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Abstract  

Measuring the oxygen content during winemaking and bottle storage has become 
increasingly popular due to its impact on the sensory quality and longevity of wines. 
Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based 
on the chemical composition of wines have been published. Therefore, this study 
proposes firstly a new fitting approach describing oxygen consuming kinetics and 
secondly the use of an Artificial Neural Network approach to describe and compare the 
oxygen avidity of wines according to their basic chemical composition (i.e. the content 
of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The 
results showed no significant differences in the oxygen consumption rate between white 
and red wines, and allowed the sorting of the wines studied according to their oxygen 
consumption rate.  

Keywords: Wine, oxygen, oxidation, oxygen consumption rate, phenol, sulfur dioxide, 
iron, Artificial Neural Networks
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1. Introduction 
 

Oxygen is ever-present during all phases of the winemaking process (Calderón, 
Alamo-Sanza, Nevares, & Laurie, 2014), contributing to important chemical changes that 
affect the sensorial characteristics and the aging capacity of wines (del Alamo-Sanza, 
Pando, & Nevares, 2014; Oliveira, Silva Ferreira, De Freitas, & Silva, 2011). Oxygen is 
required for a sound alcoholic fermentation, color stabilization, reduction of the astringent 
and bitter characters, etc. (Holm Hansen, Nissen, Sommer, Nielsen, & Arneborg, 2001; 
Schmidtke, Clark, & Scollary, 2011). However, an excess of oxygen could lead to 
microbiological spoilage and oxidation reactions that could negatively affect the wine’s 
color, flavor and aging capacity (Escudero, Asensio, Cacho, & Ferreira, 2002; Laurie, 
Salazar, Campos, Cáceres-Mella, & Peña-Neira, 2014; Schmidtke et al., 2011). The non-
enzymatic oxidation process is thought to begin with the activation of oxygen by metal 
catalyzers, and the oxidation of phenols into quinones with the concomitant reduction of 
oxygen into hydrogen peroxide (H2O2). The resulting species can further react with other 
wine molecules and produce sensory changes associated with wine oxidation, such as the 
production of acetaldehyde (Elias, Andersen, Skibsted, & Waterhouse, 2009; Kreitman, 
Laurie, & Elias, 2013; Laurie, Zuñiga, Carrasco-Sanchez, Cañete, Olea-Azar, Ugliano & 
Agosin, 2012). During this process, important chemical compounds are affected, 
including phenols (Danilewicz, 2003, 2007; du Toit, Marais, Pretorius, & du Toit, 2006; 
Kondrashov, Ševčík, Benáková, Koštířová, & Štípek, 2009; Laurie et al., 2014; Mulero, 
Pardo, & Zafrilla, 2010; Oliveira, Knapic, & Pereira, 2012; Vrček, Bojić, Žuntar, Mendaš, 
& Medić-Šarić, 2011; Zúñiga, Pérez-Roa, Olea-Azar, Laurie, & Agosin, 2014), sulfur 
dioxide (Danilewicz, 2003, 2007, 2014; Zúñiga et al., 2014), ethanol (Danilewicz, 2014), 
ascorbic acid, glutathione. etc (Du Toit, Lisjak, Marais, & Du Toit, 2006). 

 
Various authors have evaluated the influence of oxygen in wine via antioxidant 

capacity measurements (Kondrashov et al., 2009; Mulero et al., 2010; Vrček et al., 2011), 
which could serve as a rough estimate of the wine’s affinity towards oxygen consumption 
(Mulero et al., 2010). Other studies have measured the redox potential of the wine as an 
indication of its oxidation state (Danilewicz, 2003; Del Alamo, Nevares, & Cárcel, 2006; 
Kilmartin & Zou, 2001). In both cases, the wine matrix complexity and the errors 
associated have limited the chances of finding a good methodology to predict or classify 
wines according to their oxidation potential. Other studies evaluated the chemical changes 
in red wines subjected to saturation cycles with the result that the first cycle affects wine 
the most (Carrascon, Fernandez-Zurbano, Bueno, & Ferreira, 2015; Ferreira, Carrascon, 
Bueno, Ugliano, & Fernandez-Zurbano, 2015). The reactivity and consumption of oxygen 
during wine oxidation depends on chemical composition and the conservation 
temperature of the wine. Moutounet indicated that a red wine saturated with air consumed 
its dissolved oxygen in 25 hours at 13 ºC, while it only takes 3 hours at a temperature of 
30 ºC (Moutounet & Mazauric, 2001). 

 
This paper studied the oxygen consumption patterns of red and white real wines, and 

compared the accepted model of oxygen consumption with a new model fitting to 
approximate the kinetics of oxygen consumption. By means of an Artificial Neural 
Networks (ANNs) model, based on the basic chemical composition of these wines, we 
have defined an index capable of comparing wine oxidation rates.  
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2. Materials and Methods 
 
2.1. Wine samples 
 
The alcohol degree (AD) was measured using a distillation method; titratable acidity 

(TA), pH, volatile acidity (VA) were measured using a potentiometric method; total sulfur 
dioxide (free and combined SO2) according to an iodometric method and iron (Fe) and 
copper (Cu) using an FAAS external calibration with standards in hidroalcoholic solution 
(13%). These components were analyzed for a set of 32 real wines (RW) (16 reds, RRW 
+ 16 whites, WRW) following European methods (CEE, 1990). Also, the content of total 
phenols (TP) was measured using the Folin-Ciocalteu method as described by Singleton 
and Rossi (Singleton & Rossi, 1965) (Table 1). 

 
Another set of model wines or training wines (TW) (54 reds, RTW and 54 whites, 

WTW) were prepared with ultrapure water and varying concentrations of six substances 
closely linked with the wine’s redox chemistry (Danilewicz, Seccombe, & Whelan, 2008; 
Zúñiga et al., 2014) and easily measureable in a winery setting (i.e. alcohol content, 
titratable acidity, sulfur dioxide, total phenolics, iron and copper, as further explained 
below). Ethanol (96% v/v), L(+)-Tartaric acid (99.7-100.5%) and sodium hydrogen 
sulfite (40% w/v) were acquired from Panreac (Barcelona, Spain), whilst iron standard 
solution (iron III nitrate nonahydrate in nitric acid 0.5 mol/L, 1000 mg/L), and copper 
standard solution (copper II nitrate in nitric acid 0.5 mol/L, 1000 mg/L) were purchased 
from Scharlab (Barcelona, Spain). Gallic acid (97.5-102.5%), and (+) Catechin hydrate 
(98%) were obtained from Sigma-Aldrich (San Luis, Missouri, USA). The concentrations 
of the compounds present in the training wines were as follows: Red training wines, AD 
(% vol): 13, 14, and 15; TA (gTH2/L): 4.5, 5.25 and 6; SO2T (mg/L): 30, 50 and 70; Fe 
(mg/L): 0.5, 4 and 8; Cu (mg/L): 0.03, 0.4 and 0.8; and TP (mg GAE/L): 2000, 3000 and 
4000. For white training wines, the concentrations chosen were as follows: Alcohol (% 
vol): 11.5, 12.5 and 13.5; TA (gTH2 /L): 4.5, 5.25 and 6; SO2T (mg/L): 30, 75 and 100; 
Fe (mg/L): 0.5, 3 and 6; Cu (mg/L): 0.03, 0.4 and 0.8; and TP (mg GAE/L): 200, 300 and 
400. In order to reduce the number of possible combinations in a statistically reliable 
fashion, the Box-Behnken factorial design (Box & Behnken, 1960) was used, resulting in 
54 combinations for each type of training or model wine (red and white) (Table 1, 
supplementary material). 

 
The chemical parameters used were chosen based on some of the following 
considerations: Ethanol is the second most abundant compound in wines which, in 
addition to assisting in the dissolution of many compounds, including most of the wine 
phenolics, is one of the main substrates of oxidation after the phenolics (Danilewicz, 
2014; Elias et al., 2009; Elias & Waterhouse, 2010). Organic acids such as tartaric acid 
are known substrates of oxidation (Clark, Prenzler, & Scollary, 2003; Danilewicz, 2014) 
which could be easily estimated by measuring total acidity, and contribute to the wine’s 
pH and redox potential. In general, low pH imposes restrictions on oxidation (Danilewicz, 
2007; Del Álamo et al., 2006; Oliveira et al., 2011), whilst a higher pH favors oxidation 
reactions (Danilewicz, 2003). Sulfur dioxide acts as one of the major antioxidant agents 
of wine by reacting with the H2O2 formed during phenol oxidation (Danilewicz, 2007), 
thus contributing significantly to the antioxidant capacity of wines, particularly whites 
(Abramovič, Košmerl, Poklar Ulrih, & Cigić, 2015; Danilewicz, 2007). Iron and copper 
stand out due to their influence as catalysers of oxidation reactions and their contribution  
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 Table 1.- Chemical composition of the wines tested (i.e. 16 white and 16 red wines) and 
correlation results between OCRI and given chemical parameter. 

Wine OCRI 
Fe 

(mg/L) 
Cu 

(mg/L) 
Fe/Cu 

AD 
(%) 

TA 
(mg/L) 

SO2 T 
(mg/L) 

SO2F 
(mg/L) 

SO2C 
(mg/L) 

TP 
(mg/L) 

pH 
Vol Ac 
(g/L) 

 White Real Wines 

8 41.41 0.70 0.03 23.33 13.20 5.10 83 39 44 350 3.36 0.30 

4 42.99 0.30 0.05 6.00 12.10 5.20 64 32 32 228 3.31 0.24 

16 49.17 1.00 0.45 2.22 13.70 6.00 107 24 83 250 3.12 0.42 

9 50.73 0.80 0.48 1.67 13.40 5.80 117 27 90 249 3.20 0.28 

12 51.57 1.40 0.08 17.50 12.80 5.60 96 32 64 234 3.11 0.31 

2 51.69 0.80 0.11 7.27 12.60 5.50 119 20 99 245 3.48 0.16 

7 51.70 0.80 0.28 2.86 13.20 5.70 112 40 72 288 3.29 0.29 

14 51.90 1.30 0.08 16.25 12.80 5.50 80 31 49 253 3.11 0.40 

15 52.09 1.40 0.08 17.50 12.80 5.50 84 32 52 223 3.12 0.28 

3 53.15 1.20 0.05 24.00 12.50 5.30 104 32 72 288 3.13 0.38 

1 55.28 0.70 0.06 11.67 13.80 6.10 98 19 79 363 3.14 0.51 

5 56.10 1.50 0.05 30.00 12.70 5.30 98 24 74 258 3.11 0.29 

11 60.00 4.10 0.11 37.27 12.60 5.50 79 29 50 236 3.21 0.23 

6 60.21 0.80 0.14 5.71 13.40 5.40 113 37 76 333 3.31 0.27 

10 62.33 0.90 0.58 1.55 13.60 5.40 85 26 59 278 3.01 0.47 

13 62.53 1.10 0.09 12.22 13.30 5.30 101 36 65 218 3.34 0.39 

Average 53.30 1.18 0.17 13.56 13.03 5.51 96.25 30.00 66.25 268 3.21 0.33 
Correlation 

 0.3969 0.1911 0.0764 0.2989 0.0692 0.2211 -0.1390 0.2445 -0.0677 -0.2517 0.2755 

p level   0.1279 0.4783 0.7786 0.2608 0.7990 0.4105 0.6077 0.3615 0.8031 0.3471 0.3018 

Wine Red Real Wines 

8 39.05 0.70 0.06 11.67 14.70 5.30 36 30 6 2933 3.46 0.37 

16 39.99 1.40 0.06 23.33 14.10 5.20 37 16 21 2906 3.63 0.47 

13 40.97 1.40 0.05 28.00 14.00 5.20 32 13 19 2579 3.63 0.47 

4 43.25 1.80 0.17 10.59 14.50 4.70 64 42 22 3456 3.76 0.41 

1 44.72 2.40 0.17 14.12 13.90 5.20 53 27 26 3497 3.65 0.35 

11 45.22 1.80 0.13 13.85 13.30 5.00 24 21 3 2383 3.59 0.47 

9 47.00 0.80 0.22 3.64 13.70 4.60 45 19 26 2624 3.89 0.45 

10 49.40 1.80 0.13 13.85 13.20 4.70 18 10 8 2056 3.73 0.41 

7 49.73 2.50 0.15 16.67 14.00 4.80 70 40 30 3483 3.72 0.37 

6 50.90 2.80 0.14 20.00 14.10 4.70 64 37 27 3288 3.80 0.40 

15 53.57 1.20 0.11 10.91 13.10 3.90 19 8 11 1865 3.65 0.46 

14 58.39 1.60 0.38 4.21 14.10 4.10 31 16 15 2410 3.89 0.48 

12 61.19 1.80 0.11 16.36 12.30 4.40 59 33 26 2401 3.85 0.63 

3 63.50 2.50 0.17 14.71 13.90 4.60 69 31 38 2920 3.56 0.70 

5 64.04 2.50 0.17 14.71 13.90 4.60 69 39 30 2892 3.68 0.59 

2 67.32 1.60 0.62 2.58 14.00 4.70 29 18 11 2460 3.74 0.46 

Average 51.14 1.79 0.18 13.70 13.80 4.73 44.94 25.00 19.94 2760 3.70 0.47 
correlation  0.3771 0.6134 -0.3992 -0.3380 -0.6344 0.2231 0.1161 0.2090 -0.2706 0.3271 0.6498 

p level   0.1499 0.0115* 0.1256 0.2005 0.0083** 0.406 0.6685 0.274 0.3108 0.2126 0.0064** 

* p-level <  0.05, ** p-level <  0.01 
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between 0.093 and 0.273 showed a statistically significant and positive correlation with 
the copper content of the real white wines (r = 0.5922, p = 0.0157). In all cases, a good 
fit was found for all wines studied with adjusted R-Sq values between 0.989 and 0.999. 
Therefore, as with the proposed model, the copper content of the wine is the parameter 
most closely related to oxygen consumption to the wine’s antioxidant capacity 
(Danilewicz, 2007; Oliveira et al., 2011; Zúñiga et al., 2014). Finally, wine phenolic 
compounds have a direct influence on wine oxidation, being the main reactants of 
activated oxygen in solution. As such they are an important contributor to antioxidant 
capacity (del Alamo-Sanza et al., 2014; Escudero et al., 2002; Holm Hansen et al., 2001; 
. Oliveira et al., 2011) 

 
 

2.2. Air saturation of wines 
 
Each of the wines (32 RW and 108 TW) was saturated with atmospheric oxygen using 

an air press pump (Selecta, Spain) that allowed the sparging of air into the liquid. Air 
dissolution stopped when the partial pressure of oxygen in the wine was the same as that 
of the atmosphere (i.e. 100% air saturation, equivalent to a concentration of 
approximately 7 mg/L of oxygen in water at Patm 1013 hPa and 35ºC). The atmospheric 
pressure was measured using a digital barometer with an accuracy of ± 0.3 hPa at 20°C 
(PTB110, Vaisala Oyj, Finland). To prevent oversaturation of oxygen in solution, high-
speed air flow (i.e. air flow rates greater than 1 mL/min) and very small bubbles were 
avoided, using a procedure described elsewhere (Näykki, Jalukse, Helm, & Leito, 2013). 
After saturating the wines, the dissolved oxygen content (DO) of the samples were 
measured every 100 seconds during 60 hours, as explained below. The data with values 
above 100% (associated with an oversaturation) were discarded at the time of the 
statistical treatment. Then, the oxygen depletion from 100% of air sat. until a value of 5% 
of air saturation was evaluated. 
 

2.3. Measurement of DO and kinetics of oxygen consumption 

The oxygen-saturated wines were transferred onto 20 mL respiration vials with 
integrated optical oxygen sensors for DO measurements (OXVIAL20, PyroScience 
GmbH, Aachen, Germany) which are airtight. The sensors are stripes of oxygen sensitive 
redflash-indicators glued to the inner wall of the vials [resolution: 0.01% O2 (0.005 mg/L) 
at 1% O2, 0.05% O2 (0.025 mg/L) at 20% O2; Accuracy: ±0.02% O2 (0.01 mg/L) at 1% 
O2 or ±0.2% O2 (0.1 mg/L) at 20% O2], which allow DO readings by means of eight 
optical fibers connected to a two FireStingO2 4-channels optical oxygen meters 
(PyroScience GmbH, Aachen, Germany). All of the assays were performed in groups of 
eight vials simultaneously. The samples were kept in a thermostatic bath at a constant 
temperature of 35±0.01°C (Julabo FP40-ME, Seelbach, Germany). The oxygen sensors 
of each vial were calibrated according to the manufacturers’ protocol, with measurements 
performed at two calibration points: oxygen-free water (0% air saturation) and air-
saturated water (100% air saturation). Measurements were performed in ultrapure water 
in saturation conditions according to ISO 5814:2012 (International Standard 
Organization, 2012) and in an oxygen-free water at a concentration of 0 mg/L. The 0% 
calibration standard was prepared based on a strong reductant; in this case, sodium 
dithionite (Na2S2O4) (Panreac, Barcelona, Spain) at a concentration of 30 g/L. 
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 All oxygen-measuring equipment had a temperature probe, pressure transducer, and 
humidity sensors used for temperature, pressure and humidity compensation. The 
corresponding temperature probes were introduced in the thermostatic bath, 
independently from the luminescence equipment as to have other means of correcting the 
measured values and ensuring the quality of the measurements. Similarly, the 
atmospheric pressure of the oxygen meter was checked with the digital barometer during 
every assay. 

 
As suggested before, the testing of wines was carried out under the same temperature 

conditions, by keeping the samples in a high accuracy thermostatic bath at 35 ºC in 
darkness. All of the wines (140 real and model samples) were exposed to air until 
saturation, and the kinetics of oxygen depletion was measured following the 
concentration of DO. 

 
2.4. Artificial Neural Networks 
 
Finally, an ANN model was built for the categorization of the wines according to their 

oxygen consumption rate. This model was trained by correlating the chemical data and 
the oxygen consumption curves of the 108 model wines, and tested using the 32 real white 
and red wines, as further explained below. Due to the wine matrix complexity and the 
multiplicity of chemical compounds linked with the wine’s antioxidant capacity (Zúñiga 
et al., 2014), is that several ANN were proposed in order to categorize the oxygen 
consumption rate of the wine on the basis of its basic chemical composition. The 
multilayer perceptron ANN used in this work presents 7 input variables (input layer, 
Figure 1 supplementary) of each network: a binary variable indicating whether the wine 
is red or white and the six chosen chemical parameters of the wines (i.e. A%, TA, SO2T, 
Fe, Cu, and TP). The output variable (output layer, Figure 1 supplementary) of each ANN 
was a numeric-type variable that represents the wine’s oxygen consumption rate and was 
used to compare wines with different rates. Both the input and output variables were 
normalized so that the mean of each variable is zero and the standard deviation is one.  

 
The training of each ANN, employed to adjust the weight and offset values of the 

neurons, was done using the data acquired from the 108 model wines. Here, the back 
propagation algorithm based on the Levenberg-Marquardt method implemented with the 
trainlm function of Matlab® was employed (Hagan & Menhaj, 1994). The minimum value 
of the gradient was adjusted to 10-15, and 20% of the samples were used for model 
validation. The process of training was conducted by varying the number of neurons 
included in the hidden layer of the ANN between two and 20, and replicating each of 
them 200 times in order to minimize the influence of the random neural network 
initialization of the ANN in the final outcome of the training. 

 
2.5. Statistical analysis 
 
MATLAB software was employed to implement the consumption kinetic models and 

the ANNs, both MATLAB® and Microsoft Excel (2016), were used to perform the 
correlation and error analyses. STATGRAPHICS was employed for the ANalysis Of 
VAriance (ANOVA) tests shown in this work. 
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3. Results and discussion 
 
3.1. Kinetics of oxygen consumption 
 
All of the wines (140 real and model samples) were exposed to air until saturation, 

and the kinetics of oxygen depletion was measured following the concentration of DO. 
Figure 1 is a graph showing the results of monitoring the oxygen consumption of the 
training white wines together with the two real white wines which presented limit 
tendencies (Figure 1A); the results of monitoring the oxygen consumption of the real 
white wines together with the two training ones which presented limit tendencies are also 
shown (Figure 1B). The results indicate that only three (WRW4, WRW9 and WRW10) 
real white wines fall outside the tendencies of the training wines. In the case of the red 
wines. 

 
 

 
Figure 1: Oxygen kinetics of: a) model white wines (orange) and extremely real white wines 
(green), b) real white wines and extremely model white wines, c) model red wines (red) and 
extremely real red wines (blue), d) real red wines and extremely model red wines, e) real red and 
white wines, and f) all studied model wines. 
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Figure 1C shows the training red wines together with the two reds which presented the 
most extreme tendencies, and the tendencies of the red wines together with the two model 
reds presenting the most different tendencies are shown in Figure 1D, indicating that only 
one of the real wines studied (RRW14) follows a different kinetic to the training ones. To 
date, it has been established that red wines can consume more oxygen than whites 
(Danilewicz, 2015; Kreitman, Danilewicz, Jeffery, & Elias, 2016; Moutounet & 
Mazauric, 2001; V. Singleton, 1987), however, the kinetics of oxygen consumption 
between the two have not been well established. In this case, the analyses of the model 
and white and red real wines show that both types do not have significantly different 
kinetics of oxygen consumption, and that they were different to those reported by 
Moutounet & Mazauric (2001) and widely accepted in the sector. These differences may 
be due to the measuring conditions, such as temperature, the measurement system and the 
fact that this was not done in a closed environment (Moutounet & Mazauric, 2001). Dr. 
Danilewicz used a Clarke-type electrode to perform readings at ambient temperature (20 
– 25ºC) and the system was not completely closed during the measurements. In our case, 
continuous oxygen readings with a photoluminescence detector at 35ºC were collected, 
and this was carried out in a perfectly airtight environment. 

 
Oxygen consumption occurs via multiple pathways and/or reactions, but mathematically, 
some authors consider that O2 is consumed following a first-order reaction kinetics 
C=C0ꞏexp(kt), where its apparent kinetic rate is an average value of all oxidation reactions 
occurring in wine during storage at any given temperature (Costa Martins, Monforte, & 
Silva Ferreira, 2013; Oliveira, Barros, Silva Ferreira, & Silva, 2015), therefore the 
following equation could be used:  
 

[O2](t)=[O2]0ꞏexp(-kapp . t)       (eq 1) 
 
where [O2]0 is the initial oxygen concentration (mg/L) and kapp (1/day) is the apparent 
kinetic rate at the given time (t) in days. Considering that kapp may follow the Arrhenius 
behavior with temperature (Costa Martins et al., 2013; Oliveira et al., 2015; Palacios 
Macías, Caro Pina, & Pérez Rodríguez, 2001), the reactions were conducted at 35ºC 
allowing the samples to consume the oxygen in shorter periods of 60 h instead of much 
longer times reported elsewhere (Singleton, 1987). In order to ensure a common oxygen 
interval for the 140 wines tested, that was representative of each kinetic pattern, the data 
was shortened between 85% and 5% of air sat., allowing an equation to be established 
that represents that specific interval for all the wines studied. The results presented in 
Table 2, obtained with eq. 1, show that the best fit was obtained for the real red wines 
(adjusted R-Sq = 0.976). Similarly, the correlation between Kapp and the chemical 
parameters that differentiate the real wines presented in Table 1 were evaluated. More 
specifically, Kapp was significantly and positively correlated only with the copper 
content of real white (Pearson correlation coefficient r = 0.7816, p = 0.0003) and red 
wines (r = 0.7185, p = 0.0017) (Table 2 supplementary material), indicating that at higher 
copper content there would be a greater initial speed of oxygen consumption. 
 

A study of the other adjustments to represent the oxygen consumption rate 
indicates that oxygen consumption in the 140 wines studied has a better fit with the 
phenomenological trend described in equation (2).  
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 𝑂2ሺ𝑡ሻ ൌ ௔

ଵା௕∙௘೎∙೟  𝑤𝑖𝑡ℎ 𝑎 ൐ 0, 𝑏 ൐ 0 𝑎𝑛𝑑 𝑐 ൐ 0 (eq. 2) 

 
These results with values of parameter a between 88,347 and 143,651 showed a positive 
and statistically significant correlation with the copper content of the real red wines (r = 
0.7544, p = 0.0007) (Table 2, supplementary material). In a similar manner, the b values, 
between 0.036 and 0.528, showed a statistically significant and positive correlation with 
the copper content of the real red wines (r = 0.7542, p = 0.0003). Similarly, the c values  
 
 
Table 2.- Summary of the fit of the equation to the different kinetics of the 140 wines and error 
results. (A) exponential equation and (B) phenomenological equation. 

         WTW WRW RTW RRW Average 

P
ar

am
et

er
s 

(A
) 

 Max 3.3781E-05 4.3873E-05 3.453E-05 3.983E-05 3.8003E-05 

k 
  

Mean 2.2557E-05 2.476E-05 2.3386E-05 2.0528E-05 2.2808E-05 

Min 2.1406E-05 1.0712E-05 1.6961E-05 1.4319E-05 1.585E-05 
 Max 0.976 0.971 0.983 0.993 0.981 

R2 Mean 0.938 0.963 0.939 0.976 0.954 

  Min 0.875 0.943 0.889 0.935 0.911 

  RMSE 5.9495 4.3501 6.062 3.3789 5.5163 

 error MAE 5.2484 3.6965 5.4318 2.9032 4.8738 

  MxAE 10.9709 10.26 10.1228 6.9526 10.1033 

P
ar

am
et

er
s 

(B
) 

 Max 129.9 135.1 150.6 151.328 143.651 

a 
  

Mean 99.63 111.829 103.978 126.185 110.406 

Min 83.4 97.272 87.269 90.393 88.347 
 Max 0.261 0.398 0.605 0.689 0.528 

b 
  

Mean 0.095 0.214 0.135 0.35 0.199 

Min 0.307 0.085 0.022 0.063 0.036 
 Max 0.307 0.276 0.298 0.063 0.273 

c 
  

Mean 0.2 0.178 0.201 0.178 0.176 

Min 0.124 0.091 0.094 0.124 0.093 
 Max 0.999 0.997 1 0.999 0.999 

R2 Mean 0.997 0.996 0.998 0.997 0.997 

  Min 0.983 0.994 0.991 0.991 0.989 
 RMSE 1.2870 1.4530 0.9919 1.1288 1.1741 

error MAE 1.0799 1.1839 0.8406 0.9442 0.9839 
 MxAE 3.4586 4.3788 2.5435 3 3.2195 

RMSE (Root mean square error), MAE (mean absolute error), MxAE (maximum absolute error) 
 
The comparative study of both adjustments for all the wines studied indicates that the 
phenomenological method fits the real data more significantly than the exponential 
equation. As an example the wines best adjusted to the exponential model (WRW9 and 
RRW14) were chosen and the consumption kinetics and adjustments made with both 
methods have been shown (Figure 2 A-B). It can be seen that the exponential method is 
only better adjusted at the start of the kinetics, with the proposed method being better p-
level < 0.01 for every error UVaM
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Figure 2.- Decrease in oxygen consumption in two real wines (WRW09 and RRW14) and 
decrease according to exponential adjustment (A) and the proposed method (B). Graphical 
representation of the errors MSE (Root mean square error), MAE (mean absolute error), MxAE 
(maximun absolute error) of each real and training wine studied.  
 
 
adjusted to all the kinetic, as shown by the residuals graph (Figure 2 C-D). The analysis 
of variance of the statistics of both adjustments (R2, RSMS, mean absolute error, max 
absolute error Table 2) performed for all the wines and for each of the 4 types of wine 
separately (training and real white and red wines) indicates that the R2 of the proposed 
adjustment in equation 2 is significantly higher than the R2 of the exponential model. It 
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has also been found that the error made is significantly greater in all the studied wines 
with the exponential method (Figure 2 E-H).  

 
Oxygen consumption kinetics shown in Figure 1 can be represented with a 

function like that presented in Figure 3. There are several statistical parameters extracted 
from this function or from its derivative function that can describe it, and therefore 
describe the oxygen consumption kinetics. In this article, three parameters were analyzed 
to describe this function because of their relationship with the wines’ oxygen 
consumption capacity. The first of these parameters, hereinafter referred to as feature 1, 
is defined as the time in which the DO of the wine falls from full saturation to 50% air 
saturation, and its value in hours was named t1 (Eq. 3). The second parameter, which will 
be referred as feature 2, corresponds to the time in which the mathematical integral of the 
function contained half of the total area under the function, and its value in hours will be 
named t2 (Eq. 4). Finally, the third parameter calculated, hereinafter referred as feature 3, 
represents the time in which the integral of the rate of oxygen consumption curve 
contained half of its total area, and its value in hours will be named t3 (Eq. 5). Thus, a 
wine with high avidity to consume oxygen will show low times t1, t2 and t3. These three 
parameters (t1, t2, and t3) are represented in Figure 3, where I2 and I3 represent half of the 
total area under the oxygen consumption curve and its derivative function, respectively. 
The mathematical representations of these three parameters are as follows: 

 
 𝒕𝟏 so that 𝒇ሺ𝒕𝟏ሻ ൌ 𝟓𝟎%       (eq. 3) 

𝒕𝟐 so that 𝑰𝟐 ൌ ׬ 𝒇ሺ𝝉ሻ𝒅𝝉
𝒕𝟐

𝟎 ൌ
𝟏

𝟐
൉ ׬ 𝒇ሺ𝝉ሻ𝒅𝝉

ஶ
𝟎       (eq. 4) 

𝒕𝟑 so that 𝑰𝟑 ൌ ׬ 𝒇ᇱሺ𝝉ሻ𝒅𝝉
𝒕𝟑

𝟎 ൌ
𝟏

𝟐
׬ 𝒇ᇱሺ𝝉ሻ𝒅𝝉

ஶ
𝟎       (eq. 5) 

 
where 𝑓ሺ𝑡ሻ is the evolution curve of DO over time and 𝑓ᇱሺ𝑡ሻ its derivative function. 

 
As seen in Figure 1, not all of the wines were fully capable of consuming the oxygen 

provided during saturation (particularly reds), showing an asymptotic pattern at DO levels 
below 5% air sat. The prior serves as an indication of the importance of analyzing the 
data through the calculation of different parameters. For instance, feature 1 gives greater 
weight to the oxygen that remains in the wine, while feature 3 offers an indication of the 
total oxygen consumed, with feature 2 being a descriptive value of the dissolved oxygen 
evolution curve.  

 
The linear correlation between each the chemical characteristics of the wine (%AD, 

TA, SO2, Fe, Cu, TP, and a variable indicating whether the wine is white or red (W/R)) 
and the three features used to describe the wines’ oxygen consumption velocity (t1, t2 and 
t3) were calculated. The Pearson correlation coefficient results were -0,1604+, 0,0636, -
0.0478, -0.2677**, -0.3077***, -0.2099*, and -0.2022*, respectively, for feature 1, -
0.0811, -0.1008, -0,1189, -0.3211***, -0.3863***, -0.0551, and -0.0265, respectively, for 
feature 2, and -0.0475, 0.0287, -0.1703*, -0.2500**, -0.2869***, -0.0620, and -0.0363, 
respectively, for feature 3, where + ,*, **, *** indicate p<0.1, p<0.05, p<0.01 and 
p<0.001, respectively. In all cases, the individual significant correlations between these 
wine characteristics and the features chosen to describe the wine’s oxygen consumption 
rate were, in absolute value, between 0.20 and 0.39 for feature 2, with Cu and Fe being 
the highest. These correlation results expose the relationship between the chemical 
characteristics of the wine analyzed and the oxygen consumption features proposed in the 
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article. Because of these correlation results, it would be desirable to build a black-box 
model to relate these seven characteristics and the three features chosen in order to 
improve the predicting capabilities by combining the information contained on each 
characteristic. To this end, an ANN-based model was created to estimate the selected 
features and to qualify wines by their oxygen consumption rate, using simple chemical 
compositional parameters commonly used in wineries.  

 
 

 
Figure 3.- Graphical representation of the oxygen consumption curve f(t), its derivative function 
f´(t), and the three features used to describe the wines’ oxygen consumption capacity (t1, t2, and 
t3), where I2 and I3 represent half of the total area under the oxygen consumption curve and its 
derivative function, respectively. 
 

 
3.2. Results of the neural networks 

 
Three ANNs were created to estimate each one of the three oxygen consumption 

features (t1, t2, t3) considered based on simple chemical compositional parameters 
commonly used in wineries. Initially, the training process of the ANNs was carried out in 
order to adjust the weights of each neuron of the network, and to choose the optimal 
number of hidden neurons. The number of neurons in the hidden layer for the ANN 
associated with each feature was chosen as the one with the lowest validation error, being 
eight hidden neurons for feature 1, and four hidden neurons for features 2 and 3. Once 
trained, the three neural networks were tested with the optimal number of neurons in each 
case, using the data obtained from the real wines. 

 
Considering that the results obtained for each of the three features are not comparable (t1, 
t2, and t3 varied for all the 140 wines between 2.89 and 23.19 hours for t1, between 3.69 
and 14.31 hours for t2, and between 3.82 and 22.54 hours for t3), we have proposed an 
index to describe the oxygen consumption rate, called Oxygen Consumption Rate Index 
(OCRI). OCRI is a dimensionless variable that ranges between 0 and 100, taking values 
close to 0 when the oxygen consumption rate of the wine is low and values close to 100 
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when the oxygen consumption rate is high. Equation 6 shows the mathematical procedure 
to transform each feature into its corresponding OCRI: 
 

𝑶𝑪𝑹𝑰𝒊ሺ%ሻ ൌ 𝟏𝟎𝟎 ൉ ൬𝟏 െ
𝒕𝒊ି𝑻𝒊,𝒎𝒊𝒏

𝑻𝒊,𝒎𝒂𝒙ି𝑻𝒊,𝒎𝒊𝒏
൰, 𝒊 ∈ ሼ𝟏, 𝟐, 𝟑ሽ    (eq. 6) 

 

where: Ti,min is 0 for the three characteristics considered (𝑖 ∈ ሼ1,2,3ሽ), describing the 
extreme case of a wine with the highest oxygen consumption rate, and Ti,max is the 
maximum value of ti for each characteristic (𝑖 ∈ ሼ1,2,3ሽ). 
 

The mean absolute error, that is, the mean value of the absolute value of the 
difference between the value estimated by the ANN and the expected value, was 
employed to analyze the performance of the proposed ANN. Thus, the mean absolute 
error results for OCRI obtained using the first feature were 9.30% for the training wines, 
and 17.34% for the real wines, respectively. The second feature showed OCRIs with a 
mean absolute error of 7.04% for the training wines, and 17.29% for the real wines. The 
mean error results of OCRI obtained with the third feature were 7.55% for the training 
wines and 18.72% for the real ones. From these results, it can be observed that the lower 
average absolute error was obtained for the second feature, for both training and real 
wines. Additionally, given the results obtained for the training samples and the learning 
ability of neural networks, it is possible to think that the data would improve if the ANNs 
are trained with a larger database that includes more real wines. 

 
The graphical representation of the results obtained with the ANN of feature 2 is 

shown in Figure 4. This plot represent the OCRI measured against the OCRI estimated 
for feature 2, distinguishing red and white wines. Feature 2 showed the cloud of points 
with the best distribution along the reference line, suggesting that it is possible that the 
data would be a good indicator of the avidity of these wines to consume oxygen.  In the 
case of the white wines the correlation between measured and estimated OCRI was found 
to be 0.4807 and was 0.5177 for red wines, showing high significance in both cases 
(p<0.001). In addition to that, the results presented previously about the correlation 
between oxygen consumption features and wine composition show that the highest 
correlation between some of the chemical compounds of the wines (particularly Fe and 
Cu) and the ANNs created were observed for feature 2. According to these results, t2 was 
chosen as the best feature for the classification of the wines studied, based on its smaller 
error of estimation considering the OCRI, presented in the previous paragraph. As 
indicated previously, t2 is defined as the time in which the area under the oxygen 
consumption curve from t=0 to t= t2 reaches 50% of the total area under the curve of air-
saturated wines conserved at 35 ºC (equation (4). It is reasonable to think that this 
parameter (t2) should be small for wines with a great avidity for oxygen (i.e. wines with 
substances of greater reducing capacity or higher antioxidant capacity). 
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Figure 4.- Representation of the measured OCRI against the estimated OCRI of the neural 
network proposed for the feature 2, differentiating the white (open green circle) and red wines 
(solid red circle). 
 

The results of the ANOVA comparing the chemical composition of white wines 
with OCRI values show a non-significant correlation (Table 1). However, the red wines 
in this study show a positive and statistically significant correlation between the OCRI 
and Cu content (0.6134, p=0.0115) but no significant correlation with Fe; this result 
coincides with that reported by Ferreira et al 2015 (Ferreira et al., 2015); and also with 
volatile acidity (0.6498, p=0.0064), while there is a statistically significant negative 
correlation with total acidity (-0.6344, p=0.0083). For instance, the red wine with the 
highest OCRI was a red sample (RRW2) with the highest Cu content (0.62 mg/L), but 
relatively low iron content (1.6 mg/L) and intermediate content total acidity (4.7 g/L) and 
volatile acidity (0.46 g/L). The red wine with the lowest OCRI was a red sample (RRW8) 
with the lowest Fe content (0.7 mg/L) and highest total acidity (5.3 g/L) and a low Cu 
content (0.05 mg/L) and relatively low volatile acidity (0.37 g/L). Therefore, it is not 
enough to discover the chemical properties to define the oxygen consumption rate of the 
studied wines, but rather the chemical properties of the wines need to be evaluated as a 
whole.   

 
 
4. Conclusions 
 

In this work, we propose a phenomenological fitting for oxygen consuming kinetics 
which improves on the widely used exponential method. To our knowledge, this is the first 
time real white and red wines are shown to have similar kinetics of oxygen consumption. 
The use of Artificial Neural Networks has turned out to be a valid tool for predicting 
oxygen consumption rates. Six chemical parameters selected among those commonly 
used in wineries have been used as inputs, allowing the estimation of the oxygen 
consumption rate index. A larger set of real wine samples should be considered in order 
to offer a practical tool to wineries. 
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Table 1.- Box-Behnken factorial design 

TWW AD(%) 
TA 

(g/L) 
SO2T 
(mg/L) 

Cu 
(mg/L)  

Fe 
(mg/L)  

TP 
(mg/L)   RTW 

AD 
(%) 

TA 
(mg/L) 

SO2T 
(mg/L) 

Cu 
(mg/L)  Fe  

TP 
(mg/L) 

WTW1 12.5 6 100 0.4 0.5 300  RTW1 14 6 70 0.4 0.5 3000 
WTW2 13.5 5.25 75 0.03 0.5 300  RTW2 15 5.25 50 0.03 0.5 3000 
WTW3 12.5 5.25 75 0.4 3 300  RTW3 14 5.25 50 0.4 4 3000 
WTW4 11.5 4.5 75 0.8 3 300  RTW4 13 4.5 50 0.8 4 3000 
WTW5 13.5 4.5 75 0.03 3 300  RTW5 15 4.5 50 0.03 4 3000 
WTW6 12.5 6 75 0.4 0.5 200  RTW6 14 6 50 0.4 0.5 2000 
WTW7 12.5 6 50 0.4 0.5 300  RTW7 14 6 30 0.4 0.5 3000 
WTW8 12.5 6 50 0.4 6 300  RTW8 14 6 30 0.4 8 3000 
WTW9 12.5 5.25 75 0.4 3 300  RTW9 14 5.25 50 0.4 4 3000 
WTW10 12.5 6 75 0.4 0.5 400  RTW10 14 6 50 0.4 0.5 4000 
WTW11 12.5 5.25 75 0.4 0.5 400  RTW11 14 5.25 50 0.4 0.5 4000 
WTW12 11.5 5.25 75 0.03 6 300  RTW12 13 5.25 50 0.03 8 3000 
WTW13 12.5 4.5 75 0.4 0.5 200  RTW13 14 4.5 50 0.4 0.5 2000 
WTW14 12.5 4.5 75 0.4 6 400  RTW14 14 4.5 50 0.4 8 4000 
WTW15 12.5 4.5 75 0.4 6 200  RTW15 14 4.5 50 0.4 8 2000 
WTW16 12.5 5.25 100 0.8 3 200  RTW16 14 5.25 70 0.8 4 2000 
WTW17 13.5 5.25 75 0.8 6 300  RTW17 15 5.25 50 0.8 8 3000 
WTW18 12.5 6 75 0.4 6 400  RTW18 14 6 50 0.4 8 4000 
WTW19 13.5 5.25 100 0.4 3 400  RTW19 15 5.25 70 0.4 4 4000 
WTW20 11.5 4.5 75 0.03 3 300  RTW20 13 4.5 50 0.03 4 3000 
WTW21 12.5 5.25 75 0.4 3 300  RTW21 14 5.25 50 0.4 4 3000 
WTW22 12.5 5.25 100 0.03 3 400  RTW22 14 5.25 70 0.03 4 4000 
WTW23 11.5 5.25 100 0.4 3 200  RTW23 13 5.25 70 0.4 4 2000 
WTW24 13.5 6 75 0.8 3 300  RTW24 15 6 50 0.8 4 3000 
WTW25 11.5 6 75 0.03 3 300  RTW25 13 6 50 0.03 4 3000 
WTW26 12.5 5.25 75 0.4 3 300 RTW26 14 5.25 50 0.4 4 3000 
WTW27 11.5 5.25 50 0.4 3 200 RTW27 13 5.25 30 0.4 4 2000 
WTW28 12.5 5.25 75 0.03 3 200 RTW28 14 5.25 70 0.03 4 2000 
WTW29 11.5 5.25 75 0.4 3 400  RTW29 13 5.25 70 0.4 4 4000 
WTW30 12.5 6 75 0.4 6 200  RTW30 14 6 50 0.4 8 2000 
WTW31 12.5 4.5 50 0.4 0.5 300  RTW31 14 4.5 30 0.4 0.5 3000 
WTW32 13.5 5.25 100 0.4 3 200  RTW32 15 5.25 70 0.4 4 2000 
WTW33 13.5 5.25 75 0.03 6 300  RTW33 15 5.25 50 0.03 8 3000 
WTW34 11.5 6 75 0.8 3 300  RTW34 13 6 50 0.8 4 3000 
WTW35 12.5 5.25 75 0.4 3 300  RTW35 14 5.25 50 0.4 4 3000 
WTW36 12.5 4.5 100 0.4 0.5 300  RTW36 14 4.5 70 0.4 0.5 3000 
WTW37 12.5 5.25 75 0.4 3 300  RTW37 14 5.25 50 0.4 4 3000 
WTW38 12.5 5.25 100 0.8 3 400  RTW38 14 5.25 70 0.8 4 4000 
WTW39 13.5 5.25 50 0.4 3 400  RTW39 15 5.25 30 0.4 4 4000 
WTW40 12.5 5.25 50 0.03 3 200  RTW40 14 5.25 30 0.03 4 2000 
WTW41 13.5 5.25 75 0.8 0.5 300  RTW41 15 5.25 50 0.8 0.5 3000 
WTW42 13.5 4.5 75 0.8 3 300  RTW42 15 4.5 50 0.8 4 3000 
WTW43 13.5 5.25 50 0.4 3 200  RTW43 15 5.25 30 0.4 4 2000 
WTW44 11.5 5.25 75 0.8 0.5 300  RTW44 13 5.25 50 0.8 0.5 3000 
WTW45 12.5 6 100 0.4 6 300  RTW45 14 6 70 0.4 8 3000 
WTW46 11.5 5.25 75 0.8 6 300  RTW46 13 5.25 0 0.8 8 3000 
WTW47 11.5 5.25 50 0.4 3 400  RTW47 13 5.25 30 0.4 4 4000 
WTW48 12.5 4.5 50 0.4 6 300  RTW48 14 4.5 30 0.4 8 3000 
WTW49 13.5 6 75 0.03 3 300  RTW49 15 6 50 0.03 4 3000 
WTW50 12.5 5.25 50 0.03 3 400  RTW50 14 5.25 30 0.03 4 4000 
WTW51 12.5 5.25 50 0.8 3 200  RTW51 14 5.25 30 0.8 4 2000 
WTW52 12.5 5.25 50 0.8 3 400  RTW52 14 5.25 30 0.8 4 4000 
WTW53 12.5 4.5 100 0.4 6 300  RTW53 14 4.5 70 0.4 8 3000 
WTW54 11.5 5.25 75 0.03 0.5 300   RTW54 13 5.25 50 0.03 0.5 3000 
White training wines (WTW) and red training wines (RTW)       
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Table 2.- Correlations between the parameters of the adjustment equations (A) 
exponential equation and (B)  phenomenological equation and the chemical parameters. 
 

 Parameter (A)  Parameter (B) 
 K  a b c 
  WRW RRW  WRW RRW WRW RRW WRW RRW 
AD(%) 0.4099 0.1483   0.2558 0.128 0.2682 0.1269 0.3577 0.1662 
TA (g/L) 0.2881 -0.3213   -0.1728 -0.4228 -0.1538 -0.4254 0.4094 -0.1282 
SO2 T (mg/L) 0.2726 -0.1845   0.2526 -0.1827 0.2629 -0.1848 0.1774 -0.1822 
Fe  (mg/L) 0.0351 -0.1188  -0.1668 -0.0763 -0.1684 -0.0785 0.1364 -0.2706 
Cu  (mg/L) 0.7816*** 0.7185**  0.4545 0.7544*** 0.4794 0.7542*** 0.5922* 0.2150 
TP  (mg/L) -0.0834 -0.1672  0.2421 -0.173 0.2377 -0.1752 -0.1548 -0.1821 

Significative plevel: *=p<0.05, **0.05<p<0.01, ***p<0.001 

 

 
Figure 1.- Multilayer perceptron ANN used in the article, with seven inputs and an output. 
 

 
Figure 2.- Red Training Wines with the three different Cu content levels. 
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