Show simple item record

dc.contributor.authorCampillo López, Antonio 
dc.contributor.authorOlivares, Jorge
dc.date.accessioned2019-05-24T10:41:16Z
dc.date.available2019-05-24T10:41:16Z
dc.date.issued2018
dc.identifier.citationJournal of Singularities, 2018, vol. 18. p. 105-113es
dc.identifier.issn1949-2006es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/36080
dc.descriptionProducción Científicaes
dc.description.abstractIt is well-known that a foliation by curves of degree greater than or equal to two, with isolated singularities, in the complex projective space of dimension greater than or equal to two, is uniquely determined by the scheme of its singular points. The main result in this paper is that the set of foliations which are uniquely determined by a subscheme (of the minimal possible degree) of its singular points, contains a nonempty Zariski-open subset. Our results hold in the projective space defined over any algebraically closed ground field.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWorldwide Center of Mathematics LLCes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationFoliations by curveses
dc.subject.classificationFoliaciones por curvases
dc.subject.classificationSingular pointses
dc.subject.classificationPuntos singulareses
dc.titleFoliations by curves uniquely determined by minimal subschemes of its singularitieses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 Worldwide Center of Mathematics LLCes
dc.identifier.doihttps://doi.org/10.5427/jsing.2018.18ges
dc.relation.publisherversionhttp://www.journalofsing.org/volume18/article7.htmles
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record