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1.1.1.1. AbstractAbstractAbstractAbstract    
 

In this project, a flash drum is going to be studied as a method to concentrate a 

stream with nanoparticles continuously at bench scale. Several aspects are going to be 

analysed, such as the removal of water produced in the flash, the dragging of product 

that is carried by the vapour and the hydrodynamic size of the nanoparticles. 

The nanoparticles were synthesized by a hydrothermal method at high pressure 

in a counter-current nozzle reactor, patented by the University of Nottingham [1]. 

Afterward, the pressure was released and the stream was concentrated using a flash 

drum and separating the vapour from the liquid. 

Several designs of the flash drum have been tested, for example providing the 

rig with more insulation or adding a band heater, obtaining better results in the 

separation of the liquid and vapour. 

In some cases, the amount of solids carried by the vapour was measured as 

well in order to know the amount of product that is not possible to recover. 

 

Keywords: metal oxide nanoparticles, hydrothermal synthesis, continuous 

countercurrent reactor, knock-out drum, supercritical water. 
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Resumen 

 

En este Proyecto, se va a estudiar un separador líquido-vapor como un método 

para concentrar una corriente con nanopartículas de forma continua a escala de 

laboratorio. Se analizarán varios factores, como la eliminación de agua en el flash, el 

arrastre de producto que es arrastrado por el vapor y el tamaño hidrodinámico de las 

partículas. 

Las nanopartículas fueron sintetizadas por un proceso hidrotermal a alta 

presión en un reactor contracorriente continuo, patentado por la Universidad de 

Nottingham [1]. Después, se liberó la presión y la corriente fue concentrada usando el 

tanque de flash y separando el vapor del líquido. 

Se han probado varios diseños del separador, por ejemplo, aportando más 

aislamiento térmico al equipo o añadiendo un calefactor, obteniendo mejores 

resultados en la separación del líquido y vapor. 

En algunos casos, la cantidad de sólidos arrastrados por el vapor fue medida 

también para saber la cantidad de producto que no es posible recuperar. 

 

Palabras clave: nanopartículas de óxidos metálicos, síntesis hidrotermal, reactor 

contracorriente continuo, separador líquido-vapor, agua supercrítica. 
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2.2.2.2. IntroductionIntroductionIntroductionIntroduction    
 

Throughout the last years, nanotechnology research has greatly progressed.  

Their possible applications are uncountable in the field of medicine, electronic, 

biology, chemistry, etc. 

Several batch methods at bench scale have been developed in order to 

synthesise nanoparticles. However a batch method is not normally suitable for a 

production at industrial scale. 

The hydrothermal synthesis has been demonstrated to present several 

advantages over other conventional methods in the manufacturing of advanced 

materials, such as nanoparticles. Some of these advantages can be used to give crystal 

symmetry, high product purity and homogeneity, narrow particle size distributions, 

single-step processes, dense sintered powders, fast reaction times, which means 

lowest residence time, as well as for the growth of crystals with polymorphic 

modifications [2]. 

When the particles have a nanometre size, in other words, a smaller size than 

100 nm, the materials have different and interesting mechanical and physical 

properties. For example: increased mechanical strength, enhanced diffusivity or higher 

specific heat and electrical resistivity.  

 

Figure 1 shows the application of the nanoparticles in different branches of 

science and technology. 
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Figure 1. Applications of nanoparticles 

 

Currently, the University of Nottingham is working on the European project 

SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials) [3]. They have 

been manufacturing a wide range of nanomaterials using a continuous counter current 

reactor by hydrothermal synthesis [1] [4-7]. 

One of the main objectives is to achieve a continuous process for the synthesis 

of nanoparticles at industrial scale. Several nanoparticles have already been 

synthesized at bench scale. 

The hydrothermal synthesis presents several advantages over other 

conventional methods in the manufacturing of advanced materials, such as 

nanoparticles [2]. 

It has been demonstrated that it is possible to synthesise nanoparticles using a 

hydrothermal method. However the outlet stream from the reactor has a low 

concentration of nanoparticles, due to the low concentration of the feed metal salt 

solution that is possible to use currently.  
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The next step in the project is the investigation of new ways to concentrate 

these nanoparticles, which means, the elimination of water. One of these options is 

the use of a flash drum. This could be a cheap and easy method to eliminate a large 

part of the water from the outlet stream, while the stream would be cooled down at 

the same time without the need of using refrigeration. 

In addition, the use of a knock out drum could be a method to have a 

controlled size particle of the aggregates of the nanoparticles, due to the quick cooling 

of the stream. 

 

2.1.2.1.2.1.2.1.     SSSSupercritical water and reactionsupercritical water and reactionsupercritical water and reactionsupercritical water and reactions    

Supercritical water hydrothermal synthesis involves the use of supercritical 

water to produce nano-sized metal oxide particles. 

Supercritical water is in a state above the critical temperature (374 ºC) and 

pressure (22.1 MPa) of water. Above the critical point, the density of water varies 

greatly with little changes of temperature and pressure. Because of this, the other 

properties of the water change drastically as well, such as dielectric constant, which is 

a factor of the reaction rate, equilibrium, pH and solubility.  

When water is heated towards its critical point, the dielectric constant 

drastically decreases and this changes its ionic solvent character to a solvent for non-

ionic species. This behaviour can be seen in Figure 2. 

Kw also increases, increasing the concentrations of H+ and OH-. These enhanced 

levels of OH- [8], allow a hydrolysis step of the metal salts that is followed by a 

dehydration step. 

 
 

��� � ���� 	→ 		M�OH�
�
� ��� 

 

 

������	 → MO�/� �
�

2
��� 
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Figure 2. Properties of the water sub and supercritical 

 

 

 

The kinetics increase greatly as well. In Figure 3 it is shown the Arrhenius plot of 

the first-order reaction rate constant of hydrothermal synthesis. 

 
 

 
Figure 3. Kinetics of different metal oxides [9] 
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In order to heat the salt solution to the critical point of the water, salt solution 

is pumped towards the reactor and is mixed with high temperature water, which was 

fed to the top of the reactor. Then fast hydrothermal synthesis happens and the 

solubility of the salt is very low. In this way, high superstation of the metal oxide is 

obtained to form nanoparticles. 

Due to limitations of the equipment, in this research project we will be working 

on the subcritical zone. 

 

2.2.2.2.2.2.2.2.     NNNNottingham nozzle reactorottingham nozzle reactorottingham nozzle reactorottingham nozzle reactor    

The change of the hydrothermal synthesis from batch to continuous was first 

undertaken by the Professor Tadafumi Adschiri at Tohoku University in Sendai, Japan 

[8] [10]. They could synthesise several metal oxides using a continuous system.  

The Clean Technology Research Group at the University of Nottingham carried 

out the development and optimisation of the hydrothermal continuous process. First, 

they used a T-piece for the reactor, but experiments run with this system were 

hindered by the unreliability of the process and a poor reproducibility. The problem 

was the accumulation and agglomeration within the reactor. 

Then the SChEME ((School of Chemical, Environmental and Mining Engineering) 

investigated the fluid dynamic and mixing within the reactor using 2 techniques: LAI 

(Light Adsorption Imaging) modelling and CFD (Computer Fluid Dynamics). After using 

these techniques, the conclusion reached was that in spite of the low Reynolds 

number, the macromixing between the two inlets were turbulent due to the difference 

between their densities. 

Then, they designed a new reactor design which exploited the natural 

convection forces that occur in the reactor. In the nozzle reactor the supercritical 

water is pumped towards the top of the reactor, whereas the cold metal salt aqueous 

stream is pumped towards the bottom of the reactor. The hot water stream heats the 

cold one, allowing the reactions and then the mixing flows upstream to the outlet of 

the reactor. [1] 
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Figure 4. Schematic of the Nozzle Reactor design with ideal heating/cooling profile. [1] 

 

 

Figure 5. (a) LAI steady state concentration map of the Nozzle Reactor (b) steady state CFD simulation 

calculated using FLUENT. Both simulations at flow rates of 10 ml min−1 and 5ml min−1 for supercritical 

water and aqueous metal salt, respectively. [1] 
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The geometry of this Nozzle Reactor results in a better reliability and 

reproducibility than with the previous T-piece reactor, and problems, such us stagnant 

zones, flow partitioning and blockages were partially solved. 

 

 
Figure 6. Construction of scWHS ‘Nozzle Reactor’ used in preliminary experiments [1] 

 

The Nozzle Reactor was constructed using Swaglok® high pressure fittings; the 

outer tube consisted of a 3/8” tube (316 Stainless Steel, 0.065” wall thickness) and the 

inner tube consists of a 1/8” tube (316 Stainless Steel, 0.035” wall thickness).  

This is the reactor that we will be using on this project to synthesize the 

nanoparticles. 
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3.3.3.3. AimsAimsAimsAims    
 

The aim of this project is the study of a flash drum as a continuous method 

to concentrate a stream with nanoparticles at bench scale. If the results were 

favourable, this could be implemented at larger scale. For this study, several 

factors are going to be evaluated: 

 

• The dragging of nanoparticles by the vapour. These nanoparticles are not 

dissolved in the water, they are in suspension. If this stream is flashed, a 

part of the product could be carried by the vapour due to the small size of 

the particles. This is an important aspect to take into account, as the solids 

that are carried are a product that is not possible to recover. At larger scale 

this could mean a big loss of product and consequently the unfeasibility of 

the flash drum as a separation method. 

 

• The amount of water that it is possible to eliminate, which means, the 

amount of steam generated. Obviously the real separation in a flash drum 

will be lower than the theoretical one. 

 

• The size of the aggregates that we can obtain. The nanoparticles tend to 

aggregate and create particles with a bigger hydrodynamic radius. If they 

aggregate too much, this can change their properties, in spite of the fact 

that they would still be considered “nano”. Apart from the particle size, it is 

interesting to control the size of the aggregates. The growth of the particles 

depends on the condition and on the particle. With a flash, the cooling is 

almost instantaneous and it may be possible to stop the growth of the 

aggregates. This may drive to a controlled size of particles.  
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4.4.4.4. Design of the fDesign of the fDesign of the fDesign of the flashlashlashlash    drumdrumdrumdrum    
 

As we have discussed, it is necessary to concentrate the stream with 

nanoparticles after the reaction step, whose concentration is really low. 

A simple and cheap way to achieve this is to use a knock-out or a flash drum, 

taking advantage of the enthalpy of the stream after the reactor. The idea is to 

depressurize the stream to near atmospheric pressure after the reactor, instead of 

cooling down the stream, and then separate the vapour generated during the flash. 

In Figure 7, it is shown the P-H diagram of the water and a schematic of an 

isenthalpic expansion of a stream. 

 

 

Figure 7. Schematic of the isenthalpic expansion that occurs in the flash step. A stream at 300ºC and 

22MPa (P1) is depressurized with no change in the enthalpy to atmospheric pressure (P2). Then it is 

separated in a saturated liquid stream (P3) and a saturated vapour stream (P4). 
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4.1.4.1.4.1.4.1.     NanoparticNanoparticNanoparticNanoparticles during a flashles during a flashles during a flashles during a flash    

The nanoparticles have a diameter smaller than 100 nm. With this size, it is 

easy to think that they would be carried by a stream of gas, even if the velocity was 

really low. However, we are considering a system with water and steam. A first 

assumption is that it would happen something similar to the formation of cloud 

droplets in the atmosphere. 

According to Kelvin’s equation, formation of cloud droplets requires formation 

of clusters of critical size to overcome evaporation. These clusters are known as CCN 

(cloud condensation nuclei) and they have the same order of magnitude as the 

nanoparticles [11]. 

In addition, at least the half of the mass flowrate is liquid flowrate, which 

enhances the formation of bigger droplets [12]. Therefore, it would be a good 

assumption that the nanoparticles will be inside the water droplets when the flash 

occurs. 

 

Figure 8. Relative sizes of cloud particles. 
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4.2.4.2.4.2.4.2.     Terminal velocity of the gasTerminal velocity of the gasTerminal velocity of the gasTerminal velocity of the gas    

If we do not want the nanoparticles to be carried by the steam, we must study 

motion of the particles in a fluid. Considering we are working in a vertical flash drum, 

there are three forces to consider: the buoyant force, the drag force and the weight.  

If a spherical particle is allowed to settle in a fluid under gravity, its velocity will 

increase until the accelerating force is exactly balanced by the resistance force 

(buoyant force and the drag force). 

 

 
Figure 9. Schematic of the forces involved in the motion of a particle in a fluid, where FB is the bouyanct 

force, FV is the viscous force (drag force) and W is the weight of the particle. 

 

 

If we want that the particles settle and go with the liquid stream instead of 

being carried by the vapour stream, then the weight force must be greater than the 

resistance force. 

According to the bibliography, we have to know the drag coefficient in order to 

calculate the drag force [13]. The easiest way involves the use of two dimensionless 

groups. The first one is R’/ρu2, where: 

 

�

ρu�

�

�
�

����/4�
																																							���� !"#$	1� 
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In which R’ is the force per unit projected area of particle in a plane 

perpendicular to the direction of motion and d is the diameter of the particle. For a 

sphere, the projected area is a circle of the same diameter as the sphere. 

R’/ρu2 is a form of drag coefficient, often denoted by the symbol CD’. 

Frequently, a drag coefficient CD is defined as the ratio of R’ to 1/2ρu2. 

 

&' � 2&'� = 2�′
)�� 

 
The second dimensionless group is Reynolds number (Re’ or Rp), which is 

defined as: 

 

�*+ = )��
,  

 

 
Figure 10. Re' vs (R'/ρu2) 

 

Where ρ is the density of the fluid that the particle is in, u is the relative 

velocity of the fluid, d is the diameter of the particle and µ is the dynamic viscosity. 
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Depending on the Reynolds number we can distinguish between 4 zones where 

CD’ follows a different tendency. This is shown in Figure 10. 

Further calculations on this study have demonstrated that we are working on 

the region b, if we are working at bench scale. 

According to the bibliography, in the majority of the processes with a flash 

separation, the droplet size can vary from 10 µm to 5000 μm [14]. We can suppose a 

conservative value of 200 μm. 

To calculate the terminal falling velocity of the particles, which means, the 

maximum velocity of the gas that lets the particles settle and fall down without being 

carried [13]: 

 

�-../0/1-2345 = �613.2345 

 

�-../0/1-2345 = �7/3892 − �:4;<-52 =  � · >+?

6 · �)A − )� · B        ���� !"#$ 2� 

 

 

Where ρs is the density of the particles. We can assume that this density of 

these particles (droplets of water with nanoparticles inside) is approximately the 

density of liquid water, as the volume of the nanoparticles is much smaller than the 

volume of water in the droplets. 

The drag force is a function of CD’, which is a function of Rep: 

 

�C1-8 = D�&'� �                                            ���� !"#$ 3� 

 

&'� = DF�*+G                                            ���� !"#$ 4� 

 

 

According to the bibliography an approximate equation for the region b would 

be [15]: 

 

&'� = 12 �*+ + F1 + 0.15 · �*+K.LMNG                        � ��� !"#$ 5� 

 

 

Then: 
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 � · >+?

6 · �)A − )� · B = 3 · � · , · >+ · �O · P1 + 0.15 >+ · ) · �O
, Q      ���� !"#$ 6� 

 

 

Solving Equation 6: 

 

RO = S. TT U/V 

 

 

4.3.4.3.4.3.4.3.     Diameter of the flashDiameter of the flashDiameter of the flashDiameter of the flash    

 

Firstly, we have to know the total amount of vapour that we generate in order 

to calculate the velocity of the steam inside the flash drum. 

We can assume that the outlet temperature of the reactor is 325ºC, the 

pressure is 240 bar and the depressurization is isenthalpic and adiabatic: 

 

W� �X !*Y @ 240Z Y  $� 325º&� =   W� �\!* ] ^ !�Y !*� @ 1  !]� +  
                                                                                    W� ��"��"� X !*Y ^ !�Y !*� @ 1  !]�  
 
 

_ = S. `ab  
 

The thermodynamic data have been taken from [16]. 

We can remove, theoretically, almost half of the water from the stream. 

In our bench rig we are pumping approximately 1.8 kg/h (30 ml/min), which 

means that in the flash we will be generating: 

 

]c = 1.8 eB f !*Y
ℎ · 0.465 eB h i#�Y B*$*Y !*�

eB f !*Y = S. jkl mn opqrRs ntutspvtw 
x  

 

Then, the minimum diameter is the diameter where the velocity of the vapour 

is the same as the terminal falling velocity of the particles. Therefore, considering the 

amount of vapour that we will be generating: 

 



24 

 

yc
P� >�

4 Q
= �O                                               ���� !"#$ 7� 

 

 

yc = 0.837 eB h i#�Y B*$*Y !*�
ℎ · 1 ]?

0.59034 eB = 1.4178 ]?

ℎ  

 

Solving Equation 7: 

 

| = S. S}} U 

 

This is the minimum diameter to let the droplets of water fall down, assuming 

that the minimum diameter of the droplets is 200 micrometres. 

 

4.4.4.4.4.4.4.4.     Estimation of Estimation of Estimation of Estimation of the the the the ddddroplet sizeroplet sizeroplet sizeroplet size    

We assumed a diameter of the particles to design our bench scale flash drum. 

To know if our assumption is good enough, we will use the Harwell technique [17] [18]. 

This technique is one of the correlations for computing drop sizes and this 

allows us to get a rough estimation of the average drop size. 

The Sauter mean diameter is defined as the diameter of a sphere that has the 

same volume/surface area ratio as a particle of interest. According to the Harwell 

equation, this diameter is calculated with the following formula: 

���A- = 1.91 · >! · �*K.~

X*K.L · P)8
)0

Q
K.L

                      ���� !"#$ 8� 

 

Where (x)sa is the Sauter mean droplet diameter, and Re and We are the 

Reynolds and Weber number respectively. They are defined as: 

 

�* = )8h2>2
,8

                           X* = )8h2�>2
�  
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Where Dt is the internal pipe diameter, ρg is the gas density, ρl is the liquid 

density, μg is the gas viscosity, vt is the mean gas velocity in the pipe and σ is the 

interfacial surface tension.  

The volume average diameter is related to the Sauter mean diameter through 

the following approximation: 

����/C = 1.42 = �A-																																					���� !"#$	9� 

 

In our rig, the pipe before the flash drum is ½” outer diameter, which means 

0.41” inner diameter (0.01041 m). Then, solving Equation 7: 

h2 � 4.478	]/^ 

 

�* � 2246.2													X* � 2.08 

 

Using Equation 8: 

 

���A- � 0.00032901	] � 329	,] 

 

And solving Equation 9: 

_Utw � `al	�U 

 

We have designed the flash for particles bigger than 200 μm. Theoretically, the 

average size of the droplets will be 467 μm. Therefore, with the designed flash drum 

we will be able to let most of the droplets settle and avoid the dragging of 

nanoparticles that are inside those droplets of water. 
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5.5.5.5. Description of the equipmentDescription of the equipmentDescription of the equipmentDescription of the equipment    
 

5.1.5.1.5.1.5.1. ReactorReactorReactorReactor    

The reactor used was the nozzle reactor of the University of Nottingham, 

previously described. 

5.2.5.2.5.2.5.2.     BPRBPRBPRBPR    

It is necessary to have a BPR that can withstand high temperature and high 

pressure. Normally, the stream after the reactor is cooled and it is possible to use a 

normal Tescom® BPR. However, the stream must keep that high enthalpy to produce a 

higher amount of vapour after the expansion in the BPR. In this way we can remove 

the water and concentrate the stream with nanoparticles. 

The chosen valve is a EB1HP1 Equilibar® Precision Back Pressure, with upgraded 

FFKM O-Rings and a SS4 diaphragm. The maximum allowed temperature is 327 ºC and 

the maximum pressure is 5000 psig [19]. 

 In addition, this BPR requires a high pressure cylinder that supplies an inert gas 

at high pressure to work. A BOC nitrogen 230 bar cylinder was used for this purpose. 

 

Figure 11. Back Pressure Regulator from Equilibar®. Model EB1HP1. 
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The line from the BPR to the flash drum consisted of a 3/8” (316 Stainless Steel, 

0.065” wall thickness) and 13 cm in length. This is a Swaglok® high pressure tube, 

although it would not be necessary, since after the BPR the pressure is approximately 

the same as the atmospheric pressure.   

 

5.3.5.3.5.3.5.3. Flash drumFlash drumFlash drumFlash drum    

The flash drum was constructed using a Swaglok® high pressure fitting union 

tee. The three union of the tee piece had a 1” outer diameter (316 Stainless Steel 0.09” 

wall thickness). Therefore the inner diameter was 0.88”. As we calculated previously, 

this diameter should be enough to avoid the dragging of the droplets bigger than 200 

μm. 

The height of the tee piece is 3.96”. 

 

Figure 12. T-piece that acts as the flash drum. Obtained from Swaglok® [20] 

 

The line from the top of the flash drum to the vapour cooler consisted of a 

Swaglok® PFA (Perfluoroalkoxy alkane) ½” tube 90 cm in length. The line from the 

bottom of the flash drum to the liquid cooler consisted of a Swaglok® PFA ¼” tube. The 

maximum allowed temperature is 176 ºC and the maximum allowed pressure is 20.6 

bar.  
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This is enough for our experiment, as we have to work at the boiling point of 

the water at atmosphere pressure, which means that the temperature is 

approximately 100 ºC. 

 

Figure 13. PFA tubes from Swaglok® 

 

5.4.5.4.5.4.5.4. Process flow diagram of the rigProcess flow diagram of the rigProcess flow diagram of the rigProcess flow diagram of the rig    

In Figure 14 it is shown a PFD of the rig: 

 

Figure 14. PFD of the rig used. 

 

The outlet valve was a needle valve that was adjusted manually to assure a 

minimum level of liquid in the flash drum and to prevent some bubbles of the vapour 

from going with the liquid stream. 
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Where T1, T2, T3 and T4 represent the thermocouples used to indicate the 

temperature value at different points of the rig.  

The thermocouple T1 indicates the temperature in the heater.  

The thermocouple T2 is the thermocouple that indicates the temperature just 

before the reactor. We will assume that this temperature is the same as the 

temperature of reaction inside the reactor.  

The thermocouple T3 indicates the temperature after the mixing point within 

the reactor, after the hot water stream and the aqueous cold stream are already 

mixed. We will assume that this temperature is the same as the temperature in the 

BPR. 

The thermocouple T4 indicates the temperature after the BPR. This 

temperature must be near always the boiling point of the water at atmospheric 

pressure, which means approximately 100 ºC. 

5.5.5.5.5.5.5.5.     Photo of the rigPhoto of the rigPhoto of the rigPhoto of the rig    

 

Figure 15. Photo of the flash rig 
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6.6.6.6. Experimental methodExperimental methodExperimental methodExperimental method    
 

To carry out the experiment, a counter current reactor from Nottingham 

University has been used. Two pumps HPLC have been required to pump the water 

with a constant flow and high pressure. A heater was employed to increase the 

temperature of the downflow until 400 ºC degrees. 

A back pressure regulator has been used to reduce the pressure and a T-piece 

has been used as a flash drum. To cool down the streams of liquid water and steam, 

two double pipe heat exchangers has been used. A needle valve at the outlet of the 

liquid stream was used to assure a minimum level of liquid in the flash drum. 

Samples at the liquid outlet and the vapour outlet were collected at different 

temperatures and simultaneously, both flowrates were measured as well. 

The efficiency of the removal of water has been defined as: 

 

�DD"�"*$�� �%� = X !*Y Y*]#h*�
�ℎ*#Y*!"� � ] �"]�] Y*]#h � · 100              ���� !"#$ 10� 

 

The particle size of the samples was measured by DLS analysis (Dynamic Light 

Scattering) using a Zetasizer Nano-ZS by Malvern Instruments. 

Then, some samples were weighed and dried in an oven at 70ºC until all the 

water was evaporated. Then, they were weighed once again and the weight of the 

solids was calculated by gravimetric analysis, in both liquid and vapour samples. 

 

6.1.6.1.6.1.6.1.     Flash drum with no insulationFlash drum with no insulationFlash drum with no insulationFlash drum with no insulation    

Firstly, some experiments were carried out in a rig without insulation. This 

would be the cheapest way, although this would produce a large heat loss that would 

make the efficiency of the flash drum be low. 
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6.1.1.6.1.1.6.1.1.6.1.1. Synthesis of titania (TiOSynthesis of titania (TiOSynthesis of titania (TiOSynthesis of titania (TiO2222))))    
 

Titanium dioxide, also known as titania, is widely used as a pigment. It can be 

used as a photocatalyst or in the manufacture of the composite materials for self-

cleaning building walls [21]. 

The precursor used in this experiment to synthesize titania was Titanium (IV) 

bis (ammonium lactate) dihydroxide solution (50 %w, Sigma-Aldrich, UK) [22]. 

An aqueous solution containing 0.05 M Titanium (IV) bis (ammonium lactate) 

dihydroxide was pumped as the upflow, and deionized water was pumped through a 

heater, and then towards the nozzle reactor as the downflow.  

The flowrate of water was 18 ml/min and flowrate of the aqueous solution was 

9 ml/min. During the experiment, the total flowrate was measured, being slightly 

different every time. This could be due to disturbances in the system. However, we 

assumed that the ratio was 2:1 during the whole experiment, as we measured in the 

beginning. 

The pressure was maintained at 3150 psi and the reaction temperature was 

gradually increased during the experiment from 300 ºC to 350 ºC. 

 

6.1.2.6.1.2.6.1.2.6.1.2. Synthesis of Synthesis of Synthesis of Synthesis of hematite (Fehematite (Fehematite (Fehematite (Fe2222OOOO3333))))    
 

Hematite or iron (III) oxide has several interesting properties, for example 

ferromagnetism. The magnetic properties of iron oxides have been exploited in a 

broad range of applications including magnetic seals and inks, magnetic recording 

media, catalysts, and ferrofluids [23]. 

 Besides, it has been used in several biomedical applications, such as improving 

the quality of magnetic resonance imaging, hyperthermic treatment for malignant 

cells, site-specific drug delivery and the manipulation of cell membranes [24]. 

The precursor used to synthesize hematite in this experiment was 

Fe(NO3)3·9H2O (≥98 % Purity, Sigma Aldrich, UK). [25] 
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An aqueous solution containing 0.05 M Fe(NO3)3  was pumped as the upflow, 

and deionized water was pumped through a heater, and then towards the nozzle 

reactor as the downflow.  

The flowrate of water was 17 ml/min and flowrate of the aqueous solution was 

8.5 ml/min. During the experiment, the total flowrate was measured being slightly 

different every time. This could be due to disturbances in the system. However, we 

assumed that the ratio was 2:1 during the whole experiment, as we measured in the 

beginning. 

The pressure was maintained at 3140 psi and the reaction temperature was 

gradually increased during the experiment from 200 ºC to 350 ºC.  

 

6.1.3.6.1.3.6.1.3.6.1.3. Synthesis of ceria (CeOSynthesis of ceria (CeOSynthesis of ceria (CeOSynthesis of ceria (CeO2222))))    
 

Cerium dioxide, also known as Ceria, has been investigated for its use as an 

antioxidant catalyst, as well as its different biomedical applications, such as the 

treatment of cancer [26][27]. 

The precursor used was (NH4)2Ce(No3)6 (≥98 % Purity, Sigma Aldrich, UK) [28]. 

An aqueous solution containing 0.05 M (NH4)2Ce(No3)6 was pumped as the 

upflow, and deionized water was pumped through a heater, and then towards the 

nozzle reactor as the downflow. 

The flowrate of water was 15 ml/min and flowrate of the aqueous solution was 

7.5 ml/min. During the experiment, the total flowrate was measured, being slightly 

different every time. This could be due to disturbances in the system. However, we 

assumed that the ratio was 2:1 during the whole experiment, as we measured in the 

beginning. 

The pressure was maintained at 3150 psi and the reaction temperature was 

gradually increased during the experiment from 300 ºC to 350 ºC.  
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6.2.6.2.6.2.6.2. Flash with insulation in the reactorFlash with insulation in the reactorFlash with insulation in the reactorFlash with insulation in the reactor    

In this case, insulation was provided to the reactor. This reduced the heat loss 

and the efficiency increased. 

 

6.2.1.6.2.1.6.2.1.6.2.1. SynSynSynSynthesis of cobalt oxidethesis of cobalt oxidethesis of cobalt oxidethesis of cobalt oxide    
 

Cobalt oxide (Co3O4) nanoparticles have special interest in a wide range of 

applications, such as catalytic processes, manufacture of magnetic materials, energy 

storage and the use as a pigment [29]. 

The precursor used (CH3COO)2Co·4H2O (<98% Purity, Sigma-Aldrich, UK) [30]. 

An aqueous solution containing 0.02 (CH3CO2)2Co was pumped as the upflow, 

and a solution containing 2.5% vol. H2O2 was pumped through a heater, and then 

towards the nozzle reactor as the downflow.  

The flowrate of water was 20 ml/min and flowrate of the aqueous solution was 

10 ml/min. During the experiment, the total flowrate was measured, being slightly 

different every time. This could be due to disturbances in the system. However, we 

assumed that the ratio was 2:1 during the whole experiment, as we measured in the 

beginning. 

The pressure was maintained at 2750 psi and the reaction temperature was 

constant at 350ºC for 30 minutes. 

After 30 minutes, the pressure started to fluctuate out of control and even 

increased over 3600 psi, consequently we turned off the rig. This was probably due to 

problems of blockage inside the rig. 
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6.3.6.3.6.3.6.3. Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band 

heater at the top of the flash drumheater at the top of the flash drumheater at the top of the flash drumheater at the top of the flash drum    

In this case, apart from the insulation of the reactor, a band heater was 

installed at the top of the flash drum. This maintained the temperature of the vapour 

stream at 100 ºC and increased the efficiency.  

6.3.1.6.3.1.6.3.1.6.3.1. Synthesis ofSynthesis ofSynthesis ofSynthesis of    zirconia (ZrOzirconia (ZrOzirconia (ZrOzirconia (ZrO2222))))    
 

Zirconium dioxide, or zirconia, is used as an anti-corrosion material in pumping 

components, in optical fibre technologies, in the manufacture of bioceramics and 

implant devices, in thermal barrier coatings, in electrolytes, anti-oxidant material, and 

in the manufacture of fluorescence materials [31]. 

The precursor used zirconium acetate solution (Zr ~ 16 %, Sigma-Aldrich, UK) 

[32]. 

An aqueous solution containing 0.05 M zirconium acetate was pumped as the 

upflow, and a solution containing 2.5% vol. H2O2 was pumped through a heater, and 

then towards the nozzle reactor as the downflow.  

The flowrate of water was 20 ml/min and flowrate of the aqueous solution was 

10 ml/min. During the experiment, the total flowrate was measured, and it was slightly 

different every time. This could be due to disturbances in the system. However, we 

assumed that the ratio was 2:1 during the whole experiment, as we measured in the 

beginning. 

The pressure was maintained at 2700 psi and the reaction temperature was 

constant at 360ºC for 60 minutes. 
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7.7.7.7. Results and Results and Results and Results and discussiondiscussiondiscussiondiscussion    
 

7.1.7.1.7.1.7.1. Flash drum with no insulationFlash drum with no insulationFlash drum with no insulationFlash drum with no insulation    

7.1.1.7.1.1.7.1.1.7.1.1. Synthesis of titania (TiO2)Synthesis of titania (TiO2)Synthesis of titania (TiO2)Synthesis of titania (TiO2)    

 

Table 1 shows the measured temperatures at different points and the flowrates 

of the liquid and the vapour streams after the flash, during the synthesis of titania. 

 

Set point 

of the 

heater (ºC) 

Temperature 

of the heater 

(ºC) 

Reaction 

temperature 

(ºC) 

Post-mixing 

temperature 

(ºC) 

After BPR 

temperature 

(ºC) 

Liquid 

flowrate 

(ml/min) 

Vapour 

flowrate 

(ml/min) 

320 321 300 233 98 23.5 2.36 

346 347 325 253 98 23.5 4.71 

355 356 348 283 98 18.5 7.1 

Table 1. Temperatures and flowrates during the synthesis of titania. 

 

Figure 16 shows the colour of the samples. It is possible to see that the higher 

the reaction temperature is, the stronger the colour of the samples is. Consequently, 

the higher the temperature is, the higher is the conversion. With the vapour samples, 

the colour is very clear, therefore the concentration must be really low. 

 

 

Figure 16. Samples of the liquid and the vapour collected during the synthesis of titania. 

 



36 

 

The hydrodynamic diameter was measured using DLS analysis. The results are 

shown in Table 2 and in Figure 17: 

 

Temperature (ºC) Average diameter (nm) 

Liquid 

300 194.6 

325 282.6 

350 324.9 

Vapour 

300 116.3 

325 185.7 

350 98.63 

Table 2. Hydrodynamic diameter of the samples collected during the synthesis of titania measured by 

DLS. 

 

 

Figure 17. Diameter of the titania nanoparticles at different temperatures. 

 

Normally, nanoparticles have a smaller diameter than 100 nm. As the results 

did not adjust to what it was expected, XRD (X-Ray Diffraction) was used to know 

about the crystallinity of the samples. 

In Figure 18, it is shown the plot of the XRD analysis. It was impossible to make 

the analysis on the sample at 325ºC, since it formed aggregates too quickly and it was 

not possible to get powder for the XRD analysis. 
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Figure 18. XRD of the titania liquid samples 

 

It can be seen that there are peaks when 2θ is 25º, 38º, 48º, 54º and 55º. This 

indicates that there is titania in its anatase phase [33].  

Maybe the large size of the particles could be due to a partial blockage in the 

rig that made the particles aggregate and increase their size. 

7.1.2.7.1.2.7.1.2.7.1.2. Synthesis of hematite (FeSynthesis of hematite (FeSynthesis of hematite (FeSynthesis of hematite (Fe2222OOOO3333))))    
 

Table 3 shows the measured temperatures at different points and the flowrates 

of the liquid and the vapour streams after the flash, during the synthesis of hematite. 

Li
n 

(C
ps

)

2-Theta - Scale

15 20 30 40 50 60

300 C

350 C

Set point of 

the heater 

(ºC) 

Temperature 

of the heater 

(ºC) 

Reaction 

temperature 

(ºC) 

Post-mixing 

temperature 

(ºC) 

After BPR 

temperature 

(ºC) 

Liquid 

flowrate 

(ml/min) 

Vapour 

flowrate 

(ml/min) 

215 228 200 150 70 23 - 

274 271 250 190 93 23 - 

320 323 300 240 98 21 2.88 

344 346 325 266 98 18.5 4 

354 360 352 293 98 19.5 5.6 

Table 3. Temperatures and flowrates during the synthesis of hematite. 
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The flowrate of vapour was practically negligible when the reaction 

temperature was 200 ºC and 250 ºC. 

Figure 19 shows the colour of the samples of the liquid. The samples have a 

darker red colour the higher the temperature of the reaction is, which means that the 

higher the temperature is, the higher the conversion is. With the vapour samples, 

shown in Figure 20, the colour is very clear, therefore the concentration must be really 

low. 

 

Figure 19. Samples of the liquid collected during the synthesis of hematite. 

 

 

Figure 20. Samples of the vapour collected during the synthesis of hematite 
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The hydrodynamic diameter was measured using DLS analyisis. The results are 

shown in Table 4 and in Figure 21: 

 

Temperature (ºC) Average diameter (nm) 

Liquid 

200 20.9 

250 36.8 

300 43.2 

325 67.1 

350 88.5 

Vapour 

300 73.4 

325 73.0 

350 78.7 

Table 4. Hydrodynamic diameter of the samples collected during the synthesis of hematite measured by 

DLS. 

 

 

Figure 21. Diameter of the hematite nanoparticles at different temperatures. 

 

It can be seen that the higher the temperature of reaction is, the larger the 

diameter of the particles is. Surprisingly, in the case of the vapour, the size is 

approximately constant.  
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Besides, the amount of solids in the vapour and in the liquid was measured. It 

was assumed that the conversion is high at those temperatures and the majority of the 

solids weighed by gravimetry were nanoparticles. This way we can do a rough 

estimation of the solids that are carried by the vapour, in other words, the percentage 

of product that we are losing in the vapour stream. 

 

Temperature of 

reaction (ºC) 

Concentration 

(g/ml) 

Flowrate 

(ml/min) 

Solids 

(g/min) 

% of the total 

of solids 

Liquid 
325 0.00133 23.5 0.03128 97.31 

350 0.00136 18.5 0.02519 95.74 

Vapour 
325 0.00018 4.71 0.00086 2.69 

350 0.00016 7.1 0.00112 4.25 

Table 5.Mass balance of the solids of the both liquid and vapour samples of hematite 

 

As it can be appreciated in Table 5, the higher the temperature is, the greater 

the dragging of the solids is, due to the fact that a larger quantity of vapour is 

generated and the velocity of the vapour is higher. 

 

7.1.3.7.1.3.7.1.3.7.1.3. Synthesis of ceria (CeOSynthesis of ceria (CeOSynthesis of ceria (CeOSynthesis of ceria (CeO2222))))    
 

Table 6 shows the measured temperatures at different points and the flowrates 

of the liquid and the vapour streams after the flash, during the synthesis of ceria: 

Set point of 

the heater 

(ºC) 

Temperature 

of the heater 

(ºC) 

Reaction 

temperature 

(ºC) 

Post-mixing 

temperature 

(ºC) 

After BPR 

temperature 

(ºC) 

Liquid 

flowrate 

(ml/min) 

Vapour 

flowrate 

(ml/min) 

320 319 300 240 98 21 3.5 

345 346 325 270 98 18.8 5 

354 355 350 292 98 18 5.5 

Table 6.  Temperatures and flowrates during the synthesis of ceria. 

 

Figure 22 shows the colour of the liquid samples.  The samples have a stronger 

colour the higher the temperature of the reaction is, which means that the higher the 

temperature is, the higher the conversion is. 
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Figure 22. Samples of the liquid collected during the synthesis of ceria 

 

The hydrodynamic particle size diameter was measured using DLS analysis. The 

results are shown in Table 7 and in Figure 23: 

 

Temperature (ºC) 
Average diameter 

(nm) 

Liquid 

300 138.0 

325 116.8 

350 117.0 

Vapour 

300 111.2 

325 108.3 

350 101.2 

Table 7.Hydrodynamic diameter of the samples collected during the synthesis of ceria measured by DLS. 
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Figure 23. Diameter of the ceria nanoparticles at different temperatures. 

 

Surprisingly, in this case it can be seen that the temperature barely influences 

the particle size. 

As it was made with the hematite, it was measured the amount of the solids at 

the reaction temperature of 325 ºC. 

 
Temperature of 

reaction (ºC) 

Concentration 

(g/ml) 

Flowrate 

(ml/min) 

Solids 

(g/min) 

% of the total 

of solids 

Liquid 325 0.00584 18.8 0.1099 97.26 

Vapour 325 0.00062 5 0.0031 2.74 

Table 8. Mass balance of the solids of the both liquid and vapour samples of ceria at 325ºC 

 

7.1.4.7.1.4.7.1.4.7.1.4. Removal of waterRemoval of waterRemoval of waterRemoval of water    

Table 9 shows the percentage of removed water, and the efficiency of the flash 

without insulation at different temperatures. The calculations has been made with the 

data from Table 1, Table 3 and Table 6. 
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Post mixing 

temperature (ºC) 

Water removed 

(%) 

Theoretical maximum 

removal (%) 
Efficiency (%) 

Titania 

(TiO2) 

233 9.13 26.18 34.86 

253 16.70 30.28 55.14 

283 27.73 36.70 75.57 

Hematite 

(Fe2O3) 

240 12.06 27.60 43.69 

266 17.78 33.01 53.85 

293 22.31 38.95 57.28 

Ceria 

(CeO2) 

240 14.29 27.60 51.76 

270 21.01 33.87 62.03 

292 23.40 38.72 60.44 

Table 9. % water removed and efficiency of the flash drum without insulation at different temperatures 

 

 

 

 

Figure 24. % of water removed at different temperatures using the flash without insulation 

 

Figure 25 shows the efficiency of the flash drum without any insulation. The 

efficiency was defined previously by the Equation 10. 
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Figure 25. Efficiency of the removal of water at different temperatures using the flash without insulation 

 

As it can be appreciated, the higher is the temperature, the higher is the 

efficiency. This is due to the fact that the higher the temperature is, the greater is the 

amount of vapour generated. Therefore the residence time along the pipes is lower 

and the heat loss is lower as well, which increases the efficiency. 

 

7.2.7.2.7.2.7.2.     Flash with insulation in the reactorFlash with insulation in the reactorFlash with insulation in the reactorFlash with insulation in the reactor    

7.2.1.7.2.1.7.2.1.7.2.1. Synthesis of cobalt oxideSynthesis of cobalt oxideSynthesis of cobalt oxideSynthesis of cobalt oxide    
 

Table 10 shows the measured temperatures at different points and the 

flowrates of the liquid and the vapour streams after the flash, during the synthesis of 

cobalt oxide. 

Set point of 

the heater 

(ºC) 

Temperature 

of the heater 

(ºC) 

Reaction 

temperature 

(ºC) 

Post-mixing 

temperature 

(ºC) 

After BPR 

temperature 

(ºC) 

Liquid 

flowrate 

(ml/min) 

Vapour 

flowrate 

(ml/min) 

410 405 346 314 99 17.5 7.5 

420 413 347 313 98 19 9 

Table 10. Temperatures and flowrates during the synthesis of cobalt oxide. 
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Figure 26. Samples of the liquid and vapour collected during the synthesis of cobalt oxide 

 

As it can be seen in Figure 26, the colour of the vapour sample is much clearer 

than the liquid sample, which means that the concentration of the vapour must be 

really low compared to the liquid. 

The hydrodynamic particle size diameter was measured by DLS analysis. The 

results are shown in Table 11: 

 

 
Temperature (ºC) Average diameter (nm) 

Liquid 350 76.7 

Vapour 350 167.1 

Table 11. Hydrodynamic diameter of the samples collected during the synthesis of cobalt oxide measured 

by DLS. 

 

As it can be seen, the particles size in the vapour is much higher than in the 

liquid. This could mean that during the dragging of the droplets, the particles keep 

aggregating inside the droplets. 
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In Table 12, it is shown the percentage of water removed (extracted from Table 

10) and the calculated efficiency. It can be appreciated that the efficiency is higher 

than in the flash without insulation, since there is a smaller heat loss. 

 

Post mixing 

temperature (ºC) 

Water removed 

(%) 

Theoretical maximum 

removal (%) 
Efficiency (%) 

314 30.00 43.92 68.30 

313 33.96 43.68 77.75 

Table 12. % of water removed and efficiency of the flash drum with insulation in the reactor during the 

synthesis of cobalt oxide 

 

7.3.7.3.7.3.7.3.     Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band Flash with insulation in the reactor and a band 

heater at the heater at the heater at the heater at the top of the flash drumtop of the flash drumtop of the flash drumtop of the flash drum    

7.3.1.7.3.1.7.3.1.7.3.1. Synthesis of zirconia (ZrOSynthesis of zirconia (ZrOSynthesis of zirconia (ZrOSynthesis of zirconia (ZrO2222))))    
 

Table 13 shows the measured temperatures at different points and the 

flowrates of the liquid and the vapour streams after the flash, during the synthesis of 

zirconia. 

 

Set point of 

the heater 

(ºC) 

Temperature 

of the heater 

(ºC) 

Reaction 

temperature 

(ºC) 

Post-mixing 

temperature 

(ºC) 

After BPR 

temperature 

(ºC) 

Liquid 

flowrate 

(ml/min) 

Vapour 

flowrate 

(ml/min) 

411 362 362 336 100 15.5 13 

414 362 362 337 100 16 13 

411 362 362 335 100 15.5 13.5 

Table 13. Temperatures and flowrates during the synthesis of zirconia. 

 

In Figure 27, it is possible to appreciate that the liquid sample is cloudier than 

the vapour sample. The vapour is quite clear, therefore the concentration of 

nanoparticles must be really low. 
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Figure 27. Samples of the liquid and vapour collected during the synthesis of zirconia 

 

The hydrodynamic particle size diameter was measured using DLS analysis. The 

results are shown in Table 14: 

 

 
Temperature (ºC) Average diameter (nm) 

Liquid 360 19.2 

Vapour 360 120.0 

Table 14. Hydrodynamic diameter of the samples collected during the synthesis of cobalt oxide measured 

by DLS. 

 

As happened with the cobalt oxide there is a great difference between the size 

of the particles in the liquid and in the vapour. 

In Table 15, it is shown the percentage of water removed (extracted from Table 

13) and the calculated efficiency: 
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Post mixing 

temperature (ºC) 

Water removed 

(%) 

Theoretical maximum 

removal (%) 
Efficiency (%) 

336 45.61 49.73 91.73 

337 44.83 50.01 89.63 

335 46.55 49.44 94.15 

Table 15. % of water removed and efficiency of the flash drum with insulation in the reactor during the 

synthesis of zirconia 

 

It can be appreciated that the efficiency is even higher than in the other 

designs, as apart from the insulation in the reactor, the band heater maintains the 

temperature in the flash drum. 
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8.8.8.8. ConclusionsConclusionsConclusionsConclusions    
 

It has been demonstrated that it is possible to concentrate a stream with 

nanoparticles continuously by using a flash drum. The amount of water removed was 

the 60-75% of the theoretical maximum removal when we used a flash drum without 

insulation at the highest temperatures. When we provide insulation to the reactor, the 

efficiency of the flash drum increased up to 68-77%. And when we provided a band 

heater to the flash drum as well, the efficiency of the flash drum increased again up to 

89-95%. 

Regarding the dragging of solids, it has been evaluated during the synthesis of 

hematite and ceria. At 350ºC, a 4.25% of the solids was carried by the vapour. This is 

not a big percentage, but maybe, if water reached supercritical phase, the enthalpy of 

the stream would be higher, and a larger amount of vapour would be produced. 

Therefore, the velocity of the vapour would be higher and could carry a larger amount 

of nanoparticles. In those conditions, the amount of lost product could be too high and 

the flash would not be feasible. 

In addition, we supposed a high conversion. Actually, a small part of the solids 

that we weighed is precursor that did not reacted. If we wanted some more accurate 

results, other analysis should be considered, such as ICP-MS (Inductively Coupled 

Plasma Mass Spectrometry). In this way, we could know the exact conversion. 

The size of the particles was larger than it was expected. Specifically, it was 

larger than 100 nm in the titania and ceria samples. This could be due to a partial 

blockage in the rig. Surprisingly, the size of the particles in the vapour were larger than 

the particles in the liquid, which means that the agglomeration continues during the 

dragging of the particles. However, the size of the particles in the vapour is not 

interesting, as it is a product that we are losing and we are not going to recover.  
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9.9.9.9. IIIImprovementsmprovementsmprovementsmprovements    of the rigof the rigof the rigof the rig    
 

9.1.9.1.9.1.9.1.     Dragging of the solidsDragging of the solidsDragging of the solidsDragging of the solids    

To reduce the dragging of the solids, the diameter of the flash should be larger. 

However, this measure would result in a higher price of the flash drum. This is not a 

problem at bench scale, but at industrial scale, the cost of a flash drum is proportional 

to the diameter. This would require an economic evaluation. 

Besides, it would be possible to install a demister at the top of the drum to 

enhance the coalescence of the droplets and let these fall down, in other words, to 

enhance the removal of liquid droplets carried by the vapour. This device reduces the 

diameter of the particles carried and therefore, increases the terminal falling velocity 

of the vapour. 

 

9.2.9.2.9.2.9.2. Removal of waterRemoval of waterRemoval of waterRemoval of water    

First of all, we obtained better results when we provided insulation to the 

reactor. We obtained even better separation when we added a band heater at the top 

of the flash drum. However, using a heater means using an extra source of heat. 

A better solution would be to provide insulation to all the lines from the reactor 

to the flash drum, and around the vapour line from the flash drum to the cooler of the 

vapour. This way the heat loss would be reduced and we may get efficiencies near 

100%. 

In addition, a thermocouple should be installed just before the BPR to reduce 

the error in the calculations of the efficiency, as we assumed that the post-mixing 

temperature was the same as the temperature in the BPR. 
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9.3.9.3.9.3.9.3. Particle sizeParticle sizeParticle sizeParticle size    

We have obtained large particle sizes and some sizes over 100 nm. We must 

take into account that DLS measures the hydrodynamic diameter of the particles 

instead of the real diameter. We could get more accurate measurement using other 

technologies such as TEM (Transmission Electron Microscopy). 

 

9.4.9.4.9.4.9.4. Other pOther pOther pOther problems with the rigroblems with the rigroblems with the rigroblems with the rig    

Another problem was the difficulty of controlling a constant level in the flash 

drum, due to disturbances in the system. The liquid level was controlled manually 

adjusting the needle valve at the outlet of the liquid and it was not possible to know 

exactly the level of liquid since the flash drum is made of stainless steel. 

The flash drum could be made of a transparent material. It would only have to 

resist atmospheric pressure and a temperature of 100ºC. Thus, it would be possible to 

notice what happens inside the flash drum and this allows to have a better control of 

the liquid level. 

The maximum allowed temperature in the BPR is 327ºC, hence due to this 

limitation of the BPR, it was not possible to increase the temperature up to 373ºC in 

the reactor, to the point that we can get supercritical water. If we wanted to reach 

supercritical state, we would have to acquire some adequate equipment that can resist 

higher temperatures. 
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