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Abstract

The maximum likelihood estimation in the finite mixture of distributions setting is

an ill-posed problem that is treatable, in practice, through the EM algorithm. However,

the existence of spurious solutions (singularities and non-interesting local maximizers)

makes difficult to find sensible mixture fits for non-expert practitioners. In this work, a

constrained mixture fitting approach is presented with the aim of overcoming the trou-

bles introduced by spurious solutions. Sound mathematical support is provided and,

which is more relevant in practice, a feasible algorithm is also given. This algorithm

allows for monitoring solutions in terms of the constant involved in the restrictions,

which yields a natural way to discard spurious solutions and a valuable tool for data

analysts.

Keywords: Mixtures; maximum likelihood; EM algorithm; constraints; eigenvalues re-

strictions.

1 Introduction

Finite mixtures of distribution have been extensively applied in the statistical literature to

model very different types of data (see, e.g., the monographies by Titterington et al 1985,

and, McLachlan and Peel 2000). This wide use has been motivated by the existence of feasible

algorithms, mainly based on variations of the expectation-maximization (EM) algorithm of
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Dempster et al. (1977). However, in practice, there are several difficulties arising from the

nature of the problem, which avoid a more simple use for practitioners.

In this work, we just focus on the most extensively analyzed problem in mixture modeling,

which is the problem of fitting a mixture of G normal components to a given data set

{x1, ..., xn} in Rp. Moreover, we will assume that the number of components G is fixed

beforehand. Our framework is that of “Maximum Likelihood (ML)” and, thus, we consider

(log-)likelihoods like
n∑

i=1

log

[ G∑
g=1

πgφ(xi;µg,Σg)

]
, (1)

where φ(·;µ,Σ) stands for the probability density function of the p-variate normal distribu-

tion with mean µ and covariance matrix Σ.

One of the main difficulties in this context is that the maximization of the log-likelihood

(1) without any constraint is an ill-posed problem (Day 1969). It is well known that

φ(xi; xi,Σg) tends to infinity when det(Σj) approximates 0, making the target function (1)

unbounded. Moreover, there exist many non-interesting local maximizers of (1), which are

often referred to as spurious solutions. The choice of meaningful local maximizers (avoiding

singularities and spurious solutions) is thus an important, but complex, problem.

McLachlan and Peel (2000), after showing some illustrative examples of this problem,

proposed monitoring the local maximizers of (1), obtained after the application of EM type

algorithms and carefully evaluating them by resorting to appropriate statistical tools. Un-

fortunately, this evaluation is not an easy task for practitioners without enough statistical

expertise.

An alternative approach is based on considering different constrains on the Σg scatter ma-

trices. Most of them are based on imposing constraints on the elements of the decomposition

of the scatter matrices in the form

Σg = λgDgAgD
′
g

(see, e.g., Banfield and Raftery 1993 and Celeux and Govaert 1995), where λg is the largest

eigenvalue, Dg is the matrix of eigenvectors of Σg and Ag is a diagonal matrix. Considering

the λg, Dg and Aj as independent sets of parameters, the idea is constrain them to be

the same among the different mixture components or allow them to vary among mixture

components.

Penalized maximum likelihood approaches were considered (see, e.g., Chen and Tan 2009

and Ciuperca et al 2003) to overcome the problem of unboundedness of the likelihood,

and, Fraley and Raftery (2007) proposed a Bayesian regularization approach to address the

problem of the spurious solutions.

Another possibility for transforming the maximization of (1) into a well-defined problem

goes back to Hathaway (1985) (he also refereed to Dennis (1982), who, in turn, cited to
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Beale and Thompson (oral communications)). In the univariate case, Hathaway’s approach

is based on the maximization of (1) under the constraint

maxg=1,...,G σ2
g

ming=1,...,G σ2
g

≤ c, (2)

where c ≥ 1 is a fixed constant and Σg = σ2
g are the variances of the univariate normal

mixture components.

Hathaway also outlined an extension to multivariate problems based on the eigenvalues of

matrices ΣjΣ
−1
k . Unfortunately, to our knowledge, this extension has not been implemented

in practical applications due to the non-existence of appropriate algorithms for carrying

out the associated constrained maximization. In fact, Hathaway’s attempt to provide an

algorithm for this goal, even in the univariate case, addressed a different (but not equivalent

problem) through the constraints

σ2
g+1

σ2
g

≤ c, for 1 ≤ g ≤ G− 1, and
σ2
G

σ2
1

≤ c.

These more feasible constraints were proposed as an alternative to constraints (2) in Hath-

away (1983, 1986).

In this work, we consider an easy extension of constraints (2) which allows for a computa-

tionally feasible algorithm. The approach is based on controlling the maximal ratio between

scatter matrices eigenvalues as it has been already considered by the authors in a (robust)

clustering framework (Garćıa-Escudero et al 2008). However, our aim there was (robustly)

to find clusters or groups in a data set instead of modeling it with a finite mixture. Al-

though the two problems are clearly related, we are now using “mixture” likelihood instead

of (trimmed) “classification” likelihoods. In both approaches, a constant serves to c control

the strength of the constraints on the eigenvalues.

The consideration of constraints in these problems must be supported and guided by a

double perspective. On the one hand, it should be soundly justified from a mathematical

point of view but, on the other hand, its numerical implementation should be feasible at an

affordable computational cost.

Regarding the mathematical aspects of the problem, we will prove the existence and con-

sistency of constrained solutions under very general assumptions. Hathaway (1986) provides

similar results in the univariate case that, surprisingly, have not been properly extended

to multivariate cases. In any case, our results are considerably more general even in the

one-dimensional setup. A direct consequence of these theoretical results is that the added

constraints lead to well-defined underlying theoretical or population problems. Otherwise,

the maximization of (1) through EM algorithms results in a rather “heuristic” task whose

theoretical behavior would depend on the probabilistic way that the EM algorithm is initial-

ized. In fact, it is well known that the performance of the EM algorithm in mixture modeling

relies heavily on effective initializations of parameters (see, e.g., Maitra 2009).
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Even though the considered constraints result in mathematically well justified problems,

it is very important to develop feasible and fast enough algorithms for their practical imple-

mentation. The direct adaptation of the type of algorithm introduced in Garćıa-Escudero

et al (2008) is not satisfactory at all. This type of algorithm implies solving several complex

optimization problems in each iteration of the algorithm, through Dykstra’s algorithm (Dyk-

stra 1983). Instead of considering this type of algorithm, we propose adapting the algorithm

in Fritz et al (2013) to this mixture fitting problem. The proposed adaptation provides an

efficient algorithm for solving the constrained maximization of (1).

Gallegos and Ritter (2009a) considered other type of constraints on the Σj scatter ma-

trices in (robust) clustering by resorting to the Löwner matrix ordering (≼). To be more

specific, they constrained the scatter matrices to satisfy Σj ≽ c−1Σk for every j and k. Gal-

legos and Ritter (2009b) also applied this type of constraint to the mixture fitting problem.

However, a specific algorithm was not given for solving those problems for a fixed value

of the constant c. Instead of doing that, they proposed obtaining all local maxima of the

(trimmed) likelihood and investigate the value of c needed in order that each solution fulfills

one of these constraints.

Starting from constraints on the eigenvalues of matrices ΣjΣ
−1
k (as those originally pro-

posed by Hathaway 1985), algorithms trying to approximate the solution of this problem

were proposed in Ingrassia and Rocci (2007). In this way, they suggested algorithms based

on truncating the scatter matrices eigenvalues using known lower and upper bounds on these

eigenvalues. When no suitable external information is available for bounding them, they also

considered a bound on the relative ratio of the eigenvalues as we do in this work. However,

their algorithm for this last proposal did not directly maximize the likelihood as done in Step

2.2 of our algorithm. Their algorithm was based on obtaining iterative estimates of η, which

is a lower bound on the scatter matrices eigenvalues, to properly truncate the eigenvalues

and thus, as the authors commented in the paper, the proposed algorithm is quite sensitive

to the choice of an initial good choice η0 for parameter η.

Throughout this work, we are assuming that no outlying data points appear in our data

set. However, the proposed methodology can be easily extended to trimmed ML approaches

were a fraction α of the data is allowed to be trimmed. For instance, the way that eigenvalues

ratio constraints are enforced in the proposed algorithm may be easily incorporated to the

trimmed likelihood mixture fitting method in Neykov et al (2007) or to the robust improper

ML estimator (RIMLE) introduced in Hennig (2004) (see, also, Coretto and Hennig 2010).

The outline of the work is as follows. We properly state the constrained problem and

give mathematical properties that support its interest in Section 2. Section 3 is devoted

to the description of the proposed algorithm. Section 4 presents a simple simulation study

to show how the use of constraints avoids the detection of spurious solutions. In Section

5, we analyze some examples already considered in the literature. Throughout them, we
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illustrate how alternative mixture fits can be explored when moving the constant c defining

the constraints. Finally, we conclude in Section 6 and some hints about how to explore these

alternative mixture fits.

2 Problem statement and theoretical results

Let us assume that the sample {x1, ..., xn} ⊂ Rp arises from an i.i.d random sample from an

underlying distribution P . We could ideally assume that P is a mixture of G multivariate

normal components but, in the presented results, only mild assumptions on the underlying

distribution P will be required. Given this sample, the proposed approach is based on the

maximization of the mixture log-likelihood given in (1) but with the additional:

(ER) eigenvalues-ratio constraint

Mn/mn ≤ c

for

Mn = max
g=1,...,G

max
l=1,...,p

λl(Σg) and mn = min
g=1,...,G

min
l=1,...,p

λl(Σg),

with λl(Σg) being the eigenvalues when g = 1, ..., G and l = 1, ..., p of the Σg scatter

matrices and c ≥ 1 being a fixed constant.

This type of constraints simultaneously controls differences between groups and depar-

tures for sphericity. Note that the relative length of the equidensity ellipsoids axes based on

φ(·;µg,Σg) is forced to be smaller than
√
c. The smaller c, the more similarly scattered and

spherical the mixture components are. For instance, these ellipsoids reduce to balls with the

same radius in the most constrained c = 1 case.

The previously stated empirical problem admits an underlying theoretical or population

counterpart:

Constrained mixture-fitting problem: Given a probability measure P , maximize:

EP

[
log

[ G∑
g=1

πgφ(·;µg,Σg)

]]
, (3)

in terms of the parameters θ = (π1, ..., πG, µ1, ..., µG,Σ1, ...,ΣG) corresponding to weights

πg ∈ [0, 1], with
∑G

g=1 πg = 1, location vectors µg ∈ Rp and symmetric positively defi-

nite (p× p)-matrices Σg satisfying the (ER) constraint for a fixed constant c ≥ 1. The

set of θ parameters obeying these conditions is denoted by Θc.

If Pn stands for the empirical measure, Pn = (1/n)
∑n

i=1 δ{xi}, we recover the original

empirical problem by replacing P by Pn.
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Figure 1: If {lg,l} are the length of the axes of the equidensity ellipsoids based on the

φ(·;µg,Σg) normal density, the constant c constraints max{lg,l}/min{lg,l} to be smaller than
√
c.

In this section, we give results guaranteeing the existence of both empirical and popula-

tion problem solutions, together with a consistency result of the empirical solutions to the

population one. These two results only require mild assumptions on the underlying distri-

bution P . Namely, we require P to have finite second moment, i.e. EP [∥ · ∥2] < ∞, and to

avoid that P is completely unappropriate for a mixture fitting approach by requesting:

(PR) The distribution P is not concentrated on G points.

This condition trivially holds for absolutely continuous distributions and for empirical

measures corresponding to large enough samples drawn from an absolutely continuous dis-

tribution.

We can state the following general existence result:

Proposition 2.1 If (PR) holds for distribution P and EP [∥ · ∥2] < ∞, then there exists

some θ ∈ Θc such that the maximum of (3) under (ER) is achieved.

The following consistency result also holds under similar assumptions:

Proposition 2.2 Let us assume that (PR) holds for the distribution P with EP [∥ · ∥2] < ∞
and θ0 be the unique maximum of (3) under (ER). If θn ∈ Θc denotes a sample version

estimator based on the empirical measure Pn, then θn → θ0 almost surely.

Recall that the original problem without the (ER) constraint is an ill-posed problem and,

thus, results like the previous ones are not possible.
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The proofs of these results, which will be given in the Appendix, follow similar arguments

as those given for the existence and consistency results of the TCLUST method in Garćıa-

Escudero et al (2008). However, a special mathematical treatment is now needed. For

instance, the consistency result there needed an absolutely continuous distribution P with

strictly positive density function (in the boundary of the set including the non-trimmed part

of the distribution). This condition was needed due to the “trimming” approach considered

by the TCLUST methodology. On the other hand, the new results for mixtures do not longer

need this assumption, but they need finite second order moments to control the tails of the

mixture components. The tails of the distribution were not problematic when considering

trimming.

With respect to the uniqueness condition, the condition can be guaranteed when P is

a mixture of G normal components once we choose a large enough c such that its scatter

matrices belong to the set Θc. Moreover, the uniqueness condition often holds for smaller

values of c. Unfortunately, stating general uniqueness results is not an easy task even in the

most simple cases.

The presented approach is obviously not affine equivariant due of the type of constraints

considered. Although the approach becomes closer to affine equivariance when considering

large c values, it is always recommended to standardize the variables when very different

measurement scales are involved.

3 A feasible algorithm

In this section, we propose an algorithm that essentially follows the same scheme adopted

by standard EM algorithms in mixture fitting. However, in this new algorithm, it is very

important to update the parameters in the EM algorithm in such a way that the scatter

matrices satisfy the required eigenvalues ratio constraint. The proposed algorithm may be

described as follows:

1. Initialization: The procedure is initialized nstart times by selecting different θ(0) =

(π
(0)
1 , ..., π

(0)
G , µ

(0)
1 , ..., µ

(0)
G ,Σ

(0)
1 , ...,Σ

(0)
G ). For this purpose, we propose randomly select-

ing G(p+ 1) observations and computing G mean centers µ
(0)
g and G scatter matrices

Σ
(0)
g from them. The cluster scatter matrix constraints (to be described in Step 2.2)

are applied to these initial Σ
(0)
g scatter matrices, if needed. Weights π

(0)
1 , ..., π

(0)
G in the

interval (0, 1) and summing up to 1 are also randomly chosen.

2. EM steps: The following steps are alternatively executed until convergence (i.e. θ(l+1) =

θ(l)) or until a maximum number of iterations iter.max is reached.

2.1. E-step: We compute posterior probabilities for all the observation by using the
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current θ(l) as

τg(xi; θ
(l)) =

π
(l)
g φ(xi;µ

(l)
g ,Σ

(l)
g )∑G

g=1 π
(l)
g φ(xi;µ

(l)
g ,Σ

(l)
g )

. (4)

2.2. M-step: We update the θ(l) parameters as

π(l+1)
g =

n∑
i=1

τg(xi; θ
(l))/n

and

µ(l+1)
g =

n∑
i=1

τg(xi; θ
(l))xi

/ n∑
i=1

τg(xi; θ
(l)).

Updating the scatter estimates is more difficult given that the sample covariance

matrices

Tg =
n∑

i=1

τg(xi; θ
(l))(xi − µ(l+1)

g )(xi − µ(l+1)
g )′

/ n∑
i=1

τg(xi; θ
(l))

may not satisfy the required eigenvalues ratio constraint. In this case, the singular-

value decomposition of Tg = U ′
gDgUg is considered for each Tg matrix, with Uj

being orthogonal matrices and Dg = diag(dg1, dg2, ..., dgp) diagonal matrices. Let

us define the truncated eigenvalues as

[dgl]m =


dgl if dgl ∈ [m, cm]

m if dgl < m

cm if dgl > cm

, (5)

where m is some threshold value. The scatter matrices are finally updated as

Σ(l+1)
g = U ′

gD
∗
gUg,

with D∗
g = diag

(
[dg1]mopt , [dg2]mopt , ..., [dgp]mopt

)
and mopt minimizing the real val-

ued function

m 7→
G∑

g=1

π(l+1)
g

p∑
l=1

(
log ([dgl]m) +

dgl
[dgl]m

)
. (6)

3. Evaluate target function: After applying the EM steps, the value of the target function

(1) is computed. The set of parameters yielding the highest value of this target function

is returned as the algorithm’s final output.

Remark 3.1 There is a closed form for obtaining mopt just by evaluating 2pG + 1 times

the function appearing in (6). To do that, let us consider e1 ≤ e2 ≤ ... ≤ e2Gp obtained by

ordering the values

d11, d12, ..., dgl, ..., dGp, d11/c, d12/c, ..., dgl/c, ..., dGp/c,
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and consider any 2pG + 1 values satisfying f1 < e1 ≤ f2 ≤ e2 ≤ ... ≤ f2Gp ≤ e2Gp < f2Gp+1.

Compute

mi =

∑G
g=1 π

(l+1)
g

(∑p
l=1 dgl(dgl < fi) +

1
c

∑p
l=1 dgl(dgl > cfi)

)∑G
g=1 π

(l+1)
g

(∑p
l=1((dgl < fi) + (dgl > cfi))

) ,

for i = 1, ..., 2Gp+1, and choose mopt as the value of mi which yields the minimum value of

(6).

In each M-step, the constrained maximization in (1) just needs to perform the minimiza-

tion of the univariate function (6) instead of the minimization onGp parameters in expression

(3.4) given in Garćıa-Escudero et al (2008) under Gp(Gp−1)/2 linear constraints. This orig-

inal problem was computationally expensive even for moderately high values of G or p. On

the other hand, with this new algorithm, the computing times are not drastically increased

with respect to other (unrestricted) EM mixture fitting algorithms.

The justification of Step 2.2 and Remark 3.1 follows exactly the same lines as in Fritz

et al (2013). Once the τg(xi; θ
(l)) weights are fixed, the maximization of the likelihood done

in the M-step essentially coincides with that of the “classification” likelihood in Fritz et al

(2013).

4 Simulation Study

In this section, a simple simulation study is given to see how the constrained mixture fitting

algorithm actually works in practice.

The simulation study is based on a random sample drawn from a distribution P which

is made of two normal components in dimension p = 2 with density

0.5 ·N2

((
0

0

)
,

(
1 0

0 1

))
+ 0.5 ·N2

((
3

5

)
,

(
4 −2

−2 4

))
. (7)

Data sets in dimensions p = 6 and 10 are generated by adding independent identically

distributed standard normal variables to the additional coordinates.

We compare the results of the proposed mixture fitting algorithm for different values of c

when G = 2 is assumed as known. Namely, we consider c = 1, c = 6, c = 100 and c = 1010.

Note that the “true” scatter matrices eigenvalues ratio for this two-component mixture is

equal to 6. The value c = 1 yields the most constrained case when we would be searching

for mixture components with scatter matrices being the same diagonal matrix and with the

same value in its diagonal. c = 100 can be seen as a “moderate” choice of c (we do not

want the length of any ellipsoid axis to be
√
100 = 10 times larger than other) and c = 1010

means an (almost) unrestricted case where the algorithm does not force any constraint on

the eigenvalues.
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In this simulation, it is needed a measure of how a mixture fit is close to another one.

Given a fitted mixture M with parameters θ = (π1, π2, µ1, µ2,Σ1,Σ2), we define

zMi = 1 if π1ϕ(xi;µ1,Σ1) > π2ϕ(xi;µ2,Σ2) and 0 if it is not (8)

or

zMi =
π1ϕ(xi;µ1,Σ1)

π1ϕ(xi;µ1,Σ1) + π2ϕ(xi;µ2,Σ2)
. (9)

We can, thus, measure the “discrepancy” between two mixtures M1 and M2 as

δ(M1,M2) = min

{ n∑
i=1

∣∣zM1
i − zM2

i

∣∣/n, n∑
i=1

∣∣zM1
i − (1− zM2

i )
∣∣/n}

We use the notation δClassif(M1,M2) when considering zi as defined in (8) and the notation

δMixt(M1,M2) when considering zi as in (9).

Let us denote by M0 to the mixture (7) which has generated our data set. Given that

M0 is known, we can measure through these δ discrepancies how close a fitted mixture is to

the “true” underlying mixture M0.

Table 1 shows the result of applying the presented algorithm with nstart= 1000 random

initializations, as those proposed in Section 3. The performance of the algorithm for different

values of the constant c is evaluated through two measurements:

(a) Concordance: The number of random initializations that ends up with mixtures M
such that δ(M,M0) < 0.2 and δ(M,M0) < 0.1. That is, we are interested in the

number of random initialization which lead to mixtures that essentially coincide with

the “true” underlying mixture M0.

(b) Spuriousness: The number of random initializations that ends up with mixtures M
such that δ(M,M0) ≥ 0.2 and δ(M,M0) ≥ 0.1 and taking strictly larger values for

the target function (1) than the value obtained for the “true” solution M0. That is,

they are spurious solutions which do not essentially coincide with the “true” underlying

mixture M0, but with higher values of the likelihood.

To read this table, we must take into account that Spuriousness=0 and Concordance>0

are really needed for a good performance of the algorithm. With Spuriousness=0, we are

avoiding the detection of spurious solutions that would be eventually preferred (due to the

value of their likelihoods) to solutions closer to the “true” one. Concordance>0 gives the

algorithm some chance of detecting a mixture close to the “true” solution.

We can see in Table 1 that the n = 100 small sample size makes easier the detection of

spurious solutions. Moreover, as expected, higher dimensional cases, as p = 10, make easier

the detection of spurious solutions too. However, small or even moderate values of c serve

to avoid the detection of spurious solutions. Note that the consideration of c = 1 (smaller
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Concordant Spurious

n p c δ < 0.2 δ < 0.1 δ ≥ 0.2 δ ≥ 0.1

100 2 1 990 990 0 0

6 993 993 0 0

100 657 662 0 0

1010 534 536 0 0

6 1 989 989 0 0

6 991 991 0 0

100 67 83 0 0

1010 19 25 10 10

10 1 991 991 0 0

6 984 984 0 0

100 3 13 0 0

1010 1 2 53 53

200 2 1 995 995 0 0

6 989 989 0 0

100 827 827 0 0

1010 697 698 0 0

6 1 993 993 0 0

6 993 993 0 0

100 474 510 0 0

1010 236 254 0 0

10 1 998 998 0 0

6 998 998 0 0

100 22 31 0 0

1010 5 7 3 4

Table 1: Number of random initializations out of 1000 (i.e., considering nstart= 1000 for

each sample) that lead to mixtures close to the “true” one (Concordance) and those that

lead to spurious mixtures (Spuriousness) with δ = δClassif.

than the true eigenvalues ratio c = 6) is not too detrimental. We can also see that the

choice of small values of the constant c increase the chance of initializations ending up close

to the “true” solution. On the contrary, the use of more unrestricted algorithms entails the

detection of spurious solutions and makes harder the detection of solutions close to the true

one, especially, in the higher dimensional cases (even when n = 200).

The results reported in this table correspond to the use of the discrepancy measure δClassif

but similar results are obtained when considering δMixt.
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5 Examples

This section is based in some examples presented in McLachlan and Peel (2000) to illustrate

the difficulties that spurious solutions introduces in mixture fitting problems. We see how the

proposed constrained mixture fitting approach can be successfully applied to handle these

difficulties.

5.1 McLachlan and Peel’s “Synthetic Data Set 3”

This data set correspond to Figure 3.8 in McLachlan and Peel (2000) and it consists of

100 observations randomly generated from a heterocedastic mixture of two bivariate normal

components. It was introduced there to see the high prevalence of spurious local maximizers

in ML estimation of finite mixture models. Since this is a simulated data set, the “true”

cluster partition is known and shown in Figure 2,(a). The associated cluster partition derived

from the posterior probabilities is used to summarize the mixture fitting results.

As already commented, spurious local maximizers corresponds to solutions including

populations with “little practical use or real-world interpretation”. This is the case of the

solution shown in Figure 2,(f). Although that solution yields a value of the likelihood higher

than that corresponding to the previously presented “true” solution, it is clear that the

model is fitting a small local random pattern in the data rather than a proper mixture

component. The ratio between the maximum and the minimum eigenvalue is close to 1000

for this spurious solution, while it is only around 3 for the “true” one.

It is always interesting to monitor the restricted ML solutions for different values of the

constant c. Figure 2 shows some of the obtained solutions for different values of constant c.

In this example, we obtain cluster partitions close to the “true” solution when enforcing the

relative size of the eigenvalues to be smaller than (approximately) c = 200. This c = 200

level for the constraints would imply that we are no allowing relative variabilities higher than√
200 ≃ 14 times in the sense of standard deviations.

We can see that no many essentially different solutions need to be examined in the

proposed monitoring approach. In order to highlight this fact, we have plotted in Figure

3 the value of the constant c against the obtained scatter matrices eigenvalues ratio from

the solution that the proposed algorithm returns for this value of constant c. Note that, of

course, the obtained eigenvalue ratio is always smaller or equal than c but we can also see

that many times the constraint is not needed to be “enforced” in the returned solution by

the proposed algorithm once an upper bound on the eigenvalues ratio is posed. We say that

the constraints are “enforced” by the algorithm if Mn/mn = c in (ER).
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(a) ’True’ assignments (b) c = 1

(c) c = 4 (d) c = 25

(e) c = 200 (f) c = 10000

Figure 2: McLachlan and Peel’s “Synthetic Data Set 3” and constrained ML clustering

solutions depending on constant c.
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Figure 3: Plot of constant c against the “true” eigenvalues ratio for the constrained ML

solution corresponding to this value of constant c (in logarithmical scales) in the McLachlan

and Peel’s “Synthetic Data Set 3”.

5.2 “Iris Virginica” data set

The well-known Iris data set, originally collected by Anderson (1935) and first analyzed by

Fisher (1936), is considered in this example. This four-dimensional (p = 4) data set was

collected by Anderson with the aim of seeing whether there was “evidence of continuing

evolution in any group of plants”. Thus, it is interesting to evaluate whether “virginica”

species should be split into two subspecies or not. Hence, as in McLachlan and Peel (2000)’s

Section 3.11, we focus on the 50 virginica iris data and fit a mixture of G = 2 normal

components to them.

McLachlan and Peel (2000) listed 15 possible local ML maximizers together with different

quantities summarizing aspects as the separation between clusters, the size of the smallest

cluster and the determinants of the scatter matrices corresponding to these solutions. After

analyzing this information, an expert statistician could surely choose the so-called “S1”

solution as the most sensible solution among them, even though this solution is not the one

providing the largest likelihood. The cluster partition associated to this S1 solution is shown

in Figure 4 in the two first principal components.

Unfortunately, the careful examination of such (typically big) lists of local ML maximizers

is not straightforward for a non-expert users. Our proposal is to compute constrained ML
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Figure 4: Plot of the first two principal components of “virginica” data set and the “S1”

solution in McLachlan and Peel (2000).

mixture fits for a grid of c values and choose a sensible one among the associated constrained

solutions. This list of constrained solutions could be even more simplified by considering only

those solutions which are essentially different (we will outline this further simplification in

Section 6). For this example, after setting the restrictions at different c values ranging from

c = 4 to c = 1000, we only get essentially the solution S1. In fact, the differences with that

solution reduce to less than one observation when analyzing the associated cluster partitions

based on maximum posterior probabilities.

In order to reinforce previous claims, we show in Figure 5, a huge number of local ML max-

imizers obtained by running the proposed algorithm with a large c = 1010 value. McLachlan

and Peel (2000) found 51 local maxima with likelihoods greater than that corresponding to

S1 out of 1000 initializations when using the stochastic version of the EM algorithm (Celeux

and Diebolt 1985). Since the proposed algorithm in Section 3 is able to visit many local

maximizers, we find 787 local maximizers with higher likelihoods, than that corresponding

to S1, when considering nstart= 50000 and iter.max= 100. Thus, the number of local

maxima to be explored is huge even in this very simple example. The values of the log-

likelihood and the eigenvalues-ratio for these ML local maximizers are plotted in Figure 5.

The same values are plotted for the constrained solutions obtained from a sequence of c

values on a equispaced grid within [1, 108] in a logarithmical scale. The corresponding values
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for 13 out of the 15 solutions listed in McLachlan and Peel (2000) are also represented (2

of these solutions are not found among the obtained local maxima) and the preferred S1

solution is also highlighted.
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Figure 5: Log-likelihoods and eigenvalues-ratios for several local ML maximizers in the “Iris

Virginica” data set and for the constrained ML solutions (�). The considered sequence of c

values is represented by using vertical lines. The 13 solutions listed in McLachlan and Peel

(2000), including the “S1” solution, are enclosed by ⃝ symbols.

As was previously commented, all the constrained solutions when c ∈ [4, 103] are equal

to solution S1 or very close to it (with very similar log-likelihood values). There are two

constrained ML solutions which have smaller eigenvalue ratios than their corresponding c

values. We could see that these two solutions exactly coincide with the S1 solution. Values

c ≤ 4 are only desirable if the user is actually interested in rather homoscedastic solutions

(no axes lengths larger than 2 times the others) and c > 1000 leads to solutions likely to

be considered as spurious since the lengths of the ellipsoid axis are very different. Thus,

the practitioner, by choosing a moderate value of constant c, would have obtained the same

solution (or a very close solution) as that obtained by an expert statistician.
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5.3 Galaxy Data Set

This data set corresponds to the velocities (in thousand of km/sec) of 82 galaxies in the

Corona Borealis region, analyzed in Roeder (1990). This data set was also used in McLachlan

and Peel (2000) to show that clusters having relative very small variances (seemingly spurious

solutions) may be sometimes also considered as legitimate ones. Of course, this data set has

a very small sample size to answer this question and this forces us to be cautious with our

statements as McLachlan and Peel did.

Figure 6 shows the galaxy data set and the solution for this data set proposed by McLach-

lan and Peel (2000) with G = 6 components. The obtained parameters for this mixture of

normals can be seen in Table 3.8 of that book. In Figure 6, the two clusters suspicious

of being due to a spurious local maximizer of the likelihood are labeled with letters “A”

(component centered around 16.127) and “B” (centered around 26.978). Both components

“A” and “B” account for 2% of the mixture distribution and their variances are 781 or 5000

times, respectively, smaller than the variance of the most scattered component.
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Figure 6: Histogram for the galaxy data set and the G = 6 normal mixture fitted in McLach-

lan and Peel (2000).

After examining Figure 6, it is quite logical to wonder whether components “A” and “B”

can be considered just as spurious local maximizers or they are legitimate ones.

Table 2 gives the restricted ML solutions for c = 4, 25, 100 and 200. The “A” component

is detected for this wide range of c values and, therefore, “A” can be more clearly considered
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as a “legitimate” population. The “B” component is also detected when we set the c value

to be greater than 100. A value c = 100 corresponds to allowing ten times more relative

variability in the sense of standard deviation. Under the premise that this relative scatter

variability was acceptable, the population “B” could be seen as a legitimate population

too. McLachlan and Peel (1997) provided support for the G = 6 components solution and

Richardson and Green (1997), following a Bayesian approach, concluded that the number of

components G ranges from 5 to 7.

c = 4 c = 25

π µ σ2 π µ σ2

0.10 9.710 0.3306 0.13 9.710 0.1785

A: 0.04 16.127 0.3306 0.04 16.127 0.1291

0.49 19.902 0.5655 0.33 19.765 0.4288

0.18 22.600 0.4816 0.16 22.689 0.8068

0.16 24.363 1.3248 0.29 23.138 3.2263

0.04 33.044 0.8501 0.05 33.044 0.8496

c = 100 c = 200

π µ σ2 π µ σ2

0.07 9.710 0.1789 0.12 9.710 0.1789

A: 0.02 16.127 0.0166 0.02 16.127 0.0058

0.30 19.703 0.3906 0.38 19.827 0.4844

0.50 22.711 1.6615 0.37 23.013 1.1621

B: 0.01 26.977 0.0166 0.02 26.978 0.0058

0.09 33.044 0.8501 0.09 33.044 0.8501

Table 2: Constrained solutions with G = 6 for the galaxy data set and different values of

constant c.

6 Discussion

We have presented a constrained ML mixture modeling approach. It is based on the tra-

ditional maximization of the likelihood, but constraining the maximal ratio between the

scatter matrices eigenvalues to be smaller than a fixed in advance constant c. We have seen

that this approach has nice theoretical properties (existence and consistency results) and a

feasible algorithm has been presented for its practical implementation.

Sometimes, the practitioner has an initial idea of the maximum allowable difference

between mixture component scatters. For instance, a small c must be fixed if components

with very similar scatters are expected. In any case, after standardizing the data variables,
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we should always choose a small or moderate value of c just to avoid degeneracies of target

function and the detection of non-interesting spurious solutions.

However, we think that more useful information can be obtained from a careful analysis of

the fitted mixtures when moving parameter c in a controlled way. In fact, our experience tell

us that no many essentially different solutions are needed to be examined when considering

“sensible” values of c (see some examples of it in this work). This would lead to a very reduced

list of candidate mixture fits to be carefully investigated. To give a more accurate picture of

this idea, we propose using a grid {cl}Ll=1 of values for the eigenvalues ratio constraint factor

c, ranging between c1 = 1 and a sensible upper bound cL = cmax of this ratio. For instance,

an equispaced grid in logarithmical scale may be used for this grid. For this sequence of c

values, we obtain the associated sequence of constrained ML fitted mixtures {Ml}Ll=1 and

we can see how many “essentially” different solutions exist. In order to do that, we propose

using the discrepancy measures δClassif or δMixt introduced in Section 4 (they were introduced

for the G = 2 case but they can be easily extended to higher number of components G). We

say that two mixtures Mi and Mj are essentially the same when δ(Mi,Mj) < ε for a fixed

tolerance factor ε, which can be easily interpreted.

Table 3 shows how many essentially different solutions can be found for the random sam-

ples used in Section 4 for the two discrepancy measures (δClassif and δMixt) and different values

of the tolerance factor ε (0.01, 0.05 and 0.1). We start from the constrained solutions obtained

from 18 values of constant c taken in [1, 108] (namely, c = {20, 21, ..., 29, 103, 104, ..., 1010}).
This table also includes the number of essentially different solutions when considering 5 ran-

dom samples (instead of only one) from these mixtures enclosed in parentheses. We can see

that the number of solutions is not very large, apart from the p = 10 and n = 100 cases where

the sample size is not very large for the high dimension considered (in fact, a smaller number

of essentially different solutions are found when considering no so large values of constant c

and, thus, avoiding the detection of the most clear spurious solutions). In spite of this huge

range of c values, we find 5, 4, and 3 essentially different solutions for the “Synthetic Data

Set 3” in Section 5 when considering ε = 0.01, 0.05 and 0.1, respectively. Analogously, we

have 8, 6, and 3 for the “Iris Virginica Data Set” and the same values of the tolerance factor

ε. The “true” solution and the S1 solution are always found in these smaller lists of solutions

for these two examples. The discrepancy measure δClassif has been used, but similar numbers

are obtained with δMixt.

Moreover, the solutions which are not “enforced” by the algorithm (see Section 5.1) are

especially interesting ones. Thus, within the list of essentially different solutions, we can

obtain an even smaller list of “sensible” mixture fits by focusing only on them.

Of course, this type of monitoring approach require solving several constrained ML prob-

lems and, thus, it is only affordable if we rely on efficient and fast enough algorithms as that

presented in Section 3.
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δClassif δMixt

n p ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

100 2 1 (1) 1 (1) 1 (1) 1 (2) 1 (1) 1 (1)

6 4 (6) 4 (6) 2 (4) 4 (6) 4 (6) 2 (4)

10 8 (12) 7 (11) 7 (9) 8 (13) 7 (11) 7 (9)

200 2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

6 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2)

10 2 (3) 2 (3) 2 (2) 2 (3) 2 (3) 1 (2)

Table 3: Numbers of “essentially” different solutions for a grid of c values of length 18

taken in [1, 1010] when considering the random samples in Section 4. The numbers within

parenthesis are the maximum numbers of “essentially” different solutions when considering

5 random samples from those mixtures.

A Appendix: Proofs of existence and consistency re-

sults

A.1 Existence

The proof of these results follow similar arguments as those applied in Garćıa-Escudero

et al (2008) but in a mixture framework instead of a clustering one. So, let us first

introduce some common notation for the clustering and mixture problems. Given θ =

(π1, ..., πG, µ1, ..., µG,Σ1, ...,ΣG), let us define functionsDg(x; θ) = πgφ(x;µg,Σg) andD(x; θ) =

max{D1(x; θ), ..., DG(x; θ)}. The mixture problem is defined through the maximization on

θ ∈ Θc of

L(θ, P ) := EP

[
log

[ G∑
g=1

Dg(·; θ)
]]

(10)

while, on the other hand, the clustering problem (classification likelihood) is defined through

the maximization on θ ∈ Θc of

CL(θ, P ) := EP

[
G∑

g=1

zg(·; θ) logDg(·; θ)

]
(11)

with zg(x; θ) = I{x : D(x; θ) = Dg(x; θ)}.
Let us consider a sequence {θn}∞n=1 = {(πn

1 , ..., π
n
G, µ

n
1 , ..., µ

n
G,Σ

n
1 , ...,Σ

n
G)}∞n=1 ⊂ Θc such

that

lim
n→∞

CL(θn, P ) = sup
θ∈Θc

CL(θ, P ) = M > −∞ (12)

(the boundedness from below for (12) can be easily obtained just considering π1 = 1, µ1 = 0,

Σ1 = I and and the fact that P has finite second order moments). Since [0, 1]k is a compact
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set, we can extract a subsequence from {θn}∞n=1 (that will be denoted like the original one)

such that

πn
j → πg ∈ [0, 1] for 1 ≤ g ≤ G, (13)

and satisfying for some k ∈ {0, 1, ..., G} (a relabelling could be needed) that

µn
g → µg ∈ Rp for 0 ≤ g ≤ k and min

g>k
∥µn

g∥ → ∞. (14)

With respect to the scatter matrices, under (ER), we can also consider a further subsequence

verifying one (and only one) of these possibilities:

Σn
g → Σg for 1 ≤ g ≤ G, (15)

Mn = max
g=1,...,G

max
l=1,...,p

λl(Σg) → ∞, (16)

or

mn = min
g=1,...,G

min
l=1,...,p

λl(Σg) → 0. (17)

Lemma A.1 Given the sequence satisfying (12), if P satisfies (PR) and EP [∥ · ∥2] < ∞,

then only the convergence (15) is possible.

Proof: The proof is the same as in Lemma A.1 in Garćıa-Escudero et al. (2008) but we need

an analogous of inequality (A.8) there to be applied in this untrimmed case. This result

appears in Lemma A.2 below. �

Lemma A.2 If P satisfies (PR) then there exists a constant h > 0 such that

EP

[
G∑

g=1

zj(·; θn)∥ · −µn
g∥2
]
≥ h.

Proof: Since P is not concentrated on G points then for every ε > 0 there exist G+1 points

y1, ..., yG+1 and δ = δ(ε) > 0 such that P [B(yg, ε)] > δ for every g = 1, ..., G + 1. Let us

consider

ε0 < min
1≤j<k≤G+1

∥yj − yk∥/4

and h = δ(ε0)ε
2
0. We trivially have

EP

[
G∑

j=1

zj(·; θn)∥ · −µn
j ∥2
]
≥ EP

[
min

g=1,...,G
∥ · −µn

j ∥2
]
≥ h > 0.

�

Let us now go back to our original mixture fitting problem and let us assume again that:

lim
n→∞

L(θn, P ) = sup
θ∈Θc

L(θ, P ) = M > −∞ (18)
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(the bounded from below in (18) again follows from considering π1 = 1, µ1 = 0, Σ1 = I and

that P has finite second order moments). Displays (13), (14), (15), (16) and (17) are also

considered in this mixture fitting setup.

Lemma A.3 Given the sequence satisfying (18), if P satisfies (PR) and that EP [∥·∥2] < ∞,

then only the convergence (15) is possible.

Proof: The proof is trivial from Lemma A.1 just taking into account the bound

L(θ, P ) = EP

[
log

[ G∑
g=1

Dg(·; θ)
]]

≤ EP

[
log
(
G max

g=1,...,G
Dg(·; θ)

)]
(19)

= logG+ EP

[
G∑

g=1

zg(·; θ) logDg(·; θ)

]
= logG+ CL(θ, P ).

�

Lemma A.4 Given a sequence satisfying (18) and assuming condition (PR) and EP [∥·∥2] <
∞ for P , if every πg in (13) verifies πg > 0 for g = 1, ..., G, then k = G in (14).

Proof: If k = 0, we can easily see that L(θn;P ) → −∞. So, let us assume that k > 0 and

we will prove that

EP

[
log

[ G∑
g=1

Dg(·; θn)
]]

− EP

[
log

[ k∑
g=1

Dg(·; θn)
]]

→ 0. (20)

In order to do that, we can see that

0 ≤ log

[ G∑
g=1

Dg(x; θn)

]
− log

[ k∑
g=1

Dg(x; θn)

]
≤ log

(
1 +

∑G
g=k+1 Dg(x; θn)

D1(·; θn)

)

≤ log

[
1 +

G∑
g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

exp

(
1

2
M−1

n ∥x− µn
1∥2 −

1

2
m−1

n ∥x− µn
g∥2
)]

≤ log

[
1 +

G∑
g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

exp

(
1

2
M−1

n ∥x− µn
1∥2 (21)

−1

2
m−1

n ∥µn
1 − µn

g∥2 +
1

2
m−1

n ∥x− µn
1∥2
)]

≤ log

[
1 + exp

(
− 1

2
m−1

n min
g=k+1,...,G

∥µn
1 − µn

g∥2
)

(22)

·
G∑

g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

exp

(
1

2
m−1

n ∥x− µn
1∥2
)]

.
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Expression (21) follows from the application of the triangular inequality and (22) from the

fact that M−1
n ≤ m−1

n . Then, for fixed x, the expression (22) tends to 0 due to (13) and

that (14) makes ming=k+1,...,G ∥µn
1 −µn

g∥2 → ∞. Moreover, (22) is uniformly dominated by a

function k1 + k2∥x∥2 by using the elementary inequality log(1 + a exp(x)) ≤ x + log(1 + a)

for x ≥ 0 together with the assumptions (13) and (14). Since EP [∥ · ∥2] < ∞, the Lebesgue’s

dominated convergence theorem finally proves (20). Note that the constraint Mn/mn ≤ c

has been also used for deriving the pointwise convergence and the uniform domination.

Taking into account (20) and if θ̃ is the limit of the subsequence {(πn
1 , ..., π

n
k , µ

n
1 , ..., µ

n
k ,

Σn
1 , ...,Σ

n
k)}∞n=1, we have limn→∞ supL(θn;P ) ≤ L(θ̃;P ). As

∑k
j=1 πj < 1, the proof ends by

showing that we can change the weights π1, ..., πG by

π∗
g =

πg∑k
g=1 πj

for 1 ≤ g ≤ k and π∗
k+1 = ... = π∗

G = 0, (23)

This would lead to a contradiction with the optimality in (3) and we conclude k = G.

�

Proof of Proposition 2.1: Taking into account previous lemmas, the proof is exactly the same

as that of Proposition 2 in Garćıa-Escudero et al. (2008). Notice that if some weight πg is

equal to 0, then we can trivially choose some µg and Σg such that ∥µg∥ < ∞ and such that

Σg satisfies the eigenvalue-ratio constraint without changing (10). �

A.2 Consistency

Given {xn}∞n=1 an i.i.d. random sample from an underlying (unknown) probability distri-

bution P , let {θn}∞n=1 = {(πn
1 , ..., π

n
k , µ

n
1 , ..., µ

n
k ,Σ

n
1 , ...,Σ

n
k)}∞n=1 ⊂ Θc denote a sequence of

empirical estimators obtained by solving the problem (3) for P being the sequence of em-

pirical measures {Pn}∞n=1 with the eigenvalue-ratio constraint (ER) (notice that the index n

now stands for the sample size).

First we prove that there exists a compact set K ⊂ Θc such that θn ∈ K for n large

enough, with probability 1.

Lemma A.5 If P if P satisfies (PR) and EP [∥ · ∥2] < ∞, then the minimum (resp. max-

imum) eigenvalue, mn (resp. Mn) of the matrices Σn
g ’s can not verify mn → 0 (resp.

Mn → ∞).

Proof: The proof follows similar lines as that of Lemma A.1 above by using again the bound

(19). We also need a bound like in Lemma A.2 but for the empirical measure. I.e., we need

a constant h′ > 0 such that

EPn

[
G∑

g=1

zj(·; θn)∥ · −µn
g∥2
]
≥ h′.

23



This constant can be obtained by a similar reasoning as that in the proof of Lemma A.2 just

taking into account that the class of the balls in Rp is a Glivenko-Cantelli class. �

Lemma A.6 If (PR) holds for distribution P and EP [∥ · ∥2] < ∞, then we can choose

empirical centers µn
g ’s such that their norms are uniformly bounded with probability 1.

Proof: The proof of this result follows from applying a reasoning like that in the proof of

Lemma A.4. Notice that the same uniform convergence to 0 on x that was needed for proving

(20) is applied here too. �

In the following lemma, we will use the same notation and terminology as in van der

Vaart and Wellner (1996).

Lemma A.7 Given a compact set K ⊂ Θc, the class of functions

H :=

{
log

( G∑
g=1

Dg(·; θ)
)

: θ ∈ K

}
(24)

is a Glivenko-Cantelli class when EP [∥ · ∥2] < ∞.

Proof: Let us first consider

G :=

{
IB(·) log

( G∑
g=1

Dg(·; θ)
)

: θ ∈ K

}
,

where B is a fixed compact set.

We have that the class of functions

{log((2π)−p/2 det(Σ)−1/2)− (x− µ)′Σ−1(x− µ)/2 : µ ∈ Rp,Σ ∈ Mp×p},

with Mp×p being positive-definite p×p matrices, is a VC class because is a finite-dimensional

vector space of measurable functions. Consequently, the class
{∑G

g=1 Dg(·; θ)
}

is a VC-

hull class. Applying Theorem 2.10.20 in van der Vaart and Wellner (1996) with ϕ(x) =

IB(x) log(x), we obtain that G satisfy the uniform entropy condition. Since it is uniformly

bounded, we have that G is a Glivenko-Cantelli class.

We can also see that there exists constants a and b such that

|h(x)| ≤ a∥x∥2 + b for every h ∈ H. (25)

Since K is a compact set, there exist constants m and M satisfying 0 < m ≤ λl(Σg) ≤ M <

∞ for g = 1, ..., G and l = 1, ..., p. For these constants, we have

G∑
g=1

Dg(x; θ) ≥
G∑

g=1

πg(2π)
−p/2M−p/2 exp(−m−1∥x− µg∥2/2)

≥ exp(−m−1∥x∥2/2)
G∑

g=1

πg(2π)
−p/2M−p/2 exp(−m−1∥µg∥2/2).
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Now take into account that maxg=1,...,G ∥µg∥ < ∞ (recall that θ ∈ K with K being a compact

set). Thus, we see that log(
∑G

g=1 Dg(x; θ)) ≥ a′∥x∥2 + b′. On the other hand, it is easy to

see that log(
∑G

g=1 Dg(x; θ)) ≤ (2π)−p/2m−p/2. Thus, a bound like (25) holds.

Finally, for every h ∈ H and B a compact set on Rp, we have∣∣∣∣EPn [h(·)]− EP [h(·)]
∣∣∣∣ ≤

∣∣∣∣EPn [h(·)IB(·)]− EP [h(·)IB(·)]
∣∣∣∣

+

∣∣∣∣EPn [(a∥ · ∥2 + b)IBc(·)]− EP [(a∥ · ∥2 + b)IBc(·)]
∣∣∣∣→ 0.

The result follows from the fact that h(·)IB(·) ∈ G and that EP [∥ · ∥2] < ∞. �

Proof of Proposition 2.2: Taking into account Lemma A.7, the result follows from Corollary

3.2.3 in van der Vaart and Wellner (1996). Notice that lemmas A.5 and A.6 are needed in

order to guarantee the existence of a compact set K such that the sequence of empirical

estimators satisfies {θn}∞n=1 ⊂ K. �
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