In electrochemical studies, a three-electrode cell incorporating a stable reference electrode is essential to avoid uncertainty of the electrode reactions. However, a universal reference electrode has not so far been reported in the literature for electrochemical studies in ionic liquids. Instead, the use of pseudoreference electrodes (e.g. silver, gold or platinum wires immersed directly into the solution) is very common, but their potentials could be unstable and vary with many factors, making their use unappropriated in electrochemical studies.

The stability of the Ag pseudo-reference electrode was checked by studying the electrochemical behavior of Cu(I) and Cu(II) solutions in the 1-buthyl-3-methyl-imidazolium chloride ionic liquid.

For solutions containing Cu(I), a Ag wire can be used as a pseudo-reference electrode. Notwithstanding, for the studies with Cu(II) solutions this material must be avoided in order to prevent the chemical reaction:

\[
\text{Cu(II)} + \text{Ag(0)} \rightleftharpoons \text{Cu(I)} + \text{Ag(I)}
\]

Figures 2(a) and (b) show the electrodeposits obtained with either Cu(I) or Cu(II) solutions using a Ag reference electrode. Pure Cu electrodeposits were obtained from a Cu(I) solution, whereas a Cu-Ag intermetallic compound was obtained from a Cu(II) solution.

Acknowledgements: Authors thank the Junta de Castilla y León Project VA171U14 for the financial support.