Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please check the telephone/fax number of the corresponding author, and correct if necessary.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Letter to the Editor

Association between vitamin D deficiency and heart failure in the elderly

Ángela Ruiz de Temiño a, Judith Gil a, Teresa Pérez b, Marta González a, Mónica Pineda a, Antonio Dueñas-Laita c, José Luis Pérez-Castrillón a,⁎

a Internal Medicine Service, Hospital Universitario Río Hortega, Valladolid, Spain
b Heart Failure Unit, Cardiology Service, Hospital Universitario Río Hortega, Valladolid, Spain
c Clinical Toxicology Unit, Hospital Universitario Río Hortega, Valladolid, Spain

ARTICLE INFO

Article history:
Received 3 August 2011
Accepted 17 August 2011
Available online xxxx

Keywords:
Vitamin D
Heart failure
Elderly

Dear Sir

Vitamin D (25-OH-vitamin D) is a hormone which acts on the calcium-phosphorus metabolism and also has extraskeletal effects. In the cardiovascular system, it regulates the renin-angiotensin-aldosterone system (RAAS), inhibits vascular smooth muscle proliferation, and suppresses cardiac hypertrophy and hypercontractility [1].

We assessed the relationship between vitamin D deficiency and heart failure (HF) in an elderly population. We carried out a prospective case-control study in the Internal Medicine Department, Rio Hortega Hospital, Valladolid in 2010. Twenty-five patients were diagnosed with HF and 19 were institutionalized controls with no history of cardiovascular disease (CVD). The age of patients and control group was similar (83 ± 7 years vs. 85 ± 8 years, p > 0.05). The sex distribution didn’t show differences. HF was diagnosed according to clinical and laboratory criteria (B-type natriuretic peptide > 400 pg/mL). Vitamin D insufficiency was defined as levels < 20 ng/mL and deficiency as < 10 ng/mL. Two-dimensional echocardiography evaluated systolic and diastolic function, pulmonary artery systolic pressure (PASP), atrial fibrillation and valvular disease in the HF group.

Patients with HF had lower vitamin D levels than controls (8.47 ± 4.85 vs. 17.13 ± 6.44, p = 0.0001) (Fig. 1) and 78.3% had vitamin D deficiency, compared with 5.3% of controls. Vitamin D levels remained significantly higher in the HF group (p = 0.009), after stratification for institutionalization. Intact parathormone (iPTH) levels were also significantly higher in patients with HF (p = 0.0001).

Echocardiography showed a mean ejection fraction (EF) of 54% ± 15 and 45% of patients had systolic dysfunction (severe in 5%). The diastolic pattern could not be estimated in enough patients to establish a relationship between vitamin D deficiency and HF with preserved EF, because 40% of patients had atrial fibrillation. Seventy-two percent of patients had valvular disease and 80% had significant pulmonary hypertension (mean PASP 57 ± 15 mmHg).

Recent years have provided new insight into the pathophysiology of HF. Vitamin D inhibits the RAAS, which is involved in the development of heart failure and hypertension, and reduces inflammation, thereby protecting the vascular endothelium. In addition, low levels of vitamin D favour myocardial hypertrophy. Recent studies have shown an association between an increased prevalence of CVD and vitamin D deficiency [2,3].

Our findings that patients with HF had lower vitamin D levels than controls are similar to those of other studies. Kim et al. [4] and Ameri et al. [5] found hypovitaminosis D in 81% and 90%, respectively, of patients with HF. No Spanish study has previously reported this association. Ameri et al. [5] observed an increase in systolic and diastolic left ventricle diameters and volumes in patients with vitamin D deficiency. However, we found no such association, probably due to the high incidence of valvular disease and pulmonary hypertension in our sample.

Our results and those of other studies suggest a possible association between vitamin D and heart failure. However, it is unclear whether this deficit is secondary to reduced exposure to sunlight and inadequate intake in patients with HF or is a risk factor for its development. We stratified the results according to institution-alization, as these patients might be expected to have less exposure to sunlight, but patients with HF still had more-severe vitamin D deficiency, supporting the idea that this may be a risk factor for CVD [6]. Further studies should analyze the potential role of vitamin D in the pathogenesis of CVD and the possible benefits of supplementation.
References

Please cite this article as: de Temiño AR, et al, Association between vitamin D deficiency and heart failure in the elderly, Int J Cardiol (2011), doi:10.1016/j.ijcard.2011.08.042