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Resumen

Este trabajo de �n de grado se basa en el estudio de la supergravedad en D = 11, que
juega un papel importante en la Física Teórica moderna porque:

1. Es el límite en bajas energías para la teoría M [1].

2. D = 11 = 10 + 1 es la dimensión más alta compatible con la supersimetría [2], [3].

3. La supergravedad en D = 4, N = 8 que se obtiene por reducción dimensional de la
supergravedad en D = 11 es posiblemente una teoría �nita en todos los órdenes de
la teoría de perturbaciones [4].

Las teorías de Chern-Simons (CS) también son relevantes. Se trata de teorías que
consisten en acciones construidas exclusivamente en términos de los campos de gauge
de algún (super)grupo, con la condición de que sean invariantes gauge. Sólo existen en
dimensión impar. Por ejemplo, se sabe que la (super)gravedad en D = 3 es también una
teoría de CS [5] , aunque eso ya no es cierto cuando D > 3, D impar. Sin embargo, se ha
conjeturado que:

1. (Cremmer-Julia-Scherk) El grupo de simetrías de la supergravedad en D = 11 es
Osp (1|32) [6].

2. (Horava) La teoría M es en realidad una teoría CS basada en Osp (1|32)⊗Osp (1|32).
Esto implicaría, en particular, que la supergravedad en D = 11 es un límite de bajas
energías de dicha teoría de CS [7].

El estudio busca analizar la posible relación de la supergravedad en D = 11 con una
teoría de CS basada en el grupo Osp (1|32). Para ello, consideraremos únicamente el caso
bosónico (i .e. tomaremos el campo del gravitino ψ igual a cero) y construiremos una
teoría de CS modi�cada con un campo dado por una 3-forma A .
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Abstract

This degree project is based on D = 11, which plays an important role in modern The-
oretical Physics because:

1. Is the limit of low energies for the M theory [1].

2. D = 11 = 10 + 1 is the highest possible dimension compatible with supersymmetry
[2], [3].

3. The supergravity in D = 4, N = 8 which is obtained by dimensional reduction of
supergravity in D = 11 is possibly a �nite theory at every order of perturbation
theory [4].

Chern-Simons (CS) theories are also relevant. These theories consist on a set of
actions exclusively constructed in terms of the gauge �elds of some (super)group with the
condition of gauge invariance. They only exist with odd dimensionality. For example, it
is known that (super)gravity in D = 3 is also a CS theory [5], although this is not true
when D > 3, D is odd. However, it has been conjectured that:

1. (Cremmer-Julia-Scherk) The symmetries group of supergravity inD = 11 isOsp (1|32)
[6].

2. (Horava) The M theory is a CS theory based on Osp (1|32) ⊗ Osp (1|32). That
would imply, particularly, that supergravity in D = 11 is a low energy limit of that
CS theory [7].

This study analyzes the possible connection of supergravity in D = 11 with a CS
theory based on the group Osp (1|32). To this end, we will only consider the bosonic
case (i .e. we will take the gravitino �eld ψ equal to zero) and we will build a CS theory
modi�ed with a �eld given by a 3-form A .
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Chapter 1

Introduction

�Imagination will often carry us to worlds that never were, but without it we
go nowhere.�

Carl Sagan

1.1 Motivation

We move in our daily environment without understanding almost anything about the
world. We spend a little time thinking about the mechanisms which make life possible ,
and in the forces which make them possible, as gravity, that binds us to the Earth. In the
atoms which compose our bodies and whose stability is fundamental for our lives. Few of
us dedicate time to make us questions about why nature is as it is, and where the cosmos
came, or wether it has been always there, de�nitely, about the existence of fundamental
limits on which humans can learn about.

It is very common in our society that the receptor of this kind of questions would reply
just shrugging or with some religious reference. However, much of the philosophy and
science has been guided by such issues. At present, our knowledge about the fundamental
laws of physics is not only an incomplete whole, but it is not even an self-consistent whole.

Usually we start doing physics studying isolated phenomena, explained through ad
hoc disjointed theories. Over time we observe that actually these theories can correspond
to di�erent aspects of a more general uni�cation theory. It is for example the case of
the four fundamental interactions. Quantum electrodynamics and electroweak interac-
tion were the �rst uni�ed theories (after electricity and magnetism of course). After that,
quantum chromodynamics was uni�ed to them within the standard model frame. Never-
theless, gravitational force resists the attempts to be uni�ed with the other interactions.

9



10 CHAPTER 1. INTRODUCTION

Probably, one of the most promising approaches with this objective has been that of
string theory, quantum gravity, loop quantum gravity and non-commutative geometry.
From among these four, string theory is particularly appropriate to achieve the objective
of uni�cation. Within its frame, the four fundamental interactions correspond simply to
each di�erent vibration modes of only one solid fundamental object called string.

There exists a problem when we try to formulate the theory in only one way. Actually,
we can formulate it in �ve di�erent ways: type I, type IIA, type IIB, heterotic SO (32)
and heterotic E8×E8; which are related through a net of dualities. The type IIA theories
have as a limit of low energies supergravity IIA in D = 10, the type IIB theories have as a
limit of low energies supergravity IIB in D = 10 and the heterotic SO (32) and heterotic
E8 × E8 theories have as a limit of low energies N = 1 supergravity / Yang-Mills with
SO(32) and E8 × E8 group respectively. . In 1995, E. Witten introduced a possible
explanation [8] (see also [1])which says that supergravity IIA in D = 10 can be obtained
from a formulation supergravity in D = 11 � called M-theory by Witten - whose low
energy limit is CJS supergravity, related with strings theory by dimensional reduction.

No one knows the de�ning principles of M-theory, only the compacti�cation and low
energy limits. A conjecture was put forward by [9], called matrix theory, in which space-
time was substituted by a space of matrices. Later, in 1997, Horava [7] suggested that
M-theory could after all be a Chern-Simons �eld theory.

The present work explores the second conjecture. We will analyze the relation between
this supergravity in D = 11 and a CS theory based on the Osp(1|32) group considering
only the bosonic case.

1.2 Work schedule

The process we will follow after constructing a CS theory modi�ed with a �eld given
by a 3-form A is to introduce one scale factor with dimensions Λ which allows to take
the low energy limit and to choose as a Lagrangian the term in Λ9 of the development
of the original Lagrangian that results from the scale change (Horava argues that this
Lagrangian corresponds to the low energy limit). After that we compare the equations
of this Lagrangian with that of the bosonic case of supergravity in D = 11.

What we can observe is that we reproduce the equations for some selection of the
free parameters, and then, the role of the auxiliary �eld which has to be present in the
formulation of the �rst order of supergravity in D = 11, is played by the gauge �elds of
certain Osp(1|32) generators. that would provide evidence supporting the existence of a
relation between supergravity in D = 11 with a CS theory. But we don't know the precise
form of this relation because, when introducing the ψ �eld, the CS equations are not the
same that that of the supergravity in D = 11. If we reach this connexion, it would imply
that Osp(1|32) plays almost a role in M-theory, whose basic equations are not known at
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the moment.
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Chapter 2

Initial considerations

In this section we will introduce the fundamental aspects of the theory that we are going
to develop.

2.1 ¾What is supergravity?

Supersymmetry[2] (see also [3]) is, by de�nition, a symmetry between fermions and bo-
sons. Supersymmetric theories allow us to relate fermion properties (matter) with boson
properties (force carriers) in both plane or curved spaces (supergravity). A supersym-
metric �eld model cosists on a set of quantum �elds and of a Lagrangian for them which
exhibit such a symmetry. The Lagrangian determines, through the action principle, the
equations of the motion and hence the dynamical behaviour of the particles. A supersym-
metric model which is covariant under general coordinate transformations or, equivalently,
a model which possess local (�gauged�) supersymmetry is called a supergravity model.

Supersymmetric theories describe model worlds of particles, created from the vacuum
by the �elds, and the interactions between these particles. Supersymmetry manifests
itself in the particle spectrum and in stringent relationships between di�erent interaction
processes even if these involve particles of di�erent spin and of di�erent statistics. Both
supersymmetry and supergravity aim at a uni�ed description of fermions and bosons, and
hence of matter and interaction. Supergravity is particularly ambitious in its attempt at
uni�cation of the gravitational with the other interactions. All supersymmetric models
succeed to some degree in these aims, but they fail in actually describing the world as
we experience it and thus are models, not theories. We are still striving to �nd some
contact between one of the models and physical reality so that that model could become
an underlying theory for nature at its most fundamental level.

As we have introduced, supergravity is the supersymmetric theory of gravity, or a
theory of local supersymmetry. It involves the graviton described by Einstein's gravity

13



14 CHAPTER 2. INITIAL CONSIDERATIONS

(general relativity), and extra matter, in particular, a fermionic partner of the graviton,
called the gravitino. By itself, Einstein's gravity is non-renormalizable, so its quantization
is one of the most important problems of modern theoretical physics. Supersymmetry is
known to alleviate some of the ultraviolet divergences of quantum �eld theory, via can-
cellations between bosonic and fermionic loops, hence the UV divergences become milder
in supergravity. In fact, by going to an even larger theory, string theory, the nonrenor-
malizability issue of quantum gravity is resolved, at least order by order in perturbation
theory. At energies low compared to the string energy scale (but still very large compared
to accelerator energies), string theory becomes supergravity, so supergravity is important
also as an e�ective theory for string theory.

We start with some of the basic concepts as the Maurer-Cartan equations for the Lie
algebra sp(32), which will give us information about the curvatures of our model.

2.2 Maurer-Cartan equations for the Lie algebra sp(32)

Connections are usually de�ned on principal bundles. We shall consider only the trivial
bundle case, so, for us, connections will be one-forms∗. A connection form associates
to each basis of a vector bundle a matrix of di�erential forms. The connection form
transforms in a manner that involves the exterior derivative of the transition functions,
and the main tensorial invariant of a connection form is its curvature form. We can
introduce the condition for the vanishing of the curvature for the one-form f as follows:

dfαβ = −fαγ ∧ f
γ
β , df = −f 2 , (2.1)

where

fαβ = fβα , fαβ = Cαγf
γ
β , Cαγ = −Cγα , (2.2)

where Cαγ is the simplectic metric.

f can be expanded in the basis of symmetric antisymmetrized products of γ matrices:

f = faγ
a +

1

4
fabγ

ab +
1

5!
fa1...a5 , (2.3)

where

{γa, γb} ≡ γaγb + γbγa = 2ηab , (2.4)

ηab is the Minkowski metric in D = 11,

∗or three forms in the case of supergravity, de�ned on space-time
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γab =
1

2!
(γaγb − γbγa) ,

γa1...a5 =
1

5!

∑
σ∈S5

ε(σ)γaσ(1)γaσ(2) ...γaσ(5) . (2.5)

i .e. The weight are antisymmetrized products of γ matrices γa1...a4 , γa1...a3 and I are
excluded because they are not symmetric; (γa1...a3)αβ = −(γa1...a3)βα , etc.

2.3 Gauge algebra

We now say that the Maurer-Cartan equations are no longer satis�ed. Then, the curvatures
are the quantities that express the failure of the one-form f to satisfy the Maurer-Cartan
equations.

Ω ≡ df + f 2 . (3.6)

The di�erential of Ω is given by:

dΩ = Ωf − fΩ . (3.7)

We can also expand Ω in the basis of symmetric antisymmetrized products of γ
matrices:

Ω = Ωaγ
a +

1

4
Ωabγ

ab +
1

5!
Ωa1...a5γ

a1...a5 . (3.8)

2.4 Gauge transformations

These transformations are given by:

δf = fb− bf + db ,

where b = bαβ is a zero-form gauge parameter:

b = baγ
a − 1

4
babγ

ab +
1

5!
ba1...a5γ

a1...a5 . (4.9)

The variation of the curvature Ω is:

δΩ = Ωb− bΩ . (4.10)
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Chapter 3

Chern-Simons form and action

A CS theory is special because its action is proportional to the integral of the three-form
of CS. In our case we will de�ne a �CS-like" form in order to make possible this procedure.

We can write the 12-form H as a function of the curvatures Ω as follows:

H = Tr(Ω6) = Tr(Ω× Ω× Ω× Ω× Ω× Ω) , (0.1)

which is a closed and gauge invariant form. That is:

• dH = 6Tr(dΩ Ω5) = 6Tr((Ωf − fΩ)Ω5) = 0 ,

• δH = 6Tr(δΩ Ω5) = 6Tr((Ωb− bΩ)Ω5) = 0 .

Since dH = 0, H = dB for some 11-form B . And this form is quasi-invariant, i .e.,

δB = dΛ . (0.2)

Now, one can de�ne a Chern-Simons action ICS as follows:

ICS =

∫
M ′′

B , (0.3)

where M
′′
is the D = 11 space-time. ICS is gauge invariant up to topological e�ects

that we will not consider.

17



18 CHAPTER 3. CHERN-SIMONS FORM AND ACTION

3.1 Modi�ed �CS-like" form

Since the bosonic part of D = 11 contains a three-form �eld, we will put it by hand.

F = dA , δA = 0 , (1.4)

where F is a four-form and A is the three-form �eld we introduce by hand.

With this curvature, the following closed, invariant form can be written.

H = Tr(Ω6) + αTr(Ω4)Tr(Ω2) + β
(
Tr(Ω2)

)3
+ γTr(Ω4)F

+ δ
(
Tr(Ω2)

)2
F + εTr(Ω2)F 2 + σF 3 (1.5)

where α − σ are constants and Tr(Ω2), Tr(Ω4) are other closed-invariant forms not
considered before. Note that we do not add Tr(Ω3) nor Tr(Ω5) and Tr(Ω) because they
are identically zero.

Note that the second expression of equation(1.4) tells us that the H closed invariant
form is gauge invariant under transformations A → A + dΛ of the three-form �eld A .

3.2 Scale factor

All quantities f , Ω, A , F are dimensionless. We consider dimensional quantities by
introducin a scale factor, λ, with dimensions [λ] = L−1 (in geometrized units, for which
c = 1 = G, and all the quantities have dimensions expressed in terms of powers of L).

Now we set:

f = λ eaγ
a +

1

4
wabγ

ab +
1

5!
wa1...a5γ

a1...a5 , (2.6)

where,

fa = λea , [ea] = L ,

fab = wab , [wab] = [wa1...a5 ] = L0 , (2.7)

fa1...a5 = wa1...a5 ,
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and,

A = λ3A , [A] = L3 . (2.8)

A physical action describing gravity wuld have dimensions of an action, which in
geometric units is L9 (in D = 11). So we start with ICS and expand in λ as a result of
the change of scale,

ICS = ICS|0 + λ ICS|1 + ... (2.9)

We keep the power λ9, since λ9 ICS|9 is dimensionless and [λ9] = L−9, so [ICS|9] = L9.

Also, ICS|9 =
∫

M ′′ B|9 and dB|9 = H|9, where:

B = B|0 + λB|1 + ...

H = H|0 + λH|1 + ... (2.10)

This expansion in λ is used in the method of Lie algrebra expansions �rst used in [10]
and studied in general in [11].

3.3 Expansion of H

We are interested in H|9. Since H contains the curvatures Ωa, Ωab, Ωa1...a5 , we need to
know their expressions in terms of ea, wab, wa1...a5 .

To simplify the calculations, we write

Ω = df + f 2 , (3.11)

with,

f = λeaγ
a +

1

4
wabγ

ab +
1

5!
wa1...a5γ

a1...a5 (3.12)

≡ λe+ wL + w5 , (3.13)

so:

Ω = λde+ dw + (λe+ w)(λe+ w) (3.14)

= λ(de+ ew + we) + dw + w2 + λ2e2 (3.15)

≡ λT +R + λ2Ω2 . (3.16)
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One has to bear in mind that T contains a piece proportional to γa, but also a piece
proportional to γa1...a5 . The previous equations tells us that, in order to obtain the piece
H|9 that comes e.g . from Tr(Ω6), one has to consider all the contributions containing n2

factors Ω2 , n0 factors R and n1 factors T in which a way that,

1. n0 + n1 + n2 = 6 (there are 6 curvatures)

2. n1 + 2n2 = 9

The only two solutions for this case are:

• n2 = 4, n1 = 1, n0 = 1 , or

• n2 = 3, n1 = 3, n0 = 0

But R, T,Ω2 contributons come from any of the 6 Ω in Tr(Ω6), so we �nally have:

Tr(Ω6)|9 = Tr(W(Ω4
2, T, R)) + Tr(W(Ω3

2, T
3, R0)) , (3.17)

where e.g . W(Ω4
2, T, R) is the sum of all �words" that can be formed with four Ω2,

one T nd one R.

It is even easier to consider directly the �eld equations.



Chapter 4

Field equations

It is easy to see (see, for example [11]) that the �eld equations for ICS can be obtained
directly from H. Let us call these equations E(f) = 0 and E(A ) = 0 respectively. Then:

E(f) = 6Ω5 + 4αTr(Ω2)Ω3 + 2αTr(Ω4)Ω + 6βTr(Ω2)2Ω

+ 4γFΩ3 + 4δFTr(Ω2)Ω + 2εF 2Ω , (0.1)

and,

E(A ) = γTr(Ω4) + δ(Tr(Ω2))2 + 2εFTr(Ω2) + 3σF 2 . (0.2)

We need these equations for e and w (wL and w5), and A for the action I|9, which
comes from H|9. It is easy o see that:

E(e) = E(f)|9−1=8 ,

E(w) = E(f)|9 , (0.3)

E(A) = E(A )|9−3=6 .

So we just have to �nd E(f)|8, E(H)|9 and E(A)|6 by tking into account that:

Ω = λT +R + λ2Ω2 ,

F = λ3F = λ3dA . (0.4)

4.1 Field equation for w

We need to know the contributions of all terms in equation (0.1). Here we have to consider
again all the contributions containing n2 factors Ω2 , n0 factors R and n1 factors T in

21
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which a way that:

• 6 Ω5|9 corresponds to n0, n1, n2 such that:

n2 = 4, n1 = 1, n0 = 0 ,

so

6 Ω5|9 = 6W(Ω2
4, T ) .

• 4 αTr(Ω2) Ω3|9. also contains 4Ω2 and 1 T in all possible combinations. If T is one
of the 3Ω′s in Ω3, then Tr(Ω2) = Tr(Ω2

2) = Tr(e4) = 0 because e4 ∝ γa1...a4 and
Tr(γa1...ak) = 0; only Tr(I) = 32.

So T has to be one of the two Ω′s inside the trace. Now, T = de + ew + we, and
Tr(e2(de+ ew+we)) = Tr(e2de) +Tr(e3w+ e2we) = Tr(e2de), but e2 ∝ γa1a2 and
de ∝ γa1 . And there is no way this can give something proportional to the unit
matrix, so:

4αTr(Ω2) Ω3|9 = 0 .

• 2 αTr(Ω4) Ω|9 . Here there are also 4Ω2 and 1 T . The contribution Tr(Ω4
2)T

vanishes because Tr(Ω4
2) = Tr(e8) ∝ Tr(γa1...a8) = 0.

When T is inside the trace, we have:

Tr(TΩ3) = Tr(de e6 + we7 + ewe6) = 0 .

• 6βTr(Ω2)2 Ω|9. This is zero for the same reasons as above.

• 4γF Ω3|9. Since F = λ3F , we have to �nd Ω3|6. In this case,n0, n1, n2 have to
satisfy:

n2 = 3, n1 = 1, n0 = 0 .

Hence,

4γF Ω3|9 = 4γFe6 .
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• 4δFTr(Ω2) Ω|9. Here, as before, n1 = 0, n0 = 0, but Tr(Ω2
2) = 0

So,

4δFTr(Ω2) Ω|9 = 0 .

• 2εF 2 Ω|9. Since F 2 = λ6F 2, we need Ω|3, but there is no such contribution:

2εF 2 Ω|9 = 0 .

So the w equation is simply:

6W(Ω2
4, T ) + 4γFe6 = 0 . (1.5)

Now the equation actually have di�erent contributions; one proportional to γa1a2 ,
which gives the equation for wL, and another proportional to γa1...a5 , which gives the
equation for w5.

Note that e6 ∝ γa1...a6 is also proportional to γa1...a5 because γa1...a6 ∝ ε a1...a6b1...b5γa1...a5 .

4.1.1 Equation for wL (i .e. for wab)

We consider (1.5) in more detail:

W(Ω2
4, T ) = e8T + e6Te2 + e4Te4 + e2Te6 + Te8 , (1.6)

and T is given by:

T = de+ ew + we = de+ ewL + wLe+ ew5 + w5e

= TL + ew5 + w5e , (1.7)

so:

W(Ω2
4, T ) = e8T + e6Te2 + e4TLe

4 + e2TLe
6 + TLe

8

+ e9w5 + e8w5e+ e7w5e
2 + e6w5e

3 + e5w5e
4

+ e4w5e
5 + e3w5e

6 + e2w5e
7 + ew5e

8 + w5e
9 (1.8)

= W((e2)2, TL) +W(e9, w5) .
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To see how the γa1a2 and γa1...a5 contributions come out, note the identity:

γaγa1...ak =
k∑
i=1

(−1)i−1 ηaaiγa1...âi...ak + γaa1...ak . (1.9)

When contracted with the two-form, say ea and B
a1...ak , one gets:

eaγaB
a1...akγa1...ak = k eaBaa2...ak + γaa1...ake

aBa1...ak ,

i .e., all terms in the sum (1.8) add up, and the �rst term appears k times. The
same pattern exists when two matrices γa1...ak , γa1...a6 are multiplied, but now there are
contributions with al possible number of contractions: the �rst term of (1.8) is the one-
contraction contribution with no contractions. The e8TL terms have the structure γ(8)·γ(1).
This gives:

γ(8) · γ(1) = γ(9) + γ(7) (1.10)

where γ(9) have no contractions and γ(7) one contraction.

The γ(7) contraction will cancel because only the atrices that are symmetric with all
indices does contribute. So the e8TL terms only appear in the wL equation, because:

γa1...a9 ∝ εa1...a9abγab . (1.11)

In general, since:

γa1...a11 ∝ εa1...a11 , (1.12)

we have:

γa1...ak =
(−1)k

(11− k)!!
εa1...akak+1...a11γak+1...a11 , (1.13)

On the other hand, the e9w5 terms of (1.8) are of the form:

γ(9) · γ(5) = γ(14) + γ(12) + γ(10) + γ(8) + γ(6) + γ(4) , (1.14)

The γ(10) contribution vanishes because there is no wa. The only symmetric γ is γ6.
So the e9w5 terms only appear in the w5 equation.

The wL equations are:

ea1 ...ea8TLa9γa1...a9 + ea1 ...ea6TLa9γa1...a9 + ... (1.15)
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It is clear that all �ve terms in (1.8) give the same contribution, so we �nally get:

5 ea1 ...ea8TLa9γa1...a9 = 0 . (1.16)

It is a well known fact that this equation implies TL = 0, which can be used to express
wabµ in terms of eaµ and its derivatives, wab = −wabµ dxµ, ea = −eaµdxµ.

4.1.2 Equation for w5 (i .e. for wa1...a5)

This equation has two contributions. One is given by 4γFe6 in (1.5), which is proportional
to γ(6), and the contribution with four contractions from the terms with 9 e′s and one w5

in (1.8), which is also proportional to γ(6).

We compute the contribution with four contractions in Appendix 6.1. After a long
process we obtain:

W(e9, w5)→ 2 · 9!

4!
ea1 ...ea5e

b1 ...eb4wb4...b1a6γ
a1...a6 . (1.17)

Taking into account both terms in (1.8), we see that the w5 equation is:

12 · 9!

4!
ea1 ...ea5e

b1 ...eb4wb4...b1a6γ
a1...a6 + 4γFea1 ...ea6γ

a1...a6 = 0 . (1.18)

Let us see what this equation leads to:

First we write:

F = Fb1...b4e
b1 ...eb4 , (1.19)

(i .e., Fb1...b4 are the components of the four form F in terms of the eb)

So we have:

9!

2
ea1 ...ea5eb1 ...eb4ecw

b4...b1 c
a6
γa1...a6 + 4γF b1...b4ea1 ...ea6eb1 ...eb4γ

a1...a6 = 0 . (1.20)

Where:

wb4...b1a6 = wb4...b1 c
a6
ec .

We now write the products of ten e′s as:
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ea1 ...ea5eb1 ...eb4ec = εa1...a5b1...b4cdE
d ,

for some ten-form Ed. Factorizing out this form and γa1...a6 , we have:

9!

2
ε[a1...a5|b1...b4cd|w

b4...b1 c
a6]

+ 4γεa1...a6b1...b4dF
b1...b4 = 0 , (1.21)

where the bracket [ ] indicates antisymmetrization in a1...a6 with weight 1.

We refer to the Appendix 6.2, where it is shown that the solution is given by:

wd1...d5d = −40

9!
γ F [d1...d4 δ

d5 ]
d . (1.22)

This equation relates the components of the gauge �eld one-form wd1...d5 to the com-
ponents of the four-form F = dA. It can be written as:

wd1...d5 = −40

9!
γ F d1...d4ed5 . (1.23)

Let us check this result substituting (1.23) in the �rst term of (1.19), we get:

9!

2
ea1 ...ea5e

b1 ...eb4
(
−40

9!
γ F[b1...b4 ea6]γ

a1...a6

)
= −4 γ Fea1 ...ea6γ

a1...a6 .

4.2 Field equation for A

We need to know the contributions of all terms in equation (0.2). We will expand the
calculation in Appendix 6.3. Now we show the result:

We know that the addition of all these contributions give us the �nal equation result:

4 γ 32ea1 ...ea6 Dwa7...a11ε
a1...a11 + 3σF 2 = 0 . (2.24)

Now we have to write this �nal result in a more convenient form:

4 γ 32ea1 ...ea6 Dwa7...a11ε
a1...a11 = −3σF 2 ,
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4 γ 32ea1 ...ea6 Db1wa7...a11b2e
b1eb2εa1...a11 = −3σFb1...b4Fc1...c4e

b1 ...eb4ec1 ...ec4 .

Now we can use Ed1...d3 = εd1...d3b1...b8e
b1 ...eb8 , then:

4 γ 32 εa1...a6b1b2d1...d3 D
b1 w b2

a7...a11
εa1...a11 = −3σεb1...b4c1...c4d1...d3F

b1...b4F c1...c4 ,

so we obtain:

4 γ 32 (−1)η · 6! δa7...a11b1b2d1...d3
Db1 w b2

a7...a11
= −3σεb1...b4c1...c4d1...d3F

b1...b4F c1...c4 .

If we use the expression (2.19):

δa7...a11b1b2d1...d3
Db1 w b2

a7...a11
= −40

9!
γ δa7...a11b1b2d1...d3

δb2a11 D
b1 Fa7...a10

= −40

9!
γ δa7...a10b2b1b2d1...d3

Db1 Fa7...a10

= −(−7)
40

9!
γ δa7...a10b1d1...d3

Db1 Fa7...a10

= 4! · 7 40

9!
γ Db1 Fb1d1...d3 =

1

54
γ Db1 Fb1d1...d3 ,

so:

(−1)η
128 · 6!

54
γ2Db1 Fb1d1...d3 = −3σεb1...b4c1...c4d1...d3F

b1...b4F c1...c4 ,

and we will use η = 1:

Db1 Fb1d1...d3 =

(
9σ

5120 γ2

)
εb1...b4c1...c4d1...d3F

b1...b4F c1...c4 . (2.25)

Which is the expression we were looking for.
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4.3 Field equation for e

We need to know the contributions of all terms in equation (0.1) again, but now we have
to �nd E(f)|8 instead of E(f)|9. We have performed the calculations in Appendix 6.4, so
we show that the contributions that give us our action are:

6W(Ω3
2, T

2)|γ′ + 6W(Ω4
2, R)|γ′ + 4γF (Ω2

2T + Ω2TΩ2 + TΩ2
2)|γ′ = 0 (3.26)

Where |γ′ selects the contribution proportional to a γ matrix with a single index γa,
or equivalently, a γ matrix with ten indices, γa1...a10

As we can see, whe should expand the contributions given by 6Ω5|8, which are
6W(Ω3

2, T
2)|γ′ + 6W(Ω4

2, R)|γ′ , but its calculation is a very tedious procedure, so we will
try another way which is to analyze all terms in the stress energy tensor, which are of
two possible types: F µνρσ Fµνρσ gαρ and F

µνρ
α Fµνρβ (in the dxµ basis). This means that

Einsteins equations can be written as:

Rµν −
1

2
gµνR = P Fαργ

µFαργν +QFαργδFαργδgµν . (3.27)

Where P and Q are two constants. We know that the covariant derivative∇µ
(
Rµν − 1

2
gµνR

)
of the e.h.s vanishes, so the covariant derivative of the r.h.s must also vanish. On the
other hand we know that:

∂[µ Fνργτ ] = 0 , (3.28)

∇µFµνρσ = ενρσλ1...λ4τ1...τ4F
λ1...λ4F τ1...τ4 . (3.29)

There is a factor before ενρσλ1...λ4τ1...τ4 which is not important for the argument.

Then, ∇µ
(
Rµν − 1

2
gµνR

)
has to vanish when we use the two equations above. This

�xes the relative factor between the two terms in (3.27):

∇µ
[
P Fαβγ

µFαργν +QFαβγδFαργδgµν
]

= P ∇µFαβγ
µ Fαργν + P Fαβγ

µ∇µ Fαβγν

+ 2Q∇µFαβγδFαργδ gµν .

Where we have used ∇µgµν = 0.

Now, using (3.28), the third term in the r.h.s is:
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2Q∇αF µνγδFαργδgµν .

Using (3.29), the �rst term is:

−Pεαβγ λ1...λ4τ1...τ4F
λ1...λ4F τ1...τ4Fαργν ,

but this can be easily shown to vanish by using the Schouten identity.

So we are left with:

Fαβγ
µ∇µFαβγν [P + 8Q] .

Since this has to vanish, P = - 8Q.

So we don't have to worry about the relative factor in the stress-energy tensor. We
only need to �x the overall factor.

Taking the trace of equation (3.27), we get:

R− 11

2
R = P F µνρσFµνργ +Q(11)F µνρσFµνργ ,

−9

2
R = P

(
1− 11

8

)
FµνργF

µνρσ ,

i.e.,

R = P
3

8
· 2

9
Fµνργ F

µνρσ =
1

12
PFµνργ F

µνρσ . (3.30)

So, we can get the required value of P by requiring that this equation is the one that
corresponds to supergravity. This value has to coincide with the one obtained from our
action, which is:

6W(Ω3
2, T

2)|γ′ + 6W(Ω4
2, R)|γ′ + 4γF (Ω2

2T + Ω2TΩ2 + TΩ2
2)|γ′ = 0 .

We refer to the Appendix 6.5 to writte the equation in a more explicit form:

0 = 6W(e8, w2
5)|γ′ + 6W(Ω4

2, RL)|γ′
+ 4γF (e5w5 + e4w5e+ e3w5e

2 + e2w5e
3 + ew5e

4 + w5e
5)|γ′ .
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Let us now compute the trace of this equation times eaγa:

0 = 6Tr(9w5ew5e
8 + 9w2

5e
9 + 9w5e

2w5e
7 + 9w5e

3w5e
6 + 9w5e

4w5e
5) (3.31)

+ 6Tr(4RLe
9) + 4γF 6Tr(w5e

6) .

We use this expression to obtain one equation of the form (R = ...) , where R is de
Ricci scalar.

First, we use the w5 equation, which gives:

w5 = k(F̂ e+ eF̂ ) , F̂ = Fa1...a4γ
a1...a4 ,

Of course, we know the value of k, we will substitute it later. In terms of F̂ , the
equation is:

0 = 54k2 Tr(F̂ e2F̂ e9 + F̂ e3F̂ e8 + eF̂ eF̂ e9 + eF̂ e2F̂ e8)

+ F̂ eF̂ e10 + F̂ e2F̂ e9 + eF̂ 2e10 + eF̂ eF̂ e9 + F̂ e3F̂ e8

+ F̂ e4F̂ e7 + eF̂ e2F̂ e8 + eF̂ e3F̂ e7 + F̂ e4F̂ e7 + F̂ e5F̂ e6 (3.32)

+ eF̂ e3F̂ e7 + eF̂ e4F̂ e6 + F̂ e5F̂ e6 + F̂ e6F̂ e5 + eF̂ e4F̂ e6

+ +eF̂ e5F̂ e5) + 24Tr(RLe
9) + 48γ k F Tr(F̂ e7) .

That is:

0 = 54k2 Tr(F̂ 2e11 + 3F̂ eF̂ e10 + 4F̂ e2F̂ e9 + 4F̂ e3F̂ e8 + 4F̂ e4F̂ e7 + 4F̂ e5F̂ e6)

+ 24Tr(RLe
9) + 48γ k F Tr(F̂ e7) .

Let us compute the term containing RL:

24Tr(RLe
9) = 24 · 32 ·Ra1a2ea3 ...ea11ε

a1...a11 .

Now, we write:

Ra1a2 = Ra1a2,b1b2e
b1eb2 ,

so the term is:

24Tr(RLe
9) = 24 · 32 ·R b1b2

a1a2,
eb1eb2 ea3 ...ea11ε

a1...a11 .
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Now, calling E = ea1 ...ea11ε
a1...a11 , we can prove that:

eb1eb2ea3 ...ea11 =
η

11!
εb1b2a3...a11E ,

where η = −1, (+1) if the metric is mostly plus (mostly minus).

So:

24Tr(RLe
9) = 24 · 32 · η

11!
R b1b2
a1a2,

εb1b2a3...a11ε
a1...a11E ,

where εb1b2a3...a11ε
a1...a11 = η 9! δa1a2b1b2

, so:

24Tr(RLe
9) =

24 · 32

110
· 2R a1a2

a1a2,
E =

48 · 32

110
RE .

Now we refer to Appendix 6.6 where we perform the calculations of the remaining
terms.

We can obtain the value of the constant P of equation (3.30) comparing with the
result of (6.21). We also substitute the value of k, so:

R = − 110

48 · 32
·
(
γ k

256

55
+ k2 · 193536

11

)
F 2

= −
(

1

3
γ k + 1260 k2

)
F 2 . (3.33)

Now we compute the value of k using (1.23):

w5 =
1

5!
wa1...a5γ

a1...a5 = − 1

5!

40

9!
γ F d1...d4ed5γd1...d5

= k(F̂ e+ eF̂ ) = k(F a1...a4γa1...a4e
a5γa5 + ea5γa5F

a1...a4γa1...a4) (3.34)

= 2k F a1...a4ea5γa1...a5 ,

so:

k = − 20

5! · 9!
γ .
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We can calculate the value of the constant P :

P = 12 · γ2
(

1

3
· 20

5! · 9!
− 1260 · 202

(5! · 9!)2

)
. (3.35)



Chapter 5

Conexion with supergravity in D = 11

The objective of this chapter is to analyze the possible connexion between supergravity in
D = 11 with the CS theory we have developed. Then, we will compare the �eld equations
we have obtained with the �eld equations which come from supergravity inD = 11. As we
have found this conexion, it means that probably there is a relation between supergravity
in D = 11 and a CS theory.

We have to compare both �eld equations for A and e with the equations of super-
gravity in D = 11. That will allow us to determine the value of the constant σ that we
introduced by hand:

From equation (2.25) we can obtain the relation between σ and γ. The equation that
supergravity provides (see, for example [12]) for the A �eld is:

Db1 Fb1d1...d3 =

(
1

32 · 27

)
εb1...b4c1...c4d1...d3F

b1...b4F c1...c4 . (0.1)

Which means that:

(
9σ

5120 γ2

)
=

(
1

32 · 27

)
,

so:

σ = γ2
(

40

81

)
. (0.2)

Now, we have to extract the value of γ from the �eld equation for e in order to
determine σ. The equation that supergravity provides (see, for example [12]) for the e

33
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�eld is:

R =

(
1

12

)2

F 2 . (0.3)

We have from (3.33) that:

γ2 =
1

122 ·
(

1
3
· 20
5!·9! −

1260·202
(5!·9!)2

) , (0.4)

so:

σ =
5

1458
· 1(

1
3
· 20
5!·9! −

1260·202
(5!·9!)2

) . (0.5)

Then, we have obtained the constant which goes with the four form F in the closed
invariant form (1.5).



Chapter 6

Appendices

In this chapter we will show the calculations performed along the di�erent chapters and
sections in order to make more clear the reading of this work.

35
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6.1 Contribution W(e9, w5) of the �eld equation for w5

In this section we compute the contribution with four contractions W(e9, w5) to obtain
the equation for w5.

• First term:

e9w5 →
(

9

4

)(
5

4

)
· 4! ea1 ...ea5e

b1 ...eb4wb4...b1a6γ
a1...a6 .

• Second term:

e8w5e →
(

8

4

)(
5

4

)
· 4! ea1 ...ea4e

b1 ...eb4wb4...b1a5ea6γ
a1...a6

+ 5 ·
(

8

3

)(
4

3

)
· 3! ea1 ...ea5e

b1 ...eb3wb3...b1a6b4e
b4γa1...a6 ,

we can check that:(
8

4

)(
5

4

)
· 4! + 5 ·

(
8

3

)(
4

3

)
· 3! =

(
9

4

)(
5

4

)
· 4! .

• Third term:

e7w5e
2 →

(
7

4

)(
5

4

)
· 4! ea1 ...ea3e

b1 ...eb4wb4...b1a4ea5ea6γ
a1...a6

+ 5 · 2 ·
(

7

3

)(
4

3

)
· 3! ea1 ...ea4e

b1 ...eb3wb3...b1a5b4e
b4ea6γ

a1...a6

+

(
5

2

)
2!

(
7

2

)(
3

2

)
· 2! ea1 ...ea5e

b1eb2wb2b1a6b3b4e
b4eb3γa1...a6 ,

we can check that:(
7

4

)(
5

4

)
· 4! + 5 · 2 ·

(
7

3

)(
4

3

)
· 3! +

(
5

2

)
2!

(
7

2

)(
3

2

)
· 2! =

(
9

4

)(
5

4

)
· 4! .

• Fourth term:

e6w5e
3 →

(
6

4

)(
5

4

)
· 4! ea1ea2e

b1 ...eb4wb4...b1a3ea4 ...ea6γ
a1...a6

+ 5 · 3 ·
(

6

3

)(
4

3

)
· 3! ea1 ...ea3e

b1 ...eb3wb3...b1a4b4e
b4ea5ea6γ

a1...a6

+

(
5

2

)(
3

2

)
2!

(
6

2

)(
3

2

)
· 2! ea1 ...ea4e

b1eb2wb2b1a5b3b4e
b4eb3ea6γ

a1...a6

+

(
5

3

)(
3

3

)
3!

(
6

1

)(
2

1

)
ea1 ...ea5e

b1wb1a6b2b3b4e
b4 ...eb1ea6γ

a1...a6 ,
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we can check that:

(
9

4

)(
5

4

)
· 4! =

(
6

4

)(
5

4

)
· 4! + 5 · 3 ·

(
6

3

)(
4

3

)
· 3!

+

(
5

2

)(
3

2

)
2!

(
6

2

)(
3

2

)
· 2! +

(
5

3

)(
3

3

)
3!

(
6

1

)(
2

1

)
.

• Fifth term:

e5w5e
4 →

(
5

4

)(
5

4

)
· 4! ea1e

b1 ...eb4wb4...b1a2ea3 ...ea6γ
a1...a6

+ 5 · 4 ·
(

5

3

)(
4

3

)
· 3! ea1ea2e

b1 ...eb3wb3...b1a3b4e
b4ea4 ...ea6γ

a1...a6

+

(
5

2

)(
4

2

)
2!

(
5

2

)(
3

2

)
· 2! ea1 ...ea3e

b1eb2wb2b1a4b3b4e
b4eb3ea5ea6γ

a1...a6

+

(
5

3

)(
4

3

)
3!

(
5

1

)(
2

1

)
ea1 ...ea4e

b1wb1a5b2...b4e
b4 ...eb2ea6γ

a1...a6

+

(
5

4

)
4! ea1 ...ea5wa6b1...b4e

b4 ...eb1γa1...a6 ,

we can check that:

(
9

4

)(
5

4

)
· 4! =

(
5

4

)(
5

4

)
· 4! + 5 · 4 ·

(
5

3

)(
4

3

)
· 3! +

(
5

2

)(
4

2

)
2!

(
5

2

)(
3

2

)
· 2!

+

(
5

2

)(
4

2

)
2!

(
5

2

)(
3

2

)
· 2! +

(
5

3

)(
4

3

)
3!

(
5

1

)(
2

1

)
+

(
5

4

)
4! .

Now we need the terms e4w5e
5 and so on, which have the same structure of the �ve

terms analyzed so far, with the same factors, but changing right and left. Tipically, we
will have:

ea1 ...eake
b1 ...eblwbl...b1ak+1bl+1...b4e

b4 ...ebl+1eak+2
...ea6γ

a1...a6 ,

and:

eak+2...ea6e
b4 ...ebl+1wbl+1...b4ak+1bl...b1e

b1 ...eblea1 ...eakγ
ak+2...a6ak+1a1...ak .
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If we reorder the indices ak+1...a6 with a1...ak in the second expression, we will get
the same sign as the one that appears by interchanging eak+2...e6 and ea1 ...ea6 (because
they are di�erent forms). The same can be said of the b's and eb′s. So both terms are
the same. The contribution of e5w5e

4 will be the same of that of e4w5e
4, and so on.

So we only need to sum the contributions obtained above, taking care of reorganizing
the indices to have a common factor:

W(e9, w5) → 2

[(
9

4

)(
5

4

)
4! +

(
8

4

)(
5

4

)
4!− 5

(
8

3

)(
4

3

)
3!

+

(
7

4

)(
5

4

)
4!− 5 · 2

(
7

3

)(
4

3

)
3! +

(
5

2

)
2!

(
7

2

)(
3

2

)
2!

+

(
6

4

)(
5

4

)
4!− 5 · 3

(
6

3

)(
4

3

)
3! +

(
5

2

)(
3

2

)
2!

(
6

2

)(
3

2

)
2!

−
(

5

3

)(
3

3

)
3!

(
6

1

)(
2

1

)
+

(
5

4

)(
5

4

)
4!− 5 · 4

(
4

3

)(
5

3

)
3!

+

(
5

2

)(
4

2

)
2!

(
3

2

)(
5

2

)
−
(

5

3

)(
4

3

)
3!

(
2

1

)(
5

1

)
+

(
5

4

)
4!

]
· ea1 ...ea5e

b1 ...eb4wb4...b1a6γ
a1...a6 .

It turns out that the contributions of e8we and e7we2 cancel each other, and this is
also the same case of e6we3 and e5we4. So we obtaine:

W(e9, w5)→ 2 · 9!

4!
ea1 ...ea5e

b1 ...eb4wb4...b1a6γ
a1...a6 .
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6.2 Derivation of the equation for w5

In this section we will analyze the expresson (1.21) contracting it with εa1...a6d1...d5 ,

9!

2
εa1...a5d1...d5 εa1...a5b1...b4cdw

b4...b1 c
a6

+ 4γ εa1...a6b1...b4d ε
a1...a6d1...d5F b1...b4 = 0 .

Now, we use the property:

εa1...akb1...b11−kεa1...akc1...c11−k = (−1)ηk! δb1...b11−kc1...c11−k
, (2.1)

where η depends on the signature of the metric ∗,

(+− ...−)→ η = 0, (−+ ...+)→ η = 1,

and,

δb1...bka1...ak
=
∑
σ∈sk

δb1aσ(1) ...δ
bk
aσ(k)

. (2.2)

We have, irrespective of the metric,

9!

2
5! δa6d1...d5b1...b4cd

wb4...b1 c
a6

+ 4γ 6! δd1...d5b1...b4d
F b1...b4 = 0 . (2.3)

Now, we use the property:

δ
aa1...ak−1

b1...bk
=

k∑
l=1

δablδ
a1...ak
b1...b̂l...bk

, (2.4)

in the �rst term, with a = a6. The contributions δ
a6
b1
...δa6b4 vanish because wb1...b4a6 is

antisymmetric. So we have:

9!

2
5! δa6c δ

d1...d5
b1...b4d

wb4...b1 c
a6
− 9!

2
5! δa6d δ

d1...d5
b1...b4c

wb4...b1 c
a6

4γ 6! δd1...d5b1...b4d
F b1...b4 = 0 , (2.5)

(
9!

2
5!wb4...b1 c

c + 4γ 6!F b1...b4

)
δd1...d5b1...b4d

− 9!

2
5! δd1...d5b1...b4c

wb4...b1 c
d = 0 . (2.6)

∗We will use the signature (− + ...+) in the end of this work, when we compare our �nal equations

with that of the supergravity model.
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Contracting d5 and d in (2.6), we get:

(
9!

2
5!wb4...b1 c

c + 4γ 6!F b1...b4

)
(11− 4)δd1...d4b1...b4

− 9!

2
5!wb4...b1 c

c δ
d1...d4
b1...b4

= 0 , (2.7)

so:

9!

2
5! 6wb4...b1 c

c = −4 · 7!γF b1...b4

wb4...b1 c
c = −4 · 7!

9! 6!
γ 2F b1...b4 (2.8)

= −56

9!
γ F b1...b4 . (2.9)

Substituting this in (2.6), we have:

9!

2
5! 5!wd1...d4 d5

d =

(
56γ

9!

9!

2
5! + 4γ6!

)
F b1...b4δd1...d5b1...b4d

(2.10)

= (−28 · 5!γ + 24 · 5!γ)F b1...b4δd1...d5b1...b4d
(2.11)

= −4 · 5! γ F b1...b4δd1...d5b1...b4d
(2.12)

= −4 · 5! γ 5!F b1...b4δ
[d1...d4
b1...b4

δ
d5]
d (2.13)

= −4 · 5! γ 5!F [d1...d4 δ
d5]
d . (2.14)

Then:

w
[d1...d4 d5]

d =
4 · 5! · 5! γ 2

9! · 5! · 5!
F [d1...d4 δ

d5]
d (2.15)

=
4 · 2
9!

F [d1...d4 δ
d5]
d . (2.16)

We now use this equation to solve for wd1...d4 d5
d (not antisymmetrization). To this

end, we use the following trick; �rst we make equation (2.15) more explicit,

wd1d2d3d4d5d − wd1d2d3 d5d4
d

−wd1d2 d5d4d3
d − wd1 d3d4d5d2

d

−w d1d2d3d4d5
d =

4 · 2
9!

γ
(
F d1d2d3d4δd5d (2.17)

−F d2d3d4 d5d1
d η − F d1 d3d4 d5d2

d η

−F d1d2 d4 d5d3
d η − F d1d2d3 d5d4

d η ) .
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Now we antisymmetrize in the indices d1...d5, with weight one,

wd1...d5d − 4 · w[d1...d4 d5]
d = −4 · 2

9!
γ F d1d2d3d4δd5d , (2.18)

and, substituting (2.15) in (2.18),

wd1...d5d = −40

9!
γ F [d1...d4 δ

d5 ]
d . (2.19)
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6.3 Contributions of the �eld equation for A

In this section we compute all the contributions to obtain the �eld equation for A :

• γTr(Ω4)|6 corresponds to n0, n1, n2 such that:

n2 = 2, n1 = 2, n0 = 0 , or n2 = 3, n1 = 0, n0 = 1 ,

so:

γTr(Ω4)|6 = γ Tr(W(Ω2
2, T

2, R0)) + γ Tr(W(Ω3
2, T

0, R1)) .

The �rst contribution can be calculated as follows:

γ Tr(W(Ω2
2, T

2, R0)) = 4γ Tr(Ω2
2T

2) + 2γ Tr(Ω2T Ω2T ) ,

using the expression TL + w5e + ew5, where TL = 0 from equation (1.16) and
w5 ∝ γa1...a5 , we can forget about TL, then:

Tr(Ω2
2T

2) = Tr(e4(w5e+ ew5)2)

= Tr(e5w5ew5 + e5w2
5 + e4w5e

2w5 + e4w5ew5e)

= Tr(e5w2
5 + e4w5e

2w5) ,

T r(Ω2T Ω2T ) = Tr(e2(w5e+ ew5)e2(w5e+ ew5))

= Tr(e3w5e
3w5 + e3w5e

2w5e+ e2w5e
4w5 + e2w5e

3w5e)

= Tr(e3w5e
2w5e+ e2w5e

4w5) .

These �nal tems e3w5e
2w5e+ e2w5e

4w5 add up, so we have:

4γ Tr(Ω2
2T

2) + 2γ Tr(Ω2T Ω2T ) = 4γTr(e6w2
5) + 4γTr(e4w5e

2w5) + 4γTr(e2w5e
4w5)

= −4γTr(e6w2
5) .

The second contribution can be calculated as follows:

γ Tr(W(Ω3
2, T

0, R1)) = 4γ Tr(Ω3
2R) ,
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We know that R = dw + w ∧ w, but w = wL + w5 , where wL ∝ γ2 and w5 ∝ γ5 so
we have:

R = dwL + dw5 + w2
L + wL ∧ w5 + w5 ∧ wL + w2

5 .

We can analyze eacht term in order to see the γ which is related:

RL = dwL + w2
L ∝ γ2 ,

Dw5 = dw5 + w5 ∧ wL + wL ∧ w5 ∝ γ5 ,

then:

4γ Tr(e6R) = 4γ Tr(e6{RL +Dw5 + w5 ∧ w5}) ,

and we consider only the terms which go with γ11, so:

4γ Tr(e6R) = 4γ Tr(e6Dw5) + 4γ Tr(e6w2
5) .

The second term of this expression vanishes with the result of the �rst contribution
−4γTr(e6w2

5), so �nally:

4γ Tr(e6R) = 4γ Tr(e6Dw5) = 4γ Tr(ea1 ...ea6 Dwa7 ...wa11γ
a1...a11)

= 4γ32ea1 ...ea6 Dwa7...a11ε
a1...a11 .

• δ (Tr(Ω2))
2 |6

The �rst contribution can be calculated as follows:

δ
(
Tr(Ω2

2)
)2

= δ
(
Tr(T 2)Tr(Ω2

2) + Tr(Ω2T + TΩ2)Tr(Ω2T + TΩ2) + Tr(Ω2
2)Tr(T

2)
)

We know:

Tr(Ω2
2) = Tr(e4) = 0 ,

and it is easy to demonstrate that

Tr(Ω2T + TΩ2) = 0 .
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For the second case we do not have contributions, so:

δ
(
Tr(Ω2)

)2 |6 = 0 .

• 2εFTr(Ω2)|6 = 2εFTr(Ω2)|3 which corresponds to n0, n1, n2 such that:

n2 = 1, n1 = 1, n0 = 0 , or

we obtain:

2εFTr(Ω2)|3 = 2εFTr(Ω2T + TΩ2) = 0 .

• 3σF 2|6 = 3σF 2|0 = 3σF 2

The addition of all this contributions give us the �nal equation result:

4 γ 32ea1 ...ea6 Dwa7...a11ε
a1...a11 + 3σF 2 = 0 .
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6.4 Contributions of the �eld equation for e

In this section we compute all the contributions to obtain the �eld equation for e:

• 6 Ω5|8 corresponds to n0, n1, n2 such that:

n2 = 3, n1 = 2, n0 = 0 , or n2 = 4, n1 = 0, n0 = 1 ,

so we have this two contributions that we will examine later:

6 Ω5|8 = 6W(Ω3
2, T

2, R0) + 6W(Ω4
2, T

0, R1) .

• 4αTr(Ω2)Ω3|8

The �rst possibility corresponds to n2 = 3, n1 = 2, n0 = 0:

� Tr(Ω2
2) Ω2 T

2 = 0 , that is because Tr(Ω2
2) ∝ Tr(e4) = 0 ,

� Tr(Ω2T ) Ω2
2T = 0, the trace Tr(e2(TL + ew5 +w5e)) = Tr(e3w5 + e2w5e) = 0 ,

� Tr(T 2)Ω3
2 = 2Tr(ew2

5e)Ω
3
2, that is because:

Tr(T 2) = Tr((ew5+w5e)
2) = Tr(ew5ew5+ew

2
5e+w5e

2w5+w5ew5e) = 2Tr(ew2
5e) ,

so as, we have the total contribution:

4αTr(Ω2)Ω3 = 4αTr(T 2)Ω3
2 = 8αTr(ew2

5e)e
6 .

Which is propotional to γ6. That means that we have not to consider it because
we are looking for contributions which go with γa1 .

The other option, n2 = 4, n1 = 0, n0 = 1:

� Tr(Ω2
2)RΩ2

2 = 0 ,

� Tr(Ω2R) Ω3
2 = Tr(Ω2R + RΩ2)Ω

3
2 = 2Tr(e2(RL + Dw5 + w5 ∧ w5))e

6 =
2Tr(e2Dw5 + e2w2

5)e
6 .

Then we have:

4αTr(Ω2)Ω3 = 8αTr(e2w2
5)e

6 .

Which does not contribute.
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• 2αTr(Ω4)Ω|8
Where we have the �rst contribution corresponding to n2 = 3, n1 = 2, n0 = 0:

� Tr(W(Ω3
2, T ))T = Tr(Ω3

2T + Ω2
2TΩ2 + Ω2TΩ2

2 + TΩ3
2)T = 4Tr(Ω3

2T )T =
4Tr(e6w5ee

7w5)T = 0 ,

� Tr(W(Ω2
2, T

2)) Ω2 = −4γTr(e6w2
5)e

2, which we know from equation for A ,

so:

2αTr(Ω4) Ω = −8Tr(e6w2
5) e

2 ,

which is proportional to γa1a2 and will not conribute.

The other option, n2 = 4, n1 = 0, n0 = 1:

� Tr(W(Ω3
2, R)) Ω2 = 4Tr(Ω3

2R)Ω2 = 4Tr(e6RL + e6Dw5 + e6w2
5)e

2 =
4Tr(e6Dw5 + e6w2

5) e
2 ,

� Tr(W(Ω4))R = 0 ,

so:

2αTr(Ω4)Ω = 8αTr(e6Dw5 + e6w2
5) e

2 ,

which does not contribute because it goes with γa1a2 .

• 6βTr(Ω2)2 Ω|8

The �rst contribution:

� Tr(T 2)Tr(Ω2
2)Ω2 = 0 ,

� Tr(Ω2T )2Ω2 = 0 , as we have seen previously.

The second contribution:

� Tr(Ω2
2)

2R = 0 ,

� Tr(Ω2R)Tr(Ω2
2)Ω2 = 0 ,

So there are not contributions.
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• 4γFΩ3|8 = 4γλ3FΩ3|8 = 4γFΩ3|5

Then we have the possibilities:

n2 = 2, n1 = 1, n0 = 0 ,

so:

4γFΩ3|5 = 4γF (Ω2
2T + Ω2TΩ2 + TΩ2

2) .

• 4δF Tr(Ω2)Ω|8 = 4δF Tr(Ω2)Ω|5

We have the possibilities:

� Tr(Ω2
2)T = 0 ,

� Tr(Ω2T + TΩ2) = 0 ,

so there are not contributions:

4δF Tr(Ω2)Ω|8 = 0 .

• 2εF 2Ω|8 = 2εF 2Ω|2 = 2εF 2Ω2

That is because the only possibility s n2 = 1, n1 = 0, n0 = 0. This term does not
contribute because it goes with γa1a2 .
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6.5 Explicit form of equation for e

In this section we will write the equation (3.31) in a more explicit form.

That is:

0 = 6 (T 2e6 + Te2Te4 + Te4Te2 + Te6T + e2T 2e4 + e2Te2Te2 + e2Te4T ) + e4T 2e2

+ e4Te2T + e6T 2)|γ′ + 6W(Ω4
2, RL)|γ′ + 6(e8w2

5 + e6w2
5e

2 + e4w2
5e

4 + e2w2
5e

6

+ w2
5e

8)|γ′ + 4γF (e4T + e2Te2 + Te4)|γ′ ,

0 = 6 (T 2e6 + Te2Te4 + Te4Te2 + Te6T + e2T 2e4 + e2Te2Te2 + e2Te4T ) + e4T 2e2

+ e4Te2T + e6T 2)|γ′ + 6W(Ω4
2, RL)|γ′ + 6(e8w2

5 + e6w2
5e

2 + e4w2
5e

4 + e2w2
5e

6

+ w2
5e

8)|γ′ + 4γF (e4T + e2Te2 + Te4)|γ′ ,

so:

0 = 6W(e8, w2
5)|γ′ + 6W(Ω4

2, RL)|γ′
+ 4γF (e5w5 + e4w5e+ e3w5e

2 + e2w5e
3 + ew5e

4 + w5e
5)|γ′ .

Let us now compute the trace of this equation times eaγa:

0 = Tr
(
6W(e8, w2

5)|γ′ e+ 6W(Ω4
2, RL)|γ′ e+ 4γF (e5w5e

+ e4w5e
2 + e3w5e

3 + e4w5e
2 + ew5e

5 + w5e
6)|γ′ ) . (5.20)

Using the cyclic property of the trace,

0 = 6Tr(9w5ew5e
8 + 9w2

5e
9 + 9w5e

2w5e
7 + 9w5e

3w5e
6 + 9w5e

4w5e
5)

+ 6Tr(4RLe
9) + 4γF 6Tr(w5e

6) .
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6.6 Calculation of the remaining terms of equation (3.32)

In this section we will compute the remaining terms of equation (3.32):

Now we compute theterm:

48γ k F Tr(F̂ e7) = 48γ k Fb1...b4e
b1 ...eb4 · 32 εa1...a11F

a1...a4ea5 ...ea11

=
48 · 32 · γ · k · η

11!
Fb1...b4F

a1...a4εa1...a11ε
b1...b4a5...a11E

=
48 · 32 · γ · k · η

11!
· 7!Fb1...b4 F

a1...a4 δb1...b4a1...a4
E

=
48 · 32 · 7! · 4! · γ · k · η

11!
Fa1...a4 F

a1...a4E .

The calculation of the remaining terms is a little bit trickier:

• The �rst term:

54k2 Tr(F̂ 2e11) = 54 k2 Tr(F̂ 2ea1 ...ea11γ
a1...a11)

= 54 k2 Tr(F̂ 2)E = 54 k2 4! 32Fa1...a4F
a1...a4E .

• The second term:

54 · 3k2 Tr(F̂ eF̂ e10) = 54 · 3 k2 Tr(F̂ γa1F̂ γa2...a11 η

11!
εa1...a11E)

=
54 · 3k2η

11!
Tr(F̂ γa1F̂ εa1...a11γ

a2...a11)E

=
54 · 3k2η

11!
· 10!η Tr(F̂ γa1F̂ γa1)E .

Now, we need γaF̂ γa:

γaF̂ γa = γab1...b4Fb1...b4γa + 4F ab1...b3γb1...b3γa

= 4γb4b1...b3Fb1...b4 + 4F ab1...b3γb1...b3a + 11γb1...b4Fb1
= 3F̂ .

So this term is:

54 · 3k2

11!
3 · 32 · 4!F a1...a4Fa1...a4E .
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• The third term:

54 · k2 4Tr(F̂ e2F̂ e9) =
54 k2 4 η

11!
Tr(F̂ γa1a2F̂ γa3...a11εa1...a11E)

=
−1

11!
· 54 k2 · 4 · 9!Tr(F̂ γa1a2F̂ γa1a2) .

We need:

γa1a2F̂ γa1a2 = γa1γa2F̂ γa1a2 = −γa1γa2F̂ γa2a1
= −γa1γa2F̂ γa2γa1 + 11F̂ = −γa1 (3F̂ )γa1 + 11F̂

= −9F̂ + 11F̂ = 2F̂ .

So the term is:

−54 k2 4

110
· 2 · 32 · 4!F a1...a4Fa1...a4E .

• The fourth term:

54 · k2 4Tr(F̂ e3F̂ e8) =
η

11!
· 54 k2 4Tr(F̂ γa1...a3F̂ γa4...a8ε

a1...a11E)

= − 8!

11!
· 54 k2 · 4Tr(F̂ γa1...a3F̂ γa1...a3)E .

We need:

γa1...a3F̂ γ
a1...a3 = (γa1a2γa3 − 2γa1ηa2a3)F̂ γ

a1...a3 = γa1a2γa3F̂ γ
a3a1a2

= γa1a2γa3F̂ (γa3γa1a2 − ηa3a1γa2 + ηa3a2γa1)

= γa1a2γa3F̂ (γa3γa1a2 − 2 γa1a2γ
a1F̂ γa2

= 66F̂ ,

where γa1a2γ
a1F̂ γa2 = γa1F̂ γ

a1 + 22γa2F̂ γ
a2 = 60F̂ .

So the term is:

− 66 · 54 k2 4 · 32 · 4!

110 · 9
F a1...a4Fa1...a4E .
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• The �fth term:

54 · k2 4Tr(F̂ e4F̂ e7) =
54

11!
· 7! k2 4Tr(F̂ γa1...a4F̂ γ

a1...a4)E .

Wee need:

γa1...a4F̂ γ
a1...a4 = γa1...a3γa4F̂ γ

a1...a4 = −γa1...a3γa4F̂ γa4a1...a3

= −γa1...a3γa4F̂ (γa4γa1...a3 − 3 ηa4a1γa2a3)

= −γa1...a3γa4F̂ γa4γa1...a3 + 3γa1...a3γ
a1F̂ γa2a3 ,

where 3γa1...a3γ
a1F̂ γa2a3 = 6γa3a2F̂ γ

a2a3 + 33γa2a3 , so:

γa1...a4F̂ γ
a1...a4 = −3 · 66 F̂ + 27 · (2)F̂ = −144 F̂ .

So the term is:

− 54

11!
· 7! k2 4 · 32 · 4! 144F a1...a4Fa1...a4E .

• The last term:

54 · k2 4Tr(F̂ e5F̂ e6) =
54 k2 · 4 · 6!

11!
Tr(F̂ γa1...a5F̂ γ

a1...a5) .

We need:

γa1...a5F̂ γ
a1...a5 = γa1...a4γa5F̂ γ

a5a1...a4

= γa1...a4γa5F̂ (γa5γa1...a4 − 4ηa5a1γa2a3a4)

= −3 · 144F̂ − 4γa1...a4γ
a1F̂ γa2a3a4 ,

where, 4γa1...a4γ
a1F̂ γa2a3a4 = 4·3 γa4a3a2F̂ γa2a3a4+44 γa2a3a4F̂ γ

a4a3a2 = 32γa1...a3F̂ γ
a1...a3 ,

so:

γa1...a5F̂ γ
a1...a5 = −432F̂ + 32 · 66F̂ = 1680F̂ .

So the last term is:

54 k2

11!
· 4 · 6! · 1680 · 4! · 32Fa1...a4F

a1...a4E .
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Putting all terms together, equation (5.20) can be written as:

0 =
48 · 32

110
R + 48 · 32 · γ · k · 7! · 4!

11!
Fa1...a4F

a1...a4 +

= 54 k2 4 · 32

(
1− 9

11
− 8

110
+

4 · 66

110 · 9
− 7! · 4 · 144

11!
+

1680 · 4 · 6!

11!

)
Fa1...a4F

a1...a4 ,

which can be written as:

0 =
48 · 32

110
R + 48 · 32 · γ · k · 7! · 4!

11!
Fa1...a4F

a1...a4

+ 54 k2 32 · 4! · 8!

11!
· 420Fa1...a4F

a1...a4 . (6.21)



Chapter 7

Conclusions

We have succeded in formulating the bosonic part of D = 11 supergravity as a limit of
a CS-like theory based on the group SP (32), where the three-form �eld has been added.
Along the way we have shown that the auxiliary �eld that appears in the �rst-order
version of D = 11 supergravity [13] can be replaced by some gauge �elds corresponding
to the generators of sp(32)

It is true that we have added the �eld A �by hand" at this stage. Of course, when
adding fermions, the requirement of supersymmetry will leed to the presence of A , which
has to be present, in D = 11 by counting of degrees of freedom of supermultiplets con-
taining spins s ≤ 2 and a graviton (s = 2). Also, the A �eld is the one that couples
naturally to membranes via the term:

Aµνρ
∂xµ

∂ξi
∂xν

∂ξj
∂xρ

∂ξk
εijk

Moreover, we have founded some of the values of the constants present in the original
CS-like action, so that, the resulting equation coincide with that of D = 11 supergravity.
In fact, only two of them were relevant, the other do not appear in the bosonic equations
of the λa term of the expansion. They however appear when the spin �eld ψ is restored.
We can not provide an argument giving the values of the adjusted constants because they
are �xed to supersymmetry, which is not considered here.

To conclude, this result implies that, at least in the bosonic case, there is a connection
between the CS theory and supergravity, as conjectured by Horava [7]. Wether this
connection remains when the ψ �eld is restored was not the topic of the present work.
However, it can be shown that the same procedure, applied to Osp(1|32) does not lead
to the full supergravity in D = 4. Therefore, if there is a connection, it will be subtle,
and certainly not the kind of connection conjectured by Horava. In any case, the result
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presented her provides evidence on favour of a connection between supergravity and
Osp(32), which by the way was conjectured by Cremmer, Julia and Scherk in their work
in D = 11 supergravity.
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