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Abstract In this manuscript we show that the second Feng-Rao number of any
telescopic numerical semigroup agrees with the multiplicity of the semigroup. To
achieve this result we first study the behavior of Apéry sets under gluings of nu-
merical semigroups. These results provide a bound for the second Hamming weight
of one-point Algebraic Geometry codes, which improves upon other estimates such
as the Griesmer Order Bound.
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Introduction

In coding theory algebraic geometry codes (AG codes for short) are advantageous
in that their parameters asymptotically exceed the Gilbert-Varshamov bound
(see [20]), and due to Feng and Rao [15] we know that they may be efficiently
decoded. A bound on the number of correctable errors depends on the Feng-Rao
distance of the involved Weierstrass semigroup. Even though the original codes
are defined over algebraic curves, the construction can avoid the explicit use of
algebraic geometry, by means of arrays of codes [21] and order functions over
algebras [20].

We begin with a brief overview of how Feng-Rao distances and numerical semi-
groups arise in coding theory. Let Fq be the finite field with q a prime power number
of elements. Let R be the affine coordinate ring of a curve over Fq that is absolutely
irreducible, nonsingular and with a single point at infinity. Denote the point at
infinity by Q, and let P = (P1, . . . , Pn) be a list of (affine) Fq-rational points on the
curve. The evaluation map evP : R→ Fnq is defined as evP(f) = (f(P1), . . . , f(Pn)).
Let vQ : K → Z be the discrete valuation at Q, where K is the quotient ring for
R, and define L(aQ) = {f ∈ R | vQ(f) ≥ −a}. The set Γ := −vQ(R) is a nu-
merical semigroup; see [26] for the definitions and basic properties of numerical
semigroups. For a in Γ , let Ca be the orthogonal linear space of evP(L(aQ)) (with
respect to the usual dot product). This vector space is called the one point algebraic

code defined by R, a and P.
The minimum distance of the code Ca has a lower bound given by the Feng-Rao

distance [15] of a+ 1.The Feng-Rao distance is defined by δFR(a) = min{#D(b) |
a ≤ b, b ∈ Γ}, where D(b) = {c ∈ Γ | b− c ∈ Γ} denotes the set of “divisors” of b in
Γ (according to the terminology in [3]). In order to avoid ambiguity about which
semigroup is being used, at times we may write DΓ (b) instead of D(b). Let c and
g respectively denote the conductor and genus of Γ . Then for a ≥ 2c − 1 we have
δFR(a) = a+ 1− 2g, which is referred to as the Goppa bound. Moreover, one has
δFR(a) ≥ a+ 1− 2g for a ≥ c.

A natural generalization of the Feng-Rao distance is the following. Take a
sequence a1 < · · · < ar of r elements in Γ , and define D(a1, . . . , ar) =

⋃r
i=1 D(ai).

The rth generalized Feng-Rao distance is defined as

δrFR(a) = min{#D(a1, . . . , ar) | a1, . . . , ar ∈ Γ, a ≤ a1 < a2 < · · · < ar}.

The rth generalized Feng-Rao distance of a+ 1 turns out to be a lower bound for
the rth generalized Hamming weight over the code Ca (see [18]). We remark that
the generalized Hamming weights were introduced independently by Helleseth et
al. in [19] and Wei in [28], for applications in coding theory and cryptography
respectively.

As with the case where r = 1, [14, Theorem 3] shows that for fixed r the
asymptotic behavior of δrFR is linear. In particular for all a ≥ 2c − 1 we have
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δrFR(a) = a + 1 − 2g + E(Γ, r) for some constant E(Γ, r), known as the rth Feng-

Rao number of Γ . Furthermore, as in the classical case the inequality δrFR(a) ≥
a+ 1−2g+ E(Γ, r) holds for a ≥ c. In [14, Proposition 5] it is shown that for g > 0
and r ≥ 2, we have 2 ≤ E(Γ, r) ≤ ρr, where ρr is the rth smallest element of Γ .
Clearly E(Γ, 1) = 0.

In [10,14] it is shown that E(Γ, 2) = min{# Ap(Γ, x) | x ∈ N \ {0}}, where
Ap(Γ, x) = {a ∈ Γ | a− x 6∈ Γ} is the Apéry set of an integer x with respect to Γ .
Many of our results are dependent on this alternative formulation. Originally in [1]
Apéry only considered the case where x was an element of Γ . Since then natural
generalizations have been introduced in [14] and [17], which extend the study of
Apéry sets allowing for x to be any integer.

Previously the cases where the second Feng-Rao number of a numerical semi-
group was known were fairly limited. In [14] it is shown that when Γ is two gen-
erated, the second Feng-Rao number is precisely the multiplicity of the semigroup;
that is, we have E(Γ, 2) = ρ2. Later in [10] this result was generalized to show that
for every r and every two generated numerical semigroup we have E(Γ, r) = ρr. A
formula for the rth Feng-Rao number was also calculated for the family of numer-
ical semigroups generated by intervals [9]. Additionally an expression for E(Γ, 2)
has been found for the case where Γ is inductive [12], and a recursive formula is
given in [13] when Γ is Arf.

It is often the case that properties of two generated numerical semigroups gen-
eralize to the class of complete intersection numerical semigroups or more generally
to the class of symmetric numerical semigroups. However, even restricting to three
generated complete intersection case, there are examples where E(Γ, 2) 6= ρ2; see
for instance Example 21. A relevant subclass of complete intersection numerical
semigroups is the class of telescopic numerical semigroups, which were introduced
by Kirfel and Pellikaan in [21] in order to study Feng-Rao distances. This fam-
ily contains the set of numerical semigroups associated to irreducible plane curve
singularities, which were introduced by Zariski in [29]. Based on computational
evidence it has been suggested for some time that E(Γ, 2) = ρ2 whenever Γ is tele-
scopic. In our case we used the GAP [16] package numericalsgps [8] that implements
procedures from [2] to calculate E(Γ, 2) for all telescopic numerical semigroups with
genus less than 150. In this paper with the help of auxiliary results on Apéry sets
over gluings of numerical semigroups, we show that the second Feng-Rao num-
ber of any telescopic numerical semigroup agrees with its multiplicity (Corollary
16). It is our hope that the results from our first section will also prove useful in
deriving a formula for E(Γ, 2) for more general cases of Γ .

Although Feng-Rao distances and Feng-Rao numbers yield important informa-
tion about AG codes, it is important to note that the numbers themselves are only
dependent on the associated numerical semigroup. Consequently the focus of our
research has been to develop tools that allow us to calculate properties of Ap(Γ, x)
for a broader class of numerical semigroups. In particular we develop formulas
for calculating properties of Apéry sets of gluings on numerical semigroups that
may be derived iteratively from the numerical semigroups in the gluing. Some of
these formulas generalize a specialized result appearing in [26, Chapter 8]. The
idea of gluing was originally developed to construct curve singularities with par-
ticular properties (see for instance [5]) and was later generalized in [11], and made
explicit in [25]. Additionally invariants such as the Frobenius number, conductor,
genus type, symmetry and Hilbert series can all be recovered from the original
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semigroups (see for instance [4] and the references therein). In our case by under-
standing Apéry sets under gluings, we are able to develop tools for calculating the
second Feng-Rao number for gluings of numerical semigroups in certain cases. In
addition we feel that understanding the construction of Apéry sets under gluings
is fundamental to the theory of numerical semigroups, and will thus yield other
applications in the future.

The paper is organized as follows: In section 1 we prove fundamental results
concerning gluings of numerical semigroups and Apéry sets. Section 2 is devoted
to prove the main results of the paper on the second Feng-Rao number for free
numerical semigroups, and in particular Corollary 16. Section 3 computes some
interesting examples of free semigroups appearing in coding theory, namely the
generalized Hermitian semigroups and the Suzuki semigroups. Finally, section 4
applies the previous results to AG codes constructed from the generalized Her-
mitian curves and the Suzuki curves, obtaining bounds for the second Hamming
weight of these codes that are better than the one given by Kirfel-Pellikaan in [21]
and the Griesmer order bound introduced in [10].

1 Gluings and Apéry sets

In order to exploit the formulation of the second Feng-Rao number in terms of
Apéry sets, we develop some basic properties of Apéry sets and then show how they
behave under gluings. We begin with some standard definitions, which mirror the
notation in [26]. Let N denote the non-negative integers. A numerical semigroup is
a set of the form Γ = 〈n1, . . . nm〉 := n1N+ . . .+nmN where n1, . . . , nm are positive
integers, such that gcd(n1, . . . , nm) = 1. The set A = {n1, . . . , nm} is said to be
the minimal generating set for Γ provided that Γ := 〈A〉 6= 〈A \ {ni}〉 for any i.
Let Γ1 and Γ2 be numerical semigroups, and choose a1 ∈ Γ2 and a2 ∈ Γ1, such
that gcd(a1, a2) = 1 and neither a1 nor a2 are minimal generators. Then the set
Γ = a1Γ1 + a2Γ2 is again a numerical semigroup, referred to as a gluing of Γ1 and
Γ2.

We can say more than [7, Proposition 1] or [14, Proposition 18].

Lemma 1 Given a numerical semigroup Γ and x ∈ Z, we have # Ap(Γ, x) = x +
# Ap(Γ,−x). Thus # Ap(Γ, x) ≥ x with equality only if Ap(Γ,−x) = ∅ or equivalently

when x ∈ Γ .

Proof We restrict to the case x > 0 and the general case follows by replacing x

with −x in the equation # Ap(Γ,−x) = # Ap(Γ, x)− x.
Let Ai and Bi be the subsets of Ap(Γ, x) and Ap(Γ,−x) respectively whose

elements are congruent to i modulo x. Notice that Ai is nonemepty, since it contains
the smallest element in Γ that is congruent to i modulo x. Let Ai = {a1, a2, . . . , ak}
with a1 < · · · < ak. There are no elements in Bi that are greater than or equal to
ak because ak + nx− (−x) ∈ Γ for all n ≥ 0. Similarly there are no elements in Bi
strictly less than a1. Hence if k = 1, we have Bi = ∅. If k ≥ 2, then for each j with
1 ≤ j < k there exists nj ∈ N such that aj +hx ∈ Γ for 0 ≤ h ≤ nj and aj +hx /∈ Γ
for nj < h < (aj+1 − aj)/x. It follows that bj = aj + njx is the unique element of
Bi with aj ≤ bj < aj+1. Thus |Ai| = |Bi|+ 1 and # Ap(Γ,−x) = # Ap(Γ, x)− x.

If x ∈ Γ , then a standard argument shows that # Ap(Γ, x) = x, and hence
# Ap(Γ,−x) = 0. Conversely if x /∈ Γ , then 0 ∈ Ap(Γ,−x) 6= ∅.
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Lemma 2 Let Γ be a numerical semigroup. Then we have the following.

(a) For x, y ∈ Z we have #Ap(Γ, x+ y) ≤ #Ap(Γ, x) + #Ap(Γ, y).
(b) For g, h ∈ Γ we have Ap(Γ, g + h) = Ap(Γ, g) ∪ (g + Ap(Γ, h)), and the union is

disjoint.

Proof Let z ∈ Ap(Γ, x+ y). Then z ∈ Γ . If z− x /∈ Γ , then z ∈ Ap(Γ, x). Otherwise
z − x ∈ Γ and z − x− y /∈ Γ ; hence z − x ∈ Ap(Γ, y) and z ∈ (x+ Ap(Γ, y)). Thus
we have the containment Ap(Γ, x+ y) ⊆ Ap(Γ, x) ∪ (x+ Ap(Γ, y)). This produces
the inequality in (a) and one of the necessary inclusions for (b).

It remains to show the other inclusion of sets for part (b). Let z′ ∈ Ap(Γ, g).
Then z′ ∈ Γ , and z′ − g /∈ Γ . Since h ∈ Γ we have z′ − g − h /∈ Γ . Thus z′ ∈
Ap(Γ, g + h). Let z′′ ∈ g + Ap(Γ, h). Then z′′ − g ∈ Γ , and z′′ − g − h /∈ Γ . Since
g ∈ Γ it follows that z′′ ∈ Γ , and thus z′′ ∈ Ap(Γ, g + h).

Lemma 3 Let Γ = a1Γ1+a2Γ2 be a gluing of numerical semigroups. Any integer z can

be expressed uniquely as z = a1k+ a2ω where k ∈ Z is an integer and ω ∈ Ap(Γ2, a1).

Then z is in the semigroup Γ if and only if k ∈ Γ1.

Proof Since gcd(a1, a2) = 1, there exists an integer x such that z ≡ a2x mod a1
(take the inverse of a2 modulo a1 and multiply it by z). Let ω the (unique) element
in Ap(Γ2, a1) such that x ≡ w mod a1. Then z ≡ a2ω mod a1. That means that
z = a1k + a2ω for a unique k ∈ Z.

For the second part, it is clear that if k ∈ Γ1, then z is in Γ . Suppose that z ∈ Γ ,
so that z = a1x1 + a2x2 with x1 ∈ Γ1 and x2 ∈ Γ2. Then x2 ≡ ω mod a1 and then
x2 = ω+na1 with n > 0. This means that z = a1x1 +a2x2 = a1x1 +a2(ω+na1) =
a1(x1 + na2) + a2ω, so by uniqueness, k = x1 + na2 ∈ Γ1.

Definition 4 Let Γ be a numerical semigroup and g ∈ Γ an element. Let us write,

for 0 ≤ i < g, as ω(i) the unique element in Ap(Γ, g) such that ω(i) ≡ i mod g. Then

define the cocycle hΓ,g : Zg × Zg → Z as

hΓ,g(i, j) = (ω(i)− ω(i+ j) + ω(j))/g.

Remark 5 From the cocycles hΓ,g(i, j) we can recover the elements of Ap(Γ, g) up to

congruence. Indeed the formula

ω(i) =
∑g−1

j=0
hΓ,g(j, i)

follows easily from the definitions.

Lemma 6 Let Γ = a1Γ1 + a2Γ2 be a gluing of numerical semigroups. Let z = a1k +
a2ω(i) be any integer, with ω(i) ∈ Ap(Γ2, a1). Then

Ap(Γ, z) =
⋃a1−1

j=0
a1 Ap(Γ1, k + a2hΓ2,a1

(j − i, i)) + a2ω(j),

and

DΓ (z) =
⋃a1−1

j=0
a1 DΓ1

(k − a2hΓ2,a1
(i− j, j)) + a2ω(j).
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Proof Let s = a1p+ a2ω(j) an integer. Then

s− z = a1(p− k) + a2(ω(j)− ω(i))

= a1(p− k) + a2(ω(j − i)− a1hΓ2,a1
(j − i, i))

= a1(p− k − a2hΓ2,a1
(j − i, i)) + a2ω(j − i).

Therefore s ∈ Ap(Γ, z) if and only if p ∈ Ap(Γ1, k + a2hΓ2,a1
(j − i, i)). Similarly

z − s = a1(k − p) + a2(ω(i)− ω(j))

= a1(k − p) + a2(ω(i− j)− a1hΓ2,a1
(i− j, j))

= a1(k − a2hΓ2,a1
(i− j, j)− p) + a2ω(i− j),

so s ∈ DΓ (z) if and only if p ∈ DΓ1
(k − a2hΓ2,a1

(i− j, j)).

Proposition 7 Let Γ = a1Γ1 + a2Γ2 be a gluing of numerical semigroups. Let z =
a1α+ a2ω(i) be any integer, with ω(i) ∈ Ap(Γ2, a1). Let β = #{x ∈ Ap(Γ2, a1)| x−
ω(i) /∈ Γ2}. Then

Ap(Γ, z) ≥ (a1 − β) ·#Ap(Γ1, α) + β ·#Ap(Γ1, α+ a2).

Proof We have the following sequence of equalities:

ω(j)− ω(i) ∈ Γ2 ⇐⇒ ω(j)− ω(i) ∈ Ap(Γ2, a1)

⇐⇒ ω(j)− ω(i) = ω(j − i)
⇐⇒ hΓ2,a1

(j − i, i) = (ω(j − i)− ω(j) + ω(i))/a1 = 0.

Thus β = #{j ∈ Za1 | hΓ2,a1
(j − i, i)) ≥ 1}. Since a2 ∈ Γ1 we have # Ap(Γ1, α +

a2h) ≥ # Ap(Γ1, α + a2) when h ≥ 1. This explains the second step below. The
first step below comes directly from Lemma 6.

# Ap(Γ, z) =

a1−1∑
j=0

# Ap(Γ1, α+ a2hΓ2,a1
(j − i, i))

≥(a1 − β) ·#Ap(Γ1, α) + β ·#Ap(Γ1, α+ a2).

Lemma 8 Let Γ be a numerical semigroup. Choose x ∈ Z and y ∈ Γ . Then

Ap(Γ, x+ y) = Ap(Γ, x) ∪ (y + Ap(Γ, x)) ∪ (Ap(Γ, y) ∩ (x+ Ap(Γ, y)).

Proof First we will show that each of the sets in the union on the right is contained
on the left side. Suppose that z ∈ Ap(Γ, x). Since z − x /∈ Γ we have z − x− y /∈ Γ .
Thus z ∈ Ap(Γ, x + y). Suppose z′ ∈ (y + Ap(Γ, x)). Then z′ − y ∈ Ap(Γ, x);
hence z′ − y ∈ Γ and z′ − y − x /∈ Γ . Since y ∈ Γ we have z′ = z′ − y + y ∈ Γ .
Thus z′ ∈ Ap(Γ, x+ y). Lastly suppose that z′′ ∈ Ap(Γ, y) ∩ (x+ Ap(Γ, y)), Then
z′′ ∈ Ap(Γ, y) implies that z′′ ∈ Γ . Also z′′−x ∈ Ap(Γ, y) implies that z′′−x−y /∈ Γ .
Thus z′′ ∈ Ap(Γ, x+ y).

Let w ∈ Ap(Γ, x+y). Assuming w /∈ Ap(Γ, x)∪(y+Ap(Γ, x)) it suffices to show
that w ∈ (Ap(Γ, y) ∩ (x + Ap(Γ, y)). Since w ∈ Γ , and w /∈ Ap(Γ, x) we have that
w − x ∈ Γ . Thus w − x ∈ Ap(Γ, y) and w ∈ x + Ap(Γ, y). Since w − y /∈ Ap(Γ, x)
and w − x− y /∈ Γ we have w − y /∈ Γ . Thus w ∈ Ap(Γ, y) and the result follows.
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Remark 9 In Lemma 8 we get two special cases:

1. If −x ∈ Γ , then Ap(Γ, x+ y) = Ap(Γ, y) ∩ (x+ Ap(Γ, y));

2. For a set of integers X, write ∆(X) = {x′ − x | x, x′ ∈ X,x′ > x}.
If |x| /∈ ∆(Ap(Γ, y)) ∪ {0}, then Ap(Γ, x+ y) = {0, y}+ Ap(Γ, x).

For a gluing Γ = a1Γ1 + a2Γ2 the next result produces a simple formula for
Ap(Γ, z) in the case where z is divisible by a1.

Proposition 10 Let Γ = a1Γ1 + a2Γ2 be a gluing of numerical semigroups. Then

given any z ∈ Z we have

Ap(Γ, a1z) = a1 Ap(Γ1, z) + a2 Ap(Γ2, a1).

In particular

#Ap(Γ, a1z) = a1 ·#Ap(Γ1, z).

Proof Using the unique form in Lemma 3 we have a1z = a1k+a2ω with ω = ω(0) =
0 and z = k. Notice that hΓ2,a1

(j − 0, 0) = 0 for all j; hence by Lemma 6 we have

Ap(Γ, a1z) =

a1−1⋃
j=0

a1 Ap(Γ1, z) + a2ω(j) = a1 Ap(Γ1, z) + a2 Ap(Γ2, a1).

Notice that by setting z = a2 in Proposition 10 we can recover the previously
known special case Ap(Γ, a1a2) = a1 Ap(Γ1, a2) + a2 Ap(Γ2, a1) from [26, Chapter
8].

Combining Lemma 2 (b) with Propostion 10 we get an expression for Ap(Γ, z)
when z ∈ Γ .

Corollary 11 Let Γ = a1Γ1 +a2Γ2 be a gluing of numerical semigroups. Let g1 ∈ Γ1,

g2 ∈ Γ2. and g = a1g1 + a2g2 ∈ Γ . Then

Ap(Γ, g) = (a1 Ap(Γ1, g1) + a2 Ap(Γ2, a1))∪ (a1g1 + a1 Ap(Γ1, a2) + a2 Ap(Γ2, g2)).

Since #Ap(Γ, g) = g for any g ∈ Γ , it follows that the union in Corollary 11 is
disjoint.

Theorem 12 Let Γ = a1Γ1 + a2N be a gluing of numerical semigroups, and let z be

an integer. Express z as z = a1α + a2β with 0 ≤ β < a1 and α ∈ Z. We have the

following:

1. Ap(Γ, z) = (a1 Ap(Γ1, α+a2)+a2{0, . . . , β−1})∪(a1 Ap(Γ1, α)+a2{β, . . . , a1−
1});

2. DΓ (z) = (a1 DΓ1
(α) + a2{0, . . . , β}) ∪ (a1 DΓ1

(α+ a2) + a2{β + 1, . . . , a1 − 1});

3. #Ap(Γ, z) = β ·#Ap(Γ1, α+ a2) + (a1 − β) ·#Ap(Γ1, α);

4. #DΓ (z) = (β + 1) #DΓ1
(α) + (a1 − β − 1) #DΓ1

(α− a2).
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Proof Notice that Ap(N, a1) = {0, 1, . . . , a1−1} and ω(j) = j for 0 ≤ j < a1. When
j < β we have hN,a1

(j − β, β) = 1, and when j ≥ β we have hN,a1
(j − β, β) = 0. By

Lemma 6 we have

Ap(Γ, z) =
⋃a1−1

j=0
a1 Ap(Γ1, α+ a2hΓ2,a1

(j − β, β))) + a2j

= (a1 Ap(Γ1, α+ a2) + a2{0, . . . , β − 1}) ∪ (a1 Ap(Γ1, α) + a2{β, . . . , a1 − 1}).

When j ≤ β we have hN,a1
(β−j, j) = 0, and when j > β we have hN,a1

(β−j, j) = 1.
By Lemma 6 we have

DΓ (z) =
⋃a1−1

j=0
a1 DΓ1

(α− a2hΓ2,a1
(β − j, j))) + a2j

= (a1 DΓ1
(α) + a2{0, . . . , β}) ∪ (a1 DΓ1

(α− a2) + a2{β + 1, . . . , a1 − 1}).

Hence #DΓ (z) = (β + 1) #DΓ1
(α) + (a1 − β − 1) #DΓ1

(α− a2).

Remark 13 Suppose Γ = 〈a, b〉 and z = ua+ vb with 0 ≤ u < b. Then we may apply

Theorem 12 with Γ1 = N, a1 = b, a2 = a, β = u and α = v. Thus

#Ap(Γ, z) = (b− u) max{v, 0}+ umax{v + a, 0}.

This yields the same result as [10, Theorem 14].

2 The second Feng-Rao number for free numerical semigroups

Let Γ be a numerical semigroup, and let m(Γ ) be the least positive integert in
Γ (which corresponds with the least minimal generator). Recall that the second
Feng-Rao number of Γ can be computed as

E(Γ, 2) = min{#Ap(Γ, z) | z ∈ N \ {0}}
= min{# Ap(Γ, z) | z ∈ {1, . . . ,m(Γ )}}.

(1)

To realize the second equality above notice that for x ≥ m(Γ ) we have # Ap(Γ, x) ≥
x ≥ m(Γ ).

Remark 14 Let Γ be a numerical semigroup. Then E(Γ, 2) = m(Γ ) if and only if

there exists y ≥ m(Γ ) such that #Ap(Γ, z) ≥ m(Γ )d zy e for all z ∈ Z. If this is the

case, then y can be chosen so that it is at most 2m(Γ )− 1.

Clearly if #Ap(Γ, z) ≥ m(Γ )d zy e with y > 0, then #Ap(Γ, z) ≥ m(Γ ) for z > 0;

hence E(Γ, 2) = m(Γ ). Let z = nm(Γ ) + r with 0 ≤ r < m(Γ ). Notice that for n ≥ 1

we always have n ≥ dnm(Γ )+r
2m(Γ )−1 e; hence #Ap(Γ, z) ≥ nm(Γ ) + r ≥ m(Γ )dnm(Γ )+r

2m(Γ )−1 e.
Therefore supposing E(Γ, 2) = m(Γ ) we have #Ap(Γ, z) ≥ m(Γ )d z

2m(Γ )−1e for all

z ∈ Z. Also notice that if the statement is true for a certain y value then it is true for

all y′ > y. If 0 < y < m(Γ ), then #Ap(Γ,m(Γ )) = m(Γ ) < m(Γ )dm(Γ )
y e would not

work; hence we must have y ≥ m(Γ ).

Theorem 15 Let Γ = a1Γ1+a2Γ2 be a gluing of numerical semigroups. Suppose there

exists y ≥ m(Γ ) such that #Ap(Γ1, z) ≥ m(Γ1)d zy e for all z ∈ Z. If a2 > a1y, then

#Ap(Γ, z) ≥ m(Γ )d za2
e for all z ∈ Z.
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Proof If z is less than or equal to zero the result is clear. Let z be a positive integer
and write z = a1k + a2ω(i), where ω(j) denotes the element of Ap(Γ2, a1) which
is congruent to j modulo a1. For ease of notation set hj = hΓ2,a1

(j − i, i). As in

Lemma 5 note that
∑a1−1
j=0 hj = ω(i). First suppose k ≥ 0. Lemma 6 gives us the

first step below.

#Ap(Γ, z) =
∑a1−1
j=0 #Ap(Γ1, k + a2hj)

≥
∑a1−1
j=0 m(Γ1)dk+a2hj

y e

≥
∑a1−1
j=0 m(Γ1)dk+a1yhj

y e

=
∑a1−1
j=0 m(Γ1)(dky e+ a1hj)

= a1m(Γ1)dky e+ a1m(Γ1)ω(i)

= a1m(Γ1)dky + ω(i)e

= m(Γ )da1k
a1y

+ a2ω(i)
a2
e

≥ m(Γ )da1k
a2

+ a2ω(i)
a2
e

≥ m(Γ )d za2
e.

Next supoose k < 0. Set c = a2 − a1y. From the equation z = a1k + a2ω(i) we get
d za2
e = ω(i) − b−a1k

a2
c, which gives us the last step below. Since 0 < c < a2 when

hj ≥ −ka2
we have −ka2

≥ −k−hjc
a2−c , which explains the eighth step below.

#Ap(Γ, z) =
∑a1−1
j=0 #Ap(Γ1, k + a2hj)

≥
∑
hj≥−k

a2

#Ap(Γ1, k + a2hj)

≥ m(Γ1)
∑
hj≥−k

a2

⌈
k+a2hj

y

⌉
= m(Γ1)

∑
hj≥−k

a2

⌈
k+hj(c+a1y)

y

⌉
= m(Γ1)

∑
hj≥−k

a2

(
a1hj +

⌈
k+hjc
y

⌉)
= m(Γ1)

∑
hj≥−k

a2

(
a1hj −

⌊
−k−hjc

y

⌋)
= m(Γ1)

∑
hj≥−k

a2

(
a1hj −

⌊
a1
−k−hjc
a2−c

⌋)
≥ m(Γ1)

∑
hj≥−k

a2

(
a1hj −

⌊
a1
−k
a2

⌋)
= m(Γ1)

(∑a1−1
j=0 a1hj −

∑
hj<

−k
a2

a1hj −
∑
hj≥−k

a2

⌊
−a1k
a2

⌋)
≥ m(Γ1)

(
a1ω(i)−

∑
hj<

−k
a2

⌊
−a1k
a2

⌋
−
∑
hj≥−k

a2

⌊
−a1k
a2

⌋)
= m(Γ1)

(
a1ω(i)− a1

⌊
−a1k
a2

⌋)
= m(Γ )d za2

e.

We say that Γ is free if either Γ is N or it is the a gluing of a free numerical
semigroup with N (these semigroups were introduced by [5]). Analogously, a nu-
merical semigroup Γ is telescopic if either Γ is N or Γ = a1Γ1 + a2N is a gluing
with Γ1 telescopic and a2 > a1n for each minimal generator n of Γ1.
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By [26, Chapter 8] a numerical semigroup Γ 6= N is free if and only if there
exists an arrangement of its minimal generators (n1, . . . , ne) such that for di :=
gcd(n1, . . . , ni−1) and ci := di/di+1 we have di > di+1 and cini ∈ 〈n1, . . . , ni−1〉 for
i ∈ {2, . . . , e}. In this case we will say that Γ is free with respect to the arrangement
(n1, . . . , ne).

Corollary 16 Let Γ = 〈n1, n2, . . . , nm〉 be telescopic with n1 < · · · < nm. Given

z ∈ N we have #Ap(Γ, z) ≥ n1d z
nm
e; hence E(Γ, 2) = n1.

Proof We proceed by induction on m. For Γ = N, the result is obviously true.
Now suppose Γ = 〈n1, n2, . . . , nm〉 is telescopic, that is Γ = dΓ1 + nmN where
d = gcd(n1, . . . , nm−1), Γ1 = 〈n1/d, . . . , nm/d〉 is telescopic, and nm > nm−1. By
induction hypothesis # Ap(Γ1, z) ≥ m(Γ1)d z

nm−1/d
e for all z ∈ Z, and so by Theo-

rem 15 we get # Ap(Γ, z) ≥ m(Γ )d z
nm
e.

If we take y = 1 and Γ1 = N in Theorem 15, we obtain the following conse-
quence.

Corollary 17 Let Γ = a1N + a2Γ2 be a gluing of numerical semigroups. If a2 > a1,

then #Ap(Γ, z) ≥ a1d za2
e for all z ∈ Z; hence E(Γ, 2) = a1 = m(Γ ).

As we mentioned above, if Γ has two minimal generators, then E(Γ, r) corre-
sponds with the rth smallest entry of Γ . However this is no longer true for r > 2
in a telescopic numerical semigroup.

Example 18 Let Γ = 〈6, 10, 11〉. Then Γ is a telescopic numerical semigroup,

Γ = {0, 6, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 26,→},

and E(Γ, 3) = 9 < 10.

Lemma 19 Let Γ = a1Γ1 +a2N be a gluing of numerical semigroups and z a positive

integer. We may write z = a1α+ a2β with 0 ≤ β < a1 and α ∈ Z. Then

#Ap(Γ, z) ≥ (a1 − β)

(
#Ap(Γ1, α) +

a2β

a1

)
.

• If α > 0 (this includes the case β = 0), then #Ap(Γ, z) ≥ a1E(Γ1, 2).

• If β ∈ {1, a1 − 1} (this includes the cases a1 ∈ {2, 3}), then #Ap(Γ, z) > a1−1
a1

a2.

• If a1 ≥ 4 and β ∈ {2, 3, . . . , a1 − 2}, then #Ap(Γ, z) > a2.

Thus

E(Γ, 2) ≥ min

{
a1E(Γ1, 2),

(a1 − 1)a2
a1

}
.

Proof By Theorem 12, we have the first step below.

#Ap(Γ, z) = (a1 − β) #Ap(Γ1, α) + β ·#Ap(Γ1, α+ a2)

≥ (a1 − β) #Ap(Γ1, α) + β(α+ a2)

≥ (a1 − β) #Ap(Γ1, α) + β
(
−a2β

a1
+ a2

)
= (a1 − β)

(
#Ap(Γ1, α) + a2β

a1

)
.
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The second step above follows from Lemma 1. The third step follows from the
assumption z = a1α+ a2β > 0, and the last step is elementary algebra.

If α > 0, then #Ap(Γ1, α+a2) ≥ #Ap(Γ1, α) ≥ E(Γ1, 2) by (1); whence in light
of Theorem 12 again,

#Ap(Γ, z) ≥ (a1 − β)E(Γ1, 2) + βE(Γ1, 2) = a1E(Γ1, 2).

If β ∈ {1, a1−1}, then (a1−β)β = a1−1. Thus, #Ap(Γ, z) > (a1−β)a2β
a1

= a1−1
a1

a2.
If a1 ≥ 4 and β ∈ {2, 3, . . . , a1−2}, since β(a1−β) has a unique local maximum

at β = a1
2 we have β(a1 − β) ≥ 2(a1 − 2). Since a1 ≥ 4, we have 2(a1 − 2) ≥ a1.

Thus
#Ap(Γ, z) > β(a1 − β)a2

a1
≥ a1 a2

a1
= a2 ≥ (a1−1)a2

a1
.

The last assertion now follows from (1).

Theorem 20 Let Γ be a free numerical semigroup with respect to the arrangement

(n1, . . . , ne) of its minimal generators. If ci−1
ci

ni ≥ n1 for i ∈ {3, . . . , e}, then E(Γ, 2) =
m(Γ ).

Proof For e = 1 we have Γ = N. For e = 2 the result is known to be true; see
for instance [10]. Suppose that e ≥ 3 and that the result is true for the case
with e − 1 generators. Then E(Γ ′, 2) = m(Γ ′) = n1

de
since the sequence of ci’s for

Γ ′ is that of Γ after removing the last one. Note that ce = de. We have that
Γ = ceΓ

′+neN. We have E(Γ, 2) ≥ min{ceE(Γ ′, 2), (ce−1)ne

ce
} by Lemma 19. Note

that ceE(Γ ′, 2) = n1 = m(Γ ) and by hypothesis (ce−1)ne

ce
≥ n1 = m(Γ ). Thus

E(Γ, 2) ≥ m(Γ ). Since we always have E(Γ, 2) ≤ m(Γ ), the result follows.

If we remove the condition ci−1
ci

ni ≥ n1, it may happen that E(Γ, 2) < m(Γ ).

Example 21 Let Γ = 〈4, 5, 6〉. Then Γ = 2〈2, 3〉 + 5N is a gluing of numerical

semigroups. Notice that Γ is free but not telescopic. Also 1
25 = c3−1

c3
n3 < n1 = 4.

In this case we have

E(Γ, 2) = #Ap(Γ, 1) = |{0, 4, 8}| = 3 < 4 = m(Γ ).

Remark 22 It is possible to apply Theorem 12 iteratively to find explicit formulas

for #Ap(Γ, z) when Γ is a free numerical semigroups with more than two generators.

However, the complexity of these formulas tends to increase exponentially with the

number of generators. Let M(x) = max{x, 0}
For example suppose Γ = 〈a, b, c〉 is a three generated complete intersection nu-

merical semigroup (and thus free). Then up to a permutation of the generators we may

write a = σx, b = σy and c = cxx + cyy where σ, x, y > 1, x > cy ≥ 0, cx ≥ 0,

gcd(x, y) = 1 and gcd(σ, c) = 1. Given any integer z we may write z uniquely as

z = zσσ + zcc with 0 ≤ zc < σ, zσ = zxx+ zyy and 0 ≤ zy < x.

If zy + cy < x, then #Ap(Γ, z) may be expressed as

(σ − zc)
(
(x− zy) M(zx) + zy M(zx + y)

)
+ zc

(
(x− zy − cy) M(zx + cx) + (uy + cy) M(zx + cx + y)

)
.

If zy + cy ≥ x, then #Ap(Γ, z) may be expressed as

(σ − zc) ((x− zy) M(zx) + zy M(zx + y))

+ zc ((2x− zy − cy) M(2zx + y) + (zy + cy − x) M(zx + cx + 2y)) .
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3 Some interesting examples

In this section, we apply the above calculations to some interesting examples,
coming from the theory of AG codes.

3.1 Generalized Hermitian semigroups

As a generalization of classical Hermitian semigroups, 〈q, q + 1〉 with q an integer
greater than 2, we consider generalized Hermitian semigroups. These are three
generated semigroups depending on two parameters: q as above and an integer
r > 2. The generalized Hermitian curve χr with parameters q and r, is defined
over Fqr , by the equation

Y q
r−1

+ · · ·+ Y q + Y = X1+q + · · ·+Xqr−2+qr−1

,

and has q2r−1+1 rational points over Fqr . Its Weierstrass semigroup at the unique
pole of X is precisely Hq,r = 〈qr−1, qr−1 + qr−2, qr + 1〉. For background on this
topic see [24]. Note that χ2 is the classical Hermitian curve.

Observe that Hq,r is the gluing of 〈q, q + 1〉 and N given by Hq,r = qr−2〈q, q +
1〉+ (qr + 1)N. Thus these are telescopic numerical semigroups, and Corollary 16
yields E(Hq,r, 2) = qr−1.

3.2 Generalized Suzuki numerical semigroups

Given positive integers p and n, define the generalized Suzuki numerical semigroup
as

Sp,n = 〈p2n+1, p2n+1 + pn, p2n+1 + pn+1, p2n+1 + pn+1 + 1〉

(see [22,?]). The cases where p = 2 and n varies are called Suzuki numerical
semigroups. Suzuki numerical semigroups come from the Suzuki curve χn defined
by the equation

Y 22n+1

+ Y = X22n

(X22n+1

+X).

These curves have numerous rational points over F22n+1 , which makes them useful
for coding theory purposes. By defining Γ1(p, n) := 〈pn+1, pn+1 + 1, pn+1 + p〉, we
obtain the gluing

Sp,n = pnΓ1(p, n) + (p2n+1 + pn+1 + 1)N.

Notice that Γ1(p, n) = p〈pn, pn + 1〉 + (pn+1 + 1)N is also a gluing but is not
telescopic.

Lemma 23 E(Γ1(p, n), 2) = pn+1 − pn + 1.

Proof Notice that

pE(〈pn, pn + 1〉, 2) = pn+1 > pn+1 − pn + 1− 1

p
=

(p− 1)(pn+1 + 1)

p
.

Thus by Lemma 19 we have E(Γ1(p, n), 2) ≥ pn+1 − pn + 1− 1
p .
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By rounding up to the nearest integer we obtain E(Γ1(p, n), 2) ≥ pn+1−pn+1.
Now write 1 = p(−pn)+(pn+1+1). Using the notation in Theorem 12 for z = 1

we have α = −pn, β = 1, a1 = p and a2 = pn+1 + 1. Thus

# Ap(Γ1(p, n), 1) = # Ap(〈pn, pn + 1〉,−pn + pn+1 + 1)

+ (p− 1)# Ap(〈pn, pn + 1〉,−pn)

= pn+1 − pn + 1,

and the result follows.

Theorem 24 E(Sp,n, 2) = p2n+1 − p2n + pn.

Proof Again we can compute

pnE(Γ1(p, n), 2) = p2n+1 − p2n + pn.

and
(pn − 1)(p2n+1 + pn+1 + 1)

pn
= p2n+1 − p+ 1− 1

pn
.

Since the first of these values is the smallest, Lemma 19 gives us the inequality

E(Sp,n, 2) ≥ p2n+1 − p2n + pn.

From Proposition 10 we obtain # Ap(Sp,n, p
n) = pn# Ap(Γ1(p, n), 1) = p2n+1 −

p2n + pn, and the result follows.

4 Application to AG codes

Corollary 16 for telescopic semigroups as well as Theorem 24 for Suzuki semigroups
provide us with estimates for the second Hamming weight of codes in the array of
AG codes corresponding to these numerical semigroups (see [21]). We recall briefly
the definition of the generalized (Hamming) weights. In fact the support of a linear
code C is defined as

supp(C) := {i | ci 6= 0 for some c ∈ C},

and the rth generalized weight of C is then

dr(C) := min{# supp(C′) | C′ � C with dim(C′) = r},

where C′ � C denotes that C′ is a linear subcode of C. Observe that the above
definition only makes sense if r ≤ k, where k is the dimension of C.

Let Ca be a code in an array of codes as in [21] with associated semigroup
Γ . For example, Ca may be a one-point AG code associated to a divisor of the
form G = aP . In this case Γ would be the Weierstrass semigroup of the underlying
curve at P , as explained in the introduction. We will consider cases where Γ is
telescopic as in Corollary 16 or free with assumptions as in Theorem 20, so that
the second Feng-Rao number equals n1, the multiplicity of the semigroup. We will
also consider the case of the Suzuki semigroups.

Since free semigroups are symmetric (see [26, Chapter 8]), the bound for the
second Hamming weight given by the second Feng-Rao number gives the exact
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value of the second Feng-Rao distance for half of the elements in the interval
[c, 2c− 1], where c = 2g and a = 2g − 1 + ρ with ρ ∈ Γ \ {0} (see [14]).

Let a ≥ c. Corollary 16 implies that

d2(Ca) ≥ δ2FR(a+ 1) ≥ a+ 2− 2g + E(Γ, 2) = a+ 2− 2g + n1. (2)

In contrast following [21, Theorem 2.8], one deduces that

d2(Ca) ≥ δFR(a+ 2) ≥ a+ 3− 2g. (3)

Since n1 > 1 the bound obtained from Corollary 16 is an improvement.
Finally, the Griesmer order bound (introduced in [10]) for the case r = 2 shows

that

d2(Ca) ≥ GOB(a+ 1) := δFR(a+ 1) +

⌈
δFR(a+ 1)

q

⌉
, (4)

where the code is defined over the finite field Fq. In the case of codes constructed
from generalized Hermitian semigroups, the underlying field for the corresponding
codes would be Fqr . Consequently we would divide by qr instead q in the formula
above.

In the following examples we compare our bound (2) for the second Hamming
weight with (3) and (4). We will denote δFR(a) = δa and δ2FR(a) = δ2a for simplicity.

Example 25 Consider the generalized Hermitian semigroups as in section 3.1, that is

Γ = Hq,r = 〈qr−1, qr−1 + qr−2, qr + 1〉

where q is the power of a prime number and r ≥ 3 (note that if r = 2 the semigroup is

Hermitian and is generated by only two elements).

First, consider the case q = 2 and r = 3. Here Γ = 〈4, 6, 9〉 with genus g = 6. Table

1 shows the index a of the code Ca together with four bounds for the second Hamming

weight, namely bounds (3), (4), (2) and finally the actual second Feng-Rao distance

δ2a+1. We observe that our bound (2) is always better than Kirfel-Pellikaan bound (3)

and the Griesmer order bound (4). Additionally in this case, all of the values but one

for our bound (2) coincide exactly with the value of the second Feng-Rao distance.

Next, consider the case Γ = H2,4 = 〈8, 12, 17〉 with genus g = 28. Again for the

majority of the values of a our bound (2) coincides exactly with the value of the second

Feng-Rao distance. Additionally for all values of a our bound improves upon the bounds

(3) and (4). This is apparent for the values displayed in Table 2. Note that for the sake

of brevity we omit displaying most of the columns in the table.

We obtained similar results for higher values of q and r with the aid of GAP.

a 12 13 14 15 16 17 18 19 20 21 22 23

δa+2 4 4 6 6 8 8 9 10 12 12 13 13
GOB(a+ 1) := δa+1 + dδa+1/qre 5 5 5 7 7 9 9 11 12 14 14 15

a+ 1− 2g + E(H2,3, 2) 6 7 8 9 10 11 12 13 14 15 16 17
δ2a+1 6 8 8 9 10 11 12 13 14 15 16 17

Table 1 Results for the case H2,3.
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a 56 57 58 59 60 61 62 · · · 104 105 106 107 108 109 110 111

δa+2 8 8 8 8 8 8 12 · · · 51 52 53 54 56 56 57 57
GOB(a+ 1) 9 9 9 9 9 9 9 · · · 54 55 56 57 58 60 60 61

a+ 1− 2g + E(H2,4, 2) 10 11 12 13 14 15 16 · · · 58 59 60 61 62 63 64 65
δ2a+1 12 12 12 16 16 16 16 · · · 58 59 60 61 62 63 64 65

Table 2 Results for the case H2,4.

Remark 26 We compare now our bounds for the second Hamming weight with the

actual values computed in [6, Example 1]. Thus, we consider the generalized Hermitian

curve for q = 2 and r = 3, that is, the curve H2,3 from Example 25.

Taking into account that our codes Ca are the dual codes of those considered in [6]

(which we denote now by C∗a), that we have the code isometry

C∗a ≡ C⊥n+2g−2−a

where the length is n = q2r−1, and that the dimension of C∗a is k = a+ 1− g = a− 5,

we obtain the results of Table 3 by using those of [6, Example 1], the duality property

of the weight hierarchy (see [28, Theorem 3]), and the fact that d`(C
∗
s ) = n− k+ ` for

` > g = 6 (see [6]).

a 12 13 14 15 16 17 18 19 20 21 22 23

a+ 1− 2g + E(H2,3, 2) 6 7 8 9 10 11 12 13 14 15 16 17
δ2a+1 6 8 8 9 10 11 12 13 14 15 16 17

d2(Ca) 6 7–8 8 9 10 11–12 12 13 14 15–16 16 17

Table 3 Comparison with the real value of d2 for the case H2,3.

As we can see, except for two cases where the real value of the second Hamming

weight is not determined from [6], in all the cases our bounds attain exactly the actual

value of the second Hamming weight. Furthermore, in the case a = 13 the second

Feng-Rao number gives the smaller value of the indeterminacy 7–8 derived from [6],

but actually the second order bound improves this result, obtaining that the real value

of the second Hamming weight is actually 8.

In the next example we use Theorem 24 to obtain the bound

d2(Ca) ≥ δ2FR(a+1) ≥ a+2−2g+E(H2,n, 2) = a+2−2g+(p2n+1−p2n+pn). (5)

These codes are defined solely in the case where characteristic p = 2; see [22,?] for
details.

Example 27 Consider now the Suzuki semigroup from Section 3.2 for the case p = 2

Γ = S2,n = 〈22n+1, 22n+1 + 2n, 22n+1 + 2n+1, 22n+1 + 2n+1 + 1〉.

As noted earlier this semigroup is not telescopic. According to Theorem 24, the second

Feng-Rao number is E(Γ, 2) = 22n+1 − 22n + 2n.
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a 28 29 30 31 32 33 34 35 36 37 38 39 40 41

δa+2 8 8 8 8 8 8 10 10 12 12 13 16 16 16
GOB(a+ 1) 7 9 9 9 9 9 9 12 12 14 14 15 18 18

a+ 1− 2g + E(S2,1, 2) 8 9 10 11 12 13 14 15 16 17 18 19 20 21
δ2a+1 10 11 12 12 12 14 14 16 16 17 18 19 20 22

a 42 43 44 45 46 47 48 49 50 51 52 53 54 55

δa+2 18 18 20 20 21 22 23 24 25 26 28 28 29 29
GOB(a+ 1) 18 21 21 23 23 24 25 26 27 29 30 32 32 33

a+ 1− 2g + E(S2,1, 2) 22 23 24 25 26 27 28 29 30 31 32 33 34 35
δ2a+1 22 24 24 25 26 27 28 29 30 31 32 33 34 35

Table 4 Results for the Suzuki semigroup S2,1.

Consider the classical Suzuki curve with n = 1, with Weierstrass semigroup Γ =
〈8, 10, 12, 13〉. This semigroup is free with genus g = 14, conductor c = 28, and second

Feng-Rao number E(Γ, 2) = 6. As is apparent in Table 4, our bound is better than both

(3) and (4). Additionally we see that our bound equals the second Feng-Rao distance for

a majority of the values. Note that in computing the Griesmer order bound we divide

by the size of the finite field, that is, 22n+1.

We also performed computations for higher n, obtaining similar results with large

tables.

In conclusion, the bound for the second Hamming weight based on the second
Feng-Rao number is better than those given by Kirfel-Pellikaan in [21] and the
Griesmer order bound introduced in [10], for AG codes coming from both gener-
alized Hermitian curves and Suzuki curves. Additionally, recall that this bound
equals the one given by the actual second Feng-Rao distance in most cases and
specifically for all a ≥ c.
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8. M. Delgado, P. A. Garćıa-Sánchez, J. Morais, “NumericalSgps”, A package for numerical
semigroups, Version 1.0.1 (2015), (Refereed GAP package), http://www.gap-system.org.
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