) of examples
of genes involved in oxidative phosphorylation (B) and ribosomal biogenesis (C).

Davidsen et al. Genome Medicine 2014, 6:59 Page 12 of 16
http://genomemedicine.com/content/6/8/59
process in this model organism [16]. Although elevated
levels of pro-inflammatory cytokines have previously been
linked to skeletal muscle dysfunction [40], until now it was
unclear whether they are the primary factor driving muscle
wasting.
The analyses we have performed provide the first

evidence that expression of systemic cytokines signifi-
cantly correlates with expression of energy metabolism
genes (represented by the OxPhos, TCA and glycolytic
pathway) in limb muscles (Figures 5 and 6). This is con-
sistent with the previous observation that dysfunctional
limb muscle of COPD patients are unable to co-ordinate
the expression of energy metabolism genes [26].
Importantly, there is strong evidence that most of the

candidates we have identified in the guinea pig model
are also modulated in COPD patients. For example, it
has previously been shown that serum levels of CCL24,
CSF1 and IL1A (among others) are significantly higher
in COPD patients compared to matched controls [41].
Our own validation of selected model predictions dem-
onstrated that serum protein levels of two CXCR3 che-
mokines (CXCL9 and CXCL10) are significantly higher
in the same COPD cohort used for muscle mRNA pro-
filing, and their levels negatively correlate with the ex-
pression of energy metabolism genes in human COPD
skeletal muscle (see Figure 6A). Consistent with this ob-
servation (see also [42]) we found a statistically signifi-
cant negative association between CXCL9 and CXCL10
serum protein levels and the distance walked in 6 min
(Additional file 12). Noteworthy, exercise training did
not modulate serum levels of these chemokines, indicating
that differences in the level of physical activity overall will
not affect serum levels of these chronic inflammatory
mediators.
Overall, this strongly suggests that systemic inflamma-

tion plays a major role in promoting skeletal muscles dys-
function in both smoking guinea pigs and human COPD
patients.

Biological significance of the transcriptional response to
smoking and/or hypoxia in lungs and muscles
In accordance with the (pre-)clinical literature, we iden-
tified a massive transcriptional response in whole lung
tissue (Figure 1). As anticipated, the result of the functional
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enrichment analysis suggests that long-term CS expos-
ure induces pathways related to the antioxidant defence
system (that is, glutathione and cytochrome P450 drug
metabolism), most likely in order to try and cope with
the increased ROS production. Such responses are consist-
ent with the changes observed in the human airway tran-
scriptome of chronic smokers [43,44] (Additional file 3).
Interestingly, the two skeletal muscles showed a dis-

tinct pattern of response both at the gene and pathway
level, likely reflecting differences in fibre type compos-
ition, and hence metabolic profile, between these two
hindlimb muscles. Soleus is a postural, entirely oxidative
muscle, with a high Type I fibre content, whereas the
gastrocnemius is a phasic muscle of mixed Type II com-
position that is predominantly glycolytic.
Our data suggest that CS per se primarily affects the

soleus (Figure 1) similar to a recent finding in C57 mice,
where contractile properties were selectively affected in
soleus following chronic CS exposure using a nose-only
device [12]. Furthermore, only the soleus showed a ten-
dency towards lower muscle mass after mice had been
whole-body exposed to CS for 6 months [11].
The result of the pathway level analysis in guinea pig

soleus clearly suggests that long-term smoking modu-
lates the activity of the MAPK pathway as induced sig-
nalling pathways (that is, ErbB signalling and apoptosis)
represent components of this pathway. This agrees with
a recent human study in which several key members of
the MAPK pathway were upregulated at the mRNA
level in vastus lateralis of patients with COPD [45]. In
addition, aerobic energy metabolism is also clearly hit in
the CS-group, which is also consistent with findings in
skeletal muscle of human COPD patients [46].
One puzzling finding in the current study is that hyp-

oxia appears to exert a ‘protective’ transcriptional effect
in the soleus, as only a few enriched pathways were
found when the hypoxic challenge was added to the CS
intervention. A density plot of fold-changes revealed that
CS as a single factor exerts a greater transcriptional ef-
fect than either of the two other experimental conditions
where CH is present, among the transcripts with an ab-
solute fold-change above 1.4. The reason for this is not
clear and highlights the need for further research in this
area.
In addition to the demonstrated agreement with pub-

lished human transcriptional data, we also addressed the
clinical relevance of the present animal model by com-
paring the transcription-based functional profiles related
to each experimental challenge with the functional sig-
nature derived from stable yet severe COPD patients
when compared to healthy age-matched controls. In ac-
cordance with results from our gene-level analysis and
phenotypic data from the mouse smoking model, the re-
sponse of the soleus to long-term smoke exposure best
mimics expression signatures linked to the effects of
COPD in human limb muscle, with 68% KEGG terms
in common (Figure 4A). However, exposure to CH in
gastro also yielded a highly statistically significant overlap
with the clinical dataset as highlighted by a 53% func-
tional overlap.

Gene expression profiling as a tool to assess animal
model relevance of human disease
Most pre-clinical models of CS-induced COPD have for
obvious reasons focused on the lung component of the
disease [47]. However, with the increasing awareness of
the clinically important extrapulmonary manifestations
linked to COPD, a number of studies have now begun
to try to elucidate the mechanisms governing skeletal
muscle dysfunction, whether or not accompanied by loss
of muscle mass. Consistent with COPD, previous studies
have shown marked reduction in body weight gain
[15,16] as well as increased oxidative stress [6] in guinea
pig hindlimb muscles following only 3 months of daily
CS exposure. In contrast, macroscopic data suggest that
mouse models poorly reproduce the systemic effects of
human COPD. For example, long-term exposure to CS
only induces mild effects in selected skeletal muscles, as
defined by fibre redistribution and altered oxidative en-
zyme activity [11,12], despite both studies using much
longer exposure protocols than that of the present study.
It may be important to assess and compare the relevance

of the current guinea pig model with that of other rodent
CS models such as the mouse. Although an extensive
microarray analysis of such model has not been published,
we have been able to retrieve a dataset from the GEO data-
base (GSE18033). In order to comment on the suitability
of this dataset to address this important issue, we analysed
this data using the same approach described in this paper
(see Additional file 13 for the full analysis).
The experiment performed was limited to the gastro-

cnemius, which our analysis in the guinea pigs suggests
is not the most representative of human COPD. How-
ever, before any comparison could be made, our analysis
only identified 24 genes that were differentially modu-
lated by chronic CS-exposure (24 weeks) in hindlimb
gastrocnemius muscle compared with time-matched sham
controls at a reasonable statistical threshold (FDR <15%).
Only by raising the statistical cutoff to 30%, which in-
creased the number of regulated transcripts to 1,020
(Additional file 13: Table S3), could we detect biologically
relevant functions, although the maximum sensitivity of
0.11 was substantially lower than any of the experimental
conditions involving CS-exposure in the current guinea
pig model (Figure 4A). Although further analysis of the
mouse model is required for reaching any definitive con-
clusion, these results indicate poor transcriptional response
following smoking exposure in mice.
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Conclusions
There are a number of indications that the current nose-
only guinea pig smoking model is useful for studying
extrapulmonary effects of COPD, as previously pointed
out, including an oxidative stress phenotype in limb muscle
as well as induction of plasma inflammatory mediators.
The data presented herein provide further evidence for

the utility of the guinea pig smoking model for replicat-
ing key clinical traits in human COPD, particularly as a
tool for identifying systemic signals influencing periph-
eral skeletal muscle function. Hence, these data should
facilitate more detailed interrogation of current guinea
pig models of human disease, likely promoting further
therapeutic development.
Additional files

Additional file 1: In depth description of mRNA sequencing analysis
and development of a custom microarray platform [20,21,30,36,48-69].

Additional file 2: Table with physiological characteristics of the
clinical COPD cohort. Data are presented as means ± SEM.

Additional file 3: Analysis of the genome-wide transcriptional
response in lung tissue from COPD patients, healthy smokers and
healthy non-smokers, respectively (GSE19407).

Additional file 4: Result of the SAMR differential gene expression
analysis and KEGG pathway enrichment analysis in the two human
COPD cohorts (GSE27536 and GSE19407) and the public available
mouse smoking dataset (GSE18033; presented in Additional file 13),
respectively.

Additional file 5: List of genes that are (1) annotated to the
cytokine superfamily (n = 72) and (2) differentially expressed in
whole lung tissue of treated guinea pigs compared to untreated
controls (n = 33; FDR <1%).

Additional file 6: Result of the SAMR differential gene expression
analysis in the guinea pig smoking model for each of the
experimental conditions the lung and muscle, respectively.

Additional file 7: Lists of statistically enriched Gene Ontology terms
(FDR <5%) in the different experimental conditions in guinea pig
lung (A) and hindlimb muscles (soleus: B; gastro: C), respectively.
Numbers in red squared brackets indicate the specific cluster number
from the output of DAVID. The black open brackets give the number of
enriched genes for a given ontology term.

Additional file 8: KEGG pathway diagrams for five key pathways
that are functionally enriched in soleus muscle of guinea pigs
exposed to long-term CS. Each gene in a pathway has been divided
into four sectors in order to demonstrate how that gene is regulated in
the guinea pig model as well as in the limb muscle of COPD patients
when compared to their respective controls. Green indicates
downregulation; red indicates upregulation.

Additional file 9: CXCL9 (A) and CXCL10 (B) mRNA levels in lung
tissue of sham controls (CON), cigarette smoke-exposed (CS), hypoxic
(CH) and to combined stimuli (CSCH). Values (means ± SE (n = 3-4 guinea
pig/group)) in the treated groups are presented as relative to the untreated
sham controls (basal level = 1). * Significantly different from the control group
(P <0.05). (*) tends to be significantly different among treated (0.05 > P <0.1).

Additional file 10: Heatmap visualising the serum protein levels
of selected cytokines in the human COPD cohort with the
extrapulmonary focus (GSE27536). Each row represents a cytokine,
whereas each column represents a human subject. Red colours mean
increased expression whereas green colours mean decreased
expression. An asterix denotes significance at P <0.05 for the disease
factor (Mack-Skillings test).
Additional file 11: Scatterplots highlighting that the negative
associations between CXCL9/-10 serum protein levels and muscle
aerobic energy metabolism genes in the human COPD cohort are
independent of exercise tolerance. Data have been standardised
(z-scored).

Additional file 12: Scatterplots relating the distance walked in
6 min to the serum protein levels of CXCL9 and CXCL10,
respectively.

Additional file 13: Analysis of the genome-wide transcriptional
response of hindlimb skeletal muscle in C57 mice exposed to
long-term nose-only cigarette smoke [24,70,71].
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