Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea* L.) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”

Alumno: Gonzalo Martínez Manero

Tutores: Francisco Javier Gordo Alonso

Valentín Pando Fernández

Rosario Sierra de Grado

Septiembre de 2013
Agradecimientos

Quiero dar las gracias a las personas que han hecho posible este Trabajo Fin de Carrera.

A Javier Gordo, David Cubero y Sven Mutke por ofrecerme la oportunidad de realizar este trabajo y por todo lo que he aprendido con ellos.

Agradezco también la inestimable ayuda prestada durante la toma de datos por los Agentes Medioambientales Eugenio Sancho, Alejandro Rivero, Teodoro Rivero y Pablo Zamora. Con ellos el trabajo de campo fue muy llevadero y enriquecedor.

Al Servicio Territorial de Medio Ambiente de Valladolid y en particular a Alfonso González, Francisco Morán, Jorge del Río, Elvira Vicente y Silvia Roldán.

A todos ellos les doy las gracias por su amabilidad, apoyo y dedicación en todo momento.

A Ángel Manuel Sánchez del Servicio de Restauración de la Vegetación y a Francisco Javier Tranque del Vivero Forestal Central por el suministro de datos.

A Valentín Pando y Rosario Sierra, mis tutores de la Escuela Técnica Superior de Ingenierías Agrarias de Palencia.

A Luis Gil, de la Escuela Técnica Superior de Ingenieros de Montes de Madrid, por establecer con Gordo y Mutke el Programa de Mejora Genética de Pinus pinea en la Meseta Norte y su dispositivo experimental, sin el cual este trabajo nunca hubiera visto la luz.
ÍNDICE

1. Resumen .. 5

2. Introducción .. 7

 2.1. El pino piñonero en la Forestación de Tierras Agrarias 7

 2.2. El uso de Materiales Forestales de Reproducción (MFR) de pino piñonero 15

 2.2.1. Recolección de semilla ... 15
 2.2.2. Siembras ... 16
 2.2.3. Producción de planta ... 17
 2.2.4. Conservación de recursos genéticos .. 17

 2.3. La mejora genética de *Pinus pinea* .. 18

 2.4. Ensayo de rodales selectos de *Pinus pinea* de la región de procedencia
 Meseta Norte .. 20

3. Objetivos .. 25

4. Material y métodos .. 27

 4.1. Área de estudio ... 27

 4.2. Inventario ... 30

 4.3. Análisis de los datos .. 31

 4.3.1. Supervivencia ... 31
 4.3.2. Alturas y diámetros medios .. 32
 4.3.3. Presencia de bifurcación de los fustes ... 32
 4.3.4. Floración y fructificación .. 33

5. Resultados y discusión ... 35

 5.1. Caracterización de las parcelas de ensayo .. 35

 5.2. Análisis descriptivo ... 47

 5.2.1. Supervivencia ... 47
 5.2.2. Alturas y diámetros medios .. 48
 5.2.3. Presencia de bifurcación de los fustes ... 51
 5.2.4. Floración y fructificación .. 52
5.3. Análisis estadístico ... 54
 5.3.1. Supervivencia ... 54
 5.3.2. Alturas y diámetros medios .. 55
 5.3.3. Presencia de bifurcación de los fustes ... 68

6. Clareo de las parcelas de ensayo ... 71
 6.1. Propuesta de clareo de las parcelas del ensayo .. 71
 6.2. Croquis y planos de la propuesta de clareo de las parcelas del ensayo de procedencias de pino piñonero (Pinus pinea) de la Meseta Norte .. 73

7. Conclusiones ... 87

8. Bibliografía .. 89

9. Anejos .. 95
 9.1. Propuesta de Condicionado Técnico de la propuesta de clareo de las parcelas del ensayo de procedencias de pino piñonero (Pinus pinea) de la Meseta Norte .. 95
 9.2. Base de datos de los pinos del ensayo de procedencias de pino piñonero (Pinus pinea) de la Meseta Norte ... 110
1. RESUMEN

En 1998 se instaló en la región de procedencia Meseta Norte un ensayo comparativo de materiales forestales de reproducción de Pinus pinea L. de esta región de procedencia en varios sitios de ensayo representativos de toda la variedad de estaciones de la especie, desde los arenales hasta las cuestas margosas y los bancos de caliza de los páramos. El objetivo de este dispositivo experimental es comprobar si se ha producido una diferenciación ecotípica entre los distintos orígenes de piñonero asociada a diferentes litologías, lo que justificaría un manejo separado de sus materiales forestales de reproducción por esa posible adaptación diferenciada que les conferiría un especial interés para la restauración forestal de estaciones análogas.

Transcurridos 14 años desde la plantación, se estudia el comportamiento de los distintos lotes de planta obtenidos de semilla de siete rodales selectos y dos fuentes de semilla testigo, analizando el éxito de supervivencia en ese momento, la correlación juvenil-adulto y el crecimiento en altura y en diámetro normal y basal. Se observa una gran plasticidad fenotípica entre sitios de ensayo, siendo el factor estación el principal responsable del crecimiento de los pinos; mientras que la diferencia entre procedencias es insignificante y no se observa interacción genotipo-ambiente, al menos en las variables estudiadas. Se confirman así los resultados obtenidos tras el análisis realizado en 2007 con datos medidos hasta los 8 años de edad de las plantas. Estos resultados no apoyan el manejo por separado de los materiales de reproducción de una misma categoría, sino que justifican la mezcla y el manejo común de los lotes de semilla cosechados en los diferentes rodales selectos de la misma región de procedencia. Este cambio de procedimiento facilitaría enormemente el trabajo del Vivero Forestal Central de la Junta de Castilla y León, dada la gran cantidad de material forestal de reproducción de piñonero que se maneja en la comunidad.

Por otra parte, para poder prolongar el ensayo en el tiempo, de manera que no pierda rigor estadístico, se ha propuesto un clareo sistemático al tresbolillo en las parcelas priorizando no perder ninguna unidad experimental y minimizar el número de marras que quedarán tras el tratamiento.
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
2. INTRODUCCIÓN

2.1. El pino piñonero en la Forestación de Tierras Agrarias

La Forestación de Tierras Agrarias nace como medida de acompañamiento de la reforma de la Política Agrícola Comunitaria (PAC) con el Reglamento CEE 2080/92, con el objetivo de retirar del uso agrícola terrenos con producciones no competitivas plantando árboles, con lo que se dificulta su retorno a la actividad agrícola, incluso a largo plazo, y se consigue una dinamización rural y valorización medioambiental. En el territorio español se desarrolla mediante el Real Decreto 378/1993 para el periodo del año 1993 al 1999, que se modificará con el Real Decreto 152/1996 introduciendo aspectos más ambientales.

Como herramienta orientativa, la medida de Ayudas a la Forestación de Tierras Agrícolas elabora los “Cuadernos de Zona”, unos manuales que facilitan toda la información necesaria para la repoblación de un terreno, según una división previa del territorio autonómico en función de las características del medio natural (Junta de Castilla y León, 2007). Así, la provincia de Valladolid pertenece a cuatro Cuadernos de Zona distintos (Figura 2.1):

- Zona 11 “Campos Centro”
- Zona 14 “Cerratos Oeste”
- Zona 15 “Torozos-Cerratos”
- Zona 23 “Pinares Centro”

Figura 2.1. Zonificación de la provincia de Valladolid según los Cuadernos de Zona.
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Desde el año 1993 hasta el 2012 se han forestado dentro del marco de la PAC, a través del mencionado Programa Regional de Forestación de Tierra Agrarias más de 8.500 hectáreas en la provincia de Valladolid. En 4.435 de esas hectáreas la especie principal es el pino piñonero (*Pinus pinea* L.), considerándose como especie principal cuando la porción de piñonero en la plantación es igual o superior al 75%. (Servicio Territorial de Medio Ambiente de Valladolid).

La gran mayoría de estas plantaciones se sitúan dentro de la región de procedencia 1. “Meseta Norte” (Figura 2.2), ya que abarca la mayor parte de la provincia.

![Figura 2.2. Regiones de procedencia de *Pinus pinea* en España (Alía et al., 2009).](image)

Tras la propuesta de modificación de las regiones de procedencia de especies forestales de 2007, la región de procedencia “Meseta Norte” fue ampliada oficialmente en 2009, debido a la incorporación de nuevas masas (BOE, 2009; Alía et al., 2009). De este modo, pasó de 1.810.425 hectáreas de superficie a las 3.087.206 que comprende actualmente.

Con la modificación de la región de procedencia se extendió el contorno aproximadamente 30 km hacia fuera respecto a los términos municipales con pinares pertenecientes a la antigua región. Por lo que lógicamente, ahora quedan más plantaciones dentro de la región de procedencia que si se compara con la delimitación antigua.

Las comarcas forestales son las unidades administrativas de gestión medioambiental en que se divide el territorio. La provincia de Valladolid está compuesta por ocho comarcas forestales (Figura 2.3).
En la comarca forestal de Medina de Rioseco, la única zona de la provincia que apenas era cubierta por la antigua región de procedencia, al no contar con masas naturales de la especie, se sitúan la mayoría de las repoblaciones que quedaban fuera de la antigua delimitación. A esta comarca y al cuaderno de zona 11 “Campos Centro” pertenecen las 677 hectáreas de repoblaciones que se encuentran fuera de la actual región de procedencia “Meseta Norte”.

A continuación se muestra la relación de superficies repobladas por comarcas forestales y cuadernos de zona en la provincia de Valladolid, tanto para la actual región de procedencia (Tabla 2.1) como para la antigua (Tabla 2.2), según los datos facilitados por la Dirección General del Medio Natural (DGMN) de la Junta de Castilla y León:

Tabla 2.1. Superficie forestada (ha) entre 1993 y 2012 con *Pinus pinea* en el marco de la PAC en Valladolid.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Comarca Forestal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medina de Rioseco</td>
<td>139</td>
<td>173</td>
<td>113</td>
</tr>
<tr>
<td>Quintanilla de Onésimo</td>
<td>12</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>Montemayor de Pililla</td>
<td>315</td>
<td>115</td>
<td>430</td>
</tr>
<tr>
<td>Valladolid</td>
<td>493</td>
<td>161</td>
<td>10</td>
</tr>
<tr>
<td>Tordesillas</td>
<td>34</td>
<td>54</td>
<td>258</td>
</tr>
<tr>
<td>Viana de Cega</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Olmedo</td>
<td>638</td>
<td>638</td>
<td></td>
</tr>
<tr>
<td>Medina del Campo</td>
<td>426</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td>711</td>
<td>1.362</td>
</tr>
</tbody>
</table>

Tabla 2.2. Superficie forestada (ha) entre 1993 y 2012 con *Pinus pinea* en el marco de la PAC en Valladolid, en relación con la antigua Región de Procedencia 1. “Meseta Norte”.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Comarca Forestal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medina de Rioseco</td>
<td>111</td>
<td>55</td>
<td>166</td>
</tr>
<tr>
<td>Quintanilla de Onésimo</td>
<td>12</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>Montemayor de Pililla</td>
<td>0</td>
<td>315</td>
<td>115</td>
</tr>
<tr>
<td>Valladolid</td>
<td>431</td>
<td>161</td>
<td>10</td>
</tr>
<tr>
<td>Tordesillas</td>
<td>34</td>
<td>54</td>
<td>258</td>
</tr>
<tr>
<td>Viana de Cega</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Olmedo</td>
<td>638</td>
<td>638</td>
<td></td>
</tr>
<tr>
<td>Medina del Campo</td>
<td>426</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>588</td>
<td>1.303</td>
<td>1.546</td>
</tr>
</tbody>
</table>
La comarca forestal con más hectáreas plantadas, con diferencia, es Medina de Rioseco (Figura 2.3). Situada al norte de la provincia y del río Duero, es su comarca más extensa. Se corresponde con la zona de Tierra de Campos, caracterizada por la dedicación casi exclusiva del suelo al cultivo de cereales de secano y la consecuente ausencia de cobertura forestal, de hecho es la comarca con menor porcentaje de superficie arbolada (Junta de Castilla y León, 1988). Es por tanto una gran extensión potencial a forestar.

Las comarcas de Viana de Cega, Montemayor de Pililla y Olmedo, además de ser las más reducidas en extensión, se caracterizan por la presencia de extensos pinares sobre arenosoles, por lo que resulta lógico que la superficie reforestada en ellas sea escasa, ya que apenas queda espacio agrario marginal para ello. De hecho, en Viana de Cega la forestación de tierras agrarias se concentra en 160 hectáreas de los términos municipales de Alcazarén, Boecillo, Matapozuelos, Mojados y Valdestillas, no obstante el pino piñonero representa más del 75% de esas masas.

La extensa zona formada por las comarcas de Tordesillas y Medina del Campo se dedica en su mayor parte al cultivo agrícola, de modo que la vegetación natural...
se limita a pequeños pinares sobre manchas de arenas y a algunos pastizales y
vegetación de ribera junto a los ríos. Cabe destacar la importancia del río Duero,
que introduce una mayor diversidad vegetal y hace posible el cultivo de regadío. El
Duero divide la comarca de Tordesillas entre la zona de páramos del norte y la de
campiñas al sur, donde aparecen antiguas zonas de terrazas cortadas por los
afluentes del Duero que modelan valles relativamente amplios. En cuanto a las
masas de piñonero, son reseñables las más de 1.800 ha de Nava del Rey, la mayor
masa de pinar continuo de la zona, y las repoblaciones que se han realizado en las
cuestas margosas que unen los valles con los páramos.

Aunque en la comarca de Tordesillas las forestaciones de la PAC han sido
escasas en relación a su extensión y superficie arbolada, en Medina del Campo
estas repoblaciones han sido equivalentes al 5% de su superficie arbolada (MMA,
1997-2007) (Tabla 2.3).

El área que comprenden las comarcas de Valladolid y Quintanilla de Onésimo
se compone por los amplios valles del Duero y el Pisuerga, dominio de los
fluvisoles, donde se encuentran los mejores suelos para el cultivo agrícola,
alcanzando gran importancia el regadío. Y por otra parte están los páramos, al
oeste limita el de Torozos y por el noreste “El Cerrato”; en ellos la vegetación
natural se ve reducida a manchas de quejigares y encinares, testimonio de los
vastos bosques de antaño, en beneficio de los cultivos. A cambio las cuestas se
han venido repoblando con *Pinus halepensis*. (Junta de Castilla y León, 1988). Aquí
las ayudas a la Forestación de Tierras Agrícolas han tenido un impacto de unas 700
hectáreas por comarca, lo que representa casi el 4% de su superficie arbolada
(MMA, 1997-2007) (Tabla 4.3).

Tabla 2.3. Relación entre la superficie total, la arbolada total y la superficie reforestada
con *Pinus pinea* entre 1993 y 2012 para cada comarca forestal en Valladolid.

| Comarca Forestal | Superficie total (ha) | Superficie arbolada | Superficie reforestada con *Pinus pinea*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>Medina de Rioseco</td>
<td>219.687</td>
<td>14.157</td>
<td>1.102</td>
</tr>
<tr>
<td>Quintanilla de Onésimo</td>
<td>103.024</td>
<td>19.179</td>
<td>730</td>
</tr>
<tr>
<td>Montemayor de Pililla</td>
<td>44.460</td>
<td>18.743</td>
<td>430</td>
</tr>
<tr>
<td>Valladolid</td>
<td>123.588</td>
<td>21.055</td>
<td>663</td>
</tr>
<tr>
<td>Tordesillas</td>
<td>144.258</td>
<td>15.152</td>
<td>346</td>
</tr>
<tr>
<td>Viana de Cega</td>
<td>35.767</td>
<td>13.951</td>
<td>99</td>
</tr>
<tr>
<td>Olmedo</td>
<td>45.546</td>
<td>15.674</td>
<td>638</td>
</tr>
<tr>
<td>Medina del Campo</td>
<td>94.565</td>
<td>8.224</td>
<td>426</td>
</tr>
<tr>
<td>Total</td>
<td>810.894</td>
<td>126.135</td>
<td>4.435</td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Según los Cuadernos de Zona, en la 23 “Pinares Centro” (Figura 2.1), con creces la que más superficie tiene en la provincia, es en la que más hectáreas se han forestado, sin embargo estas plantaciones apenas equivalen al 2% de su superficie arbolada (Tabla 2.4). Esta zona se corresponde con la parte sur de la provincia, donde se encuentran las unidades naturales de pinares sobre arenas y campiñas suroccidentales (Junta de Castilla y León, 1988), abarcando completamente las comarcas forestales de Olmedo, Viana de Cega y Medina del Campo y buena parte de Tordesillas.

Tabla 2.4. Relación entre la superficie total, la arbolada total y la superficie reforestada con Pinus pinea entre 1993 y 2012 para cada Cuaderno de Zona en Valladolid.

<table>
<thead>
<tr>
<th>Cuaderno de Zona</th>
<th>Superficie total (ha)</th>
<th>Superficie arbolada</th>
<th>Superficie reforestada con Pinus pinea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha (s.ref./s.arb.)</td>
</tr>
<tr>
<td>11</td>
<td>182,900</td>
<td>6,553</td>
<td>816</td>
</tr>
<tr>
<td>14</td>
<td>98,616</td>
<td>8,909</td>
<td>711</td>
</tr>
<tr>
<td>15</td>
<td>193,734</td>
<td>42,342</td>
<td>1,362</td>
</tr>
<tr>
<td>23</td>
<td>335,643</td>
<td>68,331</td>
<td>1,546</td>
</tr>
<tr>
<td>Total</td>
<td>810,894</td>
<td>126,135</td>
<td>4,435</td>
</tr>
</tbody>
</table>

Los páramos de la provincia aparecen unificados bajo la zona de repoblación 15 “Torozos-Cerratos”, que comprende casi todas las plantaciones de las comarcas de Montemayor de Pililla y Quintanilla de Onésimo y una parte considerable de las de Valladolid y Medina de Rioseco (Tabla 2.1). Es la zona con mayor porcentaje de superficie arbolada y aunque es la segunda donde más hectáreas se han reforestado con estas ayudas, éstas sólo representan el 3% sobre la superficie arbolada.

La zona de repoblación 11 “Campos Centro”, sólo se solapa con la comarca de Medina de Rioseco, unidad natural de Tierra de Campos, y casi en su totalidad se encuentra fuera de la Región de Procedencia. Pese a poseer una gran extensión tan solo se han repoblado 816 hectáreas. Sin embargo, si se compara este dato con la superficie arbolada total de la zona, se observa que estas forestaciones han tenido una gran incidencia, ya que este ratio es del 12%, el mayor de todas las zonas de repoblación en la provincia.

La zona nº 14 “Cerratos Oeste”, comprende las zonas de valles y páramos del Pisuerga y las vertientes meridional y oeste de Montes Torozos, caracterizada por un relieve irregular y la presencia de cuestas margosas (Junta de Castilla y León, 2007). Esta es la zona de Valladolid donde menos hectáreas se han forestado con Pinus pinea, lo cual se justifica al ser la zona de menor extensión, ya que el porcentaje de superficie repoblada respecto a la arbolada es considerable (8%).

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
La cantidad de hectáreas repobladas en Castilla y León, con presencia de piñonero fue de 650-1.850 hectáreas todos los años desde que se inició la medida de Forestación de Tierras Agrarias de la PAC en 1993 hasta el año 2012, excepto el trienio 1994-1996, cuando se superó una tasa anual de 2.500 ha (Figura 2.4).

Figura 2.4. Evolución de la superficie repoblada mediante las ayudas de Forestación de Tierras Agrícolas con *Pinus pinea*, tanto en masa pura como mezclado con otras especies, en Castilla y León durante el periodo 1993-2012 (*No se tienen datos del año 2000). (DGMN de la JCyL).

En la Tabla 2.5 y en la Figura 2.5 se puede observar cómo se distribuyen por provincias en los últimos seis años (2007-2012) las repoblaciones en las que *Pinus pinea* es la especie principal (>=75%). Destaca la provincia de Zamora, con casi 1.400 ha forestadas en este periodo. Le siguen León y Soria, con 520 ha y 340 ha respectivamente, dos provincias en las que llama la atención la presencia del pino piñonero puesto que son zonas alejadas de la región de procedencia y fuera de su área de distribución natural actual (Prada *et al.*, 1997), sin embargo sus veranos algo más frescos y, sobre todo, las precipitaciones más abundantes pueden favorecerla, adelantando esta ascensión en latitud y altitud la migración asistida recomendada por los escenarios de cambio climático para este siglo.

En Valladolid se han repoblado 200 ha y en Palencia y Ávila unas 150 ha en cada provincia, mientras que en Salamanca solamente 5 ha, en el año 2007.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Figura 2.5. Evolución en los últimos seis años (2007-2012) de la superficie repoblada mediante las ayudas de Forestación de Tierras Agrícolas con Pinus pinea como especie principal (>= 75%), por provincias en la comunidad de Castilla y León (DGMN de la JCyL).

Tabla 2.5. Superficie repoblada (ha) con Pinus pinea como especie principal (>= 75%) durante los últimos seis años (2007-2012) mediante las ayudas de Forestación de Tierras Agrícolas, en cada una de las provincias de la comunidad de Castilla y León (DGMN de la JCyL).

<table>
<thead>
<tr>
<th>Provincia</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÁVILA</td>
<td>14</td>
<td>22</td>
<td>74</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>146</td>
</tr>
<tr>
<td>BURGOS</td>
<td>3</td>
<td>25</td>
<td>0</td>
<td>33</td>
<td>5</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>LEÓN</td>
<td>176</td>
<td>43</td>
<td>97</td>
<td>54</td>
<td>103</td>
<td>45</td>
<td>519</td>
</tr>
<tr>
<td>PALENCIA</td>
<td>116</td>
<td>4</td>
<td>14</td>
<td>0</td>
<td>11</td>
<td>3</td>
<td>148</td>
</tr>
<tr>
<td>SALAMANCA</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>SEGOVIA</td>
<td>7</td>
<td>18</td>
<td>7</td>
<td>37</td>
<td>6</td>
<td>11</td>
<td>86</td>
</tr>
<tr>
<td>SORIA</td>
<td>38</td>
<td>69</td>
<td>10</td>
<td>183</td>
<td>40</td>
<td>0</td>
<td>339</td>
</tr>
<tr>
<td>VALLADOLID</td>
<td>65</td>
<td>32</td>
<td>26</td>
<td>15</td>
<td>42</td>
<td>24</td>
<td>204</td>
</tr>
<tr>
<td>ZAMORA</td>
<td>263</td>
<td>242</td>
<td>224</td>
<td>325</td>
<td>205</td>
<td>88</td>
<td>1.346</td>
</tr>
<tr>
<td>Total</td>
<td>687</td>
<td>454</td>
<td>451</td>
<td>653</td>
<td>430</td>
<td>183</td>
<td></td>
</tr>
</tbody>
</table>
2.2. El uso de Materiales Forestales de Reproducción (MFR) de pino piñonero

En este apartado se pretende poner de relieve las características de los Materiales Forestales de Reproducción (MFR) de pino piñonero en Castilla y León, a través de la información facilitada por el Vivero Forestal Central (VFC) de la Junta de Castilla y León, analizando los datos relativos a la semilla que se recoge, el número de plantas que se producen y la procedencia de éstas.

2.2.1. Recolección de semilla

Durante el periodo de años de 2001 a 2011 la recolección media de piñón de *Pinus pinea* en Castilla y León para su uso como MFR ha sido de 11.438 kg/año. Sobresale el año 2002, en el cual se recogieron más de 70.000 kg, mientras que los siguientes dos años casi no se recolectó nada. En los últimos años se aprecia una disminución de la cantidad de semilla recogida, debido a la paralización de la actividad atribuible a la situación de crisis económica. (Figura 2.6).

![Figura 2.6. Cantidad de semilla de *Pinus pinea* recolectada por el Vivero Forestal Central según años y procedencias (VFC de la JCyL).](image)

El 97% de este material de base procede de la región de procedencia *Meseta Norte*, el resto de *Valles del Tiétar y del Alberche*.
El 88% de la semilla recolectada es MFR obtenido de materiales de base de la categoría seleccionado, ya que proviene de rodales selectos, casi exclusivamente del rodal RS-23/01/002 de Tordesillas, origen del 79% de toda la semilla obtenida.

A partir de 2006, prácticamente toda la semilla se recoge de los rodales selectos de Tordesillas (RS-23/01/002) y Quintanilla (RS-23/01/003).

2.2.2. Siembras

Desde el año 2003 el Vivero Forestal Central ha sembrado más de 7,500 kg de piñones. En la Figura 2.7 se puede observar como en los últimos años estos valores han descendido drásticamente debido a las citadas dificultades económicas.

La mayoría (94%) de este MFR tiene categoría de seleccionado pues procede de rodales selectos, todos ellos pertenecientes a la región de procedencia Meseta Norte.

El rodal selecto de Tordesillas (RS-23/01/002), del cual procede el 68% de las semillas sembradas, ha ido ganando presencia con el tiempo hasta el punto de que en los últimos años solo se han sembrado semillas de esta procedencia. Su éxito en los ensayos experimentales es una garantía de una adecuada elección de la procedencia.
2.2.3. Producción de planta

El Vivero Forestal Central ha producido casi cuatro millones y medio de plántulas de piñonero desde el año 2005. De ellas sólo el 5% proceden de fuentes semilleras de la región de procedencia Valles del Tiétar y del Alberche. El origen del resto son los rodales selectos de Tordesillas (RS-23/01/002) (76%) y La Parrilla (RS-23/01/004) (19%).

Para la producción de planta también se observa, al igual que ocurría con la cantidad de semilla recogida y sembrada, una disminución en los últimos años. (Figura 2.8).

Se deduce de todos estos datos la importancia que tiene el rodal selecto de Tordesillas (RS-23/01/002) como material de base para la obtención de material forestal de reproducción de Pinus pinea en Castilla y León, ya que casi la totalidad de este material procede de este rodal y cada vez en mayor medida.

2.2.4. Conservación de recursos genéticos

La recolección de semilla tiene dos objetivos fundamentales, por un lado el abastecimiento de material suficiente a los viveros y por otro, la conservación ex
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

situ de los recursos genéticos frente a posibles catástrofes (incendios forestales, derribos…) (Alía *et al.* 1999 y 2005). Por ello la Junta de Castilla y León conserva buena parte de la semilla que recolecta.

En la Tabla 2.6 se muestran las existencias de semilla de *Pinus pinea* de que dispone actualmente el Vivero Forestal Central, suficientes para cubrir las exigencias ante una catástrofe.

Tabla 2.6. Existencias actuales de semilla (kg) de *Pinus pinea* del Vivero Forestal Central de la Junta de Castilla y León incluyendo hasta la cosecha de 2011 (VFC de la JCyL).

<table>
<thead>
<tr>
<th>COSECHA</th>
<th>CATEGORÍA DEL MFR</th>
<th>SEMILLA TOTAL (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDENTIFICADO</td>
<td>SELECCIONADO</td>
</tr>
<tr>
<td>00/01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>01/02</td>
<td>151</td>
<td>15</td>
</tr>
<tr>
<td>02/03</td>
<td>-</td>
<td>1.912</td>
</tr>
<tr>
<td>03/04</td>
<td>-</td>
<td>1.153</td>
</tr>
<tr>
<td>05/06</td>
<td>-</td>
<td>652</td>
</tr>
<tr>
<td>06/07</td>
<td>1.713</td>
<td>3.455</td>
</tr>
<tr>
<td>07/08</td>
<td>-</td>
<td>3.787</td>
</tr>
<tr>
<td>08/09</td>
<td>-</td>
<td>4.586</td>
</tr>
<tr>
<td>09/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10/11</td>
<td>-</td>
<td>964</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.864</td>
<td>16.525</td>
</tr>
</tbody>
</table>

2.3. La mejora genética de *Pinus pinea*

La valoración de los pinares de pino piñonero ha cambiado en las últimas décadas, modificándose sus usos tradicionales y su papel en las economías rurales. Hoy en día su principal función es la conservación y protección del medio natural, a la vez que son lugares de ocio y recreo. Además, son capaces de generar una renta sostenida por el aprovechamiento del fruto, prioritario sobre la madera en los últimos años.

Debido a este importante papel como productor de piñón (Catalán, 1989), *Pinus pinea* requiere la atención de programas de investigación y desarrollo, en busca de árboles grandes productores y de una gestión adecuada para la obtención de cosechas abundantes, regulares y rentables de forma rápida y segura (Montero, 1989; Montero *et al*., 2000). (Gordo, 2004).
Introducción

Existente una amplia variación ecológica y productiva dentro del área potencial de la especie, habiendo pinares y árboles más apreciados por su producción de piña. Este aspecto permite el establecimiento de programas de mejora genética de *Pinus pinea*, centrados en la producción de fruto (Valverde *et al.*, 1988).

Así, se desarrollan diferentes programas de mejora genética de *Pinus pinea* en España, como el que inicia en 1989 la Junta de Castilla y León en las regiones de procedencia *Meseta Norte y Valles del Tiétar y del Alberche* (Gordo *et al*. 1998). Estos programas se basan en dos líneas de mejora:

- Selección de masas y rodales selectos, para la obtención de semilla selecta. Consiguiendo material forestal de reproducción seleccionado para su uso en las nuevas repoblaciones.

- Selección de clones grandes productores de fruto.

Los esquemas de los programas de mejora están supeditados al peso de la componente genética en la producción de piñón, aún sin determinar. Ante heredabilidades bajas habrá de seguirse la vía agámica (injerto básicamente) y, en caso contrario, se podrá contemplar la vía sexual. (Gordo, 2004).

Por otra parte, el desconocimiento de la interacción genotipo-ambiente aconseja limitar el uso de la mejor población con respecto al carácter “producción de fruto” en un amplio espectro de situaciones, por lo que la estrategia de mejora que se ha desarrollado hasta el momento es el empleo de la población local más similar a cada condición de uso. A falta de mayores conocimientos sobre la adaptación de la especie a sustratos de diferente naturaleza química, es recomendable tener en cuenta la edafología del sitio a repoblar. (Gordo *et al*., 1990).

Por tanto, tiene aquí especial interés la realización de ensayos de procedencias, cuyos resultados permitirán separar los efectos genéticos de los ambientales, obtener estimaciones relativas sobre crecimiento y adaptación y conocer la interacción genotipo-ambiente (Gordo *et al*., 2000). Permiendo además la obtención de semilla de categoría controlada.
2.4. Ensayo de rodales selectos de *Pinus pinea* de la región de procedencia *Meseta Norte*

En la selección de materiales de base para obtener semillas o plantas con unos requisitos mínimos de calidad genética y de adaptación para su uso en la regeneración artificial o repoblación forestal, la actuación del gestor forestal está condicionada por el marco legislativo de la Unión Europea, España y las Comunidades Autónomas así como por el avance del conocimiento científico y técnico en las últimas décadas. En España, el actual marco legal se define en el Real Decreto 289/2003 (B.O.E., 2003), de 7 de marzo, sobre comercialización de los materiales forestales de reproducción. Su artículo 2.1 centra en sus apartados 2º y 4º el objeto del presente trabajo: la definición de materiales de base para obtener material forestal de reproducción de las categorías seleccionado y controlado. La primera categoría comprende materiales de reproducción obtenidos de materiales de base que se corresponden con rodales situados dentro de una única región de procedencia, que hayan sido seleccionados fenotípicamente a nivel de población y que satisfagan los requisitos establecidos en un anexo del decreto. La categoría controlado exige además que la superioridad del material de reproducción haya sido demostrada mediante ensayos comparativos o estimada a partir de la evaluación genética de todos los componentes de los materiales de base, que pueden ser rodales, huertos semilleros o progenitores de familias.

Según el Catálogo Nacional de Materiales de Base (MAAMA, 2012) para *Pinus pinea* se definen siete rodales selectos en la región de procedencia *Meseta Norte* y dos en la región de procedencia *Valles del Tiétar y del Alberche*. Con estos nueve rodales selectos para la producción de fruto se cubren las necesidades actuales de semilla en Castilla y León (Gordo *et al.*, 2006).

La presencia de masas autóctonas de pino piñonero sobre las cuestas margosas, dentro de la región de procedencia *Meseta Norte* ha dado lugar a un manejo separado de su material forestal de reproducción por una posible adaptación diferenciada que le conferiría un especial interés para la restauración forestal de estaciones análogas, definiéndose para tal fin unos rodales selectos en las mejores masas sobre cuesta.

Estas cuestas que enlazan los fondos de valles y campiñas con los páramos calcáreos presentan la singularidad edáfica de un elevado pH (hasta 8,8) y una textura mucho más compacta que la estación tipo de la especie, las arenas sueltas y profundas de las campiñas. Las masas de piñonero que allí crecen presentan una clara diferenciación fenotípica, expresada en una menor altura dominante, peor porte y follaje y diferencias en la producción de fruto en cantidad y biometría, con las masas sobre litosuelo calizo de páramo en una situación intermedia (Gordo *et al.*, 1997, 2000).
Introducción

Debido a estas diferencias edáficas, cabe plantear la hipótesis de una selección natural que haya dado lugar a la segregación de algunas masas como ecotipos diferenciados, como plantea algún autor (Oria, 1998). Aunque, a priori, esta diferenciación genética resulta dudosa; debido a la continuidad o cercanía de los pinares que debería asegurar el flujo de polen anemógamo dentro de la metapoblación, y al hecho de que en árboles forestales parecen influir más las condiciones climáticas que las edáficas en la diferenciación de ecotipos, dada la variación habitualmente a escala menor y en mosaico de las segundas (Kleinschmit et al., 1996).

Por otro lado, la mayoría de las cuestas margosas en las provincias de Valladolid y Palencia, deforestadas a mitades del siglo pasado, fueron una de las estaciones con mayor incidencia de las reforestaciones protectoras durante el siglo XX. La especie más empleada en esta restauración de la cubierta vegetal ha sido tradicionalmente el pino carrasco (Pinus halepensis Mill.), alóctono de la región pero propio de sustratos alcalinos similares, aunque bajo un clima menos continental, en el este de la Península. En las últimas décadas, con carácter general el pino piñonero lo fue suplantando con éxito en la reforestación de estas cuestas, lo que contrasta con la opinión más frecuente en la bibliografía forestal española de que esta especie tolera mal las arcillas trabadas, las margas y los yesos (Ceballos, 1966; Ruiz de la Torre, 1971) y de que no crece de forma natural en pendientes superiores al 30%, salvo en condiciones especiales o hábitats marginales (Gandullo y Sánchez, 1994), que fue probablemente la razón de descartarla de las repoblaciones anteriores en favor del pino carrasco.

Entre noviembre de 1998 y marzo de 1999 el Servicio Territorial de Medio Ambiente de Valladolid de la Junta de Castilla y León instaló un ensayo comparativo de pino piñonero sobre diferentes litologías de la región consideradas relevantes en la forestación con esta especie. Este ensayo se integra dentro del Programa de Mejora Genética de Pinus pinea.

El material de reproducción ensayado fueron plantas obtenidas a partir de semilla procedente de los siete rodales selectos definidos en la región de procedencia Meseta Norte, más dos fuentes semilleras de la misma región de procedencia previstas inicialmente como testigos. La planta utilizada se sembró en mayo de 1998, cultivándose cada uno de los lotes de ensayo bajo idénticas condiciones en el Vivero Central de la Junta de Castilla y León en Valladolid.

Por tanto, se instalaron plantas procedentes de 9 rodales de origen diferentes (Tabla 2.7) en siete zonas de ensayo (Tabla 2.8), con la intención de evaluar sus caracteres productivos y adaptativos en diferentes sitios de ensayo y en su caso catalogar los materiales de base de comportamiento superior como rodales controlados. No obstante, la principal motivación de este ensayo de pino piñonero no fue una búsqueda de grandes ganancias genéticas, dado el carácter extensivo y
protector de sus masas, sino confirmar o rechazar la hipótesis de una posible diferenciación dentro de la región de procedencia Meseta Norte debida a condiciones litológicas particulares, concretamente sobre el litosuelo del páramo calizo y muy en especial sobre las cuestas de margas, calizas y yesos.

Tabla 2.7. Rodales de origen del material ensayado. Siete rodales selectos y dos rodales testigos incluidos en el ensayo de rodales de la Meseta Norte (Gordo et al., 2007).

<table>
<thead>
<tr>
<th>Nº</th>
<th>Rodal selecto</th>
<th>Término municipal</th>
<th>Altitud (m)</th>
<th>Litología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ES-23/01/002</td>
<td>Tordesillas</td>
<td>680</td>
<td>Terraza fluvial con manto eólico</td>
</tr>
<tr>
<td>2</td>
<td>Pesquera de Duero</td>
<td>744</td>
<td>Terraza fluvial con manto eólico</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ES-23/01/001</td>
<td>Íscar</td>
<td>750</td>
<td>Arenas</td>
</tr>
<tr>
<td>4</td>
<td>FS/23/01/47/017</td>
<td>Aldeamayor de San Martín</td>
<td>710</td>
<td>Arenas</td>
</tr>
<tr>
<td>5</td>
<td>ES-23/01/003</td>
<td>Quintanilla de Onésimo</td>
<td>820</td>
<td>Regosol de ladera</td>
</tr>
<tr>
<td>6</td>
<td>ES-23/01/006</td>
<td>Cogeces de Íscar</td>
<td>800</td>
<td>Regosol de ladera</td>
</tr>
<tr>
<td>7</td>
<td>ES-23/01/004</td>
<td>La Parrilla</td>
<td>855</td>
<td>Páramo calizo</td>
</tr>
<tr>
<td>8</td>
<td>ES-23/01/005</td>
<td>Portillo</td>
<td>850</td>
<td>Páramo calizo</td>
</tr>
<tr>
<td>9</td>
<td>ES-23/01/007</td>
<td>Toro (Zamora)</td>
<td>680</td>
<td>Pie ladera arenisca/conglomerados</td>
</tr>
</tbody>
</table>

Tabla 2.8. Sitios del ensayo comparativo de rodales de la Meseta Norte (Gordo et al., 2007).

<table>
<thead>
<tr>
<th>Nº</th>
<th>Término municipal</th>
<th>Altitud (m)</th>
<th>Litología</th>
<th>Fecha de plantación</th>
</tr>
</thead>
<tbody>
<tr>
<td>P23MN98-1</td>
<td>Nava del Rey</td>
<td>710</td>
<td>Rañas</td>
<td>15/02/1999</td>
</tr>
<tr>
<td>P23MN98-2</td>
<td>Viana de Cega</td>
<td>695</td>
<td>Arenas</td>
<td>09/10/2003</td>
</tr>
<tr>
<td>P23MN98-3</td>
<td>Tordesillas</td>
<td>680</td>
<td>Terraza fluvial (arenas)</td>
<td>15/02/1999</td>
</tr>
<tr>
<td>P23MN98-5</td>
<td>Bercero</td>
<td>830</td>
<td>Páramo</td>
<td>16/11/1998</td>
</tr>
<tr>
<td>P23MN98-6</td>
<td>Becilla de Valderaduey</td>
<td>760</td>
<td>Arcillas de Tierra de Campos</td>
<td>12/03/1999</td>
</tr>
<tr>
<td>P23MN98-7</td>
<td>Pollos</td>
<td>670</td>
<td>Terraza sobre gravas</td>
<td>16/02/1999</td>
</tr>
</tbody>
</table>

En las arenas de Viana de Cega, la plantación fracasó durante los tres años que se intentó, por lo que se decidió dar de baja este sitio de ensayo del estudio.

En un primer análisis se evaluaron las mediciones tomadas, hasta los 8 años de edad, sobre arraigo inicial y supervivencia, altura y diámetro en el cuello de la raíz de cada pie y la presencia de yemas, aicículas o brotes adultos y de las primeras flores femeninas (Gordo et al., 2007).

En los diferentes sitios de ensayo no se observaron diferencias significativas en la tasa de supervivencia entre las plantas de los nueve rodales de origen ni interacciones con el ambiente del ensayo. En las mediciones de altura y diámetros basales también se constataron en cada sitio de ensayo crecimientos medios muy uniformes entre los diferentes lotes de planta. Los análisis de varianza de las alturas medias hasta los ocho años no mostraron diferencias significativas entre
rodales (la diferenciación entre procedencias sumaría un 0,02%). Aunque si se apreciaron diferencias notables entre sitios de ensayo. Estos resultados parecen constatar la alta plasticidad fenotípica de la especie y la falta de interacción genotipo-ambiente. Por lo cual, cabe replantearse el actual manejo de orígenes en la fase de vivero, en la cual se separan los lotes de semilla y planta por rodales selectos según su litología. (Gordo et al., 2007).

Resulta interesante continuar con este estudio, y ahora, a la edad de 14 años, realizar nuevas mediciones para obtener datos actuales de las características de las plantas así como analizar también la presencia de flores y piñas para comprobar también si los materiales ensayados se diferencian o no en este carácter productivo.

Además, al haber crecido los árboles, actualmente las densidad de las parcelas de ensayo es excesiva, por lo que es conveniente realizar un primer clareo, de manera que estas no pierdan rigor estadístico y el estudio se pueda prolongar de forma eficaz en el tiempo.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
3. OBJETIVOS

Transcurridos 14 años desde la plantación del ensayo comparativo de material forestal de reproducción de rodaderos selectos de la Región de Procedencia Meseta Norte de pino piñonero (*Pinus pinea*), se pretende caracterizar el estado actual y analizar cómo han evolucionado las diferentes procedencias en cada sitio de ensayo, así como proponer un primer clareo de los rodaderos del ensayo de forma que no pierdan rigor estadístico.

Los objetivos específicos en que se centrará este trabajo son:

1. Caracterizar el estado actual de las plantas del ensayo y analizar su evolución desde la plantación.

2. Estudiar la posible diferenciación ecotípica en el momento actual, analizando los principales factores que pueden influir en la varianza fenotípica de los pinos:

 a. Varianza genética (*V_g*): diferencias fenotípicas debidas a diferencias genéticas (*diferencias entre procedencias*)

 b. Varianza ambiental (*V_a*): diferencias fenotípicas por efectos ambientales (*diferencias entre sitios de ensayo*)

 c. Interacción genotipo-ambiente (*V_ga*): no-aditividad de los factores anteriores, es decir, que la variación entre genotipos depende del ambiente en el que se comparen.

3. Elaborar una propuesta de clareo de las parcelas del ensayo, ya que presentan densidades excesivas para su estado de desarrollo, con el objetivo de que no pierdan rigor estadístico y el estudio experimental se pueda prolongar de manera eficaz en el tiempo, favoreciendo con la puesta en luz la apertura de copas y una entrada temprana en producción de piña.
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
4. MATERIAL Y MÉTODOS

4.1. Área de estudio

La región de procedencia Meseta Norte de pino piñonero se localiza en la cuenca media del Duero, sobre todo en su margen izquierda. Abarca principalmente las provincias de Valladolid, Segovia y Ávila, y en menor medida Zamora, Burgos y Salamanca.

En esta región se distinguen dos grandes dominios geomorfológicos: las extensas y llanas campiñas y los páramos, con las cuestas margosas y calizas de transición entre ambos. La altitud varía entre los 650 y los 1000 m.

El clima es mediterráneo-continental con temperaturas medias anuales de 10,3-13,5°C (2,6-4,3°C en enero, 19,8-22,0°C en agosto) y una precipitación media anual de 315-560 mm (precipitación mensual estival mínima 8-16 mm), aunque sobre todo los registros pluviométricos varían ampliamente entre años. Estos valores, que sitúan esta región de procedencia del interior entre las más altas, frías y a su vez secas de la especie, muestran un ligero gradiente hacia el este, descendente para altitud y pluviometría, descendiente para la temperatura, aunque con un salto entre la campiña y los páramos. (Prada et al., 1997 y Alía et al., 2009).

El ensayo comparativo de *Pinus pinea* en la Meseta Norte cuenta con seis parcelas plantadas entre noviembre de 1998 y marzo de 1999 sobre las diferentes litologías de la región consideradas relevantes como estaciones de forestación con la especie, que muestra una marcada expansión hacia las comarcas agrícolas de secano al norte y oeste de la distribución natural de la especie, expansión puesta de manifiesto en apartados anteriores. Como ya se comentó en la Introducción (Tabla 2.8), las parcelas de ensayo se localizan en la provincia de Valladolid. De las siete parcelas planteadas inicialmente quedan seis sitios de ensayo, cinco de ellos en la comarca forestal de Tordesillas y otro en la de Medina de Rioseco (Figura 4.1).

El material ensayado fueron plantas obtenidas a partir de semilla de los siete rodales selectos definidos en la Meseta Norte, más dos fuentes semilleras de la misma procedencia previstas inicialmente como testigos (Tabla 2.7). Estos rodales ensayados representan toda la gama de estaciones típicas y marginales del pino piñonero en la Meseta Norte, desde los arenasles hasta las margas de cuestas y bancos de caliza del páramo.

El número inicial de plantas fue 1.728 a razón de 288 plantas por sitio de ensayo, con un marco de plantación de 4 × 4 metros. En cada parcela se pusieron 32 plantas de cada procedencia distribuidas en 72 unidades experimentales de 4 plantas. El diseño fue en latices 3 × 3, con 8 réplicas o bloques completos,
compuestos de tres bloques incompletos con tres procedencias cada uno. Además se añadió una fila adicional de pinos alrededor de los del ensayo para evitar el efecto borde. (Gordo et al., 2007).

En el apartado Resultados y Discusión se detalla el estado actual de cada sitio de ensayo.
Figura 4.1. Localización de los sitios de ensayo, en la provincia de Valladolid.
4.2. Inventario

Con el objeto de conocer el estado actual de los pinos y tomar los datos necesarios para poder analizar la posible diferenciación ecotípica entre las distintas procedencias de las plantas, se realizó un inventario de las parcelas de ensayo.

La toma de datos en campo tuvo lugar durante el mes de febrero de 2013. Mediante las coordenadas y unos croquis se elaboraron en gabinete unos planos con los que replantear sobre el terreno las parcelas de ensayo e identificar correctamente cada pino. De cada uno de ellos se midieron las siguientes variables:

- **Altura total \(H (\text{cm}) \):** se midió la altura total de cada pino con la ayuda de una pértiga telescópica (Figura 4.2). \(\text{Error} = \pm 10 \text{ cm} \).

- **Diámetro basal \(D_b (\text{cm}) \):** se midió el diámetro del tronco a ras de suelo con forcípula (Figura 4.3). En caso de árboles bifurcados desde la base se midieron todos los diámetros. \(\text{Error} = \pm 0,5 \text{ cm} \).

- **Diámetro normal \(D_n (\text{cm}) \):** se midió el diámetro del tronco a 1,30m de altura desde el suelo con forcípula. En el caso de árboles bifurcados o con portes en candelabro se midieron todos los diámetros a la altura del pecho. \(\text{Error} = \pm 0,5 \text{ cm} \).

- **Floración (Sí/No):** se anotó, mediante la observación de cicatrices de los estróbilos masculinos, si el árbol había florecido ya y desde hace cuantos años aproximadamente.

- **Fructificación (uds.):** se cuantificó visualmente el número de piñas de cada estado de maduración que tenía cada árbol: perindolas (1er año), chotas (2ño año), piñas maduras (3er año) y cogollas (+ años). Además se anotó si estaban vivas o muertas, ya que había muchas secas.

- **Observaciones:** se anotó cualquier otra característica singular que se observara: copas secas, daños por plagas o enfermedades, presencia de conejo, daños mecánicos, etc.

Todas las mediciones fueron realizadas por el mismo observador.
4.3. Análisis de los datos

4.3.1. Supervivencia

Para analizar la posible influencia del sitio de ensayo o la procedencia de las plantas en la supervivencia de éstas se utilizó un modelo lineal general (GLM) de la variable transformada “arcoseno de la raíz del porcentaje de supervivencia”, transformación recomendada para datos porcentuales, y que se supone asimilable a una variable de distribución normal para la cual el GLM es válido.

Este procedimiento estadístico nos permite medir el efecto de una o más variables independientes sobre una variable dependiente (Rutherford, 2001; Muller y Fetterman, 2003). El modelo lineal general empleado en este caso fue el siguiente:

\[y_{ijkl} = u + \text{Sitio}_i + \text{Réplica(Sitio)}_j + \text{Litología}_k + \text{Procedencia (Litología)}_l + \varepsilon_{ijkl} \]

donde las variables independientes son el sitio de ensayo, la réplica o bloque completo dentro de cada sitio, la litología y la procedencia anidada a la litología.

La variable litología hace referencia a las características edáficas de la estación de origen de la planta. Se han agrupado los rodales de origen con litologías similares tal y como se muestra en la Tabla 4.1, de modo que esta variable tiene un rango de 1 a 5.

<table>
<thead>
<tr>
<th>N°</th>
<th>Término municipal</th>
<th>Estación</th>
<th>Litología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tordesillas</td>
<td>Terraza fluvial con manto eólico</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Pesquera de Duero</td>
<td>Terraza fluvial con manto eólico</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Íscar</td>
<td>Arenas</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Aldeamayor de San Martín</td>
<td>Arenas</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Quintanilla de Onésimo</td>
<td>Regosol de ladera</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Cogeces de Iscar</td>
<td>Regosol de ladera</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>La Parrilla</td>
<td>Páramo calizo</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Portillo</td>
<td>Páramo calizo</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Toro (Zamora)</td>
<td>Pie ladera arenisca/conglomerados</td>
<td>5</td>
</tr>
</tbody>
</table>

La inclusión en el modelo de la procedencia como variable simple no resultó significativa, por ello se agrupó por características litológicas.
4.3.2. Alturas y diámetros medios

Los datos recogidos referentes a diámetros y alturas también se han analizado mediante un modelo lineal general (GLM) con el programa informático SAS 9.2. Así, para intentar captar las diferencias significativas entre procedencias y sitios de ensayo y su posible interacción, se ha diseñado el siguiente modelo:

\[y_{ijk} = u + \text{Sitio}_i + \text{Réplica(Sitio)}_j + \text{Procedencia}_k + \text{Sitio}_i^*\text{Procedencia}_k + \epsilon_{ijk} \]

en el cual las variables independientes son el sitio de ensayo, la réplica o bloque completo dentro de cada sitio, la procedencia de la planta y la interacción entre el sitio de ensayo y la procedencia. La resolución en bloques incompletos dentro de cada réplica no aportó información adicional significativa, por lo cual se decidió soslayarla para simplificar el modelo.

Este modelo se ajusta bien para cada una de las variables dependientes analizadas: la altura \(H \) \((R^2=0,72)\), el diámetro basal \(Db \) \((R^2=0,64)\) y el diámetro normal \(Dn \) \((R^2=0,59)\); siendo un modelo bastante sensible, capaz de captar la influencia de cada variable independiente en la variable respuesta.

Aparte de verificar gráficamente las hipótesis de base para estos análisis (aditividad y distribución independiente sin valores aberrantes: normalidad y homocedasticidad de residuos), se comprobó en cada sitio la ausencia de autocorrelaciones espaciales entre los valores residuales de los vecinos más próximos, con correlaciones \(r \) siempre por debajo del 8% (Loo-Dinkins, 1992).

4.3.3. Presencia de bifurcación de los fustes

Por otro lado, durante la toma de datos se observaron bastantes pinos con portes en candelabro debido a la pérdida de la guía o dominancia apical, dando lugar a varios fustes, por lo que se decidió estudiar esta variable (presencia-ausencia) mediante un modelo-loglineal.

Los modelos log-lineales se usan para analizar la relación entre dos, tres o más variables categóricas en una tabla de contingencia. Todas las variables que se analizan se consideran como variables respuesta, es decir, no se hace distinción entre variables independientes y dependientes. Es por ello que en estos modelos solo se estudia asociación entre las variables (Martínez et al., 2001).

Para analizar la presencia de bifurcación o división del fuste se utilizó este procedimiento estadístico, con el objetivo de comprobar si la ramificación del fuste tiene alguna relación con la procedencia de las plantas o con el sitio de ensayo.
4.3.4. Floración y fructificación

Por otra parte, cuando se inició este trabajo se consideró, que llegado este momento en que los pinos tienen 14 años de edad, podía ser interesante estudiar también la floración y fructificación para poder analizar si en esta variable surgían diferencias significativas entre sitios de ensayo o procedencias, ya que, según Ammannati (1989) la fructificación muestra un fuerte control genético, también influída por la densidad de la masa y las características de la estación. Así que durante el proceso de muestreo también se tomaron estos datos (presencia de floración y cuantificación de piñas).
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
5. RESULTADOS Y DISCUSIÓN

5.1. Caracterización de las parcelas de ensayo

Parcela de ensayo 1, Nava de Rey

- Tº municipal: Nava del Rey (Valladolid).
- Situación en el monte: Cuartel C, Tramo I.
- Altitud: 710 m.
- Longitud: 5º 4’ O. Latitud: 41º 27’ N.

- Características de la estación: Rañas. Zona de terrazas constituidas por depósitos de gravas y conglomerados. Suelo del tipo luviosol, caracterizado por el lavado y por un horizonte de arcilla acumulada por iluviación; con aportes de arenas y limos arenosos permeables (Junta de Castilla y León, 1988).

- Fecha de plantación: 15/02/1999.
- Superficie: 0,46 ha.

- Fecha del inventario: 14/02/2013.

- Nº de pies vivos: 264.
- Nº de marras: 24.

- Diámetro basal medio (Db): 18 cm.
- Diámetro normal medio (Dn): 9 cm.

- Altura total media (H): 366 cm.
- Coeficiente de esbeltez (H/Dn): 42.

- Área basimétrica: 4,5 m²/ha.
- Nº de pies bifurcados: 59.

- Floración: Desde hace 2-3 años.
- Fructificación: Escasa.

- Observaciones: Daños leves de *Thaumetopoea pityocampa* y *Rhyacionia buoliana*.

![Imágenes de la parcela 1, Nava del Rey](image1.jpg)

Figuras 5.1 y 5.2. Imagen de la parcela 1, en Nava del Rey (izquierda), y detalle de orugas de procesionaria (*Thaumetopoea pityocampa*) en u pino de la parcela (derecha).
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA) - E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

ENSAYO DE PROCEDENCIAS DE PIÑONERO (Pinus pinea).
PLANO Nº 1: Parcela 1, NAVA DEL REY
Fecha del inventario: 14/02/2013

Información cartográfica
Proyección: ETRS 1989
UTM Zone 30N
Unidades: Metros
Ortofotoplano PNOA h50
Formato ecw, raster 399
PNOA©IGN-JCyL

Leyenda cartográfica
- Marras (columna: x; fila: y)
- Localizador del árbol
- Mojones de la parcela de ensayo
- Perímetro de la parcela de ensayo
Parcela de ensayo 3, Tordesillas

- **Localización:**
 - **T° municipal:** Tordesillas (Valladolid).
 - **Nº del C.U.P.:** 67.
- **Situación en el monte:** Antiguo vivero, parcela 18.
- **Altitud:** 680 m.
- **Longitud:** 4° 57’ O. **Latitud:** 41° 30’ N.

- **Características de la estación:** Terraza fluvial sobre fluvisoles suelos formados por arenas y limos depositados por los ríos (Junta de Castilla y León, 1988). Son materiales muy permeables, pero el nivel freático se encuentra bastante alto en esta parcela.

- **Fecha de plantación:** 15/02/1999. **Superficie:** 0,47 ha.
- **Fecha del inventario:** 15/02/2013.

- **Nº de pies vivos:** 245. **Nº de marras:** 43.
- **Diámetro basal medio (Db):** 24 cm. **Diámetro normal medio (Dn):** 14 cm.
- **Altura total media (H):** 526 cm. **Coeficiente de esbeltez (H/Dn):** 38.
- **Área basimétrica:** 10,1 m²/ha. **Nº de pies bifurcados:** 63.
- **Floración:** Desde hace 2-3 años. **Fructificación:** Escasa.
- **Observaciones:** Presencia de *Thaumetopoea pityocampa* y *Rhyacionia buoliana*.

Figuras 5.3 y 5.4. Parcela 3, en el antiguo vivero de Tordesillas, donde se encuentran los pinos más altos y gruesos. Hay tangencia de copas en gran parte de la parcela.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

Alumno: Gonzalo Martínez Manero

UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA) - E.T.S. DE INGENIERÍAS AGRARIAS

Titulación: Máster en Ingeniería de Montes

ENSAYO DE PROCEDENCIAS DE PIÑONERO (Pinus pinea).
PLANO Nº 2: Parcela 3, TORDESILLAS
Fecha del inventario: 15/02/2013
Parcela de ensayo 4, Berceruelo

 Tº municipal: Berceruelo (Valladolid).
 Nº del C.U.P.: 140.
 Situación en el monte: Polígono 1, parcela 8.
 Altitud: 800 m.
 Longitud: 5º 1' O. Latitud: 41º 35' N.

- Características de la estación: Margas de ladera. Litosuelos de cuesta sobre sedimentos margo yesíferos bastante impermeables y altamente erosionables. (Junta de Castilla y León, 1988).

- Fecha del inventario: 25/02/2013.

Diámetro basal medio (Db): 11 cm. Diámetro normal medio (Dn): 6 cm.
Altura total media (H): 266 cm. Coeficiente de esbeltez (H/Dn): 61.
Área basimétrica: 2,1 m²/ha. Nº de pies bifurcados: 59.
Observaciones: Mucho pinos puntisecos. Presencia de conejo en la parcela.

Figuras 5.5 y 5.6. Imágenes de la parcela 4, situada en las cuestas margosas de Berceruelo, donde los pinos encuentran dificultades para medrar.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
Parcela de ensayo 5, Bercero

- **Localización:**
 - Código: P23MN98-5.
 - Tº municipal: Bercero (Valladolid).
 - Situación en el monte: Polígono 13, parcela 552.
 - Altitud: 830 m.
 - Longitud: 5º 3’ O. Latitud: 41º 35’ N.

- **Características de la estación:** Páramo. Superficie horizontal del páramo sobre calizas, que constituye cambisoles cálcicos. (Junta de Castilla y León, 1988).

- **Fecha de plantación:** 16/11/1998.
- **Superficie:** 0,53 ha.

- **Fecha del inventario:** 19/02/2013.

<table>
<thead>
<tr>
<th>Nº de pies vivos:</th>
<th>245.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro basal medio (Db):</td>
<td>17 cm.</td>
</tr>
<tr>
<td>Altura total media (H):</td>
<td>322 cm.</td>
</tr>
<tr>
<td>Área basimétrica:</td>
<td>3,6 m²/ha.</td>
</tr>
<tr>
<td>Floración:</td>
<td>Desde hace 1-2 años.</td>
</tr>
<tr>
<td>Observaciones:</td>
<td>Escasa presencia de procesionaria. Gran abundancia de conejo en la parcela (muchas huras y excrementos).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº de marras:</th>
<th>43.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro normal medio (Dn):</td>
<td>9 cm.</td>
</tr>
<tr>
<td>Coeficiente de esbeltez (H/Dn):</td>
<td>39.</td>
</tr>
<tr>
<td>Nº de pies bifurcados:</td>
<td>21.</td>
</tr>
<tr>
<td>Fructificación:</td>
<td>Escasa.</td>
</tr>
</tbody>
</table>

Figuras 5.7 y 5.8. Imágenes de la parcela 5, situada en el páramo de Bercero. En la imagen inferior se pueden apreciar las madrigueras de los conejos.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

ENSAYO DE PROCEDENCIAS DE PIÑONERO (Pinus pinea).
PLANO Nº 4: Parcela 5, BERCERO
Fecha del inventario: 19/02/2013

Información cartográfica
Proyección: ETRS 1989
UTM Zone 30N
Unidades: Metros
Ortofotoplano PNOA h50
Formato ecw, raster 371
PNOA@IGN-JCyL

Leyenda cartográfica
- Marras
- Localizador del árbol (columna: x; fila: y)
- Mojones de la parcela de ensayo
- Perímetro de la parcela de ensayo
Parcela de ensayo 6, Becilla de Valderaduey

 T° municipal: Becilla de Valderaduey (Valladolid).
 Situación: Polígono 3, parcela 66.
 Altitud: 760 m.
 Longitud: 5° 11' O. Latitud: 42° 6' N.

- Características de la estación: Zona de Tierra de Campos. Suelos del tipo cambisol cálcico con presencia de arcillas. (Junta de Castilla y León, 1988).

- Fecha de plantación: 12/03/1999. - Superficie: 0,55 ha.

- Fecha del inventario: 26/02/2013.

Nº de pies vivos: 246. Nº de marras: 42.
Diámetro basal medio (Db): 15 cm. Diámetro normal medio (Dn): 8 cm.
Altura total media (H): 314 cm. Coeficiente de esbeltez (H/Dn): 47.
Área basimétrica: 2,6 m²/ha. Nº de pies bifurcados: 19.
Floración: Desde hace 1-3 años. Fructificación: Escasa.
Observaciones: Presencia de *Rhyacionia buoliana*. Algunos pinos puntisecos.

Figuras 5.9 y 5.10. Fotografías de los pinos de la parcela 6, en Becilla de Valderaduey. En la imagen inferior se observa un ejemplar puntiseco.
Parcela de ensayo 7, Pollos

- **Localización:**
 - Tº municipal: Pollos (Valladolid).
 - Situación: Polígono 6, parcela 33.
 - Altitud: 670 m.
 - Longitud: 5º 10' O. Latitud: 41º 27' N.

- **Características de la estación:** Terraza sobre gravas. Suelos del tipo luviosoles, caracterizados por el lavado y un horizonte de arcilla acumulada por iluviación, con cierta presencia de limos arenosos con acumulación de gravas. (Junta de Castilla y León, 1988).

- **Fecha de plantación:** 16/02/1999.
 - **Superficie:** 0,47 ha.

- **Fecha del inventario:** 18/02/2013.

- **Nº de pies vivos:** 283.
 - **Diámetro basal medio (Db):** 18 cm.
 - **Altura total media (H):** 363 cm.
 - **Área basimétrica:** 4,5 m²/ha.
 - **Floración:** Desde hace 1-2 años.
 - **Observaciones:** Presencia de *Thaumetopoea pityocampa*.

- **Nº de marras:** 5.
 - **Diámetro normal medio (Dn):** 9 cm.
 - **Coeficiente de esbeltez (H/Dn):** 40.
 - **Nº de pies bifurcados:** 24.
 - **Fructificación:** Escasa.

- **Figura 5.11.** Parcela 7, Pollos.
- **Figura 5.12.** Medición de la altura con una pértiga en Pollos.
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

Alumno: Gonzalo Martínez Manero

UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
5.2. Análisis descriptivo

5.2.1. Supervivencia

Como se ha explicado anteriormente, cada una de las seis parcelas de ensayo contaba inicialmente de 288 pinos, 32 de cada procedencia, distribuidos en 8 bloques completos. Pero, por diferentes causas, se han ido produciendo pérdidas a lo largo del tiempo, por lo que actualmente no se conservan todos los árboles que inicialmente se instalaron para el ensayo.

En total se han muerto 182 plantas, lo que representa sólo el 11% del total, que se distribuyen desigualmente por sitios de ensayo y procedencias. El sitio de ensayo con mayor éxito de supervivencia fue el de Pollos (98%), mientras que los peores han sido los de Tordesillas, Bercero y Becilla de Valderaduey (85%). Por procedencias, la más exitosa es la 5.Quintanilla de Onésimo (94%) y la que menor tasa de supervivencia ha experimentado ha sido la 2.Pesquera de Duero (85%).

A continuación (Tabla 5.1) se muestra el número de marras que se han producido hasta el momento actual en cada sitio de ensayo y para cada procedencia.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Nº de marras por procedencia</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1. Nava del Rey</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>%</td>
<td>13%</td>
<td>15%</td>
</tr>
</tbody>
</table>

La mayoría de las marras se produjeron en los primeros años tras la plantación (Figura 5.13), que son los más críticos para la supervivencia de las plantas, especialmente los secos y calurosos veranos en estas zonas (Gordo et al., 2012). Por ello probablemente la parcela situada en el término municipal de Pollos, al tener un suelo más fresco, formado por gravas y arcillas, ha sido capaz de soportarlos mejor que parcelas con suelos más arenosos, que tienen menor capacidad de retención de agua en los horizontes superiores, como la de Tordesillas o la fracasada en Viana de Cega.
Conviene aclarar que, como se vio en Introducción, las 99 hectáreas reforestadas mediante la PAC en la comarca forestal de Viana de Cega, las cuales equivalen al 1% de su superficie arbolada, se realizaron sobre terrenos agrarios, no en arenas puros, donde se encuentran grandes dificultades en la regeneración artificial. Sobre estos arenosoles es donde se intentó instalar la parcela de ensayo 2 sin conseguirlo.

![Figura 5.13. Número de marras en cada sitio del ensayo de procedencias de Pinus pinea de la Meseta Norte durante los primeros 14 años tras la plantación.](image-url)

Estos datos del número de marras pueden indicarnos zonas con mayor o menor éxito en la supervivencia de las plántulas durante los primeros años. Sin embargo, no nos dicen mucho a largo plazo, ya que parcelas como la de Berceruelo, con suelos muy pobres como son las cuestas de margas yesíferas, presentan muchos pinos poco desarrollados o puntisecos que continúan muriendo poco a poco, aumentando así este registro de árboles muertos. Además algunas bajas se han producido por daños mecánicos durante las labores de gradeo y mantenimiento de la parcela. Por tanto, para valorar la influencia del suelo a largo plazo será mejor atender al estado de desarrollo de los pinos.

5.2.2. Alturas y diámetros medios

En las mediciones de diámetros y alturas se han constatado dentro de cada sitio de ensayo unos crecimientos bastante uniformes entre los diferentes lotes de plantas, aunque los valores medios difieren significativamente de una parcela a otra (Tabla 5.2).
Tabla 5.2. Alturas, diámetros y coeficientes de esbeltez medios de *Pinus pinea* a la edad de 14 años. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Sitio de ensayo</th>
<th>Db (cm)</th>
<th>Dn (cm)</th>
<th>H (cm)</th>
<th>H/Db</th>
<th>H/Dn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nava del Rey</td>
<td>18</td>
<td>9</td>
<td>366</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>24</td>
<td>14</td>
<td>526</td>
<td>23</td>
<td>38</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>11</td>
<td>6</td>
<td>266</td>
<td>25</td>
<td>61</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>17</td>
<td>9</td>
<td>322</td>
<td>20</td>
<td>39</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>15</td>
<td>8</td>
<td>314</td>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>18</td>
<td>9</td>
<td>363</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Media total</td>
<td>17</td>
<td>9</td>
<td>359</td>
<td>22</td>
<td>45</td>
</tr>
</tbody>
</table>

En la terraza fluvial de Tordesillas, de suelos más arenosos y húmedos, se encuentran los pinos más grandes, con una altura media de casi 530 cm, mientras que sobre las cuestas margosas de Berceruelo apenas alcanzan los 270 cm a los 14 años de edad. Estas diferencias en alturas entre parcelas han existido desde los primeros años aunque con el tiempo se han ido ampliando, distanciándose especialmente los crecimientos de la parcela con mayor disponibilidad de agua, la de Tordesillas (Figura 5.14). Si bien es cierto, que en Pollos los pinos presentaron unos grandes crecimientos iniciales que se han ido estancando con el tiempo, lo cual parece corroborar sus buenas condiciones para el arraigo y primer desarrollo de los brinzales.

Figura 5.14. Evolución de las alturas medias de *Pinus pinea* en cada sitio de ensayo hasta los 14 años de edad. Ensayo de rodales Meseta Norte.
Lo mismo ocurre con los diámetros basales y normales (a 1,30 m) medios, como se puede observar en la Figura 5.15. El diámetro promedio a la altura del suelo varió entre los 11 cm del terreno más arcilloso, Berceruelo, y los 24 cm del más arenoso, Tordesillas. El diámetro basal mostró un coeficiente de correlación de Pearson con el diámetro normal muy alto, \(r = 0.98 \). Por lo que igualmente, los diámetros normales se sitúan entre los 6 cm de las laderas de Berceruelo y los 14 cm de Tordesillas.

Figura 5.15. Diámetros basales y normales medios de *Pinus pinea* a la edad de 14 años en cada sitio del ensayo de procedencias de la Meseta Norte.

El diámetro a 1,30 m del suelo \(Dn \) muestra un coeficiente de correlación \(r \) con la altura \(H \) de 0,97. La relación \(H/Dn \) (coeficiente de esbeltez) promedio de todas las parcelas se situó a los 14 años tras la plantación en 45, variando entre 38 en la suelos más arenosos de Tordesillas y 61 en los más compactos de las cuestas de Berceruelo.
5.2.3. Presencia de bifurcación de los fustes

La pérdida de la guía principal y la aparición de ramas que toman la dominancia se conoce como bifurcación del fuste. Esto provoca una pérdida del volumen de madera en bruto y la aparición de madera de reacción (Martín et al., 2001).

Durante la toma de datos se observaron bastantes pinos con portes en candelabro debido a la división del tronco principal en varios fustes (Tabla 5.3 y Figuras 5.16 y 5.17), por lo que se decidió estudiar está variable.

Figura 5.16. Pino con el fuste bifurcado del sitio de ensayo 1.Nava del Rey.

Figura 5.17. Pino piñonero de la parcela de Tordesillas con porte en candelabro.
Tabla 5.3. Relación de pies con fustes múltiples por sitio de ensayo y procedencia. Ensayo de rodales de *Pinus pinea* de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Nº de pies bifurcados por procedencia</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1. Nava del Rey</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

El 16% de los pinos del ensayo presentaron fustes bifurcados. Las diferencias en el número de pies con varios fustes entre procedencias no resultaron significativas, sin embargo sí que se apreció una clara diferencia entre sitios de ensayo. En Nava del Rey, Tordesillas y Berceruelo más del 20% de los pinos presentaban ramificación y pérdida del fuste principal, mientras que en el resto de sitios apenas representaban el 9%.

5.2.4. Floración y fructificación

Tiene especial importancia conocer qué factores pueden afectar a la producción de fruto, tanto en cantidad como en edad de producción de piña; ya que el aprovechamiento del piñón se puede considerar actualmente como preferente sobre el de la madera por generar una renta anual importante, pues el valor económico del piñón ha aumentado mucho, mientras que el de la madera ha bajado.

Se pudo constatar mediante la presencia de las cicatrices dejadas en los ramillos por los estróbilos masculinos (Fig. 5.18 y 5.19), que casi todos los pinos de todos los sitios de ensayo han florecido desde los 11-13 años de edad.
Sin embargo, la producción de piña fue muy escasa e irregular. Se encontraron conos femeninos de todas las edades (perindolas, chotas (Figura 5.20), piñas maduras (Figura 5.21) y cogollas) concentrados en muy pocos árboles, no hallándose ninguna relación ni con la procedencia ni con el sitio de ensayo. Se considera que es pronto todavía para poder valorar si existen diferencias en la fructificación asociadas a la estación o la procedencia de la planta. Y es que la fructificación de esta especie es tardía comparada con el resto de pinos con los que convive, iniciándose a los 15-20 años (Prada, 1997). Por lo que no se ha podido hacer un análisis de esta variable, lo cual queda pendiente para futuros estudios de este ensayo de rodales. Los datos medidos quedan recogidos en el anejo correspondiente.
5.3. Análisis estadístico

5.3.1. Supervivencia

Con la intención de comprobar si existen diferencias significativas en el número de marras entre procedencias o sitios de ensayo se analizó mediante un modelo lineal general (GLM) la influencia del sitio de ensayo y la litología de la estación de origen en el porcentaje de supervivencia de los pines (Tabla 5.4).

Tabla 5.4. Análisis de la varianza para el arcoseno de la raíz cuadrada del porcentaje de supervivencia de *Pinus pinea*. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados (tipo III)</th>
<th>g.l.</th>
<th>Cuadrado medio</th>
<th>Valor F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio</td>
<td>11.417</td>
<td>5</td>
<td>2.283</td>
<td>9,92</td>
<td><0,0001</td>
</tr>
<tr>
<td>Réplica (sitio)</td>
<td>17.431</td>
<td>42</td>
<td>415</td>
<td>1,8</td>
<td>0,0024</td>
</tr>
<tr>
<td>Litología</td>
<td>2.705</td>
<td>4</td>
<td>676</td>
<td>2,94</td>
<td>0,0206</td>
</tr>
<tr>
<td>Procedencia(litología)</td>
<td>246</td>
<td>4</td>
<td>62</td>
<td>0,27</td>
<td>0,8989</td>
</tr>
<tr>
<td>Error</td>
<td>86.549</td>
<td>376</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>118.348</td>
<td>431</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pese a la poca varianza explicada por el modelo ($R^2 = 0,27$), éste refleja claramente que algunos sitios de ensayo (Pollos; tasa de supervivencia = 98%) fueron significativamente más favorables a la supervivencia de los árboles que otros (Bercero, Tordesillas o Becilla de Valderaduey; 85% de éxito de supervivencia). También resulta significativo el efecto del bloque completo o réplica anidado al sitio.

El análisis también mostró una ligera mayor resistencia de las plantas procedentes de las cuestas margosas frente a las de los arenales, pero en un rango relativamente estrecho, del 85% al 94% de supervivencia. Si bien estas diferencias resultaron significativas estadísticamente, no parecen tener relevancia en la práctica a escala operativa.

Por otra parte, la interacción entre el sitio de ensayo y la litología de origen no fue significativa, lo que quiere decir que no hay unos rodales selectos recomendables para el uso de su material forestal de reproducción en unos sitios y en otros, otros.

En conclusión, se constata que no ha habido mortalidades elevadas de ninguna de las procedencias en ningún sitio de ensayo, lo que resta relevancia práctica a estas diferencias encontradas, aunque resulten estadísticamente significativas. En todos los casos, la densidad inicial de plantación a 4 x 4 m (625 pies/ha) hace necesario a la edad actual realizar un clareo en todos los sitios de ensayo, por lo cual el número de marras iniciales hasta la fecha es de relevancia menor.

54
Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
5.3.2. Alturas y diámetros medios

Con el objetivo de determinar la influencia del sitio de ensayo y de la procedencia de la planta, así como su posible interacción, en el crecimiento y desarrollo de los pinos piñoneros (*Pinus pinea*), se ajustó para la altura del árbol y sus diámetros basal y normal un modelo lineal general (GLM) con estas variables independientes.

Altura total (H)

La principal fuente de variación en la altura H de los pinos fue el sitio de ensayo, el cual explicó casi el 60% de la variabilidad en la altura. También resultó significativa la influencia de la réplica (bloque completo) dentro del sitio y de la procedencia, aunque éste último efecto fue muy débil. El 28% restante de variabilidad en la altura, correspondiente al error, se debe a la influencia de otros factores desconocidos, diferentes a las variables independientes anteriores. (Tablas 5.5 y 5.6, Figura 5.22).

| Tabla 5.5. Características del GLM para la altura total (H). |
|-----------------|-----------------|-----------------|-----------------|
| R-cuadrado | Coef. Var | Raíz MSE | H media (cm) |
| 0,72 | 16,1% | 57,6 | 359 |

Figura 5.22. Porcentaje de influencia en la variabilidad en la altura total H de *Pinus pinea* de cada factor evaluado. Ensayo de rodales Meseta Norte.
Tabla 5.6. Análisis de la varianza para la altura total (H) de *Pinus pinea*. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados (tipo I)</th>
<th>g.l.</th>
<th>Cuadrado medio</th>
<th>Valor F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio</td>
<td>10.011.214</td>
<td>5</td>
<td>2.002.242</td>
<td>603,44</td>
<td><0,0001</td>
</tr>
<tr>
<td>Réplica (sitio)</td>
<td>2.103.483</td>
<td>42</td>
<td>50.082</td>
<td>15,09</td>
<td><0,0001</td>
</tr>
<tr>
<td>Procedencia</td>
<td>96.916</td>
<td>8</td>
<td>12.114</td>
<td>3,65</td>
<td>0,0003</td>
</tr>
<tr>
<td>Sitio*Procedencia</td>
<td>140.931</td>
<td>40</td>
<td>3.523</td>
<td>1,06</td>
<td>0,3675</td>
</tr>
<tr>
<td>Error</td>
<td>4.814.487</td>
<td>1.451</td>
<td>3.318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17.167.032</td>
<td>1.546</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No todas las parcelas de ensayo son completamente homogéneas en cuanto a sus características edafológicas y por ello en algunas réplicas o bloques completos los pinos se han desarrollado más que en el resto de la parcela. Esto ocurre, por ejemplo, en el sitio de ensayo 3.Tordesillas, donde los bloques más cercanos al curso de agua son más altos, como se puede apreciar a simple vista mediante la ortofotografía (Figura 5.23).

Figura 5.23. Ortofoto de 2012 de la parcela de ensayo 3.Tordesillas, donde se aprecia en la parte inferior pinos con copas más desarrolladas.

Sin embargo, la interacción entre sitio de ensayo y procedencia no es significativa, lo que quiere decir que no hay plantas de ciertas procedencias que crezcan mejor en determinados sitios, sino que en cada sitio las diferencias entre procedencias se mantienen.
En la Tabla 5.7 se muestran las medias de mínimos cuadrados y sus intervalos de confianza al 95% de las alturas totales para cada sitio de ensayo.

Tabla 5.7. Medias de mínimos cuadrados de las alturas totales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95%, para cada sitio del ensayo de procedencias de la Meseta Norte. Unidades en centímetros.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Medias de mínimos cuadrados (cm)</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nava del Rey</td>
<td>365,3</td>
<td>358,3</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>529,4</td>
<td>522,2</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>264,9</td>
<td>257,8</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>321,9</td>
<td>314,7</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>313,9</td>
<td>306,6</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>363,5</td>
<td>356,7</td>
</tr>
</tbody>
</table>

Como ya se había comentado, el sitio de ensayo 3. Tordesillas presenta las mayores alturas, con diferencia respecto al resto, superando algunos pies los 7 metros (Figura 5.24). Lo cual se explica por las características edáficas de este sitio; esta terraza fluvial tapizada por arenas cuaternarias mantiene un nivel freático mucho más próximo a la superficie que el resto (Junta de Castilla y León, 1988).

Le siguen, con unos buenos crecimientos en altura, las localizaciones en rañas o terrazas constituidas por gravas y limos arenosos de Nava del Rey y Pollos, entre las cuales no existen diferencias significativas. Después, con menor altura, aparecen los pinos de Bercero y Becilla de Valderaduey, localizaciones entre las cuales tampoco se aprecian diferencias estadísticamente significativas. Estos menores crecimientos se deben a los suelos pobres donde crecen; cambisoles cálcicos, del páramo y Tierra de Campos respectivamente, que por sus condiciones limitan su aptitud al aprovechamiento forestal (Junta de Castilla y León, 1988).

Y, por último, el sitio de ensayo donde menor desarrollo en altura presentan las plantas es Berceruelo, con pinos que apenas alcanzan los 3 metros. Esto es debido a que ésta es la peor estación ya que se ubica en las cuestas de los páramos, sobre los litosuelos de margas yesíferas.
Aunque la diferencia en el crecimiento en altura entre procedencias es muy pequeña sí que es significativa estadísticamente. Así, las plantas procedentes de Toro son las más altas, seguidas de las de Tordesillas e Íscar, de las que no son significativamente diferentes, y La Parrilla. Con menor altura, aunque sin ser ésta significativamente diferente a la de las anteriores procedencias, se encuentran los pinos de Aldeamayor, Quintanilla y Portillo. Los pinos más pequeños son los de Cogeces de Íscar y Pesquera de Duero (Tabla 5.8 y Figura 5.25). En este caso, estas diferencias no atienden a las características edáficas de cada procedencia, ya que suelos muy similares, como los de Tordesillas y Pesquera de Duero, muestran alturas significativamente diferentes.

No obstante, la variación entre procedencias es menor al 1 %, y aunque resulte estadísticamente significativa tiene poco significado en la realidad, ya que se traduce en unos pocos centímetros de diferencia que en la variable altura resultan insignificantes. Estas diferencias de alturas entre procedencias deberán ser evaluadas en mediciones futuras.
Tabla 5.8. Medias de mínimos cuadrados de las alturas totales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95% para cada procedencia. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Medias de mínimos cuadrados (cm)</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tordesillas</td>
<td>364,2</td>
<td>355,4 - 372,9</td>
</tr>
<tr>
<td>2. Pesquera de Duero</td>
<td>348,7</td>
<td>339,8 - 357,6</td>
</tr>
<tr>
<td>3. Íscar</td>
<td>367,2</td>
<td>358,6 - 375,9</td>
</tr>
<tr>
<td>4. Aldeamayor de San Martín</td>
<td>358,5</td>
<td>349,7 - 367,2</td>
</tr>
<tr>
<td>5. Quintanilla de Onésimo</td>
<td>355,4</td>
<td>346,9 - 363,8</td>
</tr>
<tr>
<td>6. Cogeces de Íscar</td>
<td>350,8</td>
<td>342,3 - 359,3</td>
</tr>
<tr>
<td>7. La Parrilla</td>
<td>362,3</td>
<td>353,6 - 371,0</td>
</tr>
<tr>
<td>8. Portillo</td>
<td>355,4</td>
<td>346,8 - 364,1</td>
</tr>
<tr>
<td>9. Toro (Zamora)</td>
<td>375,7</td>
<td>367,0 - 384,4</td>
</tr>
</tbody>
</table>

Figura 5.25. Medias de mínimos cuadrados de las alturas totales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95% para cada procedencia. Ensayo de rodales Meseta Norte. (Medias sin ninguna letra en común son significativamente distintas con un nivel de significación de 0,05).

La Figura 5.26 muestra la evolución de las alturas de los pinos del ensayo. Se observa, en todos los años en que se tomaron datos, en cada sitio de ensayo un crecimiento medio muy uniforme entre las diferentes procedencias, mientras que existen claras diferencias entre sitios de ensayo. Las últimas mediciones constatan
los resultados anteriores, si bien aumenta la diferencia en altura entre los pinos de Tordesillas y el resto; y los pinos de Nava del Rey igualan a los de Pollos.

Figura 5.26. Alturas medias a diferentes edades (a los 5, 8, 10 y 14 años de edad con intervalos de confianza del 95%) de las plantas de las nueve procedencias en los seis sitios del ensayo comparativo de material forestal de reproducción de *Pinus pinea*.

En resumen, como se puede apreciar en la Figura 5.27, las diferencias en la altura total entre los pinos de distintas procedencias son mínimas, siendo la principal fuente de variabilidad las características del sitio en donde crecen las plantas.
Resultados y discusión

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

Diámetro basal (Db)

Para el diámetro basal Db o diámetro a la altura del suelo también resulta el sitio de ensayo el principal factor de variación, al explicar el 50% de la variabilidad de esta variable dasométrica. La influencia de la réplica (bloque completo) anidada al sitio también es significativa (12,6%). Sin embargo, ni la procedencia de la planta ni la interacción entre sitio de ensayo y procedencia afectan significativamente al diámetro basal de los pinos piñoneros. El error representa el 36,2 % del modelo. (Tabla 5.9 y 5.10, Figura 5.28).

![Figura 5.27. Promedio de las alturas de los árboles de cada procedencia en cada sitio de ensayo.](image)

| Tabla 5.9. Características del GLM para el diámetro basal (Db). |
|------------------|-----------|----------|-----------|-----------|
| R-cuadrado | Coef. Var | Raíz MSE | Db medio (cm) |
| 0,64 | 18,6% | 3,2 | 17 |

1 Nava del Rey
3 Tordesillas
4 Berceruelo
5 Bercero
6 Becilla de V.
7 Pollos
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Figura 5.28. Porcentaje de influencia en la variabilidad en diámetro basal *Db* de *Pinus pinea* de cada factor evaluado. Ensayo de rodales Meseta Norte.

Tabla 5.10. Análisis de la varianza para el diámetro basal (Db) de *Pinus pinea*. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados (tipo I)</th>
<th>g.l.</th>
<th>Cuadrado medio</th>
<th>Valor F</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio</td>
<td>20.277,27</td>
<td>5</td>
<td>4.055,45</td>
<td>400,66</td>
<td><0,0001</td>
</tr>
<tr>
<td>Réplica (sitio)</td>
<td>5.104,76</td>
<td>42</td>
<td>121,54</td>
<td>12,01</td>
<td><0,0001</td>
</tr>
<tr>
<td>Procedencia</td>
<td>138,42</td>
<td>8</td>
<td>17,30</td>
<td>1,71</td>
<td>0,0917</td>
</tr>
<tr>
<td>Sitio*Procedencia</td>
<td>410,91</td>
<td>40</td>
<td>10,27</td>
<td>1,01</td>
<td>0,4456</td>
</tr>
<tr>
<td>Error</td>
<td>14.686,90</td>
<td>1.451</td>
<td>10,12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40.618,25</td>
<td>1.546</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Al igual que para la altura, la interacción entre la procedencia de la planta y el lugar en donde crece no es significativa. Es decir, que en cada sitio las diferencias entre procedencias se mantienen. Así que, dado que en este caso el factor procedencia tampoco resulta estadísticamente significativo, independientemente de la procedencia del piñón, los pinos desarrollan más o menos diámetro basal fundamentalmente en función de las características de la estación en que se encuentran.
Resultados y discusión

En la Tabla 5.11 se pueden apreciar los diámetros basales medios para cada sitio de ensayo.

Tabla 5.11. Medias de mínimos cuadrados de los diámetros basales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95%, para cada sitio del ensayo de procedencias de la Meseta Norte. Unidades en centímetros.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Medias de mínimos cuadrados (cm)</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nava del Rey</td>
<td>17,7</td>
<td>17,3</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>23,9</td>
<td>23,5</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>11,4</td>
<td>11,0</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>16,5</td>
<td>16,1</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>15,5</td>
<td>15,1</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>17,9</td>
<td>17,6</td>
</tr>
</tbody>
</table>

Ya se expuso anteriormente el alto grado de correlación entre la altura y el diámetro por lo que, según lo esperado, la distribución por orden de magnitud de los diámetros basales con los sitios de ensayo coincide con la que siguieron las alturas y su justificación se entiende que es la misma, la cual atiende básicamente a las características del suelo.

De este modo, como se puede observar en la Figura 5.30, los mayores diámetros a ras de suelo los encontramos en la parcela de Tordesillas, superando algunos incluso los 40 cm (Figura 5.29). Con grosores sustancialmente menores se hallan los pinos de Nava del Rey y Pollos, entre los cuales no existen diferencias significativas. Les siguen, por este orden, los árboles de las parcelas de Bercero, Becilla de Valderaduey y, muy por debajo, Berceruelo.

Figura 5.29. Ejemplar de 14 años de edad de *Pinus pinea* en la parcela de Tordesillas. Uno de los más gruesos del ensayo de rodales Meseta Norte.
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Figura 5.30. Medias de mínimos cuadrados de los diámetros normales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95%, para cada sitio del ensayo de procedencias de la Meseta Norte. (Medias sin ninguna letra en común son significativamente distintas con un nivel de significación de 0,05).

Diámetro normal (Dn)

El diámetro normal *Dn* (a 1,30 m desde el suelo) medio de todos los pinos del ensayo es de 9 cm. En la variabilidad de este valor influye fundamentalmente el sitio en donde se encuentra la planta (45,1%). La réplica vinculada al sitio también tiene un impacto significativo en esta variable (12%), al igual que la procedencia, aunque la influencia de esta última es mínima.

Por el contrario, la interacción entre sitio de ensayo y procedencia tampoco resulta significativa para esta variable dasométrica. El error supone el 41,3 % del modelo. (Tablas 5.12 y 5.13, Figura 5.31).

Tabla 5.12. Características del GLM para el diámetro normal (Dn).

<table>
<thead>
<tr>
<th>R-cuadrado</th>
<th>Coef. Var</th>
<th>Raíz MSE</th>
<th>Dn medio (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,59</td>
<td>26,4%</td>
<td>2,4</td>
<td>9 cm</td>
</tr>
</tbody>
</table>
El \(D_n \) muestra una relación directa muy alta con el \(D_b \), de ahí resulta que los diámetros normales se ordenan de mayor a menor por sitios de ensayo de igual forma que en los casos anteriores. Así, en la parcela de Tordesillas los pinos tienen los mayores grosores de fuste a la altura del pecho, superando muchos los 15 cm. En torno a los 9 cm de \(D_n \) se encuentran los pinos de Nava del Rey, Bercero y Pollos, entre los cuales no hay diferencias significativas. Con valores inferiores aparecen las plantas del sito de ensayo de Becilla de Valderaduey, mientras que los diámetros normales más pequeños son los de los pinos de las cuestas de Beceruelo, donde muchos ni siquiera alcanzan la altura de 1,30 m. (Tabla 5.14, Figura 5.32).
Tabla 5.14. Medias de mínimos cuadrados de los diámetros normales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95%, para cada sitio del ensayo de procedencias de la Meseta Norte. Unidades en centímetros.

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Medias de mínimos cuadrados (cm)</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nava del Rey</td>
<td>9,0</td>
<td>8,7</td>
</tr>
<tr>
<td>2. Tordesillas</td>
<td>14,2</td>
<td>13,9</td>
</tr>
<tr>
<td>3. Berceruelo</td>
<td>5,7</td>
<td>5,4</td>
</tr>
<tr>
<td>4. Bercero</td>
<td>9,3</td>
<td>9,0</td>
</tr>
<tr>
<td>5. Becilla de Valderaduey</td>
<td>7,8</td>
<td>7,5</td>
</tr>
<tr>
<td>6. Pollos</td>
<td>9,4</td>
<td>9,1</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>9,6</td>
<td>9,6</td>
</tr>
</tbody>
</table>

Figura 5.32. Medias de mínimos cuadrados de los diámetros normales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95%, para cada sitio del ensayo de procedencias de la Meseta Norte. (Medias sin ninguna letra en común son significativamente distintas con un nivel de significación de 0,05).

Aunque la influencia de la procedencia en la variabilidad del diámetro normal se considera mínima, sí que resulta significativa. Habrá que valorar estas, ahora insignificantes, diferencias de diámetros entre procedencias en mediciones futuras. A continuación (Tabla 5.15, Figura 5.33) se muestran las medias de mínimos cuadrados de los diámetros normales para cada procedencia.

Existe una estrecha relación entre el diámetro y la altura, por lo que el orden de procedencias según sus diámetros normales es similar al que seguían para el caso
de la altura. Toro es la procedencia cuyos pinos presentan uno diámetros normales mayores, seguida de Íscar y Tordesillas, entre cuyos diámetros no existe diferencia significativa con los de Pesquera de Duero, Aldeamayor de San Martín, Quintanilla de Onésimo o La Parrilla. Con diámetros algo inferiores, aunque no significativamente distintos, se encuentran los pinos de las procedencias de Cogeces de Íscar y Portillo.

Tabla 5.15. Medias de mínimos cuadrados de los diámetros normales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95% para cada procedencia. Ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Medias de mínimos cuadrados (cm)</th>
<th>Límites de confianza (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tordesillas</td>
<td>9,3</td>
<td>9,0</td>
</tr>
<tr>
<td>2. Pesquera de Duero</td>
<td>9,1</td>
<td>8,7</td>
</tr>
<tr>
<td>3. Íscar</td>
<td>9,6</td>
<td>9,2</td>
</tr>
<tr>
<td>4. Aldeamayor de San Martín</td>
<td>9,2</td>
<td>8,8</td>
</tr>
<tr>
<td>5. Quintanilla de Onésimo</td>
<td>9,2</td>
<td>8,8</td>
</tr>
<tr>
<td>6. Cogeces de Íscar</td>
<td>9,0</td>
<td>8,6</td>
</tr>
<tr>
<td>7. La Parrilla</td>
<td>9,1</td>
<td>8,7</td>
</tr>
<tr>
<td>8. Portillo</td>
<td>8,8</td>
<td>8,4</td>
</tr>
<tr>
<td>9. Toro (Zamora)</td>
<td>9,8</td>
<td>9,5</td>
</tr>
</tbody>
</table>

Figura 5.33. Medias de mínimos cuadrados de los diámetros normales de *Pinus pinea* a la edad de 14 años y sus intervalos de confianza al 95% para cada procedencia. Ensayo de rodales Meseta Norte. (Medias sin ninguna letra en común son significativamente distintas con un nivel de significación de 0,05).
5.3.3. Presencia de bifurcación de los fustes

Para analizar proporción de árboles con bifurcación, pérdida de dominancia apical o división del fuste se utilizó un análisis log-lineal, con el objetivo de comprobar si la ramificación del fuste tiene alguna relación con la procedencia de las plantas o con el sitio de ensayo.

Como se aprecia en la Tabla 5.16, sólo parece relevante la interacción de la bifurcación con el sitio de ensayo, ya que para el resto de factores el grado de significación (p-valor del estadístico) es mayor que el nivel de significación establecido (normalmente 0,05) (Rodríguez y Mora, 2001).

Tabla 5.16. Análisis de las interacciones para las siguientes variables: 1=Sitio, 2=Réplica, 3=Procedencia y 4=Bifurcación.

<table>
<thead>
<tr>
<th>Factores g.l.</th>
<th>Asoc. Parc. g.l.</th>
<th>Asoc. Parcial p</th>
<th>Asoc. Marginal g.l.</th>
<th>Asoc. Marginal p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3.434</td>
<td>0.633</td>
<td>3.433</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1.284</td>
<td>0.989</td>
<td>1.284</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0.960</td>
<td>0.998</td>
<td>0.960</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>595.031</td>
<td>0.000</td>
<td>595.031</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>5.245</td>
<td>1.000</td>
<td>5.279</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>3.431</td>
<td>1.000</td>
<td>3.305</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>40.552</td>
<td>0.000</td>
<td>40.516</td>
</tr>
<tr>
<td>23</td>
<td>56</td>
<td>4.205</td>
<td>1.000</td>
<td>4.152</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>2.193</td>
<td>0.948</td>
<td>2.230</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>5.204</td>
<td>0.736</td>
<td>5.073</td>
</tr>
<tr>
<td>123</td>
<td>280</td>
<td>31.260</td>
<td>1.000</td>
<td>27.121</td>
</tr>
<tr>
<td>124</td>
<td>35</td>
<td>23.259</td>
<td>0.936</td>
<td>20.900</td>
</tr>
<tr>
<td>134</td>
<td>40</td>
<td>33.307</td>
<td>0.764</td>
<td>30.695</td>
</tr>
<tr>
<td>234</td>
<td>56</td>
<td>32.600</td>
<td>0.995</td>
<td>30.534</td>
</tr>
</tbody>
</table>

El lugar donde habitan las plantas resulta significativo a la hora de que estas desarrollen fustes ramificados. Así, parece que hay dos grupos bien diferenciados, por un lado los sitios 1, 3 y 4, donde los pies bifurcados superan el 22% del total y por otro, el resto de sitios de ensayo en donde éstos apenas llegan al 9% (Tabla 5.17).
Tabla 5.17. Tabla de contingencia para la interacción *Sitio de ensayo* *Bifurcación*.

<table>
<thead>
<tr>
<th>Sitio de ensayo</th>
<th>Fuste único</th>
<th>Varios fustes</th>
<th>Total árboles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nava del Rey</td>
<td>205</td>
<td>59</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>78%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>182</td>
<td>63</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>74%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>204</td>
<td>59</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>78%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>5. Bercero</td>
<td>225</td>
<td>21</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>91%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>227</td>
<td>19</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>7. Pollos</td>
<td>259</td>
<td>24</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1302</td>
<td>245</td>
<td>1547</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estadístico</th>
<th>Chi-cuadrado</th>
<th>g.l.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-cuadrado</td>
<td>68.392</td>
<td>5</td>
<td>0.00000</td>
</tr>
<tr>
<td>M-L Chi-cuadrado</td>
<td>70.445</td>
<td>5</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Dentro estos dos grupos, no existen diferencias significativas entre sitios de ensayos, no siendo significativa la interacción *sitio*bifurcación si se realiza el análisis por separado. Pero si agrupamos estos sitios en esas dos clases, sí que resulta estadísticamente significativa esta interacción, presentando una clara mayor tendencia a la bifurcación los pinos plantados en estaciones como las de Nava del Rey, Tordesillas o Berceruelo (Tabla 5.18), donde más del 20% de los pies constan de varios fustes.
De este análisis se deduce, que no existen procedencias de plantas con mayor tendencia a la bifurcación del fuste que otras, sino que esto se ha visto relacionado con el sitio de ensayo. Por lo que la presencia de fustes malformados o pinos con portes en candelabro parece estar relacionada con las características de la estación. No está claro cómo pueden afectar las características edáficas del sitio a este hecho, pero sí puede ser debido a los diferentes acontecimientos naturales que hayan sufrido esas masas, como pueden ser sequías, vendavales o ataques de plagas como *Rhyacionia buoliana*, que han podido causar la pérdida de yemas terminales y por consiguiente el desarrollo de yemas adventicias (Vicente *et al.*, 2008; Muñoz *et al.*, 2011).

<table>
<thead>
<tr>
<th>Tabla 5.18. Tabla de contingencia para la interacción Sitio de ensayo * Bifurcación.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase (Sitio de ensayo)</td>
</tr>
<tr>
<td>1. (Nava del Rey, Tordesillas y Berceruelo)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. (Bercero, Becilla de Valeraduey y Pollos)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Estadístico</td>
</tr>
<tr>
<td>Pearson Chi-cuadrado</td>
</tr>
<tr>
<td>M-L Chi-cuadrado</td>
</tr>
<tr>
<td>Yates Chi-cuadrado</td>
</tr>
<tr>
<td>McNemar Chi-cuadrado (A/D)</td>
</tr>
<tr>
<td>(B/C)</td>
</tr>
</tbody>
</table>
6. Clareo de las parcelas de ensayo

6.1. Propuesta de clareo de las parcelas del ensayo

Uno de los objetivos de este trabajo fue el diseño y propuesta de un clareo de las parcelas de ensayo, puesto que en el momento actual, en el que los pinos tienen 14 años de edad, presentan una densidad excesiva para el tamaño de los árboles, produciéndose en muchos sitios tangencia de copas. Este clareo debe realizarse de forma que el experimento no pierda rigor estadístico y pueda prolongarse en el tiempo.

El marco de plantación que se utilizó es de aproximadamente 4 × 4 m, con unidades experimentales de 4 plantas de la misma procedencia en línea, es decir una densidad de 625 plantas/ha, la cual se considera excesiva para el desarrollo óptimo de los pinos y por tanto se pretende reducir mediante una corta sistemática al tresbolillo a la mitad.

Se propone, por tanto, realizar un clareo sistemático al tresbolillo, de manera que el marco de plantación de 4 × 4 m se ampliará a 8 m de distancia entre árboles de la misma fila y a 5,7 m en diagonal con los de las filas vecinas; reduciéndose la densidad de 625 a 312 plantas/ha.

En los planos y croquis que se adjuntan se indica que árboles se han de dejar y cuales se cortarán. Este clareo está previsto que se realice en el otoño de 2013.

A la hora de seleccionar los árboles a cortar se ha priorizado el hecho de no perder ninguna unidad experimental, de forma que todas las procedencias queden representadas en cada bloque completo y se ha intentado hacer coincidir el mayor número posible de árboles a cortar con las marras existentes (Tabla 6.1).

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Nº árboles por procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1. Nava del Rey</td>
<td>14</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>11</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>13</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>15</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>14</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
</tr>
</tbody>
</table>
Durante la realización de los trabajos selvícolas en campo se ha de ser riguroso a la hora de cortar los árboles, ya que es fundamental cortar exactamente los pies seleccionados. Para facilitar esta tarea se realizó a mediados de junio de 2013 un señalamiento en campo de los pies a cortar, en el cual se han incluido también las filas de borde, a las que se aplica el mismo tipo de corta.

El apeo de los árboles señalados se realizará manualmente mediante motosierra. Además, se realizará una poda de las ramas de los pies que se dejen siguiendo el siguiente criterio: sólo se podarán los pinos que superen los 3 m de altura y en éstos la poda del fuste será de aproximadamente 1/3 de su altura, no superándose nunca los 2 m. En el caso de pies bifurcados se dejará solo el fuste principal. Este criterio es el que se aplica en la selvicultura de Pinus pinea en los primeros clareos.

Se agruparán los fustes cortados y las leñas resultantes (d > 6 cm) para el aprovechamiento vecinal, y los restos finos y ramera se acordonarán para su posterior trituración en las calles diagonales que quedarán tras el clareo cuando el ancho entre filas no sea suficiente para que el tractor pueda pasar sin dañar a los pinos remanentes.

La estimación de la biomasa que se obtendrá de este clareo (árboles del ensayo + filas de borde) se ha calculado a partir de unos valores de referencia por especie y clase diamétrica de CESEFOR (Tabla 6.2):

Tabla 6.2. Estimación de la biomasa al 50% de humedad resultante del clareo de las parcelas del ensayo de rodales Meseta Norte.

<table>
<thead>
<tr>
<th>Parcela</th>
<th>Dn medio (cm)</th>
<th>Árboles a cortar</th>
<th>Biomasa_H50% / árbol (kg)</th>
<th>Biomasa a extraer (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ensayo</td>
<td>Borde</td>
<td>Total</td>
</tr>
<tr>
<td>1. Nava del Rey</td>
<td>9</td>
<td>133</td>
<td>35</td>
<td>168</td>
</tr>
<tr>
<td>3. Tordesillas</td>
<td>14</td>
<td>123</td>
<td>35</td>
<td>158</td>
</tr>
<tr>
<td>4. Berceruelo</td>
<td>6</td>
<td>129</td>
<td>46</td>
<td>175</td>
</tr>
<tr>
<td>5. Bercero</td>
<td>9</td>
<td>120</td>
<td>65</td>
<td>185</td>
</tr>
<tr>
<td>6. Becilla de Valderaduey</td>
<td>8</td>
<td>120</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>7. Pollos</td>
<td>9</td>
<td>140</td>
<td>33</td>
<td>173</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2. Croquis y planos de la propuesta de clareo de las parcelas del ensayo de procedencias de pino piñonero (*Pinus pinea*) de la Meseta Norte.

A continuación se adjuntan los planos y croquis de cada parcela de ensayo, en los cuales se indica exactamente qué árboles se han de cortar y cuales permanecerán en el experimento.

Leyenda:

- ☐ Árboles a cortar
- **M** Marras
- nº Procedencia de la planta (1-9)
- Nº Bloque completo (1-8)
1. NAVA DEL REY: Cuartel C, Tramo I. Monte nº 17 de U.P.

<table>
<thead>
<tr>
<th>Bloque</th>
<th>Nº árboles por procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Marras = 24
M = 11

Árboles que se dejarán en la parcela de ensayo 1.
Claro de las parcelas de ensayo

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

Información cartográfica

Fecha prevista: otoño de 2013
3. TORDESILLAS: Antiguo vivero, Parcela 18, Monte nº 67 de U.P.

<table>
<thead>
<tr>
<th>Bloque</th>
<th>N° árboles por procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
</tr>
</tbody>
</table>

Marras = 43
M = 21

Árboles que se dejarán en la parcela de ensayo 3.
PROPOSTA DE CLAREO DE LAS PARCELAS DEL ENSAYO DE PROCEDENCIAS DE PINO PIÑONERO (Pinus pinea).

Parcela: 3. TORDESILLAS

Fecha prevista: otoño de 2013

Información cartográfica

Leyenda cartográfica

Mojones de la parcela de ensayo
Arbolados a cortar
Ferminero de la parcela de ensayo

Universidad de Valladolid (Campus de Palencia) - E.T.S. de Ingenierías Agrarias
Titulación: Máster en Ingeniería de Montes
Diferenciación ecológica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
Claro de las parcelas de ensayo

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA) - E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

PRORROGAS Instituto Experimental de Casariego de Castilla y León
Formación docente - Año 2013
Crónica de experimento: PRORA 1158
Líneadas. Metros
Frecuencias: ETRS 1999 UTM Zone 30N
Información cartográfica

LEYENDA CARTOGRAFICA
Perímetro de la parcela de ensayo
Molinos de la parcela de ensayo
Márgenes
Árboles a cortar

PROYECCION: UTM ETRS 1999
ZONA: 30N
PROCEDENCIAS DE PINO PIÑERO (Pinus pinaster)

Fecha prevista: año de 2013
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

5 Bercero: Polígono 13, Parc. 552. Monte nº 138 de U.P.

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 8 | 1 | 3 | 5 | 2 | | | | | | | | | | | | | | | | | | |
| 2 | 2 | 8 | 1 | 3 | **M** | 2 | **M** | **M** | 8 | 1 | 6 | 7 | 6 | 1 | 3 | | | | | | | | | |
| 3 | **M** | **M** | 1 | 3 | 5 | **M** | 9 | 8 | 1 | 6 | 7 | 6 | 1 | 3 | 5 | 7 | 9 | 8 | 4 | 2 | 3 | 7 | 8 | |
| 4 | 2 | 8 | 1 | 3 | 5 | 2 | **M** | 9 | 8 | 1 | 6 | **M** | 6 | 1 | 3 | 5 | 7 | 9 | 8 | 4 | 2 | 3 | 7 | 8 |
| 5 | 3 | 6 | 4 | 3 | **M** | 8 | **M** | 9 | 8 | 1 | 6 | 7 | 6 | **M** | 3 | 5 | 7 | 9 | 8 | 4 | 2 | 3 | 7 | 8 |
| 6 | 3 | 6 | **M** | 3 | 7 | 8 | 6 | 9 | 2 | 1 | 5 | 4 | 5 | **M** | 6 | 5 | 7 | **M** | 8 | 4 | 2 | **M** | **M** | 8 |
| 7 | 3 | 6 | **M** | 3 | 7 | 8 | 6 | **M** | **M** | 1 | 4 | 5 | **M** | 6 | 9 | **M** | **M** | **M** | 4 | 7 | 5 | 2 | 1 | |
| 8 | 3 | 6 | **M** | 3 | 7 | **M** | 6 | 9 | 2 | 1 | 5 | 4 | 8 | 6 | 9 | 3 | 1 | M | 4 | 7 | 5 | 2 | 1 | |
| 9 | **M** | 9 | 5 | 9 | 3 | 1 | 6 | 9 | 2 | 1 | 5 | 4 | 5 | 3 | 2 | 1 | 4 | 7 | 5 | 2 | 1 | | |
|10 | 7 | 9 | 5 | 9 | 3 | 1 | 7 | 2 | 4 | 8 | 5 | 6 | 2 | 7 | 6 | 9 | 3 | 2 | 1 | 4 | 7 | 5 | 2 | 1 |
|11 | 7 | 9 | 5 | 9 | 3 | 1 | 7 | **M** | 4 | 5 | 6 | 2 | 7 | 6 | 8 | 1 | 9 | 5 | **M** | 4 | 6 | 4 | 9 | |
|12 | **M** | 9 | 5 | 9 | 3 | 1 | 7 | 2 | 4 | 8 | 5 | 6 | 2 | **M** | 6 | 8 | 1 | 9 | 5 | 3 | **M** | **M** | 6 | 9 |
|13 | 7 | 2 | 4 | 8 | 5 | **M** | 2 | 7 | 6 | 8 | **M** | **M** | **M** | **M** | 3 | 4 | 6 | 4 | 9 | | | | | |
|14 | 8 | 1 | 9 | 5 | 3 | 4 | **M** | 4 | 9 | | | | | | | | | | | | | | | |

Marras = 43

M = 24

Bloques completos (réplicas)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
1	2	5																							
2	3	6																							
3	4	7																							

Árboles que se dejarán en la parcela de ensayo 5.

<table>
<thead>
<tr>
<th>Bloque</th>
<th>N° árboles por procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>
Claro de las parcelas de ensayo

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA) - E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes

Fecha prevista: otoño de 2013
6 Becilla de Valderaduey: Polígono 3, Parcela 66

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>M</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>M</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>M</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>M</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>M</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>M</td>
<td>M</td>
<td>8</td>
<td>6</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>M</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>M</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>M</td>
<td>M</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>M</td>
<td>M</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>M</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>M</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>M</td>
<td>M</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>M</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>M</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>M</td>
<td>M</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>M</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>M</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>M</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>6</td>
<td>M</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>M</td>
<td>4</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>M</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>M</td>
<td>4</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>M</td>
<td>5</td>
<td>8</td>
<td>M</td>
<td>M</td>
<td>5</td>
<td>6</td>
<td>M</td>
<td>M</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Marras = 42
M = 24

<table>
<thead>
<tr>
<th>Árboles que se dejarán en la parcela de ensayo 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

7 Pollos: Polígono 6, Parcela 33.

<table>
<thead>
<tr>
<th>Bloque</th>
<th>Nº árboles por procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Marras = 5
M = 4

Árboles que se dejarán en la parcela de ensayo 7.
PROPUESTA DE CLAREO DE LAS PARCELAS DEL ENSAYO DE PROCEDENCIAS DE PINO PIÑONERO (Pinus pínea).

Parcela: 7. POLLOS

Fecha prevista: otoño de 2013
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
7. CONCLUSIONES

En consecuencia con lo anteriormente expuesto, las conclusiones más relevantes que se pueden extraer de este estudio sobre el ensayo de procedencias de rodales selectos de *Pinus pinea* de la región de procedencia *Meseta Norte* son las siguientes:

1. El análisis de los resultados obtenidos a los catorce años de edad del ensayo comparativo de materiales forestales de reproducción, enmarcado en el Programa de Mejora Genética de *Pinus pinea* de la Junta de Castilla y León, confirma las conclusiones obtenidas a los siete años.

2. Desde que se estableció el ensayo en 1998 sólo se han perdido 182 pinos, apenas el 11% del total, produciéndose la mayoría de las marras en los críticos primeros años. El sitio de ensayo con mayor éxito de supervivencia es el de Pollos (98%), mientras que los peores han sido los de Tordesillas, Bercero y Becilla de Valderaduey (85%). No se apreció diferenciación entre rodales selectos que haga recomendable un uso diferente de su material forestal de reproducción según la litología de la estación de plantación.

3. Se han constatado unos valores de diámetros y alturas muy uniformes dentro de cada sitio de ensayo. Los mayores pinos son los de la parcela de Tordesillas (Db= 24 cm; Dn = 14 cm; H = 526 cm) y los que menos se han desarrollado los de las cuestas de Berceruelo (Db = 11 cm; Dn = 6 cm; H = 266 cm).

4. Existe una correlación directa juvenil-adulto, aumentándose las diferencias en alturas entre sitios a lo largo del tiempo, excepto para la parcela de Pollos, donde tras unos crecimientos iniciales similares a los de Tordesillas, los pinos se han estancado, igualándose a los de Nava del Rey.

5. Existe una fuerte correlación entre el diámetro basal y el diámetro normal ($r = 0.98$) y entre éste y la altura total ($r = 0.97$).

6. El sitio de ensayo es la principal fuente de variación en las variables dasométricas estudiadas: altura total H (60%), diámetro basal Db (50%) y diámetro normal Dn (45%). Resulta también estadísticamente significativa la variación entre bloques dentro de cada sitio de ensayo (12%) y de la procedencia (sólo para H y Dn), aunque ésta última es tan débil (<1%) que tiene poca relevancia en la realidad.
7. En ningún caso ha resultado significativa estadísticamente la interacción entre sitio de ensayo y procedencia. Es decir, que no hay plantas de ciertas procedencias que crezcan mejor en determinados sitios, sino que en cada sitio las diferencias entre procedencias se mantienen.

8. En los sitios de ensayo de Nava del Rey, Tordesillas y Berceruelo los pinos presentaron una mayor tendencia a la bifurcación del fuste (23% de los pinos presentó varios fustes) que en el resto de sitios (8%), sin observarse ninguna predisposición mayor a la pérdida de guía asociada a la procedencia del árbol.

9. Todos los pinos han formado estróbilos masculinos desde 11-13 años, sin embargo se han observado todavía pocas piñas femeninas concentradas en pocos árboles, sin deducirse ninguna relación con el sitio o la procedencia. Se considera pronto todavía para poder analizar los factores que pueden influir en la fructificación.

10. Es necesario realizar un clareo de las parcelas del ensayo para el correcto desarrollo de los pinos, buscando favorecer la apertura de la copa y estimular la formación temprana de piña, de forma que se mantengan todas las unidades experimentales del ensayo en el tiempo. Para ello, la corta que se debe realizar es un clareo sistemático al tresbolillo.

11. En conclusión, no se ha demostrado que exista diferenciación ecotípica para ninguno de los rodales de *Pinus pinea* de la región de procedencia *Meseta Norte* ensayados. Se constata así la alta plasticidad fenotípica de la especie y la falta de interacción genotipo-ambiente. Por ello, y vista la importancia que tiene el pino piñonero como especie forestal en las repoblaciones en Castilla y León, se ha confirmado la validez de mezclar los lotes de material forestal de reproducción de todos los rodales selectos de la R.P. *Meseta Norte*.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
8. BIBLIOGRAFÍA

BOLETÍN OFICIAL DEL ESTADO (BOE). 2009. Resolución de 28 de julio de 2009, de la Dirección General de Recursos Agrícolas y Ganaderos, por la que se autoriza y publica el Catálogo Nacional de las Regiones de Procedencia relativa a diversas especies forestales. BOE núm. 224, de 16 de septiembre.

Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

RUIZ DE LA TORRE, J. 1971. Árboles y arbustos de la España Peninsular. ETSIM-UPM, Madrid.

Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero

UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS

Titulación: Máster en Ingeniería de Montes
9. ANEJOS

9.1. Propuesta de Condicionado Técnico de la propuesta de clareo de las parcelas del ensayo de procedencias de pino piñonero (*Pinus pinea*) de la Meseta Norte.

TÍTULO PRELIMINAR: OBJETO Y ALCANCE DEL CONDICIONADO

CAPÍTULO ÚNICO: OBJETO DEL CONDICIONADO

Cláusula 1. Se consideran sujetas a las condiciones de este Condicionado todas las obras referentes al clareo de los rodales de ensayo, cuyas características y planos se adjuntan en la presente Memoria.

Cláusula 2. La presente Propuesta de Condicionado Técnico constituye el conjunto de instrucciones para el desarrollo de las obras de la Propuesta de referencia buscando la máxima calidad, eficacia y seguridad de los trabajadores, y contiene las condiciones técnicas mínimas referentes a mano de obra, materiales y maquinaria y los detalles de ejecución.

Cláusula 3. Igualmente se establecen las consideraciones relativas al suelo y vegetación existente, indicando su tratamiento.

TÍTULO I: MANO DE OBRA

CAPÍTULO I: CUADRILLA DE TRABAJOS

Cláusula 4. Los trabajos objeto del proyecto se realizarán empleando el personal adecuado y suficiente para cada una de las operaciones recogidas en la memoria. En este caso se empleará una cuadrilla compuesta por un capataz y seis peones. Los trabajadores deberán ser mayores de edad (de acuerdo con el artículo 6 del Estatuto de los Trabajadores, art. 27 de la Ley de Prevención de Riesgos Laborales y Decreto 26 de julio de 1957 por el que se regulan en el grupo II – industrias forestales- los trabajos prohibidos a los menores de edad). El personal se agrupará en cuadrillas.

Cláusula 5. El capataz deberá contar con la correspondiente titulación o/y con suficiente experiencia y competencia en la realización de trabajos forestales, así como capacidad de mando sobre el personal a él encargado y disposición para entender las instrucciones que se le indiquen y hacer que se cumplan. En este sentido, será condición indispensable que sepa hablar y escribir en castellano. Al inicio de la obra o al cambiar de capataz, todos los requisitos mencionados deberán ser acreditados ante la Dirección Facultativa.
Cláusula 6. Los peones deberán tener suficiente formación, habilidad y destreza en la realización de trabajos forestales, así como en el manejo adecuado de las herramientas propias de los trabajos asignados. Será condición indispensable, por razones de seguridad y prevención de riesgos laborales, que sepan hablar y entender el castellano.

Cláusula 7. El personal adscrito a la cuadrilla deberá ser contratado con carácter permanente por el Régimen General de la Seguridad Social y respetar el Convenio Colectivo para el sector de Actividades Forestales de la Comunidad de Castilla y León.

CAPÍTULO II: MAQUINISTAS

Cláusula 8. Para todas las operaciones en las que sea necesario el empleo de maquinaria, el Contratista deberá atenderlas con personal suficientemente cualificado y experimentado.

Cláusula 9. En todo caso, los maquinistas tendrán en cuenta las instrucciones señaladas por la Dirección Facultativa, en concreto las relativas a la realización de trabajos, respeto a determinados ejemplares o masas vegetales de especial importancia, horarios de trabajo y evitación de contaminaciones, en concreto en las labores de mantenimiento de la maquinaria adscrita a la obra.

CAPÍTULO III: PREVENCIÓN DE RIESGOS LABORALES

Cláusula 10. En todo lo referente a la Seguridad y Salud se estará a lo establecido en el Plan de Seguridad y Salud de la obra, y en la ejecución de las obras se seguirán todos los procedimientos estipulados en el R.D. 1627/97. Dicho Plan de Seguridad y Salud deberá ser entregado por la Empresa Adjudicataria y aprobado por la Administración obligatoriamente antes del comienzo de la obra.

Cláusula 11. Cuando el Contratista o las personas de él dependientes incurran en actos u omisiones que comprometan o perturben la buena marcha de las obras, o conlleven el incumplimiento del programa de trabajo o del Plan de Seguridad y Salud, la Dirección Facultativa podrá exigirle la adopción de medidas concretas y eficaces para conseguir o restablecer el buen orden en la ejecución de la obra.

Cláusula 12. Igualmente, cuando a juicio del Coordinador de Seguridad y Salud un trabajador incumpla las condiciones mínimas exigibles en cuanto a seguridad y salud, sin perjuicio de aquellas recogidas en convenios u otras estipulaciones de carácter general, el Coordinador lo pondrá en conocimiento del Contratista para que lleve a cabo las medidas oportunas según la normativa en materia de Trabajo.

Cláusula 13. Los contratistas y subcontratistas, es decir, la empresa principal y las empresas concurrentes según el RD. 171/2004, de 30 de enero, por el que se desarrolla el artículo 24 de la Ley 31/1995, de 8 de noviembre, de Prevención de...
riesgos Laborales, en materia de coordinación de actividades empresariales, serán responsables de la ejecución correcta de las medidas preventivas fijadas en el Plan de Seguridad y Salud en lo relativo a las obligaciones que les corresponden a ellos directamente o en su caso a los trabajadores autónomos por ellos contratados.

Además, los contratistas y subcontratistas, es decir, empresa principal y empresas concurrentes según el RD 171/2004, responderán solidariamente de las consecuencias que se deriven del incumplimiento de las medidas previstas en el Plan, en los términos del apartado 2 del artículo 42 de la Ley de Prevención de Riesgos Laborales.

Cláusula 14. El Contratista deberá suministrar a todos los trabajadores adscritos a la obra, desde el primer día, Equipos de Protección Individual (EPI) adecuados para la realización de las distintas labores que se engloban en la Memoria. El Director de Obra o el Coordinador de Seguridad y Salud podrán solicitar la renovación inmediata de cualquiera de los elementos del EPI cuando detecten que por deterioro o por sus características no cumple con las solicitaciones exigidas del riesgo a proteger. Los Equipos de Protección Individual deberán estar homologados y contar con la certificación correspondiente acreditada por el fabricante, que será entregada al Coordinador de Seguridad y Salud. Cada Equipo de Protección Individual estará compuesto, como mínimo, de:

- **Equipo de Protección Individual para trabajos selvícolas en los que no se utiliza máquina:**
 - Par de botas de seguridad con puntera reforzada, con sujeción al tobillo, fabricadas en material impermeable y suela antideslizante, que cumpla, como mínimo, las siguientes normas:
 - UNE-EN ISO 20345: Calzado de seguridad.
 - UNE-EN ISO 20347: Calzado de trabajo.
 Como mínimo el calzado será de Categoría S3, según norma, con sus requisitos adicionales correspondientes, que son:
 - Resistencia a la perforación.
 - Suela con resaltes.
 - Zona de tacón cerrada.
 - WRU: penetración y absorción de agua.
 - A: Propiedades antiestáticas.
 - E: absorción de energía en la zona del tacón.
 - Gafas de seguridad contra impactos que deberán cumplir al menos la siguiente normativa:
 - UNE-EN 166:2002: Protección individual de los ojos. Requisitos adicionales: interior antivaho, exterior resistente a arañazos y protección de los rayos UVA y UVB.
A los trabajadores que utilicen gafas graduadas, se les proporcionarán gafas de protección compatibles con sus gafas o bien se les proporcionarán gafas de protección graduadas.
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

- Casco de seguridad, con categoría II de protección, fabricado en material plástico, con barbuquejo, y antisudatorio frontal. Deberá cumplir, al menos, la norma:

- Protectores auditivos, en caso de ambientes ruidosos:

- Par de guantes de trabajo, fabricados en cuero, que deberán cumplir, al menos, las siguientes normas:

- **Equipo de Protección Individual para trabajos selvícolas en los que se utiliza motosierra:**

 - Par de botas de seguridad con puntera reforzada, con sujeción al tobillo, fabricadas en material impermeable y suela antideslizante, que cumpla, como mínimo, las siguientes normas:
 - UNE-EN ISO 20345: Calzado de seguridad.
 - UNE-EN ISO 20347: Calzado de trabajo.

 Como mínimo el calzado será de Categoría **S3**, según norma, con sus requisitos adicionales correspondientes, que son:
 - Resistencia a la perforación.
 - Suela con resaltes.
 - Zona de tacón cerrada.
 - WRU: penetración y absorción de agua.
 - A: Propiedades antiestáticas.
 - E: absorción de energía en la zona del tacón.

 - UNE-EN ISO 17249:2005: Calzado de seguridad resistente al corte por sierra de cadena.

 El nivel de protección dependerá de la velocidad de la cadena (según norma):

<table>
<thead>
<tr>
<th>Niveles de protección</th>
<th>Velocidad de la sierra (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

- Casco de seguridad, con categoría II de protección, fabricado en material plástico, preferiblemente con barbuquejo, cogotera, antisudatorio frontal,
pantalla protectora forestal y orejeras acopladas. Deberá cumplir, al menos, las siguientes normas:
 o UNE-EN 397:1995 Cascos de protección para la industria.

- Protección auditiva:

- Gafas de seguridad contra impactos que deberán cumplir al menos la siguiente normativa:
 o UNE-EN 166:2002: Protección individual de los ojos. Requisitos adicionales: interior antivaho, exterior resistente a arañazos y protección de los rayos UVA y UVB.

A los trabajadores que utilicen gafas graduadas se les proporcionarán gafas de protección compatibles con sus gafas o bien se les proporcionarán gafas de protección graduadas.

- Par de guantes de trabajo con protección anticorte, que deberá cumplir, al menos, la norma:
 o UNE-EN 381-4: Ropa de protección para usuarios de sierras de cadena accionadas a mano. Parte 4: Métodos de ensayo para guantes protectores contra sierras de cadena.
 o UNE-EN 381-7: Ropa de protección para usuarios de sierras de cadena accionadas a mano. Parte 7: Requisitos para guantes protectores contra sierras de cadena

El nivel de protección dependerá de la velocidad de la cadena (según norma):

<table>
<thead>
<tr>
<th>Niveles de protección</th>
<th>Velocidad de la sierra (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

- Peto, zahón ó pantalón protector anticorte, que deberá cumplir, al menos, las siguientes normas:

El nivel de protección dependerá de la velocidad de la cadena (según norma):
<table>
<thead>
<tr>
<th>Niveles de protección</th>
<th>Velocidad de la sierra (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

- Además, para todos los trabajos, se deberá contar con lo siguiente:
 - Ropa de trabajo de algodón, con bolsillos y cierre de cremalleras, por trabajador. Deberá ser de color vivo, perfectamente identificable en el monte.
 - Cinturón portaherramientas por trabajador.
 - Cantimplora de un litro de capacidad, realizada en aluminio, forrada con material aislante y con mosquetón de enganche, por trabajador.
 - Chaleco de alta visibilidad, por trabajador, que cumplirá como mínimo las siguientes normas:
 - Botiquín completo portátil de primeros auxilios por vehículo.
- Todos los elementos de los Equipos de Protección Individual deberán llevar el correspondiente marcado, que se colocará y permanecerá visible, legible e indeleble durante el periodo de duración previsible o vida útil del EPI (Etiquetado). Debe llevar:
 - Marcado CE.
 - Identificación del fabricante.
 - Tipo de modelo.
 - Fecha de fabricación.
 - Nacionalidad del fabricante.
 - Norma europea de aplicación.
 - Códigos de designación de la protección ofrecida.

Cláusula 15. Respecto a la señalización de las obras, se estará, con carácter general, a lo regulado en el Real Decreto 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo, particularmente en los artículos en los que dicho Real Decreto establece los criterios para el empleo de señalización (Artículo 3), cuando se ponga de manifiesto la necesidad de:
- Llamar la atención de los trabajadores sobre la existencia de determinados riesgos, prohibiciones u obligaciones.
-Alertar a los trabajadores cuando se produzca una determinada situación de emergencia que requiera medidas urgentes de protección o evacuación.
- Facilitar a los trabajadores la localización e identificación de determinados medios o instalaciones de protección, evacuación, emergencia o primeros auxilios.
- Orientar o guiar a los trabajadores que realicen determinadas maniobras peligrosas.
- Cortar caminos o pistas.
- Limitar zonas de trabajo.
- Señalar las zonas de acopio de material.

CAPÍTULO IV: FORMACIÓN DE LOS TRABAJADORES

Cláusula 16. De acuerdo con lo establecido en la ley 54/2003, de 12 de diciembre, de Reforma del Marco Normativo de la Prevención de Riesgos Laborales, el Contratista deberá garantizar que cada trabajador reciba una formación teórica y práctica, suficiente y adecuada, en materia de prevención de riesgos laborales, tanto en el momento de su contratación, cualquiera que sea la modalidad o duración de ésta, como cuando se produzcan cambios en las funciones que desempeñe o se introduzcan nuevas tecnologías o cambios en los equipos de trabajo. Asimismo, la formación deberá estar centrada específicamente en el puesto de trabajo o función de cada trabajador, adaptarse a la evolución de los riesgos y a la aparición de otros nuevos, y repetirse periódicamente si fuera necesario. La Empresa Adjudicataria deberá informar y formar a los trabajadores sobre: los riesgos a que pueden estar expuestos, el uso adecuado de los EPI y sus propiedades preventivas o protectoras, su adecuada conservación y el mantenimiento para perseverar sus características de protección.

Cláusula 17. La formación en prevención de riesgos laborales y en el resto de trabajos a efectuar se establece como requisito previo imprescindible para la buena ejecución de las obras. Los cursos deberán ser fehacientemente certificados y homologados, y podrán ser supervisados por la Administración contratante. En el caso de que se detecten graves carencias formativas, la Dirección Facultativa, a sugerencia del Coordinador de Seguridad y Salud, podrá impartirla de oficio con medios propios o ajenos. La Administración podrá impartir los cursos de forma gratuita, o a costa de la Empresa Adjudicataria, no teniendo el Contratista derecho a retribución por las horas que la Administración invierta en mejorar la formación de los trabajadores de su empresa.

TÍTULO II: MATERIALES

CAPÍTULO I: HERRAMIENTAS

Cláusula 18. El Contratista dotará a su personal de todas las herramientas necesarias para la correcta realización de los trabajos previstos en el memoria de referencia. También correrá por su cuenta su mantenimiento y reposición.
Cláusula 19. Todos los trabajos forestales se realizarán con herramientas, tanto manuales como mecánicas, propias del sector forestal: motosierra y tijeras enmangadas.

Cláusula 20. Cuando se realicen trabajos selvícolas que puedan suponer un riesgo de transmisión de enfermedades a través de las herramientas empleadas, la Dirección Facultativa podrá exigir las medidas de profilaxis y desinfección más adecuadas.

Cláusula 21. Todas las herramientas y equipos deberán tener el marcado CE y cumplir lo establecido en la legislación vigente y, en concreto, en el Real Decreto 1215/1997, de 18 de julio, sobre disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de equipos de trabajo, así como la Directiva 98/37/CE relativa a la aproximación de legislaciones de los Estados miembros sobre máquinas.

Cláusula 22. Durante el transporte, toda la herramienta deberá ser colocada y asegurada de forma tal que permita la visibilidad al conductor, no comprometa la estabilidad del vehículo, ni pueda causar riesgo para los ocupantes o terceros. De esta forma, se exige que no sea transportada en el mismo habitáculo en el que viajen personas y, en todo caso, para herramientas cortantes o punzantes debe utilizarse siempre algún tipo de protector.

CAPÍTULO II: CONDICIONES DE ÁMBITO GENERAL PARA MATERIALES

Cláusula 23. Todas las herramientas y materiales empleados en las obras que incluye esta memoria cumplirán los requisitos exigidos por la normativa oficial vigente, y habrán de reunir las condiciones mínimas que se establecen en este Condicionado Técnico según la materia. Además, se deberán seguir todas las recomendaciones e instrucciones del fabricante respecto a garantizar la seguridad de las personas y tomar toda serie de precauciones ante las actuaciones en las que pudiera existir riesgo de producirse chispas.

Cláusula 24. El Contratista tiene libertad para obtener los materiales que las obras precisen en los puntos que estime convenientes sin modificación de los precios establecidos. En estos casos, deberá notificar a la Dirección Facultativa, con suficiente antelación, la procedencia de los materiales, aportando las muestras y datos necesarios para determinar la posibilidad de su aceptación.

Cláusula 25. Todos los materiales habrán de ser de primera calidad, y podrán ser examinados antes de su empleo por la Dirección Facultativa, quien dará su aprobación o los rechazará en el caso de considerarlos inadecuados, debiendo en tal caso ser retirados de inmediato por el contratista.

Cláusula 26. En relación con cuanto se prescribe en este Condicionado acerca de las características de los materiales, el Contratista está obligado a presenciar o admitir, en todo momento, aquellos ensayos o análisis que la Dirección Facultativa juzgue...
necesario realizar para comprobar la calidad y características de los materiales empleados o que hayan de ser empleados.

Cláusula 27. Los materiales que hayan de emplearse en las obras sin que se haya especificado en este Condicionado deberán ser de primera calidad, y no podrán ser utilizados sin haber sido previamente reconocidos por la Dirección Facultativa, quien podrá admitirlos o rechazarlos según reúnan o no las condiciones que, a su juicio, sean exigibles, y sin que el Contratista tenga derecho a reclamación alguna.

Cláusula 28. El Contratista se abstendrá de hacer acopio de alguno de los materiales sin contar con la debida autorización escrita del Director de Obra. Tal autorización le será expedida una vez vistas y aceptadas las muestras de cada uno de los materiales a acopiar que el contratista queda obligado a presentar.

TÍTULO III: MAQUINARIA

CAPÍTULO I: ESPECIFICACIONES TÉCNICAS

Cláusula 29. La maquinaria será la indicada en la memoria, de acuerdo con los procesos indicados para cada unidad de obra. En todo caso, con carácter general, se establecen los siguientes mínimos:
 Tractor de ruedas:
 Potencia mínima: 100 CV.
 Aperos: desbrozadora de martillos.

CAPÍTULO II: CUESTIONES COMUNES PARA LA MAQUINARIA

Cláusula 30. El contratista queda obligado, como mínimo, a situar en las obras los equipos de maquinaria necesarios para la correcta ejecución de las mismas, según se especifica en la Memoria y de acuerdo con los programas de trabajos.

Cláusula 31. La Dirección Facultativa podrá ordenar la retirada y sustitución de maquinaria o sus aperos que no satisfagan las condiciones mínimas exigibles en la ejecución de los distintos trabajos recogidos en la Memoria. Asimismo, quedarán adscritos a la obra durante el curso de ejecución de las unidades en que deban utilizarse. En ningún caso podrán retirarse sin consentimiento de la Dirección Facultativa.

Cláusula 32. Toda la maquinaria, sus aperos y demás elementos de trabajo deberán estar en perfectas condiciones de funcionamiento, así como reunir todos los requisitos de seguridad y normalización que le sean exigibles de acuerdo con la legislación en vigor.
TÍTULO IV: MEDIOS AUXILIARES

CAPÍTULO ÚNICO: CONDICIONES GENERALES

Cláusula 33. Se consideran medios auxiliares todos aquellos útiles, herramientas, equipos o máquinas, incluso servicios, necesarios para la correcta ejecución de las distintas unidades de obra, cuyo desglose ha sido obviado en aras de una simplificación del cálculo presupuestario.

Cláusula 34. El Contratista queda obligado a poner a disposición para la ejecución de las obras todos aquellos medios auxiliares que resulten imprescindibles para la correcta ejecución de los trabajos.

Cláusula 35. Corresponderá a la Dirección Facultativa la elección de los medios auxiliares, bien a iniciativa propia o bien de entre los propuestos por el Contratista.

Cláusula 36. Cuando alguno de los medios auxiliares no respondan a las especificaciones señaladas por la Dirección Facultativa o no cumpla disposiciones de la normativa aplicable será retirado de la obra y reemplazado por uno que sí lo cumpla, sin que el Contratista tenga derecho a contraprestación alguna.

Cláusula 37. Cuando la Administración aporte al Contratista medios auxiliares para la realización de las obras, éste quedará obligado a su empleo en las condiciones que sean señaladas para su utilización, siendo responsable de su adecuado estado de conservación. En caso de medios auxiliares que deban ser devueltos a la Administración una vez finalizado su empleo, el Contratista deberá devolverlos en los plazos y lugares que se indiquen en el escrito de concesión del Jefe de Servicio Territorial o persona en quien delegue. En caso de no ser devueltos, o si su estado de conservación fuera deficiente, serán deducidos, con su precio, de la correspondiente certificación.

TÍTULO V: EJECUCIÓN

CAPÍTULO I: INTRODUCCIÓN

Cláusula 38. Todas las obras recogidas en este Memoria se ejecutarán de acuerdo con los Planos y las indicaciones de la Dirección Facultativa, quien resolverá las cuestiones que puedan plantearse en la interpretación de aquéllos y en las condiciones y detalles de la ejecución.

Cláusula 39. Antes del comienzo de las obras, el contratista presentará un programa de trabajo que será aprobado por el Órgano de Contratación, previa conformidad de la Dirección Facultativa. En él, se reflejará el orden de ejecución de las distintas unidades de obra. Como norma general, las obras se ejecutarán siguiendo dicho orden, aunque podrá ser alterado cuando la naturaleza o la marcha de las obras así lo aconseje, previa comunicación a la Dirección Facultativa y su aprobación correspondiente. Tanto la
comunicación como la aprobación de una modificación del calendario deberán hacerse por escrito mediante notificación.

Cláusula 40. El Contratista se obliga a seguir las indicaciones de la Dirección Facultativa en todo aquello que no se separe de la tónica general de la Propuesta y no se oponga a las prescripciones de éste u otros Condicionados Técnicos que para la obra se establezcan.

CAPÍTULO II: TRATAMIENTOS DE LA VEGETACIÓN

Cláusula 41. Respecto a la ejecución de los clareos se estará, con carácter general, a lo siguiente:

1. Estas labores consisten en la reducción de la densidad del arbolado por el apeo de los árboles no deseados para obtener espesuras acordes con su estado de desarrollo (principalmente en cuanto al crecimiento en diámetro), en función de la edad. A los distintos estados de desarrollo se les denominan clases naturales de edad.

2. El clareo es una intervención que se aplica normalmente en las fases tempranas de una masa (repoplado, monte bravio, latizal), si bien puede extenderse al fustal joven si supone coste económico.

3. Al tratarse de unos rodales de ensayo, objeto de un estudio de experimentación, se eliminarán exacta y exclusivamente los pies indicados en la presente Memoria mediante los planos y croquis, y que además han sido señalados en campo previamente por la Dirección Facultativa.

4. El tocón de los pies cortados deberá dejarse lo más al ras del suelo posible, no sobrepasando nunca los 10 cm. de altura, sin que en ningún momento puedan dejarse ramas o brotes en los tocones.

5. Se utilizarán como calles para el acordonamiento de los restos y su posterior trituración las calles diagonales que quedarán abiertas al realizar el clareo al tresbolillo. En las parcelas en que el ancho entre filas de plantación sea suficiente para el tránsito de la maquinaria, se podrán emplear estos pasillos como calles. Las calles se abrirán siempre de acuerdo con las condiciones de la masa y lo abrupto del relieve, y con las instrucciones que marque la Dirección Facultativa, evitando siempre dañar a los árboles que permanezcan en la masa. Dichas calles se emplearán para la eliminación de restos mediante su trituración.

6. Las labores estarán directamente controladas por el Jefe de la Unidad Administrativa a pie de obra.
7. En los clareos, una vez apeados los pies, se amontonará la leña resultante en volumen suficiente para su enajenación (toda aquella mayor de 6 cm. de diámetro) y se acordonarán los residuos de rama para su posterior eliminación.

8. Se recomienda, por motivos fitosanitarios, que la época de ejecución de estas labores que afecten a pies vivos de coníferas de más de 6 cm., en su lugar de corte, se realice fuera de la época de verano.

Cláusula 42. Respecto a la **ejecución de las podas** se estará, con carácter general, a lo siguiente:

1. La poda consiste en la eliminación por corta de las ramas con el fin de conformar fustes (y por extensión masas), más adecuados al objetivo de gestión establecido.

2. Los cortes se realizarán sobre los pies que han permanecido tras el clareo previo con herramientas bien afiladas, limpiamente y sin desgarros, no al ras sino a una distancia de 1 cm. del tronco, respetando el rodete de inserción de la rama como zona de cicatrización. Asimismo, en ramas de diámetro superior a 10 cm, el corte se realizará perpendicularmente al eje de la rama.

3. No deberán realizarse raspaduras o cualquier otro daño en el tronco al término de la operación.

4. El operario trabajará siempre con la motosierra a una altura máxima acorde con las normas de Seguridad y Salud para esta herramienta.

5. La altura de poda será la fijada por la Dirección Facultativa en función de las características de la masa a tratar. Como norma general se podarán solo los pies mayores de 3 m de altura evitando podar más de un tercio de la altura total del árbol.

6. Se eliminará la totalidad de las ramas basales del tronco; operación que requiere una especial atención por parte del podador, dada la facilidad de estos brotes para mimetizarse con los restos de la poda. La aplicación estricta de esta operación será exigida con el máximo rigor, y su no cumplimiento al finalizar los trabajos será razón que motivará la no certificación de los trabajos en el rodal.

7. Los restos de las podas se acordonarán con el resto de rama para su posterior trituración. Las leñas que puedan surgir (toda aquella mayor de 6 cm. de diámetro) se amontonarán junto con la procedente del clareo.

8. En las masas en las que se hayan detectado focos de ataque de insectos perforadores se finalizarán los trabajos de poda con la debida antelación para que las ramas cortadas estén secas antes del periodo de vuelo de los imagos para reproducirse.

Cláusula 43. Respecto a los **restos aprovechables** y residuos generados en los tratamientos selvícolas preventivos se estará, con carácter general, a lo siguiente:
1. Todos los productos procedentes de las podas y clareos con diámetro superior a 6 centímetros en punta delgada se limpiarán de ramillas y, troceados a 2,2 metros de longitud, como máximo, quedarán apilados en montones de volumen superior a un estéreo.

2. Normas específicas de eliminación y/o trituración de residuos:
 - El tipo de tractor a utilizar en las labores de eliminación de restos será el estipulado en esta Memoria.
 - La operación de trituración con tractor nunca se deberá realizar cuando la humedad del combustible fino muerto sea tan baja que las posibles chispas que se provoquen puedan originar un fuego, y en todo caso se tomará las medidas preventivas más adecuadas para evitar provocar un incendio forestal.
 - Durante la trituración de la ramera se evitará causar daños a la vegetación.
 - Antes de iniciarse los trabajos, tanto el tipo de tractor como el de trituradora deberán ser puestos a prueba en presencia de la Dirección Facultativa o persona en quien delegue, que autorizará si lo cree oportuno su uso, siendo rechazado en caso de no cumplirse las condiciones de triturado exigidas.
 - Los despojos resultantes de estos trabajos se acordonarán en calles con una anchura máxima de 1,5 metros, para su trituración in situ mediante un tractor provisto de una desbrozadora de martillos. Los cordones tendrán la mayor longitud posible, se formarán paralelos entre sí, sin cambios pronunciados de dirección, separados de los pies existentes y siendo la distancia entre dos consecutivos la máxima posible.
 - Si los cordones se han construido de la altura adecuada, será suficiente la correcta trituración para conseguir una óptima incorporación de los restos al mantillo del suelo. Una vez triturados, los cordones no podrán superar los 20 cm. de grosor de residuos.
 - Se aprovechará para este trabajo las calles anteriormente señaladas donde se acordonarán los restos de podas y clareos.
 - Se evitará situar los cordones sobre tocones, hoyos y surcos, que empeoran los rendimientos e imposibilitan la trituración de forma adecuada.
 - Las leñas con un diámetro tal que no sean eliminadas por la maquinaria utilizada no podrán ser colocadas en los cordones de trituración.
 - Se realizarán las pasadas de trituración que sean necesarias para conseguir que los tamaños máximos obtenidos de la ramera triturada sean palos de 15 cm. de longitud y 3 cm. de diámetro, debiendo estar éstos golpeados y descortezados en, al menos, tres puntos.
 - Cuando tras dar una pasada de trituración queden restos fuera del cordón sin triturar, será precisa una nueva pasada previo apilado en el cordón de dichos restos.
 - El entrenamiento y mantenimiento de la maquinaria, en especial de los martillos, se hará de forma regular y periódica para lograr los resultados fijados.
 - En cualquier momento la Dirección Facultativa, o personal en quien delegue, podrá exigir una prueba de trituración en su presencia. El
incumplimiento de las condiciones de trituración exigidas será motivo de no certificación de los trabajos.

3. Durante la preparación y apilado de maderas y leñas, y la eliminación de restos, se evitará causar daños a la vegetación y al regenerado.

4. Normas específicas de prevención de incendios forestales en los trabajos de trituración:
 - Queda prohibido acumular residuos en torno a los fustes de los árboles en pie.
 - Con carácter general, el plazo máximo entre la realización de los primeros trabajos que generen residuos y su trituración será de seis semanas. En época de peligro alto de incendios este plazo queda reducido a una semana. Estarán exceptuados de esta obligación aquellos tajos en los que los afloramientos rocosos supongan un importante riesgo de incendios. Será en este caso el Director de obra el que, en función de la humedad del combustible fino muerto, decida la época idónea para la ejecución de los trabajos de trituración.
 - Queda permitido realizar las operaciones de trituración durante las horas nocturnas siempre que se realice con las máximas medidas de seguridad, y no se incumplan ninguna de las demás cláusulas del presente Pliego.

CAPÍTULO III: PERIODOS Y PLAZOS DE EJECUCIÓN DE LAS OBRAS

Cláusula 44. El programa de trabajos presentado a la firma del Acta de Comprobación del Replanteo, una vez aprobado por el Órgano de Contratación y firmado por ambas partes, será contractual, y en él se indicarán los periodos en que deben realizarse cada uno de los trabajos que se incluyen en la Memoria.

Cláusula 45. La preparación y el apilado de los productos se deberá realizar en un plazo no superior a 30 días.

Cláusula 46. En caso de labores que generen riesgo de aparición de plagas forestales deberán cumplirse las indicaciones de la Dirección Facultativa para la eliminación de restos, o al respecto de los posibles periodos para la ejecución que pudieran marcarse como adecuados o como prohibidos.

Cláusula 47. En todo caso, en los tajos de actuación se respetarán las condiciones de celo y cría de las especies de fauna que pudieran verse afectadas por la intervención, evitando la realización de trabajos que pudieran provocar trastornos en esos periodos o en los del aprovechamiento cinegético. No obstante, queda a juicio de la Dirección Facultativa la estimación y comprobación de tales condicionantes y su efecto en la programación de los trabajos.
CAPÍTULO IV: CUESTIONES COMUNES EN LA EJECUCIÓN DE LAS OBRAS

Cláusula 48. Se tomará todo género de precauciones para evitar daños a las redes de servicios, y especialmente de los tendidos, aéreos o no, de los que se guardará en todo momento la distancia y precauciones indicadas por la compañía responsable de dichas instalaciones.

Cláusula 49. El Contratista deberá atenerse a las disposiciones vigentes para la prevención y control de incendios y a las instrucciones complementarias que le indique la Dirección Facultativa. No se podrá hacer uso del fuego como medida cultural o complementaria de los trabajos encomendados sin la autorización por escrito de la Dirección Facultativa.

Cláusula 50. Queda prohibido dejar en los tajos cualquier tipo de residuos procedentes del mantenimiento de la maquinaria (bidones, latas, etc.), siendo obligación de la Empresa Adjudicataria proceder a su recogida antes de dar por finalizados los trabajos en el tajo, y realizar una gestión correcta de los mismos.

Cláusula 51. En las operaciones selvícolas que requieran el uso de motosierras y en la eliminación de residuos mecanizada, dado que estas herramientas, aperos y/o maquinaria en su funcionamiento pueden provocar chispas, las cuales es posible que puedan generar incendios, se extremará al máximo las medidas de seguridad, y en todo caso se dispondrá de medios para poder sofocar un conato de incendio en el caso de que éste se produzca.
9.2. Base de datos de los pinos del ensayo de procedencias de pino piñonero (*Pinus pinea*) de la Meseta Norte.

Leyenda de la base de datos

<table>
<thead>
<tr>
<th>SITIO</th>
<th>Parcela de ensayo</th>
<th>PROC</th>
<th>Procedencia de la planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nava del Rey</td>
<td>1</td>
<td>Tordesillas</td>
</tr>
<tr>
<td>3</td>
<td>Tordesillas</td>
<td>2</td>
<td>Pesquera de Duero</td>
</tr>
<tr>
<td>4</td>
<td>Berceruelo</td>
<td>3</td>
<td>Íscar</td>
</tr>
<tr>
<td>5</td>
<td>Bercero</td>
<td>4</td>
<td>Aldeamayor de San Martín</td>
</tr>
<tr>
<td>6</td>
<td>Becilla de Valderaduey</td>
<td>5</td>
<td>Quintanilla de Onésimo</td>
</tr>
<tr>
<td>7</td>
<td>Pollos</td>
<td>6</td>
<td>Cogeces de Íscar</td>
</tr>
<tr>
<td>1</td>
<td>Tordesillas</td>
<td>7</td>
<td>La Parrilla</td>
</tr>
<tr>
<td>2</td>
<td>Pesquera de Duero</td>
<td>8</td>
<td>Portillo</td>
</tr>
<tr>
<td>3</td>
<td>Íscar</td>
<td>9</td>
<td>Toro (Zamora)</td>
</tr>
</tbody>
</table>

REP Réplica o bloque completo (1-8)

x Columna en que se encuentra la planta dentro de la parcela

y Fila en que se encuentra la planta dentro de la parcela

Altura total de los pinos H (cm)

- **H 2001** Altura total de la planta en marzo de 2001
- **H 2003** Altura total de la planta en marzo de 2003
- **H 2005** Altura total de la planta en octubre de 2005
- **H 2007** Altura total de la planta en octubre de 2007
- **H 2013** Altura total de la planta en febrero de 2013

Diámetros de los pinos D (cm)

- **Db** Diámetro basal (varios para árboles bifurcados desde la base)
- **Dn** Diámetro normal (varios en el caso de árboles con fustes bifurcados)

Fructificación F (uds.)

- **1V** Nº perindolas vivas
- **1M** Nº perindolas secas
- **2V** Nº chotas vivas
- **2M** Nº chotas secas
- **3** Nº piñas maduras
- **+** Nº cogollas
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Db1</td>
<td>Db2</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titolación: Máster en Ingeniería de Montes
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>29, 44, 112, 186, 386</td>
<td>16, 8,5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>46, 76, 170, 250, 386</td>
<td>21, 13</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>37, 78, 163, 249, 399</td>
<td>24, 12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>37, 78, 163, 249, 399</td>
<td>24, 12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>23, 33, 60, 124, 300</td>
<td>14,5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>37, 78, 163, 249, 399</td>
<td>24, 12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>52, 66, 110, 149, 303</td>
<td>15,5</td>
<td>5,5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>30, 49, 118, 179, 328</td>
<td>15,5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>38, 61, 120, 172, 326</td>
<td>16,5, 7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>34, 62, 107, 183, 337</td>
<td>15,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>9</td>
<td>33, 67, 169, 260, 410</td>
<td>19, 10, 9,5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>26, 47, 129, 210, 360</td>
<td>17, 8</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>4</td>
<td>37, 81, 180, 254, 379</td>
<td>18</td>
<td>11,5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>37, 79, 186, 267, 399</td>
<td>21, 10, 8,5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>4</td>
<td>39, 78, 157, 223, 350</td>
<td>20, 8,5, 8</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>4</td>
<td>43, 69, 154, 217, 364</td>
<td>16,5</td>
<td>8,5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>30, 50, 96, 156, 329</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>26, 53, 160, 254, 441</td>
<td>20,5, 12,5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>41, 70, 160, 245, 397</td>
<td>21,5</td>
<td>13,5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>37, 64, 121, 214, 382</td>
<td>20, 10,5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>30, 46, 146, 221, 420</td>
<td>20,5</td>
<td>12,5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>27, 40, 98, 158, 321</td>
<td>17,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>37, 53, 129, 202, 371</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>32, 54, 92, 138, 279</td>
<td>13,5</td>
<td>5, 4,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>38, 55, 105, 179, 335</td>
<td>15,5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>32, 56, 105, 191, 348</td>
<td>17</td>
<td>8,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>33, 65, 140, 224, 401</td>
<td>18</td>
<td>10,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>38, 65, 153, 242, 408</td>
<td>18</td>
<td>9, 7</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>36, 69, 150, 223, 367</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>3</td>
<td>33, 73, 144, 215, 347</td>
<td>17,5</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>3</td>
<td>35, 70, 154, 202, 368</td>
<td>16,5</td>
<td>11,5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>3</td>
<td>47, 83, 175, 257, 432</td>
<td>20</td>
<td>11,5</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero

UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS

Titolación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>38</td>
<td>69</td>
<td>144</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>38</td>
<td>67</td>
<td>145</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>32</td>
<td>60</td>
<td>145</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>50</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>22</td>
<td>33</td>
<td>74</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>45</td>
<td>80</td>
<td>157</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>36</td>
<td>65</td>
<td>146</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>38</td>
<td>69</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>24</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>38</td>
<td>65</td>
<td>142</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>1</td>
<td>40</td>
<td>76</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>38</td>
<td>51</td>
<td>104</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>25</td>
<td>66</td>
<td>176</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>36</td>
<td>61</td>
<td>117</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>30</td>
<td>62</td>
<td>172</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>34</td>
<td>69</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>34</td>
<td>69</td>
<td>158</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>38</td>
<td>69</td>
<td>152</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>27</td>
<td>48</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>30</td>
<td>63</td>
<td>162</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>34</td>
<td>57</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>31</td>
<td>39</td>
<td>76</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>34</td>
<td>46</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>43</td>
<td>83</td>
<td>156</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>22</td>
<td>47</td>
<td>110</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>25</td>
<td>46</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>44</td>
<td>80</td>
<td>190</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>45</td>
<td>90</td>
<td>166</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>43</td>
<td>84</td>
<td>177</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>40</td>
<td>73</td>
<td>168</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>32</td>
<td>58</td>
<td>138</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>34</td>
<td>49</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>40</td>
<td>64</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>35</td>
<td>56</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>40</td>
<td>64</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>30</td>
<td>45</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>8</td>
<td>27</td>
<td>41</td>
<td>88</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>41</td>
<td>65</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>35</td>
<td>52</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>7</td>
<td>30</td>
<td>45</td>
<td>81</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>36</td>
<td>54</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>22</td>
<td>53</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>26</td>
<td>62</td>
<td>161</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>30</td>
<td>64</td>
<td>177</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>41</td>
<td>81</td>
<td>186</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>40</td>
<td>73</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>44</td>
<td>77</td>
<td>164</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>39</td>
<td>55</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>35</td>
<td>55</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>33</td>
<td>50</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>17</td>
<td>34</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>5</td>
<td>40</td>
<td>65</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>5</td>
<td>39</td>
<td>61</td>
<td>117</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>24</td>
<td>36</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>5</td>
<td>31</td>
<td>45</td>
<td>79</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Título: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>43</td>
<td>64</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>42</td>
<td>67</td>
<td>133</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>38</td>
<td>83</td>
<td>158</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>42</td>
<td>73</td>
<td>167</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>35</td>
<td>58</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>35</td>
<td>58</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>37</td>
<td>71</td>
<td>158</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>43</td>
<td>76</td>
<td>152</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>37</td>
<td>84</td>
<td>172</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>39</td>
<td>85</td>
<td>179</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>40</td>
<td>67</td>
<td>148</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>38</td>
<td>51</td>
<td>119</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>38</td>
<td>52</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>6</td>
<td>30</td>
<td>40</td>
<td>67</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>15</td>
<td>6</td>
<td>45</td>
<td>70</td>
<td>123</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>6</td>
<td>44</td>
<td>72</td>
<td>135</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>38</td>
<td>53</td>
<td>119</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>35</td>
<td>56</td>
<td>110</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>40</td>
<td>72</td>
<td>148</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>42</td>
<td>67</td>
<td>116</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>37</td>
<td>48</td>
<td>67</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>27</td>
<td>44</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>30</td>
<td>68</td>
<td>159</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>58</td>
<td>165</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>30</td>
<td>54</td>
<td>148</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>43</td>
<td>89</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td>29</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>36</td>
<td>54</td>
<td>108</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>30</td>
<td>63</td>
<td>149</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>1</td>
<td>37</td>
<td>63</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td>36</td>
<td>64</td>
<td>125</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>1</td>
<td>30</td>
<td>56</td>
<td>99</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>36</td>
<td>57</td>
<td>124</td>
<td>218</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>29</td>
<td>42</td>
<td>71</td>
<td>143</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>27</td>
<td>47</td>
<td>120</td>
<td>206</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td>30</td>
<td>61</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>35</td>
<td>68</td>
<td>125</td>
<td>180</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>28</td>
<td>57</td>
<td>142</td>
<td>219</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>41</td>
<td>65</td>
<td>148</td>
<td>239</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>37</td>
<td>52</td>
<td>134</td>
<td>205</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>39</td>
<td>112</td>
<td>184</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>26</td>
<td>43</td>
<td>115</td>
<td>170</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>38</td>
<td>54</td>
<td>115</td>
<td>186</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>30</td>
<td>51</td>
<td>142</td>
<td>221</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>9</td>
<td>33</td>
<td>52</td>
<td>111</td>
<td>181</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>29</td>
<td>42</td>
<td>95</td>
<td>170</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>35</td>
<td>66</td>
<td>123</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>41</td>
<td>67</td>
<td>131</td>
<td>218</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>33</td>
<td>54</td>
<td>102</td>
<td>189</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>39</td>
<td>55</td>
<td>134</td>
<td>205</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>46</td>
<td>115</td>
<td>193</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>32</td>
<td>50</td>
<td>123</td>
<td>173</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>29</td>
<td>41</td>
<td>86</td>
<td>134</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>30</td>
<td>40</td>
<td>88</td>
<td>157</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>44</td>
<td>73</td>
<td>127</td>
<td>201</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>29</td>
<td>45</td>
<td>86</td>
<td>141</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>34</td>
<td>67</td>
<td>152</td>
<td>224</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>5</td>
<td>38</td>
<td>73</td>
<td>128</td>
<td>210</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>5</td>
<td>32</td>
<td>53</td>
<td>126</td>
<td>216</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>28</td>
<td>34</td>
<td>137</td>
<td>215</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>5</td>
<td>44</td>
<td>75</td>
<td>152</td>
<td>233</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1M</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>37 68 140 228 446</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>35 74 137 199 388</td>
<td>18,5</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>33 57 120 142 351</td>
<td>17</td>
<td>6,5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>39 64 135 227 403</td>
<td>19,5</td>
<td>12,5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>35 63 116 179 350</td>
<td>17,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>1</td>
<td>35 51 117 177 324</td>
<td>16,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>1</td>
<td>40 37 104 177 331</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>30 44 77 140 317</td>
<td>14,5</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>1</td>
<td>36 49 109 197 369</td>
<td>17,5</td>
<td>10,5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>1</td>
<td>37 56 103 162 347</td>
<td>15,5</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>37 62 146 234 391</td>
<td>18,5</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>36 75 148 226 370</td>
<td>18,5</td>
<td>10,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td>32 62 144 229 369</td>
<td>18,5</td>
<td>9,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>46 72 175 240 369</td>
<td>19</td>
<td>10,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>1</td>
<td>39 71 160 232 386</td>
<td>19</td>
<td>11,5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>38 59 134 202 382</td>
<td>18</td>
<td>10,5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>34 62 123 199 384</td>
<td>19,5</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>27 42 96 149 286</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>1</td>
<td>40 65 133 197 358</td>
<td>18,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>40 51 96 159 297</td>
<td>14,5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>1</td>
<td>31 47 110 191 375</td>
<td>13,5</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>1</td>
<td>39 60 135 217 391</td>
<td>19,5</td>
<td>9,5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>1</td>
<td>30 45 109 197 367</td>
<td>17,5</td>
<td>9,5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>31 44 107 184 342</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>30 46 104 183 353</td>
<td>17,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>1</td>
<td>35 58 124 199 373</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>34 50 125 183 347</td>
<td>16</td>
<td>6,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>15</td>
<td>1</td>
<td>31 58 146 218 355</td>
<td>16,5</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>36 60 153 227 384</td>
<td>18</td>
<td>9,5</td>
</tr>
</tbody>
</table>
Diferenciación ecológica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td></td>
<td>38</td>
<td>46</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td>44</td>
<td>63</td>
<td>117</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
<td>40</td>
<td>63</td>
<td>119</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td>37</td>
<td>59</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td>46</td>
<td>72</td>
<td>123</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td></td>
<td>33</td>
<td>60</td>
<td>141</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td></td>
<td>33</td>
<td>44</td>
<td>119</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td></td>
<td>3</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td></td>
<td>31</td>
<td>49</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td></td>
<td>32</td>
<td>47</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td></td>
<td>38</td>
<td>53</td>
<td>137</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td></td>
<td>39</td>
<td>64</td>
<td>117</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>13</td>
<td></td>
<td>31</td>
<td>46</td>
<td>125</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>14</td>
<td></td>
<td>33</td>
<td>67</td>
<td>148</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>15</td>
<td></td>
<td>34</td>
<td>50</td>
<td>108</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>16</td>
<td></td>
<td>26</td>
<td>37</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td>38</td>
<td>58</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>34</td>
<td>50</td>
<td>103</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
<td>41</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td></td>
<td>35</td>
<td>55</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td></td>
<td>39</td>
<td>61</td>
<td>126</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td></td>
<td>41</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td></td>
<td>39</td>
<td>51</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td></td>
<td>43</td>
<td>55</td>
<td>98</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2</td>
<td>12</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>13</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>14</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>16</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td>2</td>
<td>41</td>
<td>54</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>44</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>43</td>
<td>60</td>
<td>121</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td>34</td>
<td>59</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>9</td>
<td>30</td>
<td>44</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>17</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>17</td>
<td>7</td>
<td>9</td>
<td>39</td>
<td>57</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>9</td>
<td>30</td>
<td>53</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td>38</td>
<td>60</td>
<td>117</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>8</td>
<td>45</td>
<td>64</td>
<td>115</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>8</td>
<td>25</td>
<td>36</td>
<td>58</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>8</td>
<td>34</td>
<td>56</td>
<td>98</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>3</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>17</td>
<td>14</td>
<td>3</td>
<td>36</td>
<td>70</td>
<td>172</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>3</td>
<td>38</td>
<td>55</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>3</td>
<td>29</td>
<td>54</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>44</td>
<td>71</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>18</td>
<td>2</td>
<td>4</td>
<td>45</td>
<td>46</td>
<td>101</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>28</td>
<td>42</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>2</td>
<td>28</td>
<td>44</td>
<td>84</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>33</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td>32</td>
<td>42</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>2</td>
<td>29</td>
<td>33</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>1</td>
<td>38</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td>31</td>
<td>54</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>1</td>
<td>33</td>
<td>62</td>
<td>129</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>1</td>
<td>38</td>
<td>63</td>
<td>123</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>2</td>
<td>29</td>
<td>47</td>
<td>110</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>18</td>
<td>15</td>
<td>2</td>
<td>40</td>
<td>70</td>
<td>169</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>31</td>
<td>45</td>
<td>128</td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>83</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>31</td>
<td>79</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>37</td>
<td>92</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>20</td>
<td>73</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>26</td>
<td>79</td>
<td>213</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>33</td>
<td>104</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>35</td>
<td>93</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>30</td>
<td>74</td>
<td>224</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>9</td>
<td>36</td>
<td>95</td>
<td>238</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>5</td>
<td>16</td>
<td>51</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>5</td>
<td>12</td>
<td>26</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>5</td>
<td>24</td>
<td>48</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>30</td>
<td>63</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>38</td>
<td>97</td>
<td>243</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>41</td>
<td>102</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>33</td>
<td>93</td>
<td>218</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>34</td>
<td>135</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>39</td>
<td>99</td>
<td>235</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>30</td>
<td>69</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>19</td>
<td>52</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td>55</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>58</td>
<td>172</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>8</td>
<td>16</td>
<td>44</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>26</td>
<td>73</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>1</td>
<td>29</td>
<td>81</td>
<td>214</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
<td>2007</td>
<td>2013</td>
<td>Db1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>39</td>
<td>113</td>
<td>258</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>34</td>
<td>92</td>
<td>233</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>40</td>
<td>120</td>
<td>269</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>31</td>
<td>97</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>40</td>
<td>113</td>
<td>265</td>
<td>346</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>33</td>
<td>100</td>
<td>268</td>
<td>352</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>29</td>
<td>79</td>
<td>180</td>
<td>262</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>37</td>
<td>74</td>
<td>215</td>
<td>316</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>14</td>
<td>53</td>
<td>164</td>
<td>248</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>26</td>
<td>71</td>
<td>197</td>
<td>302</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>21</td>
<td>53</td>
<td>184</td>
<td>292</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>38</td>
<td>83</td>
<td>255</td>
<td>362</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>28</td>
<td>59</td>
<td>238</td>
<td>345</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>23</td>
<td>43</td>
<td>181</td>
<td>310</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>28</td>
<td>81</td>
<td>198</td>
<td>278</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>35</td>
<td>107</td>
<td>243</td>
<td>316</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>37</td>
<td>108</td>
<td>259</td>
<td>330</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>37</td>
<td>86</td>
<td>231</td>
<td>293</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>31</td>
<td>89</td>
<td>235</td>
<td>293</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>34</td>
<td>100</td>
<td>254</td>
<td>314</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>33</td>
<td>109</td>
<td>257</td>
<td>342</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>36</td>
<td>92</td>
<td>239</td>
<td>288</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>39</td>
<td>112</td>
<td>268</td>
<td>324</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>31</td>
<td>77</td>
<td>239</td>
<td>316</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>21</td>
<td>78</td>
<td>206</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>84</td>
<td>248</td>
<td>362</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>30</td>
<td>81</td>
<td>257</td>
<td>374</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>14</td>
<td>4</td>
<td>35</td>
<td>95</td>
<td>272</td>
<td>358</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>15</td>
<td>4</td>
<td>17</td>
<td>61</td>
<td>225</td>
<td>322</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titolación: Máster en Ingeniería de Montes
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>39</td>
<td>96</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>36</td>
<td>97</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>40</td>
<td>97</td>
<td>197</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>41</td>
<td>130</td>
<td>281</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>41</td>
<td>115</td>
<td>260</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>81</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>33</td>
<td>84</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>32</td>
<td>111</td>
<td>280</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>29</td>
<td>87</td>
<td>222</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>37</td>
<td>95</td>
<td>258</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>26</td>
<td>85</td>
<td>244</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>5</td>
<td>32</td>
<td>92</td>
<td>252</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>31</td>
<td>90</td>
<td>247</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>35</td>
<td>84</td>
<td>241</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>24</td>
<td>61</td>
<td>218</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>7</td>
<td>13</td>
<td>14</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>29</td>
<td>96</td>
<td>232</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>32</td>
<td>77</td>
<td>178</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>36</td>
<td>89</td>
<td>207</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>31</td>
<td>100</td>
<td>254</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>48</td>
<td>141</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>37</td>
<td>96</td>
<td>246</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>23</td>
<td>65</td>
<td>209</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>24</td>
<td>87</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>4</td>
<td>21</td>
<td>69</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>23</td>
<td>78</td>
<td>223</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>4</td>
<td>24</td>
<td>79</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>20</td>
<td>56</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>18</td>
<td>38</td>
<td>170</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>28</td>
<td>69</td>
<td>197</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>32</td>
<td>95</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>36</td>
<td>106</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>40</td>
<td>98</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>92</td>
<td>214</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>26</td>
<td>80</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>27</td>
<td>91</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>24</td>
<td>86</td>
<td>206</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>18</td>
<td>49</td>
<td>189</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>20</td>
<td>67</td>
<td>212</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>25</td>
<td>69</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td>52</td>
<td>203</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>6</td>
<td>12</td>
<td>28</td>
<td>152</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>35</td>
<td>67</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>25</td>
<td>77</td>
<td>198</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>30</td>
<td>68</td>
<td>173</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>27</td>
<td>61</td>
<td>157</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>70</td>
<td>168</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>34</td>
<td>101</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>27</td>
<td>91</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>32</td>
<td>99</td>
<td>266</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>35</td>
<td>95</td>
<td>268</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>30</td>
<td>80</td>
<td>194</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>21</td>
<td>58</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>3</td>
<td>19</td>
<td>54</td>
<td>212</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>24</td>
<td>69</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>27</td>
<td>91</td>
<td>264</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>20</td>
<td>53</td>
<td>180</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>22</td>
<td>64</td>
<td>178</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td>60</td>
<td>201</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>33</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>20</td>
<td>52</td>
<td>122</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>30</td>
<td>69</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>37</td>
<td>99</td>
<td>229</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>40</td>
<td>113</td>
<td>276</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>32</td>
<td>90</td>
<td>252</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>22</td>
<td>71</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>26</td>
<td>76</td>
<td>239</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>21</td>
<td>74</td>
<td>238</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>22</td>
<td>65</td>
<td>234</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>13</td>
<td>9</td>
<td>16</td>
<td>67</td>
<td>248</td>
<td>348</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>14</td>
<td>9</td>
<td>37</td>
<td>93</td>
<td>249</td>
<td>340</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>15</td>
<td>9</td>
<td>19</td>
<td>37</td>
<td>178</td>
<td>317</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>16</td>
<td>9</td>
<td>20</td>
<td>32</td>
<td>173</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>29</td>
<td>77</td>
<td>198</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>61</td>
<td>156</td>
<td>226</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>34</td>
<td>80</td>
<td>194</td>
<td>266</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>27</td>
<td>70</td>
<td>147</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>31</td>
<td>85</td>
<td>181</td>
<td>254</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>38</td>
<td>89</td>
<td>195</td>
<td>265</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>34</td>
<td>108</td>
<td>277</td>
<td>336</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>30</td>
<td>96</td>
<td>253</td>
<td>340</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>19</td>
<td>58</td>
<td>207</td>
<td>302</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>25</td>
<td>79</td>
<td>225</td>
<td>336</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>24</td>
<td>70</td>
<td>215</td>
<td>348</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>13</td>
<td>5</td>
<td>27</td>
<td>67</td>
<td>236</td>
<td>354</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>14</td>
<td>5</td>
<td>25</td>
<td>73</td>
<td>230</td>
<td>338</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>30</td>
<td>82</td>
<td>238</td>
<td>337</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>16</td>
<td>5</td>
<td>22</td>
<td>29</td>
<td>147</td>
<td>268</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>9</td>
<td>34</td>
<td>86</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td>32</td>
<td>83</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>9</td>
<td>31</td>
<td>92</td>
<td>223</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>34</td>
<td>92</td>
<td>196</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>41</td>
<td>98</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>34</td>
<td>107</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>27</td>
<td>91</td>
<td>251</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>32</td>
<td>96</td>
<td>282</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>14</td>
<td>18</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td>21</td>
<td>38</td>
<td>151</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>4</td>
<td>13</td>
<td>44</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>4</td>
<td>24</td>
<td>77</td>
<td>251</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>4</td>
<td>18</td>
<td>32</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>17</td>
<td>36</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>66</td>
<td>199</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>27</td>
<td>84</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>2</td>
<td>29</td>
<td>89</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>30</td>
<td>77</td>
<td>237</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>19</td>
<td>48</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>19</td>
<td>31</td>
<td>143</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>14</td>
<td>45</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>29</td>
<td>71</td>
<td>234</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>8</td>
<td>26</td>
<td>76</td>
<td>247</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>16</td>
<td>36</td>
<td>178</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>7</td>
<td>16</td>
<td>32</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>7</td>
<td>20</td>
<td>51</td>
<td>164</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>27</td>
<td>78</td>
<td>213</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>79</td>
<td>196</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>24</td>
<td>70</td>
<td>179</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>50</td>
<td>162</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>30</td>
<td>74</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>2</td>
<td>27</td>
<td>60</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>23</td>
<td>42</td>
<td>174</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>22</td>
<td>43</td>
<td>173</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>21</td>
<td>36</td>
<td>149</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>30</td>
<td>122</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>23</td>
<td>60</td>
<td>164</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>14</td>
<td>4</td>
<td>3</td>
<td>30</td>
<td>68</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>26</td>
<td>75</td>
<td>211</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>25</td>
<td>67</td>
<td>193</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>23</td>
<td>86</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td>76</td>
<td>204</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>22</td>
<td>50</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td>70</td>
<td>244</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>18</td>
<td>44</td>
<td>199</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>20</td>
<td>51</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>29</td>
<td>66</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>26</td>
<td>72</td>
<td>245</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>15</td>
<td>9</td>
<td>26</td>
<td>63</td>
<td>229</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>9</td>
<td>21</td>
<td>42</td>
<td>174</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td></td>
<td>17</td>
<td>18</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td>2</td>
<td></td>
<td>25</td>
<td>58</td>
<td>190</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td>3</td>
<td></td>
<td>21</td>
<td>66</td>
<td>174</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td></td>
<td>17</td>
<td>69</td>
<td>158</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td></td>
<td>22</td>
<td>60</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>15</td>
<td>7</td>
<td></td>
<td>27</td>
<td>83</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>15</td>
<td>9</td>
<td></td>
<td>24</td>
<td>71</td>
<td>181</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>15</td>
<td>10</td>
<td></td>
<td>21</td>
<td>63</td>
<td>172</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>15</td>
<td>11</td>
<td></td>
<td>27</td>
<td>71</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>13</td>
<td></td>
<td>22</td>
<td>46</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td></td>
<td>28</td>
<td>64</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td></td>
<td>21</td>
<td>37</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td></td>
<td>24</td>
<td>64</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td></td>
<td>27</td>
<td>68</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>16</td>
<td>2</td>
<td></td>
<td>21</td>
<td>39</td>
<td>158</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>16</td>
<td>3</td>
<td></td>
<td>17</td>
<td>44</td>
<td>152</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>16</td>
<td>5</td>
<td></td>
<td>23</td>
<td>77</td>
<td>224</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>16</td>
<td>6</td>
<td></td>
<td>22</td>
<td>80</td>
<td>207</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td></td>
<td>27</td>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>16</td>
<td>9</td>
<td></td>
<td>26</td>
<td>64</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>16</td>
<td>10</td>
<td></td>
<td>21</td>
<td>34</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>16</td>
<td>11</td>
<td></td>
<td>19</td>
<td>40</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td></td>
<td>19</td>
<td>34</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
<td>14</td>
<td></td>
<td>26</td>
<td>48</td>
<td>181</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
<td>15</td>
<td></td>
<td>27</td>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td></td>
<td>15</td>
<td>17</td>
<td>46</td>
</tr>
</tbody>
</table>
Diferenciación ecotópica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>13</td>
<td>20</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>17</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>25</td>
<td>129</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>6</td>
<td>28</td>
<td>72</td>
<td>207</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>22</td>
<td>35</td>
<td>134</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>1</td>
<td>24</td>
<td>58</td>
<td>175</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>17</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>36</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>17</td>
<td>7</td>
<td>1</td>
<td>23</td>
<td>70</td>
<td>169</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>1</td>
<td>22</td>
<td>67</td>
<td>189</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>23</td>
<td>71</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>6</td>
<td>27</td>
<td>71</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>20</td>
<td>55</td>
<td>184</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>17</td>
<td>14</td>
<td>1</td>
<td>17</td>
<td>55</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>1</td>
<td>14</td>
<td>25</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>31</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>18</td>
<td>1</td>
<td>8</td>
<td>20</td>
<td>37</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>18</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>24</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>26</td>
<td>54</td>
<td>185</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>23</td>
<td>41</td>
<td>125</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>4</td>
<td>34</td>
<td>71</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>23</td>
<td>58</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td>91</td>
<td>209</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>5</td>
<td>39</td>
<td>95</td>
<td>233</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>5</td>
<td>35</td>
<td>78</td>
<td>211</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>27</td>
<td>56</td>
<td>202</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>5</td>
<td>20</td>
<td>25</td>
<td>108</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>2</td>
<td>15</td>
<td>19</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>2</td>
<td>29</td>
<td>69</td>
<td>231</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>18</td>
<td>15</td>
<td>2</td>
<td>25</td>
<td>67</td>
<td>229</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>19</td>
<td>33</td>
<td>112</td>
</tr>
</tbody>
</table>

128

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>23</td>
<td>31</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>46</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>23</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>18</td>
<td>27</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>30</td>
<td>48</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>23</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>29</td>
<td>56</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>17</td>
<td>29</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>20</td>
<td>31</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>21</td>
<td>34</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>21</td>
<td>29</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>4</td>
<td>17</td>
<td>28</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>24</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>30</td>
<td>45</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>18</td>
<td>26</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>24</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>17</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>23</td>
<td>34</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>21</td>
<td>35</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>17</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>27</td>
<td>43</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>17</td>
<td>21</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>26</td>
<td>24</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>20</td>
<td>33</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>25</td>
<td>50</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td>33</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>22</td>
<td>34</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>24</td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>21</td>
<td>34</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>8</td>
<td>19</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>24</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>18</td>
<td>26</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>21</td>
<td>29</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>27</td>
<td>42</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>22</td>
<td>40</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>26</td>
<td>45</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>22</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>25</td>
<td>42</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>29</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>27</td>
<td>44</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>22</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>29</td>
<td>42</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>26</td>
<td>35</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>26</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>26</td>
<td>44</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>26</td>
<td>34</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>26</td>
<td>39</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>21</td>
<td>34</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>20</td>
<td>32</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>32</td>
<td>42</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>29</td>
<td>40</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>25</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>21</td>
<td>32</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>22</td>
<td>34</td>
<td>60</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001 2003 2005 2007 2013</td>
<td>Db1 Db2 Db3</td>
<td>1V 1M 2V 2M 3 +</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>20 25 48 57 87</td>
<td>2 2,5 1,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>31 20 48 65 204</td>
<td>8 5,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>26 51 83 140 303</td>
<td>13,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>7 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>23 34 64 97 282</td>
<td>10 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>21 31 50 90 258</td>
<td>9,5 4,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>17 19 41 53 113</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>19 30 55 74 185</td>
<td>7 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>20 30 53 90 266</td>
<td>12,5 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>23 38 58 85 240</td>
<td>9,5 4 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>24 41 70 88 202</td>
<td>8,5 3,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>21 33 58 68 172</td>
<td>8 1,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>20 38 76 134 332</td>
<td>14 7,5 7</td>
<td>1 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>23 34 60 107 300</td>
<td>12,5 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>4</td>
<td>17 30 59 101 301</td>
<td>11 5 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>24 34 60 75 210</td>
<td>9 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>13 18 47 75 176</td>
<td>7,5 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>6 12 22 55 175</td>
<td>7 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>19 32 58 83 200</td>
<td>9 3,5 2,5 1</td>
<td>2 2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>12 16 35 61 205</td>
<td>7,5 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td>27 58 121 139 305</td>
<td>12,5 5,5 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>10</td>
<td>7</td>
<td>24 51 68 105 248</td>
<td>11 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>11</td>
<td>7</td>
<td>17 26 48 90 198</td>
<td>8 6 3,5 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>26 36 67 94 219</td>
<td>9 3,5 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14</td>
<td>9</td>
<td>2</td>
<td>40 60 90 100 155</td>
<td>6,5 0,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>2</td>
<td>17 30 66 110 271</td>
<td>11 5,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14</td>
<td>11</td>
<td>2</td>
<td>29 49 74 118 345</td>
<td>14 10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14</td>
<td>12</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>9</td>
<td>22 37 72 96 162</td>
<td>7,5 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>29 56 95 135 272</td>
<td>11 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>19 37 66 138 258</td>
<td>12 6,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino pinonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP.</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Db1</td>
<td>Db2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>16:12:61:79:153</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>16</td>
<td>10</td>
<td>3</td>
<td>17:23:55:78:205</td>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>3</td>
<td>18:19:43:80:236</td>
<td>7.5</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>16</td>
<td>12</td>
<td>3</td>
<td>23:35:71:110:257</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>20:29:83:115:282</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17</td>
<td>10</td>
<td>1</td>
<td>25:44:98:132:330</td>
<td>14</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17</td>
<td>11</td>
<td>1</td>
<td>16:31:64:108:277</td>
<td>10</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>23:38:78:126:320</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>18</td>
<td>9</td>
<td>8</td>
<td>23:31:73:111:255</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>23:30:54:92:247</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>18</td>
<td>11</td>
<td>8</td>
<td>18:25:52:95:238</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>18</td>
<td>12</td>
<td>8</td>
<td>22:20:24:25:65</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>25:40:83:140:338</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
<td>10</td>
<td>1</td>
<td>29:36:76:122:320</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
<td>11</td>
<td>1</td>
<td>22:34:71:105:259</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
<td>12</td>
<td>1</td>
<td>19:29:72:97:209</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
<td>9</td>
<td>5</td>
<td>22:27:29:50:90</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>15:18:35:85:179</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
<td>11</td>
<td>5</td>
<td>34:45:73:90:190</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
<td>12</td>
<td>5</td>
<td>24:32:83:135:300</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>13</td>
<td>7</td>
<td>21:32:61:95:188</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>14</td>
<td>7</td>
<td>16:24:49:108:271</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td>23:44:80:114:332</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>16</td>
<td>7</td>
<td>14:25:43:94:271</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>9</td>
<td>7</td>
<td>28:42:88:124:236</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>10</td>
<td>7</td>
<td>24:23:37:42:80</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>11</td>
<td>7</td>
<td>29:29:60:84:195</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>12</td>
<td>7</td>
<td>30:40:89:110:278</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>21</td>
<td>13</td>
<td>1</td>
<td>26:41:85:103:209</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>21</td>
<td>14</td>
<td>1</td>
<td>21:40:77:124:310</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>21</td>
<td>15</td>
<td>1</td>
<td>23:38:67:120:348</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>21</td>
<td>16</td>
<td>1</td>
<td>14:27:44:78:188</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>22</td>
<td>9</td>
<td>8</td>
<td>17</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>28</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>29</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>22</td>
<td>13</td>
<td>5</td>
<td>28</td>
<td>52</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>22</td>
<td>14</td>
<td>5</td>
<td>12</td>
<td>18</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>22</td>
<td>15</td>
<td>5</td>
<td>24</td>
<td>41</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>22</td>
<td>16</td>
<td>5</td>
<td>26</td>
<td>36</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>26</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>23</td>
<td>10</td>
<td>2</td>
<td>14</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>23</td>
<td>11</td>
<td>2</td>
<td>31</td>
<td>46</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>23</td>
<td>12</td>
<td>2</td>
<td>22</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>23</td>
<td>13</td>
<td>2</td>
<td>23</td>
<td>58</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>23</td>
<td>14</td>
<td>2</td>
<td>30</td>
<td>34</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>23</td>
<td>15</td>
<td>2</td>
<td>31</td>
<td>48</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>23</td>
<td>16</td>
<td>2</td>
<td>27</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>24</td>
<td>9</td>
<td>6</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>21</td>
<td>31</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>24</td>
<td>11</td>
<td>6</td>
<td>22</td>
<td>23</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>24</td>
<td>12</td>
<td>6</td>
<td>29</td>
<td>41</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>24</td>
<td>13</td>
<td>9</td>
<td>28</td>
<td>41</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>24</td>
<td>14</td>
<td>9</td>
<td>20</td>
<td>27</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>24</td>
<td>15</td>
<td>9</td>
<td>19</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>24</td>
<td>16</td>
<td>9</td>
<td>21</td>
<td>34</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25</td>
<td>9</td>
<td>3</td>
<td>28</td>
<td>34</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25</td>
<td>10</td>
<td>3</td>
<td>22</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25</td>
<td>11</td>
<td>3</td>
<td>24</td>
<td>39</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25</td>
<td>12</td>
<td>3</td>
<td>17</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>25</td>
<td>13</td>
<td>4</td>
<td>23</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>25</td>
<td>14</td>
<td>4</td>
<td>24</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>25</td>
<td>15</td>
<td>4</td>
<td>26</td>
<td>42</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>25</td>
<td>16</td>
<td>4</td>
<td>26</td>
<td>36</td>
<td>82</td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26</td>
<td>9</td>
<td>4</td>
<td>21</td>
<td>29</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26</td>
<td>10</td>
<td>4</td>
<td>19</td>
<td>29</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26</td>
<td>11</td>
<td>4</td>
<td>21</td>
<td>37</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>26</td>
<td>12</td>
<td>4</td>
<td>20</td>
<td>29</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>26</td>
<td>13</td>
<td>6</td>
<td>25</td>
<td>39</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>26</td>
<td>14</td>
<td>6</td>
<td>25</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>26</td>
<td>15</td>
<td>6</td>
<td>22</td>
<td>38</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>26</td>
<td>16</td>
<td>6</td>
<td>24</td>
<td>40</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>27</td>
<td>9</td>
<td>9</td>
<td>26</td>
<td>46</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>27</td>
<td>10</td>
<td>9</td>
<td>25</td>
<td>42</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>27</td>
<td>11</td>
<td>9</td>
<td>17</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>27</td>
<td>12</td>
<td>9</td>
<td>22</td>
<td>34</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>27</td>
<td>13</td>
<td>8</td>
<td>18</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>27</td>
<td>14</td>
<td>8</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>27</td>
<td>15</td>
<td>8</td>
<td>24</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>27</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>28</td>
<td>13</td>
<td>3</td>
<td>22</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>28</td>
<td>14</td>
<td>3</td>
<td>22</td>
<td>37</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>28</td>
<td>15</td>
<td>3</td>
<td>21</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>28</td>
<td>16</td>
<td>3</td>
<td>25</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>29</td>
<td>12</td>
<td>4</td>
<td>23</td>
<td>36</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>29</td>
<td>13</td>
<td>4</td>
<td>20</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>29</td>
<td>14</td>
<td>4</td>
<td>14</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>29</td>
<td>15</td>
<td>4</td>
<td>24</td>
<td>38</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>29</td>
<td>16</td>
<td>1</td>
<td>33</td>
<td>43</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>29</td>
<td>17</td>
<td>1</td>
<td>19</td>
<td>30</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>29</td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>29</td>
<td>19</td>
<td>1</td>
<td>23</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>30</td>
<td>12</td>
<td>7</td>
<td>27</td>
<td>47</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>30</td>
<td>13</td>
<td>7</td>
<td>20</td>
<td>32</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>30</td>
<td>14</td>
<td>7</td>
<td>27</td>
<td>59</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>30</td>
<td>15</td>
<td>7</td>
<td>27</td>
<td>46</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>30</td>
<td>16</td>
<td>4</td>
<td>36</td>
<td>55</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>30</td>
<td>17</td>
<td>4</td>
<td>22</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>30</td>
<td>18</td>
<td>4</td>
<td>25</td>
<td>38</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>30</td>
<td>19</td>
<td>4</td>
<td>30</td>
<td>45</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>31</td>
<td>12</td>
<td>3</td>
<td>27</td>
<td>48</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>31</td>
<td>13</td>
<td>3</td>
<td>23</td>
<td>32</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>31</td>
<td>14</td>
<td>3</td>
<td>31</td>
<td>51</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>31</td>
<td>15</td>
<td>3</td>
<td>34</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>31</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td>44</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>31</td>
<td>17</td>
<td>8</td>
<td>24</td>
<td>39</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>31</td>
<td>18</td>
<td>8</td>
<td>30</td>
<td>45</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>31</td>
<td>19</td>
<td>8</td>
<td>25</td>
<td>38</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>32</td>
<td>12</td>
<td>5</td>
<td>23</td>
<td>36</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>32</td>
<td>13</td>
<td>5</td>
<td>23</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>32</td>
<td>14</td>
<td>5</td>
<td>20</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>32</td>
<td>15</td>
<td>5</td>
<td>27</td>
<td>42</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>32</td>
<td>16</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>32</td>
<td>17</td>
<td>5</td>
<td>29</td>
<td>42</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>32</td>
<td>18</td>
<td>5</td>
<td>22</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>32</td>
<td>19</td>
<td>5</td>
<td>21</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>33</td>
<td>12</td>
<td>2</td>
<td>26</td>
<td>32</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>33</td>
<td>13</td>
<td>2</td>
<td>16</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>33</td>
<td>14</td>
<td>2</td>
<td>19</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>33</td>
<td>15</td>
<td>2</td>
<td>17</td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>33</td>
<td>16</td>
<td>3</td>
<td>28</td>
<td>45</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>33</td>
<td>17</td>
<td>3</td>
<td>33</td>
<td>48</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>33</td>
<td>18</td>
<td>3</td>
<td>32</td>
<td>54</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>33</td>
<td>19</td>
<td>3</td>
<td>30</td>
<td>44</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>34</td>
<td>12</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>34</td>
<td>13</td>
<td>8</td>
<td>19</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>34</td>
<td>14</td>
<td>8</td>
<td>22</td>
<td>42</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>34</td>
<td>15</td>
<td>8</td>
<td>29</td>
<td>47</td>
<td>76</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP.</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001 2003 2005 2007 2013</td>
<td>Db1 Db2 Db3 Dn1 Dn2 Dn3 1V 1M 2V 2M 3 +</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>34</td>
<td>16</td>
<td>9</td>
<td>23 35 64 139 373 15 9,5 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>34</td>
<td>17</td>
<td>9</td>
<td>21 27 46 85 287 12 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>34</td>
<td>18</td>
<td>9</td>
<td>26 35 58 116 265 11,5 6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>34</td>
<td>19</td>
<td>9</td>
<td>29 45 78 145 343 14 8,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>35</td>
<td>12</td>
<td>9</td>
<td>17 21 39 49 206 8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>35</td>
<td>13</td>
<td>9</td>
<td>27 41 74 149 390 17,5 10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>35</td>
<td>14</td>
<td>9</td>
<td>21 31 52 77 278 11 5 2,5 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>35</td>
<td>15</td>
<td>9</td>
<td>24 29 60 89 234 9 3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>35</td>
<td>16</td>
<td>2</td>
<td>20 23 32 45 100 2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>35</td>
<td>17</td>
<td>2</td>
<td>19 33 62 109 319 14,5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>35</td>
<td>18</td>
<td>2</td>
<td>9 22 43 64 170 6,5 1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>35</td>
<td>19</td>
<td>2</td>
<td>30 52 108 178 360 19 9,5 7 7</td>
<td>2 1 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>12</td>
<td>6</td>
<td>20 24 34 54 75 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>13</td>
<td>6</td>
<td>21 38 74 146 392 17 10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>14</td>
<td>6</td>
<td>17 22 52 78 238 11,5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>15</td>
<td>6</td>
<td>15 24 60 80 210 7,5 3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>36</td>
<td>16</td>
<td>7</td>
<td>23 45 78 104 272 12 4,5 2,5 2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>36</td>
<td>17</td>
<td>7</td>
<td>17 28 55 89 305 9,5 7,5 5,5 3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>36</td>
<td>18</td>
<td>7</td>
<td>24 41 76 115 318 15,5 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>36</td>
<td>19</td>
<td>7</td>
<td>32 41 94 150 340 14,5 6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>37</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>37</td>
<td>13</td>
<td>1</td>
<td>27 46 72 126 333 17 7 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>37</td>
<td>14</td>
<td>1</td>
<td>16 33 63 84 287 12 5,5 2,5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>37</td>
<td>15</td>
<td>1</td>
<td>15 19 20 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>37</td>
<td>16</td>
<td>6</td>
<td>23 40 64 86 239 10</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>37</td>
<td>17</td>
<td>6</td>
<td>19 37 77 117 325 14</td>
<td>6,5 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>37</td>
<td>18</td>
<td>6</td>
<td>24 43 80 137 376 17</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>37</td>
<td>19</td>
<td>6</td>
<td>27 48 99 171 364 17,5 9 8,5</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>38</td>
<td>16</td>
<td>8</td>
<td>21 29 49 78 225 8,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>38</td>
<td>17</td>
<td>8</td>
<td>19 23 42 83 245 9</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>38</td>
<td>18</td>
<td>8</td>
<td>26 37 58 118 284 13</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>38</td>
<td>19</td>
<td>8</td>
<td>22 38 70 102 120 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>39</td>
<td>16</td>
<td>9</td>
<td>30</td>
<td>50</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>39</td>
<td>17</td>
<td>9</td>
<td>21</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>39</td>
<td>18</td>
<td>9</td>
<td>18</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>39</td>
<td>19</td>
<td>9</td>
<td>19</td>
<td>26</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>40</td>
<td>16</td>
<td>7</td>
<td>18</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>40</td>
<td>17</td>
<td>7</td>
<td>19</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>40</td>
<td>18</td>
<td>7</td>
<td>19</td>
<td>32</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>40</td>
<td>19</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>41</td>
<td>16</td>
<td>1</td>
<td>22</td>
<td>30</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>41</td>
<td>17</td>
<td>1</td>
<td>25</td>
<td>38</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>41</td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>41</td>
<td>19</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>42</td>
<td>16</td>
<td>3</td>
<td>22</td>
<td>41</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>42</td>
<td>17</td>
<td>3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>42</td>
<td>18</td>
<td>3</td>
<td>26</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>42</td>
<td>19</td>
<td>3</td>
<td>24</td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>43</td>
<td>16</td>
<td>2</td>
<td>24</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>43</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>43</td>
<td>18</td>
<td>2</td>
<td>19</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>43</td>
<td>19</td>
<td>2</td>
<td>27</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>44</td>
<td>16</td>
<td>4</td>
<td>21</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>44</td>
<td>17</td>
<td>4</td>
<td>37</td>
<td>59</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>44</td>
<td>18</td>
<td>4</td>
<td>21</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>44</td>
<td>19</td>
<td>4</td>
<td>17</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>45</td>
<td>16</td>
<td>6</td>
<td>18</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>45</td>
<td>17</td>
<td>6</td>
<td>23</td>
<td>35</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>45</td>
<td>18</td>
<td>6</td>
<td>26</td>
<td>35</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>45</td>
<td>19</td>
<td>6</td>
<td>21</td>
<td>33</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>46</td>
<td>16</td>
<td>5</td>
<td>21</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>46</td>
<td>17</td>
<td>5</td>
<td>17</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>46</td>
<td>18</td>
<td>5</td>
<td>17</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>46</td>
<td>19</td>
<td>5</td>
<td>15</td>
<td>20</td>
<td>41</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>30</td>
<td>44</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>23</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>28</td>
<td>38</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>30</td>
<td>62</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>18</td>
<td>44</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>36</td>
<td>66</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>33</td>
<td>69</td>
<td>171</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>18</td>
<td>31</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>7</td>
<td>32</td>
<td>55</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>7</td>
<td>13</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>40</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>26</td>
<td>52</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>25</td>
<td>45</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>24</td>
<td>45</td>
<td>127</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>27</td>
<td>62</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>20</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td>33</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>20</td>
<td>36</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>9</td>
<td>30</td>
<td>51</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>30</td>
<td>61</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td>27</td>
<td>51</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>36</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>48</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>33</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>26</td>
<td>52</td>
<td>164</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>21</td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>X</th>
<th>Y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>28</td>
<td>48</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td>34</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>31</td>
<td>65</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>35</td>
<td>74</td>
<td>143</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>28</td>
<td>55</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>26</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>21</td>
<td>53</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>28</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>53</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>18</td>
<td>42</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>36</td>
<td>63</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>23</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>32</td>
<td>51</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>32</td>
<td>60</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td>28</td>
<td>49</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>23</td>
<td>46</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>22</td>
<td>40</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>24</td>
<td>34</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>28</td>
<td>38</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>32</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>24</td>
<td>44</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>23</td>
<td>44</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>29</td>
<td>62</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>33</td>
<td>59</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>31</td>
<td>45</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>29</td>
<td>58</td>
<td>148</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>23</td>
<td>41</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>29</td>
<td>49</td>
<td>116</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Título: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>33</td>
<td>65</td>
<td>149</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>26</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>29</td>
<td>52</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>26</td>
<td>37</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>33</td>
<td>62</td>
<td>161</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>40</td>
<td>67</td>
<td>108</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>39</td>
<td>49</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>22</td>
<td>25</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>22</td>
<td>33</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>27</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>28</td>
<td>37</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>30</td>
<td>47</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>35</td>
<td>57</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>22</td>
<td>46</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>24</td>
<td>49</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>27</td>
<td>52</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>44</td>
<td>66</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>32</td>
<td>64</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>28</td>
<td>45</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>22</td>
<td>54</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>23</td>
<td>39</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>23</td>
<td>42</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>2</td>
<td>27</td>
<td>46</td>
<td>97</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA) - E.T.S. DE INGENIERÍAS AGRARIAS
Títuloación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>23</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>25</td>
<td>44</td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>25</td>
<td>51</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>18</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>24</td>
<td>43</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>24</td>
<td>43</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>24</td>
<td>43</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>24</td>
<td>33</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>26</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>26</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td>30</td>
<td>37</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>34</td>
<td>50</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>33</td>
<td>66</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>33</td>
<td>66</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>36</td>
<td>46</td>
<td>136</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>32</td>
<td>56</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>30</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>35</td>
<td>53</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>30</td>
<td>52</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>17</td>
<td>39</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>32</td>
<td>51</td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>26</td>
<td>44</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>26</td>
<td>37</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>33</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>21</td>
<td>36</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>20</td>
<td>37</td>
<td>93</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>32</td>
<td>53</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>26</td>
<td>43</td>
<td>116</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>5</td>
<td>28</td>
<td>57</td>
<td>137</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>28</td>
<td>39</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>41</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>16</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td>25</td>
<td>42</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>22</td>
<td>28</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>22</td>
<td>28</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>29</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>19</td>
<td>36</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>10</td>
<td>6</td>
<td>22</td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>29</td>
<td>48</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>34</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>36</td>
<td>65</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>34</td>
<td>52</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>24</td>
<td>40</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>6</td>
<td>24</td>
<td>31</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>24</td>
<td>33</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>39</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>19</td>
<td>36</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>28</td>
<td>48</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>9</td>
<td>5</td>
<td>30</td>
<td>58</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>34</td>
<td>52</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>26</td>
<td>40</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>23</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>2</td>
<td>26</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>34</td>
<td>67</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>32</td>
<td>61</td>
<td>143</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>37</td>
<td>45</td>
<td>111</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>14</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>13</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>16</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>16</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>16</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>7</td>
<td>32</td>
<td>58</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>7</td>
<td>27</td>
<td>56</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>36</td>
<td>66</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
<td>6</td>
<td>7</td>
<td>28</td>
<td>50</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>3</td>
<td>31</td>
<td>53</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17</td>
<td>9</td>
<td>3</td>
<td>26</td>
<td>41</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17</td>
<td>10</td>
<td>3</td>
<td>30</td>
<td>47</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>1</td>
<td>33</td>
<td>56</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>22</td>
<td>33</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>9</td>
<td>36</td>
<td>55</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>9</td>
<td>34</td>
<td>56</td>
<td>101</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td>9</td>
<td>33</td>
<td>48</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>18</td>
<td>6</td>
<td>9</td>
<td>30</td>
<td>69</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td>31</td>
<td>52</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>18</td>
<td>10</td>
<td>2</td>
<td>34</td>
<td>61</td>
<td>122</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>9</td>
<td>25</td>
<td>34</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>20</td>
<td>39</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>18</td>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>19</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>19</td>
<td>4</td>
<td>8</td>
<td>27</td>
<td>51</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>19</td>
<td>5</td>
<td>8</td>
<td>29</td>
<td>54</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>22</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>8</td>
<td>1</td>
<td>35</td>
<td>54</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>22</td>
<td>34</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>10</td>
<td>1</td>
<td>29</td>
<td>41</td>
<td>82</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>19</td>
<td>11</td>
<td>5</td>
<td>22</td>
<td>32</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>19</td>
<td>12</td>
<td>5</td>
<td>34</td>
<td>42</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>19</td>
<td>13</td>
<td>5</td>
<td>32</td>
<td>50</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>33</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>26</td>
<td>42</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>6</td>
<td>6</td>
<td>22</td>
<td>35</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>7</td>
<td>4</td>
<td>16</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>25</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>9</td>
<td>4</td>
<td>26</td>
<td>37</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>20</td>
<td>10</td>
<td>4</td>
<td>30</td>
<td>39</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>20</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>20</td>
<td>12</td>
<td>3</td>
<td>23</td>
<td>38</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>20</td>
<td>13</td>
<td>3</td>
<td>22</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>20</td>
<td>14</td>
<td>3</td>
<td>25</td>
<td>58</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>21</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>29</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>21</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>21</td>
<td>5</td>
<td>2</td>
<td>21</td>
<td>53</td>
<td>139</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>21</td>
<td>6</td>
<td>2</td>
<td>24</td>
<td>45</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>21</td>
<td>7</td>
<td>7</td>
<td>22</td>
<td>41</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>21</td>
<td>8</td>
<td>7</td>
<td>24</td>
<td>48</td>
<td>131</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>21</td>
<td>9</td>
<td>7</td>
<td>34</td>
<td>33</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>21</td>
<td>10</td>
<td>7</td>
<td>39</td>
<td>67</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>21</td>
<td>11</td>
<td>4</td>
<td>13</td>
<td>21</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>21</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>21</td>
<td>13</td>
<td>4</td>
<td>25</td>
<td>53</td>
<td>117</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>21</td>
<td>14</td>
<td>4</td>
<td>23</td>
<td>35</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>26</td>
<td>42</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>48</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>5</td>
<td>3</td>
<td>23</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla de Datos

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>7</td>
<td>5</td>
<td>33</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>5</td>
<td>5</td>
<td>28</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>9</td>
<td>5</td>
<td>40</td>
<td>19,5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>10</td>
<td>5</td>
<td>25</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>11</td>
<td>6</td>
<td>22</td>
<td>16,5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>12</td>
<td>6</td>
<td>19</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>13</td>
<td>6</td>
<td>26</td>
<td>14,5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>22</td>
<td>14</td>
<td>6</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>3</td>
<td>7</td>
<td>18</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>4</td>
<td>7</td>
<td>24</td>
<td>15,5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>5</td>
<td>7</td>
<td>33</td>
<td>12</td>
<td>8,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>7</td>
<td>2</td>
<td>36</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>8</td>
<td>2</td>
<td>25</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>30</td>
<td>17,5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>10</td>
<td>2</td>
<td>31</td>
<td>18,5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>11</td>
<td>4</td>
<td>21</td>
<td>18,5</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>13</td>
<td>4</td>
<td>23</td>
<td>18</td>
<td>10,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>23</td>
<td>14</td>
<td>4</td>
<td>22</td>
<td>24,5</td>
<td>15,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>8</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>4</td>
<td>8</td>
<td>24</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>5</td>
<td>8</td>
<td>16</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>6</td>
<td>8</td>
<td>28</td>
<td>20,5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>7</td>
<td>1</td>
<td>27</td>
<td>19,5</td>
<td>10,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>1</td>
<td>38</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>9</td>
<td>1</td>
<td>21</td>
<td>15,5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>10</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>12,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>11</td>
<td>9</td>
<td>22</td>
<td>18</td>
<td>9,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>12</td>
<td>9</td>
<td>25</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>13</td>
<td>9</td>
<td>32</td>
<td>17</td>
<td>10,5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>24</td>
<td>14</td>
<td>9</td>
<td>19</td>
<td>15,5</td>
<td>9</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
**Universidad de Valladolid (Campus de Palencia): E.T.S. de Ingenierías Agrarias
Titulación:** Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>18</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>37</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>29</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>19</td>
<td>29</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>22</td>
<td>32</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>20</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>27</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td>20</td>
<td>27</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>8</td>
<td>27</td>
<td>42</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>8</td>
<td>19</td>
<td>41</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>26</td>
<td>43</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>22</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>26</td>
<td>55</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>23</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>22</td>
<td>45</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>17</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>18</td>
<td>24</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>20</td>
<td>32</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>19</td>
<td>27</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>26</td>
<td>32</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>22</td>
<td>28</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>6</td>
<td>27</td>
<td>37</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>6</td>
<td>17</td>
<td>25</td>
<td>45</td>
</tr>
</tbody>
</table>
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>19</td>
<td>23</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>17</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>24</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>19</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>33</td>
<td>54</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>19</td>
<td>41</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>22</td>
<td>32</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>24</td>
<td>51</td>
<td>101</td>
<td>190</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>20</td>
<td>35</td>
<td>60</td>
<td>145</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>19</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>10</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>19</td>
<td>26</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>36</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>22</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>18</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>29</td>
<td>50</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>20</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>24</td>
<td>40</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>25</td>
<td>35</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>26</td>
<td>46</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>32</td>
<td>71</td>
<td>165</td>
<td>255</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>31</td>
<td>51</td>
<td>104</td>
<td>195</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>129</td>
<td>242</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>17</td>
<td>35</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>4</td>
<td>25</td>
<td>40</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>4</td>
<td>18</td>
<td>31</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>21</td>
<td>39</td>
<td>66</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>21</td>
<td>10,5</td>
<td>2,5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>25</td>
<td>12,5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>20</td>
<td>13,5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>21</td>
<td>18,5</td>
<td>10,5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>21</td>
<td>18</td>
<td>8,5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>28</td>
<td>16,5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>27</td>
<td>18,5</td>
<td>11,5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>28</td>
<td>20,5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>25</td>
<td>13,5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>9</td>
<td>20</td>
<td>11,5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>21</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>24</td>
<td>17</td>
<td>8,5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>25</td>
<td>18,5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>22</td>
<td>14,5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>7</td>
<td>22</td>
<td>16</td>
<td>6,5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>14</td>
<td>8,5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>18</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>14</td>
<td>8,5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td>17</td>
<td>9,5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>22</td>
<td>19,5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>23</td>
<td>17,5</td>
<td>8,5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>0,5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>23</td>
<td>17,5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>27</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>1</td>
<td>24</td>
<td>18,5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>1</td>
<td>23</td>
<td>17,5</td>
<td>9,5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>1</td>
<td>22</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diferenciación ecotípica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia "Meseta Norte".

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>18</td>
<td>23</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>18</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>40</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>14</td>
<td>24</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>21</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>22</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>20</td>
<td>34</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>23</td>
<td>33</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>21</td>
<td>39</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>20</td>
<td>40</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>5</td>
<td>23</td>
<td>44</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>24</td>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>5</td>
<td>22</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>23</td>
<td>51</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>22</td>
<td>23</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>24</td>
<td>51</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>30</td>
<td>58</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>17</td>
<td>21</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>19</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>22</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>21</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>6</td>
<td>30</td>
<td>32</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>26</td>
<td>36</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td>23</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>8</td>
<td>18</td>
<td>41</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>20</td>
<td>39</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>19</td>
<td>23</td>
<td>53</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>17</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>25</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>44</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>26</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>19</td>
<td>27</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>23</td>
<td>39</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>21</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>22</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>25</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>3</td>
<td>21</td>
<td>33</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>3</td>
<td>22</td>
<td>49</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>28</td>
<td>39</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>21</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>18</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>23</td>
<td>34</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>23</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>22</td>
<td>36</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>21</td>
<td>29</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>23</td>
<td>30</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>25</td>
<td>42</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td>30</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>25</td>
<td>44</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>27</td>
<td>47</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>3</td>
<td>18</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>28</td>
<td>42</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>3</td>
<td>21</td>
<td>37</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>21</td>
<td>37</td>
<td>82</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>27</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>19</td>
<td>28</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>21</td>
<td>29</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>23</td>
<td>35</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>19</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>21</td>
<td>36</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>2</td>
<td>19</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>20</td>
<td>32</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>26</td>
<td>44</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>5</td>
<td>18</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>5</td>
<td>35</td>
<td>72</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>20</td>
<td>25</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>20</td>
<td>37</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>19</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>17</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>42</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>22</td>
<td>52</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>18</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>20</td>
<td>33</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>24</td>
<td>41</td>
<td>102</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>7</td>
<td>21</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>25</td>
<td>38</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>27</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>6</td>
<td>23</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>27</td>
<td>43</td>
<td>86</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001 2003 2005 2007 2013</td>
<td>Db1 Db2 Db3 Dn1 Dn2 Dn3 1V 1M 2V 2M 3 +</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>17 21 41 51 175</td>
<td>9,5 2,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>20 24 42 58 220</td>
<td>10 2,5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>25 40 74 130 320</td>
<td>15 7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>15 20 59 137 308</td>
<td>15 8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>23 33 66 145 308</td>
<td>15 8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>22 27 48 67 170</td>
<td>11 3 2,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>21 34 46 67 293</td>
<td>15 7,5 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>20 34 72 174 269</td>
<td>14 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>4</td>
<td>22 35 74 147 330</td>
<td>16 9,5</td>
<td>2 1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>18 28 64 162 358</td>
<td>18 10,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>23 55 108 208 390</td>
<td>20 11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>18 25 51 126 310</td>
<td>14 5,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td>20 44 90 185 389</td>
<td>16 8,5 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>21 36 70 137 310</td>
<td>15 8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>1</td>
<td>16 18</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

153
Diferenciación ecológica entre rodales selectos de pino piñonero (*Pinus pinea*) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td></td>
<td>1</td>
<td>3</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td></td>
<td>2</td>
<td>3</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td></td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td></td>
<td>4</td>
<td>3</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>15</td>
<td></td>
<td>5</td>
<td>1</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td></td>
<td>6</td>
<td>1</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td></td>
<td>7</td>
<td>1</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td></td>
<td>8</td>
<td>1</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>15</td>
<td></td>
<td>9</td>
<td>3</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>15</td>
<td></td>
<td>10</td>
<td>3</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>15</td>
<td></td>
<td>11</td>
<td>3</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td></td>
<td>12</td>
<td>3</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td></td>
<td>13</td>
<td>8</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td></td>
<td>14</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td></td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>15</td>
<td></td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>16</td>
<td></td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>16</td>
<td></td>
<td>2</td>
<td>2</td>
<td>28</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>16</td>
<td></td>
<td>3</td>
<td>2</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>16</td>
<td></td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>16</td>
<td></td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>16</td>
<td></td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>16</td>
<td></td>
<td>7</td>
<td>8</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>16</td>
<td></td>
<td>8</td>
<td>8</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
<td></td>
<td>9</td>
<td>6</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
<td></td>
<td>10</td>
<td>6</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
<td></td>
<td>11</td>
<td>6</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
<td></td>
<td>12</td>
<td>6</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>16</td>
<td></td>
<td>13</td>
<td>4</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>16</td>
<td></td>
<td>14</td>
<td>4</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>16</td>
<td></td>
<td>15</td>
<td>4</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>16</td>
<td></td>
<td>16</td>
<td>4</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Título: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>17</td>
<td>2</td>
<td>6</td>
<td>19</td>
<td>23</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>22</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17</td>
<td>6</td>
<td>7</td>
<td>22</td>
<td>36</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>24</td>
<td>39</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>7</td>
<td>21</td>
<td>29</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>20</td>
<td>33</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>39</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>1</td>
<td>21</td>
<td>40</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>26</td>
<td>50</td>
<td>134</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>9</td>
<td>24</td>
<td>33</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>17</td>
<td>14</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>22</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>18</td>
<td>2</td>
<td>4</td>
<td>27</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>6</td>
<td>21</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>6</td>
<td>22</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>6</td>
<td>20</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>9</td>
<td>17</td>
<td>40</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>9</td>
<td>23</td>
<td>33</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>22</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>7</td>
<td>28</td>
<td>46</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>18</td>
<td>15</td>
<td>7</td>
<td>26</td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>18</td>
<td>16</td>
<td>7</td>
<td>25</td>
<td>37</td>
<td>88</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA): E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>24</td>
<td>65</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>25</td>
<td>56</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>27</td>
<td>66</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>24</td>
<td>53</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>19</td>
<td>54</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>23</td>
<td>53</td>
<td>141</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>25</td>
<td>48</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>55</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>33</td>
<td>51</td>
<td>206</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>30</td>
<td>76</td>
<td>217</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>33</td>
<td>83</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>45</td>
<td>100</td>
<td>259</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>13</td>
<td>6</td>
<td>31</td>
<td>65</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>6</td>
<td>40</td>
<td>91</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td>34</td>
<td>79</td>
<td>226</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td>6</td>
<td>39</td>
<td>87</td>
<td>245</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>28</td>
<td>71</td>
<td>203</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>31</td>
<td>62</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>34</td>
<td>57</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>30</td>
<td>56</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>28</td>
<td>69</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>35</td>
<td>69</td>
<td>180</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>26</td>
<td>56</td>
<td>153</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>36</td>
<td>78</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>32</td>
<td>58</td>
<td>176</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>41</td>
<td>86</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>39</td>
<td>95</td>
<td>234</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>53</td>
<td>99</td>
<td>247</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>40</td>
<td>86</td>
<td>219</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>40</td>
<td>80</td>
<td>238</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>2</td>
<td>38</td>
<td>64</td>
<td>190</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>41</td>
<td>73</td>
<td>204</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>25</td>
<td>57</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>26</td>
<td>69</td>
<td>179</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>27</td>
<td>54</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>32</td>
<td>56</td>
<td>154</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>34</td>
<td>154</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>20</td>
<td>37</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>28</td>
<td>63</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>18</td>
<td>51</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>33</td>
<td>65</td>
<td>208</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>28</td>
<td>55</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>32</td>
<td>71</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>30</td>
<td>76</td>
<td>218</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>30</td>
<td>83</td>
<td>228</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>9</td>
<td>28</td>
<td>67</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>30</td>
<td>65</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>22</td>
<td>61</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>40</td>
<td>83</td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>32</td>
<td>65</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>21</td>
<td>45</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>24</td>
<td>64</td>
<td>163</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>25</td>
<td>66</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>30</td>
<td>68</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>28</td>
<td>52</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>28</td>
<td>64</td>
<td>173</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>40</td>
<td>87</td>
<td>238</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>30</td>
<td>63</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>41</td>
<td>71</td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>39</td>
<td>86</td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>5</td>
<td>36</td>
<td>87</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>37</td>
<td>86</td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>33</td>
<td>77</td>
<td>215</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>18</td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>31</td>
<td>68</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>53</td>
<td>176</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>21</td>
<td>47</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>32</td>
<td>65</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>18</td>
<td>47</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>29</td>
<td>67</td>
<td>163</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>29</td>
<td>73</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>34</td>
<td>68</td>
<td>163</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>17</td>
<td>37</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>32</td>
<td>78</td>
<td>216</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>30</td>
<td>63</td>
<td>169</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>33</td>
<td>76</td>
<td>209</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>34</td>
<td>78</td>
<td>218</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>35</td>
<td>76</td>
<td>224</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>31</td>
<td>73</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>7</td>
<td>33</td>
<td>62</td>
<td>180</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>33</td>
<td>99</td>
<td>237</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>28</td>
<td>70</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>38</td>
<td>92</td>
<td>234</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>42</td>
<td>88</td>
<td>231</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>35</td>
<td>65</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>31</td>
<td>56</td>
<td>136</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>36</td>
<td>87</td>
<td>199</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>23</td>
<td>46</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>24</td>
<td>53</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>32</td>
<td>70</td>
<td>217</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>30</td>
<td>79</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>40</td>
<td>108</td>
<td>262</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>38</td>
<td>75</td>
<td>242</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td>38</td>
<td>75</td>
<td>242</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>4</td>
<td>22</td>
<td>59</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>4</td>
<td>39</td>
<td>83</td>
<td>224</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>31</td>
<td>80</td>
<td>209</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>34</td>
<td>82</td>
<td>221</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>24</td>
<td>69</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>37</td>
<td>89</td>
<td>219</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>65</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>26</td>
<td>65</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>26</td>
<td>61</td>
<td>179</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>37</td>
<td>77</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>34</td>
<td>62</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>27</td>
<td>51</td>
<td>164</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>32</td>
<td>78</td>
<td>221</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>28</td>
<td>58</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>8</td>
<td>32</td>
<td>62</td>
<td>199</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>34</td>
<td>70</td>
<td>227</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>8</td>
<td>42</td>
<td>94</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>51</td>
<td>110</td>
<td>240</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>36</td>
<td>90</td>
<td>196</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>26</td>
<td>76</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>22</td>
<td>66</td>
<td>191</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>28</td>
<td>66</td>
<td>206</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>32</td>
<td>75</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>29</td>
<td>69</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>35</td>
<td>59</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>26</td>
<td>59</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>54</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>19</td>
<td>55</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>19</td>
<td>42</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>3</td>
<td>27</td>
<td>56</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>37</td>
<td>75</td>
<td>205</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>32</td>
<td>68</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>37</td>
<td>85</td>
<td>209</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP.</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>37</td>
<td>50</td>
<td>211</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>28</td>
<td>58</td>
<td>212</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>29</td>
<td>52</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>30</td>
<td>36</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>24</td>
<td>68</td>
<td>145</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>36</td>
<td>33</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>40</td>
<td>56</td>
<td>248</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>22</td>
<td>77</td>
<td>134</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>30</td>
<td>45</td>
<td>216</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>25</td>
<td>97</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>15</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>27</td>
<td>49</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>1</td>
<td>12</td>
<td>67</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>1</td>
<td>17</td>
<td>60</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>15</td>
<td>1</td>
<td>26</td>
<td>63</td>
<td>174</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>1</td>
<td>26</td>
<td>91</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>32</td>
<td>68</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>67</td>
<td>176</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>40</td>
<td>94</td>
<td>221</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>38</td>
<td>93</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>25</td>
<td>59</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td>31</td>
<td>62</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>35</td>
<td>73</td>
<td>211</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>29</td>
<td>75</td>
<td>203</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>39</td>
<td>97</td>
<td>239</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>39</td>
<td>97</td>
<td>239</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>2</td>
<td>35</td>
<td>63</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>19</td>
<td>39</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>2</td>
<td>17</td>
<td>35</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>2</td>
<td>39</td>
<td>78</td>
<td>209</td>
</tr>
</tbody>
</table>

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes
<table>
<thead>
<tr>
<th>SITIO</th>
<th>REP</th>
<th>x</th>
<th>y</th>
<th>PROC</th>
<th>Altura total H (cm)</th>
<th>Diámetros (cm)</th>
<th>Fructificación F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>9</td>
<td>34</td>
<td>69</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>9</td>
<td>29</td>
<td>60</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td>27</td>
<td>75</td>
<td>191</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>40</td>
<td>71</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>32</td>
<td>85</td>
<td>205</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>23</td>
<td>55</td>
<td>169</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>38</td>
<td>78</td>
<td>202</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>34</td>
<td>72</td>
<td>217</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>26</td>
<td>65</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>29</td>
<td>63</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>30</td>
<td>59</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>26</td>
<td>57</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>3</td>
<td>29</td>
<td>64</td>
<td>190</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>3</td>
<td>28</td>
<td>55</td>
<td>156</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>23</td>
<td>60</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>32</td>
<td>80</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>46</td>
<td>85</td>
<td>232</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>33</td>
<td>71</td>
<td>191</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>36</td>
<td>70</td>
<td>161</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>8</td>
<td>36</td>
<td>79</td>
<td>212</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td>39</td>
<td>56</td>
<td>154</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>41</td>
<td>92</td>
<td>214</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>40</td>
<td>90</td>
<td>227</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>33</td>
<td>74</td>
<td>206</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>33</td>
<td>78</td>
<td>228</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>33</td>
<td>72</td>
<td>201</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>42</td>
<td>94</td>
<td>218</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>35</td>
<td>95</td>
<td>229</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>30</td>
<td>53</td>
<td>179</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>6</td>
<td>27</td>
<td>49</td>
<td>164</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>30</td>
<td>65</td>
<td>180</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>5</td>
<td>38</td>
<td>92</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>5</td>
<td>30</td>
<td>70</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>38</td>
<td>78</td>
<td>173</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>26</td>
<td>44</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>53</td>
<td>153</td>
<td>229</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>27</td>
<td>60</td>
<td>164</td>
<td>235</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>29</td>
<td>60</td>
<td>167</td>
<td>252</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>32</td>
<td>64</td>
<td>189</td>
<td>265</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>33</td>
<td>72</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>35</td>
<td>67</td>
<td>183</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>24</td>
<td>54</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>48</td>
<td>106</td>
<td>244</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>24</td>
<td>62</td>
<td>168</td>
<td>253</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>27</td>
<td>55</td>
<td>160</td>
<td>259</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>15</td>
<td>7</td>
<td>24</td>
<td>53</td>
<td>141</td>
<td>227</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>16</td>
<td>7</td>
<td>32</td>
<td>73</td>
<td>191</td>
<td>288</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>37</td>
<td>82</td>
<td>226</td>
<td>296</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>33</td>
<td>68</td>
<td>200</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>35</td>
<td>71</td>
<td>175</td>
<td>242</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>54</td>
<td>165</td>
<td>255</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>23</td>
<td>46</td>
<td>135</td>
<td>222</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>9</td>
<td>3</td>
<td>33</td>
<td>94</td>
<td>201</td>
<td>273</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>39</td>
<td>94</td>
<td>240</td>
<td>320</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>11</td>
<td>3</td>
<td>31</td>
<td>70</td>
<td>192</td>
<td>263</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>3</td>
<td>32</td>
<td>72</td>
<td>215</td>
<td>295</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>13</td>
<td>4</td>
<td>30</td>
<td>76</td>
<td>215</td>
<td>310</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>14</td>
<td>4</td>
<td>26</td>
<td>70</td>
<td>191</td>
<td>255</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>15</td>
<td>4</td>
<td>16</td>
<td>35</td>
<td>121</td>
<td>207</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>16</td>
<td>4</td>
<td>23</td>
<td>54</td>
<td>155</td>
<td>240</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>7</td>
<td>37</td>
<td>81</td>
<td>216</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>2</td>
<td>7</td>
<td>36</td>
<td>54</td>
<td>136</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>35</td>
<td>49</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>15</td>
<td>4</td>
<td>7</td>
<td>36</td>
<td>74</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>37</td>
<td>74</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>6</td>
<td>7</td>
<td>30</td>
<td>50</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>37</td>
<td>74</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>38</td>
<td>75</td>
<td>191</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>31</td>
<td>73</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>41</td>
<td>72</td>
<td>198</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>11</td>
<td>7</td>
<td>26</td>
<td>70</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>29</td>
<td>67</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>15</td>
<td>13</td>
<td>8</td>
<td>24</td>
<td>63</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td>8</td>
<td>29</td>
<td>78</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>32</td>
<td>62</td>
<td>191</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>8</td>
<td>28</td>
<td>63</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>31</td>
<td>66</td>
<td>199</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>29</td>
<td>63</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>29</td>
<td>47</td>
<td>126</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>28</td>
<td>59</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>16</td>
<td>5</td>
<td>1</td>
<td>27</td>
<td>64</td>
<td>149</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>17</td>
<td>42</td>
<td>127</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td>1</td>
<td>30</td>
<td>70</td>
<td>167</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>29</td>
<td>66</td>
<td>173</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>30</td>
<td>67</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>16</td>
<td>10</td>
<td>2</td>
<td>24</td>
<td>55</td>
<td>134</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>16</td>
<td>11</td>
<td>2</td>
<td>25</td>
<td>53</td>
<td>148</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>2</td>
<td>26</td>
<td>73</td>
<td>198</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>5</td>
<td>21</td>
<td>54</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>16</td>
<td>14</td>
<td>5</td>
<td>35</td>
<td>71</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>16</td>
<td>15</td>
<td>5</td>
<td>22</td>
<td>50</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>5</td>
<td>28</td>
<td>60</td>
<td>162</td>
</tr>
<tr>
<td>SITIO</td>
<td>REP</td>
<td>x</td>
<td>y</td>
<td>PROC</td>
<td>Altura total H (cm)</td>
<td>Diámetros (cm)</td>
<td>Fructificación F</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>29</td>
<td>59</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>2</td>
<td>6</td>
<td>32</td>
<td>64</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>6</td>
<td>26</td>
<td>51</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>29</td>
<td>66</td>
<td>165</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>3</td>
<td>24</td>
<td>45</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>17</td>
<td>6</td>
<td>3</td>
<td>25</td>
<td>52</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>17</td>
<td>7</td>
<td>3</td>
<td>30</td>
<td>65</td>
<td>168</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>17</td>
<td>8</td>
<td>3</td>
<td>22</td>
<td>62</td>
<td>172</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>1</td>
<td>41</td>
<td>71</td>
<td>164</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>1</td>
<td>26</td>
<td>52</td>
<td>139</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>1</td>
<td>27</td>
<td>55</td>
<td>147</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>27</td>
<td>61</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>1</td>
<td>36</td>
<td>90</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>17</td>
<td>14</td>
<td>1</td>
<td>30</td>
<td>59</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>1</td>
<td>21</td>
<td>46</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>1</td>
<td>26</td>
<td>61</td>
<td>159</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>18</td>
<td>1</td>
<td>8</td>
<td>25</td>
<td>43</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>18</td>
<td>2</td>
<td>8</td>
<td>35</td>
<td>46</td>
<td>153</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>8</td>
<td>37</td>
<td>65</td>
<td>137</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>26</td>
<td>48</td>
<td>144</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>18</td>
<td>5</td>
<td>7</td>
<td>31</td>
<td>63</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>7</td>
<td>36</td>
<td>69</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>37</td>
<td>70</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>18</td>
<td>8</td>
<td>7</td>
<td>34</td>
<td>64</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>18</td>
<td>9</td>
<td>4</td>
<td>24</td>
<td>42</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>18</td>
<td>10</td>
<td>4</td>
<td>31</td>
<td>53</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>4</td>
<td>25</td>
<td>43</td>
<td>136</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>18</td>
<td>41</td>
<td>162</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>9</td>
<td>24</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>18</td>
<td>14</td>
<td>9</td>
<td>29</td>
<td>50</td>
<td>183</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>18</td>
<td>15</td>
<td>9</td>
<td>28</td>
<td>52</td>
<td>134</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>18</td>
<td>16</td>
<td>9</td>
<td>30</td>
<td>54</td>
<td>157</td>
</tr>
</tbody>
</table>

Diferenciación ecológica entre rodales selectos de pino piñonero (Pinus pinea) en la cuenca del Duero: ensayo de rodales selectos de la región de procedencia “Meseta Norte”.

Alumno: Gonzalo Martínez Manero
UNIVERSIDAD DE VALLADOLID (CAMPUS DE PALENCIA)- E.T.S. DE INGENIERÍAS AGRARIAS
Titulación: Máster en Ingeniería de Montes