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Abstract Grouping around affine subspaces and other types of manifolds is receiv-
ing a lot of attention in the literature due to its interest in several application fields.
Allowing for different dimensions is needed in many applications. This work ex-
tends the TCLUST methodology to deal with the problem of grouping data around
different dimensional linear subspaces in the presence of noise. Two ways of con-
sidering error terms in the orthogonal of the linear subspaces are considered.
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1 Introduction

Many non-hierarchical clustering methods are based on looking for groups around
underlying features. For instance, the well-known k-means method creates groups
around k point-centers. However, clusters found in a given data set are sometimes
due to the existence of certain relationships among the measured variables.

On the other hand, the Principal Components Analysis method serves to find
global correlation structures. However, some interesting correlations are non-global
since they may be different in different subgroups of the data set even being the
distinctive characteristic of groups. This idea has also been proposed with the aim
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to overcome the “curse of dimensionality” trouble in high-dimensional problems by
considering that the data do not uniformly fill the sample space and that data points
are indeed concentrated around low dimensional manifolds.

There exist many references about clustering around affine subspaces with equal
dimensions within the statistical literature (see, e.g., [10] and [6] and the references
therein). We can distinguish between two different approaches: “clusterwise regres-
sion” and “orthogonal residuals methods”. In clusterwise regression techniques, it is
assumed the existence of a privileged response or outcome variable that want to be
explained in terms of the explicative ones. Throughout this work, we will be assum-
ing that no privileged outcome variables do exist. Other model-based approaches
have been already proposed based on fitting mixtures of multivariate normals as-
suming that the smallest groups’ covariances eigenvalues are small (see, e.g, [3]) but
they are not directly aimed at finding clusters around linear subspaces (see [10]).

It is not difficult to find problems where different dimensionalities appear. In fact,
this problem has been already addressed by the Machine Learning community. For
instance, we can find approaches like “projected clustering” (PROCLUS, ORCLUS,
DOC, k-means projective clustering), “correlation connected objects” (4C method),
“intrinsic dimensions”, “Generalized PCA”, “mixture probabilistic PCA”, etc.

We will propose in Section 2 suitable statistical models for clustering around
affine subspaces with different dimensions. They come from extending the TCLUST
modeling in [5]. The possible presence of a fraction α of outlying data is also taken
into account. Section 3 provides a feasible algorithm for fitting them. Finally, Sec-
tion 4 shows some simulations and a real data example.

2 Data models

Clustering around affine subspaces: We assume the existence of k feature affine
subspaces in Rp denoted by H j with possible different dimensions d j satisfying
0 ≤ d j ≤ p− 1 (a single point if d j = 0). Each subspace H j is so determined from
d j + 1 independent vectors. Namely, a group “center” m j where the subspace is
assumed to pass through and d j unitary and orthogonal vectors ul

j, l = 1, ...,d j,
spanning the subspace. We can construct a p×d j orthogonal matrix U j from these ul

j
vectors such that each subspace H j may be finally parameterized as H j ≡ {m j,U j}.

We assume that an observation x belonging to the j-th group satisfies x =
PrH j(x)+ ε∗j , with PrH j denoting the orthogonal projection of x onto the subspace
H j given by PrH j(x) = m j +U jU ′j(x−µ j) and ε∗j being a random error term chosen
in the orthogonal of the linear subspace spanned by the columns of U j. If ε j is a ran-
dom distribution in Rp−d j , we can chose ε∗j = U⊥j ε j with U⊥j being a p× (p−d j)
orthogonal matrix whose columns are orthogonal to the columns of U j (the Gram-
Schmidt procedure may be applied to obtain the matrix U⊥j ). We will further assume
that ε j has a (p−d j)-elliptical distribution with density |Σ j|−1/2g(x′Σ−1

j x).
Given a data set {x1, ...,xn}, we define the clustering problem through the maxi-

mization of the “classification log-likelihood”:
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k

∑
j=1

∑
i∈R j

log(p j f (xi;H j,Σ j)), (1)

with ∪k
j=1R j = {1, ...,n}, R j ∩Rl = /0 for j ̸= l and

f (xi;H j,Σ j) = |Σ j|−1/2g
(
(xi−PrH j(xi))

′U⊥j Σ−1
j (U⊥j )

′(xi−PrH j(xi))
)
. (2)

Furthermore, we are assuming the existence of some underlying unknown weights
p j’s which satisfy ∑k

j=1 p j = 1 in (1). These weights help to do more logical assign-
ments to groups when they overlap.
Robustness: The term “robustness” may be used in a twofold sense. First, in Ma-
chine Learning, the term “robustness” is often employed to refer to procedures
which are able to handle certain degree of internal within-cluster variability due,
for instance, to measurement errors. This meaning obviously has to do with the
consideration of data models as those previously presented. Another meaning for
the term “robustness” (more common in the statistical literature) has to do with the
ability of the procedure to resist to the effect of certain fraction of “gross errors”.
The presence of gross errors is unfortunately the rule in many real data sets.

To take into account gross errors, we can modify the “spurious-outliers model”
in [4] to define a unified suitable framework when considering these two possible
meanings for the term “robustness”. Starting from this “spurious-outliers model”,
it makes sense to search for linear affine subspaces H j, group scatter matrices Σ j
and a partition of the sample ∪k

j=0R j = {1,2, ...,n} with R j ∩Rl = /0 for j ̸= l and
#R0 = n− [nα] maximizing the “trimmed classification log-likelihood”:

k

∑
j=1

∑
i∈R j

log(p j f (xi;H j,Σ j)). (3)

Notice that the fraction α of observations in R0 is not longer taken into account in
(3).
Visual and normal errors: Although several error terms may be chosen under the
previous general framework, we focus on two reasonable and parsimonious distri-
butions. They follow from considering Σ j = σ jIp−d j and the following g functions
in (2):

a) Visual errors model (VE-model): We assume that the mechanism generating the
errors follows two steps. First, we randomly choose a vector v in the sphere
Sp−d j = {x ∈Rp−d j : ∥x∥= 1}. Afterward, we obtain the error term ε j as ε j = v ·
|z|with z following a N1(0,σ2

j ) distribution. We call them “visual” errors because
we “see” (when p ≤ 3) the groups equally scattered when the σ j’s are equal
independently of the dimensions. The VE-model leads to use:

f (x;H j,σ j) = (4)

=
Γ
(
(p−d j)/2

)
π(p−d j)/2

√
2πσ 2

j

∥x−PrH j(x)∥
−(p−d j−1)/2 exp

(
−∥x−PrH j(x)∥

2/2σ2
j
)
.
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To derive this expression, consider the stochastic decomposition of a spherical
distribution X in Rp−d j as X = RU with R a “radius” variable and U an uniform
distribution on Sp−d j . If h denotes the p.d.f. of R and g the density generator of the

spherical family then h(r) = 2π(p−d j)/2

Γ ((p−d j)/2) r(p−d j)−1g(r2). Thus, if R = |Z| with Z

being a N(0,1) random variable, we get h(r) = 2/
√

2π ·exp(−x2/2). Expression
(4) just follows from (2). Notice that g(x) =Cp−d j x

N−1 exp(−rxs) with N−1 =
−(p−d j−1)/2, r = 1/2> 0, s= 1> 0 (and satisfying the condition 2N+ p> 2).
Therefore, this density reduces to the univariate normal distribution whenever
p−d j = 1 and, in general, belongs to the symmetric Kotz type family [8].

b) “Normal” errors model (NE-model): With this approach, the mechanism gener-
ating the error terms is based on adding a normal noise in the orthogonal of the
feature space H j. I.e., we take ε j following a Np−d j(0,σ

2
j Ip−d j) distribution:

f (x;H j,σ j) = (2πσ 2
j )
−(p−d j)/2 exp

(
−∥x−PrH j(x)∥

2/2σ2
j
)

(5)

The use of “normal” errors has been already considered in [1] and “visual” er-
rors in [9] when working with 2-dimensional data sets and grouping around (1-
dimensional) smooth curves.

Fig. 1 shows two generated data sets with VE- and NE-models. It also shows the
boundaries of sets {x : d(x,H j) ≤ z0.025/2} with z0.025 being the 97.5% percentile
of the N1(0,1) and d(x,H) = infy∈H ∥x− y∥ when H1 is a point (a ball) and when
H2 is a line (a “strip”). Note the great amount of observations that fall outside the
ball in the normal errors case although we had considered the same scatters in both
groups.
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Fig. 1 Simulated data set from the VE- and NE- models.

Constraints on the scatter parameters: Let us consider d j + 1 observations and H j
the affine subspace determined by them. We can easily see that (3) (and (1) too) be-
come unbounded when |Σ j| → 0. Thus, the proposed maximization problems would
not be mathematically well-defined without posing any constraint on the Σ j’s.
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When Σ j = σ jIp−d j , the constraints introduced in [5] are translated into

max
j

σ2
j
/

min
j

σ2
j ≤ c for a given constant c≥ 1. (6)

Constant c avoids non interesting clustering solutions with clusters containing
very few almost collinear observations. This type of restrictions goes back to [7].

3 Algorithm

The maximization of (3) under the restriction (6) has high computational complex-
ity. We propose here an algorithm inspired in the TCLUST one. Some ideas behind
the classification EM algorithm [2] and from the RLGA [6] also underly.

1. Initialize the iterative procedure: Set initial weights values p0
1 = ... = p0

k = 1/k
and initial scatter values σ0

1 = ... = σ0
k = 1. As starting k linear subspaces, ran-

domly select k sets of d j +1 data points to obtain k initial centers m0
j and k initial

matrices U0
j made up of orthogonal unitary vectors.

2. Update the parameters in the l-th iteration as:

2.1. Obtain
Di = max

j=1,...,k
{pl

j f (xi;ml
j,U

l
j ,σ l

j)} (7)

and keep the set Rl with the n− [nα ] observations with largest Di’s. Split Rl

into Rl = {Rl
1, ...,R

l
k} with Rl

j = {xi ∈ Rl : pl
j f (xi;ml

j,U
l
j ,σ l

j) = Di}.
2.2. Update parameters by using:
• pl+1

j ←↩ “nl
j/[n(1−α)] with nl

j equal to the number of data points in Rl
j”.

• ml+1
j ←↩ “The sample mean of the observations in Rl

j”.
• U l+1

j ←↩ “A matrix whose columns are equal to the d j unitary eigenvectors
associated to the largest eigenvalues of the sample covariance matrices of
observations in Rl

j”.
Use the sum of squared orthogonal residuals to obtain initial scatters s2

j =
1
nl

j
∑xi∈Rl

j
∥xi−PH l

j
(xi)∥2 with H l

j ≡ {ml
j,U

l
j}. To satisfy the constrains, they

must be “truncated” as:

[s2
j ]t =


s2

j if s2
j ∈ [t,ct]

t if s2
j < t

ct if s2
j > ct

. (8)

Search for topt = argmaxt ∑k
j=1 ∑xi∈Rl

j
log f (xi;ml+1

j ,U l+1
j , [s2

j ]t) and take

• σ l+1
j ←↩

√
[s2

j ]topt .

3. Compute the evaluation function: Perform L iterations of the process described
in step 2 and compute the final associated target function (3).

4. Repeat several times: Draw S random starting values and keep the solution lead-
ing to the maximal value of the target function.
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Determining topt implies solving a one-dimensional optimization problem that
can be easily done by resorting to numerical methods. More details concerning the
rationale of this algorithm can be found in [5]. We denote the previous algorithm as
VE-method when the density (4) is applied and as NE-method when using (5).

4 Examples

Simulation study: Let us consider a clustering problem where observations are gen-
erated around a point, a line and a plane in R3. We generate uniformly-distributed
points on the sets C1 = {(x1,x2,x3) : x1 = x2 = x3 = 3} (no random choice), on
C2 = {(x1,x2,x3) : 1≤ x1 ≤ 6,x2 = x3 = 3}, and, on C3 = {(x1,x2,x3) : x1 =−2,1≤
x2 ≤ 6,1≤ x3 ≤ 6}. Later, we add error terms in the orthogonal of the C j’s consid-
ering the models introduced in Section 2. Finally, points are randomly drawn on
the cube [−4,6]× [−4,6]× [−4,6] as “gross errors”. Fig. 2 shows the result of the
proposed clustering approach for a data set drawn from that simulations scheme.
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Fig. 2 Result of the NE-method with k = 3, d j’s = (0,1,2), c = 2 and α = .1.

A comparative study based on the previous simulation scheme with VE- and NE-
methods has been carried out. We have also considered an alternative (Euclidean
distance) ED-method where the Di’s in (7) are replaced by the more simple ex-
pressions Di = inf j=1,...,k ∥xi−PH l

j
(xi)∥ and no updating of the scatter parameters is

done. The ED-method is a straightforward extension of the RLGA in [6].
100 random samples of size n = 400 from the previously described simulation

schemes with VE- and NE- models for the orthogonal errors are randomly drawn
and the associated results for the three clustering VE-, NE- and ED- methods are
monitored. Fig. 3 shows the mean proportion of misclassified observations along
these 100 random samples. The NE-model seems to have a higher complexity since
higher number of random initializations is needed. Notice that the results favor the
VE-method even when the true model generating the data was indeed the NE-model.
We can also see that parameter S is more critical than L.
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(e) Data from VE−model and L = 20
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Fig. 3 Proportion of misclassified observations in the simulation study described in the text.

Real data example: As in [9], we consider position data on some earthquakes in the
New Madrid seismic region from the CERI. We include all earthquakes in that cat-
alog from 1974 to 1992 with magnitude 2.25 and above. Fig. 4 shows a scatter plot
of the earthquakes positions and a nonparametric kernel based density estimation
suggesting the existence of a linear tectonic fault and three main point focuses.
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Fig. 4 Earthquake positions in the New Madrid seismic region.

Fig. 5 shows the clustering results when k = 4 and dimensions (1,0,0,0). We
have considered a high trimming level α = .4 which allows discarding earthquakes
taking place in regions where the earthquakes are not spatially concentrated.
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Fig. 5 Clustering results of the VE-method for k = 4, d j’s = (1,0,0,0), c =2 and α =.4.

5 Future research directions

The proposed methodology needs to fix parameters k, d j’s, α and c. Sometimes
they are known in advance but other times they are completely unknown. “Split
and merge”, BIC and geometrical-AIC concepts could be then applied. Another
important problem is how to deal with remote observations wrongly assigned to
higher dimensional linear subspaces due to their “not-bounded” spatial extension.
A further second trimming or nearest neighborhood cleaning could be tried.
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