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Resumen

En esta tesis estudiaremos algunos modelos empleados en la valoración de derivados finan-
cieros. En particular, usaremos dos clases de técnicas de valoración, Réplica e Indifference
Pricing (valoración por equivalencia entre resultados esperados). Abordaremos el problema
de valoración en tiempo real, el de valoración de opciones con tipos de interés variables y los
de inversión óptima y valoración de opciones cuando existen costes de transacción. El diseño
de técnicas numéricas apropiadas es imprescindible para la obtención de resultados.

Un derivado financiero es un contrato entre dos partes cuyo precio depende, o es obtenido,
de un activo subyacente. Los subyacentes más habituales incluyen acciones, bonos, materias
primas, moneda, tipos de interés e índices de mercados. Aunque la negociación moderna de
derivados en mercados oficiales comienza en los años setenta, en el Chicago Board of Options
Exchange, los derivados no son un producto de reciente creación. Sus orígenes se remontan a
varios siglos antes como, por ejemplo, los futuros de arroz en el Dojima Rice Exchange.

Un ejemplo de derivado es la Opción Europea, que da al comprador el derecho de comprar
una acción (u otro subyacente), en una fecha futura fija y a un precio preestablecido. Existen
muchos otros tipos de derivados (Opción Americana, Bermuda, Barrera...), clasificados según
el tipo de acuerdo que se establezca entre el comprador y el vendedor. En [38] se puede
encontrar un amplio recopilatorio de muchos de ellos.

La valoración de derivados no es una tarea sencilla. El precio futuro de la acción suele
ser impredecible, por eso modelizar la acción como un proceso estocástico es un buen punto
de partida. En [3], [28], [41] y [52] se puede encontrar un desarrollo detallado del cálculo
estocástico y su aplicación a las matemáticas financieras.

Una vez que hemos modelizado la dinámica de la acción, el siguiente paso es obtener un
precio “justo” del derivado. Una oportudinad de arbitraje se define en [38] como una estrategia
de inversión que, sin requerir aportaciones de capital, tiene una probabilidad positiva de dar
beneficios sin riesgo alguno de pérdidas. El precio de una opción se dice “justo” cuando no
existen oportunidades de arbitraje. Esta propiedad lleva a la estrategia de valoración por
réplica.

En sus artículos iniciales, Fischer Black y Myron Scholes [4] y Robert Merton [49] dieron
los pasos para, siguiendo una estrategia dinámica, constuir una (única) cartera, formada por
la acción y el bono, que replica en todo momento el valor de la Opción Europea negociada
sobre la acción. Como no pueden existir oportunidades de arbritraje, el precio del derivado y
el de la cartera de réplica deben coincidir.
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6 Resumen

Aparte de un modo de calcular el precio de la opción, Black-Scholes obtuvieron una fór-
mula explícita que apenas tiene coste computacional. Esto fue algo que contribuyó a que se
convertiera en un método muy popular, y probablemente el más utilizado, para valorar Opcio-
nes Europeas o estimar los parámetros de mercado, como por ejemplo, la volatilidad implícita
de la acción. Esta fórmula suele estar integrada en la mayoría de las calculadoras financieras.

Desafortunadamente, el análisis de datos de las series históricas de precios de la acción no
verifica todas las hipótesis del modelo de Black-Scholes, por lo que hicieron falta modelos más
complejos que replicaran las propiedades observadas empíricamente. Estos nuevos modelos
ajustan mucho mejor cuando se emplean para calibrar los parámetros del mercado y además
cometen menores errores cuando se utilizan para predecir los precios de las opciones tras, por
ejemplo, un cambio en la cotización de la acción. Como contrapartida, y por regla general, no
disponemos de una fórmula explícita.

De hecho, incluso asumiendo que se verificaran las hipótesis del modelo de Black-Scholes,
tampoco suele existir fórmula explícita para derivados más complejos que la Opción Europea.

Cuando se carece de una fórmula explícita, el precio de un derivado debe obtenerse me-
diante métodos numéricos. Como cabría esperar, estos métodos tienden a ser bastante costosos
computacionalmente (varios segundos para calcular el precio de una opción). Aunque existen
técnicas para reducir el coste (técnicas de reducción de varianza para métodos de Monte-
Carlo, paralelización en varios ordenadores...), generalmente se requiere el acceso a bastante
capacidad computacional para ser competitivos si se quiere aplicar modelos complejos a la
negociación en tiempo real. Es este coste computacional la principal desventaja de los modelos
complejos y la razón por la que el modelo de Black-Scholes sigue siendo tan popular, al menos
para conseguir precios aproximados, especialmente cuando el acceso a grandes capacidades
computacionales no es posible.

Los precios de las acciones (y por tanto el precio de las opciones) cambia casi continua-
mente. Solamente en el mercado español, se negocian simultaneamente Opciones Europeas
para 35 acciones distintas con distintos precios de ejercicio y vencimientos. Podemos darnos
cuenta del problema de valoración en tiempo real cuando hay multitud de mercados abier-
tos simultáneamente a lo largo del mundo. La minimización de coste computacional es una
propiedad deseada (y necesaria) para los inversores.

Uno de los objetivos de esta tesis es diseñar un método numérico, suficientemente ge-
neral para ser aplicado a cualquier modelo complejo o tipo de derivado, que sea capaz de
valorar opciones o calibrar los parámetros del modelo de una o varias acciones diferentes si-
multáneamente. De hecho, también buscamos que el método pueda ser implementado en una
calculadora o un ordenador personal. Esto es abordado en el Capítulo 1.

El objetivo principal de este trabajo no es estudiar la idoneidad de diferentes modelos
en su ajuste a la dinámica de la acción, pero creemos que merece la pena estudiar el otro
componente de la cartera de réplica en la Opción Europea: el bono. Existen muchos modelos
que incorporan tipos de interés estocástico a la dinámica del bono pero, en particular si los
vencimientos son pequeños, se suele asumir que el tipo de interés del bono es constante.

Si tratamos el tipo de interés del bono como otro parámetro que debe ser estimado de
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los precios de las opciones, se puede observar que los valores obtenidos están estrechamente
relacionados con los valores negociados en el mercado. No obstante, especialmente en periodos
de alta volatilidad, aparecen serias discrepancias.

Parte de este trabajo (Capítulo 2) incluye un estudio sobre cómo los tipos de interés
variables, deterministas o estocásticos, se pueden incorporar a los modelos. Veremos cómo un
modelo discreto se puede extender para admitir tipos variables deterministas y las técnicas
necesarias para conseguir un precio justo de la opción. También estudiaremos un modelo
continuo con tipos de interés estocásticos. Partiendo del modelo de volatilidad estocástica
de Heston [34], y siguiendo la propuesta incluída en el mismo artículo, incorporaremos un
bono que, dependiendo del valor de los parámetros, puede ser determinista o admitir una
componente estocástica. Obtendremos una fórmula explícita para el bono y una fórmula semi-
explícita para la opción. También realizaremos una estimación de parámetros con datos reales
de mercado.

Para finalizar la tesis, Capítulos 3 y 4, nos centraremos en modelos de valoración que, en
vez de buscar un precio justo, siguen un enfoque ligeramente distinto. Una de las hipótesis
realizadas por los economistas sobre el comportamiento social es el principio: “Cuanto más,
mejor”. Para modelizar esto, primero tenemos que definir una función de Utilidad adecuada
(dos veces derivable, estrictamente creciente (mejor más que menos) y estrictamente cóncava
(los inversores son aversos al riesgo). Existen multitud de funciones que verifican estas propie-
dades, y cuál de ellas se adecúa mejor al comportamiento social es algo que preferimos dejar
a los economistas o sociólogos. Eso sí, señalamos que cada una de las funciones de Utilidad
tiene sus ventajas e inconvenientes y además suelen requerir distinto tratamiento numérico.

Cuando queremos resolver un problema de Inversión Óptima, se elige una función de
Utilidad e intentamos encontrar una estrategia de inversión admisible que maximize la utilidad
esperada de la riqueza al vencimiento. La técnica de Indifference Pricing (valoración por
equivalencia entre resultados esperados) surge de aquí.

El desarrollo teórico completo y distintas aplicaciones de la técnica de Indifference Pricing
se puede encontrar en [12]. Para valorar opciones, el objetivo es, en lineas generales, construir
dos escenarios. En el primero no se negocia ningún derivado y simplemente resolvemos un
problema de Inversión Óptima. En el segundo, negociamos un derivado, recibiendo/pagando
una cierta cantidad de dinero, y resolvemos de nuevo el problema de Inversión Óptima bajo
estas nuevas condiciones. El precio del derivado será aquel que nos deje indiferentes entre
elegir cualquiera de los dos escenarios porque los resultados esperados sean iguales.

Esta técnica de valoración es especialmente útil cuando el subyacente del derivado no es
directamente observable o cuando la estrategia de réplica no es aplicable, por ejemplo, si
existen costes de transacción.

Los métodos espectrales (ver [10]) son una clase de discretizaciones espaciales para ecua-
ciones en derivadas parciales que suelen ofrecer una convergencia muy rápida permitiéndonos,
con pocos nodos, representar funciones con bastante precisión. Otro de los objetivos de esta
tesis es, bajo un escenario con costes proporcionales de transacción, aplicar métodos espectra-
les a dos de las funciones de Utilidad más habituales: Potencial y Exponencial. Como hemos
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comentado antes, cada función de Utilidad tiene distintos pros y contras. La primera de ellas
no permite trabajar con riquezas negativas y la segunda, aunque sí lo hace, presenta problemas
en los modelos log-normales, como se comenta en [12].

Propondremos dos métodos espectrales especialmente adaptados a los problemas numé-
ricos de cada función de Utilidad. Trabajaremos en el problema de Inversión Óptima bajo
Utilidad Potencial y con el problema de valoración de opciones bajo Utilidad Exponencial.
En ambos casos, asumiremos que existen costes proporcionales de transacción.

El esquema de la tesis es el siguiente:

En el Capítulo 1 propondremos un método de Base reducida de Funciones para el pro-
blema de valoración en tiempo real. Bajo la idea de pagar coste computacional sólo una vez,
en un primer paso construiremos un polinomio interpolador en varias variables que admi-
te valoración tensorial (calcula precios de opciones para distintos valores de los parámetros
simultáneamente) y es computacionalmente muy eficiente. Los polinomios interpoladores en
varias variables sufren de la conocida “Maldición de la dimensionalidad”, que dispara el costo
de almacenaje del polinomio. En una segunda etapa, desarrollaremos un método de reducción
de la dimensión de las bases empleadas que se aplicará al polinomio interpolador calculado
previamente. Este enfoque reduce el impacto de la maldición, dando lugar a un polinomio cu-
yo coste de almacenamiento es bastante menor y sigue permitiendo una valoración tensorial
muy eficiente. Los algoritmos son lo suficientemente generales para aplicarse a modelos de n
variables o distintos tipos de opciones. También estudiaremos los resultados de esta técnica
cuando la apliquemos a un modelo concreto (GARCH) con datos reales de mercado.

El Capítulo 2 está dedicado a la extensión de modelos incorporando tipos de interés varia-
bles. Presentaremos un modelo discreto GARCH con tipos de interés variables deterministas.
Así mismo, propondremos una extensión del modelo de volatilidad estocástica de Heston con
un bono que es capaz de incorporar una componente estocástica. Para el modelo discreto se
probará la existencia, bajo unas ciertas hipótesis, de una medida libre de riesgo. Para el mo-
delo continuo, se obtendrá una fórmula semiexplícita y se realizarán análisis con datos reales
de mercado.

En el Capítulo 3, en un escenario con costes proporcionales de transacción, se desarrolla
un método de colocación de Chebyshev con malla adaptativa para resolver el problema de
Inversión Óptima bajo Utilidad Potencial. En este problema se pueden calcular varias fórmulas
explícitas para ciertos casos particulares que, por tanto, se emplearán en el análisis del error
del método numérico.

El Capítulo 4 está dedicado a la valoración de opciones con costes de transacción bajo
utilidad Exponencial. Después de lidiar con los problemas numéricos asociados a la función
de Utilidad Exponencial, llegaremos a una nueva EDP no lineal. Se propondrá un método de
Fourier pseudoespectral para resolver el problema numéricamente y se probará la estabilidad
y convergencia teórica del método. También se llevarán a cabo experimentos para estudiar el
efecto en el precio de la opción al incorporar costes de transacción.



Preface

In this thesis, we study some models used in pricing financial derivatives. In particular, we
will use two kinds of valuation techniques, Replication and Indifference Pricing. We will deal
with the real-time valuation problem, option pricing with variable interest rates and optimal
investment and option pricing when transaction costs are present. The analysis and design of
appropriate numerical techniques will be necessary in this study.

A financial derivative is a contract between two parts, whose price is dependent upon, or
derived from, one or more underlying assets. The most common underlying assets include
stocks, bonds, commodities, currencies, interest rates and market indexes. Though modern
trading of derivatives at organized markets starts at the Chicago Board of Options Exchange,
back in the early Seventies, they are not a product of recent creation. Their origins trace
back several centuries as, for example, rice futures on the Dojima Rice Exchange.

An example of a derivative is the European Call Option, which gives the buyer the right
to buy a stock (or other asset), at a fixed future date and at a fixed price. There exist several
other types of options (American, Bermuda, Barrier, ...), depending on the kind of agreement
between the buyer and the seller and in [38], a full review of many of them is presented.

To value derivatives is not an easy task. Since the future price of the underlying stock is
not usually predictable, to model the stock price as a stochastic process is a good starting
point. In [3], [28], [41], and [52] a full development of stochastic calculus and its application
to financial mathematics can be found.

Once we have modelled the dynamic of the stock, the next step would be to obtain a “fair”
price for the derivative. An arbitrage opportunity is defined in [38] as a trading strategy that,
requiring no cash input, has some probability of making profits without any risk of a loss. An
option price is said to be fair when arbitrage opportunities are not possible. This property
leads to the Replication valuation strategy.

In their seminal papers, Fischer Black and Myron Scholes [4] and Robert Merton [49],
gave the steps for, following a dynamic strategy, build a (unique) replicating portfolio, formed
with a stock and a bond, which mimics the European Option of the stock. Since no arbitrage
possibilities must exist, the fair price of the derivative has to be the one of the portfolio.

Besides a way of pricing options, an explicit and no computational-time consuming formula
for the European Option was also obtained in the Black-Scholes model. This was something
that contributed to make it the most popular and widespread used method to valuate Eu-

9



10 Preface

ropean Options or estimate market parameters, like the implied volatility of the stock. This
formula is usually implemented in most financial calculators.

Unfortunately, data analysis of stock’s historical prices, does not support all the hypothe-
sis of the Black-Scholes’ model, and more complex models were derived to replicate observed
stock’s properties. These new models fit much better when used to estimate market parame-
ters and commit smaller errors when used to predict traded option prices after, for example,
a change in the stock’s price. As a counterpart, an explicit formula is not usually available.

In general, other kinds of derivatives, even if we suppose that the underling asset fulfills
Black-Scholes conditions, also lack of an explicit formula.

When we do not have an explicit formula, the price of a derivative has to be obtained by
numerical methods. As it could be expected, these methods tend to be quite time-consuming
(several seconds to obtain just one option price). Although there exist techniques to reduce
the time cost (variance reduction techniques for Monte-Carlo based methods, parallelization
in several computers ...) they usually require quite a big computational power in order to
be competitive when applied to on-line trading. This time consuming issue is the principal
drawback of complex models and one of the reasons why Black-Scholes is still so popular, at
least for obtaining an indicative price, specially when access to big computational resources
is not possible.

Stock prices (therefore option prices) change almost continuously. Just in the Spanish
market, European Options for 35 different stocks, with several different strikes and maturities,
are simultaneously traded. We can become aware of the real-time valuation problem when
there are many markets worldwide opened at the same time. Minimization of computational
cost is a very much desired (and needed) property for traders.

One of the objectives of this work is to design a numerical method, general enough to be
applied with any complex models for stock’s dynamics or option type, which would be able to
price simultaneously options from several stocks and/or model parameters. Beyond, we want
that the method could be used in just one single computer or calculator.

Though it is not the main scope of this work to make a performance analysis of several
models, we believe that it is worthy to study a bit the other component of the replication
portfolio in the European Option: the bond. Replication models that incorporate stochastic
interest rates for the bond have been widely developed and used, but many times, when short
maturities are involved, it is assumed that the interest rate of the bond remains constant.

If we treat the interest rate as another parameter that must be estimated from option
prices, we can observe that the values obtained are closely related with the ones traded at the
market, but sometimes, specially in high-volatility periods, serious discrepancies can appear.

Part of this work includes a review of how variable interest rates, deterministic and stochas-
tic, can be incorporated to models. We will see how a discrete model can be extended to admit
variable deterministic interest rates and the techniques needed to obtain a fair price.

A more complex continuous model with stochastic interest rates will also be derived.
Using the proposed extension of Heston’s Stochastic Volatility model [34], we will incorporate
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a bond which, depending on the parameter values, can be deterministic or admit a stochastic
component. An explicit formula for the bond and a semi-explicit formula for the option price
will be derived and parameter estimation will be carried out with market traded option prices.

Finally, we will deal with pricing models that, instead of searching a fair price, have a
slightly different point of view. One of the basic hypothesis of social behaviour made by
economists is the principle: “The more we have, the happier we are”. In order to model
this, first we have to define a suitable Utility function (twice differentiable, strictly increasing
(more is better than less) and strictly concave (investors are risk averse)). There are many
functions that verify these conditions, and which one would be the best is a topic that we
prefer to leave for economists or sociologists. Though, it should be pointed out that each of
them will usually require a different numerical treatment.

When we want to solve the Optimal Investment problem, we pick an Utility function and
try to find the admissible trading strategy that maximizes the expected utility of the terminal
wealth. The Indifference Pricing technique is developed from here.

A very complete theoretical development and several applications of the Indifference Pric-
ing techniques can be found in [12]. The basics of this technique in option pricing, broadly
speaking, are the following: Two scenarios are built. In the first one, no derivative contract
is signed and we just solve the Optimal Investment problem. In the second one, we sign a
derivative, obtaining/paying a certain amount of money and then we solve again the Optimal
Investment problem under this new condition. The derivative price will be the one which
leaves us indifferent between both scenarios.

This kind of valuation technique is specially useful when the underlying asset of the deriva-
tive is not directly observable or when the replication strategy is not feasible, like in the case
when transactions costs are present.

Spectral methods, see [10], are a class of spatial discretizations for differential equations
which usually offer a very rapid convergence, enabling us to represent functions very precisely
with relatively few nodes.

Other of the objectives of this thesis is, under a scenario where proportional transaction
costs are present, to apply spectral methods to two of the probably most used Utility functions:
Potential and Exponential. As it has been mentioned before, each Utility function has different
numerical problems or shortcomings. The first one does not allow negative wealth and the
second, though usually offers more tractable equations, gives problems in log-normal models
as pointed in [12].

We will propose two spectral methods specifically adapted to the numerical problems of
each Utility function. We will deal with the Optimal Investment problem under Potential
Utility and with the Option Pricing problem under Exponential Utility. In both cases, it is
assumed that proportional transaction costs exist.

The outline of the thesis is as follows:
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In Chapter 1 we will propose a Reduced Bases functions method for the real-time val-
uation problem. Under the idea of paying computational cost just once, in a first step we
will construct an interpolant polynomial in several variables that admits tensorial valuation
(computes option prices for several parameter values simultaneously) and it is computation-
ally very efficient. Interpolant polynomials of models with several parameters suffer of the so
called “Curse of dimensionality”, which blows their storage cost. In a second step, a Reduced
Bases function approach, designed and applied to the previous polynomial is presented. This
approach will drastically reduce the impact of the mentioned curse, obtaining a low-storage
and fast multiple-evaluation polynomial. The algorithms are described so that they can be
applied to n-variable models and option types. Analysis of performance with a particular
model (GARCH) and real market prices will also be presented.

Chapter 2 is devoted to model extension incorporating variable interest rates. We will
present a discrete GARCH model with deterministic variable interest rates and an extension
of Heston’s SV model with a bond that is able to incorporate a stochastic component. The
existence, under certain hypothesis, of a risk free measure for the discrete model is proved
and the stock’s dynamics is computed. For the continuous model, a semi-explicit formula is
obtained and analysis with market data are carried out.

In Chapter 3, in a scenario with proportional transaction costs, a mesh-adaptative Cheby-
shev collocation method is developed to numerically solve the Optimal Investment problem
under Potential Utility. Explicit analytical formulas can be obtained for certain interesting
cases. Consequently, they are employed in the analysis of the numerical error of the method.

Chapter 4 is dedicated to Option Pricing with transaction costs under Exponential Utility.
After dealing with the numerical problems associated to the Exponential Utility function, a
new non-linear PDE is obtained and a Fourier pseudospectral method is proposed to numer-
ically solve it. Theoretical stability and convergence of the method is proved. We also carry
out numerical experiments to test the effects in the option price of incorporating transaction
costs.



Chapter 1

Reduced Bases Function Approach to
Option Valuation

1.1 Introduction to Option Valuation

An European Call Option is a financial instrument that gives the buyer the right, but not
the obligation, to buy a stock or asset, at a fixed future date (maturity), and at a fixed price
(strike or exercise price). The seller will have the obligation, if the buyer exercises his/her
right, to sell the stock at the exercise price.

The buyer of the option will only exercise his/her right only if, at maturity (tM), the
market price of the asset (S̄(tM)) is higher than the strike (K) (this is referred as the option
is “In the Money”). If the strike is higher than the market price (“Out of the Money”), the
buyer will not exercise his/her right, since it would be cheaper to buy the asset directly in
the market.

In the famous papers of Fischer Black and Myron Scholes [4] and Robert Merton [49], a fair
price for the European Option was obtained. Assuming that the behaviour of the dynamics
of the stock in the physical space P is given by:

dS̄(t) = µS̄(t)dt+ σS̄(t)dz̄(t), (1.1)

where z̄(t) denotes the standard Brownian motion, and that a bond B exists,

dB(t) = rB(t)dt, (1.2)

a replicating portfolio which mimics the option can be constructed buying and selling contin-
uously both the stock and bond.

Since no arbitrage opportunities can exist, at any moment prior to maturity, the value
of the option must coincide with the value of the portfolio, hence the valuation problem is
solved.

13
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Mathematically, this strategy is analogous to obtain the existence and uniqueness of an
equivalent Risk-free measure Q, for which the dynamics of the stock is given by:

dS̄(t) = rS̄(t)dt+ σS̄(t)dz̄Q(t), (1.3)

where z̄Q(t) is the standard Brownian motion with respect measure Q and where the option
price is obtained as the discounted value of the expected future value of the contract at
maturity. Formally,

C(S) = e−r(tM−t)EQ
[
max{S̄(tM)−K, 0}

∣∣ S̄(t) = S
]

(1.4)

where EQ denotes the conditional expectation at time t.

Besides a way of pricing options, an explicit and no computational-time consuming formula
for the previous expression was obtained in the Black-Scholes model. The formula and its
proof can be found, for example, in [4] or [38].

Data analysis of stock’s historical prices show that not all the hypothesis of Black-Scholes’
model hold. For example, volatility (σ) is assumed constant when, in fact, market data do
not support this assertion. Even if we estimate today’s volatility from traded options prices,
different values for different maturities are obtained. A phenomena known as the “volatility
smile”.

More complex models, built to match the stock’s observed dynamics and new fair prices
for them ought to be obtained. These new models achieve better results both in pricing
options and parameter estimation, but are much more time-consuming because they usually
lack of an explicit formula. Furthermore, even if easy dynamics models are employed to price
complex contracts, like the American Option (the right can be exercised any time prior to
maturity), we also lack of an explicit formula.

Though it will be explained later, we point out that one way of doing estimation is through
a least-square search of the error between theoretical and market traded option prices. Thus,
obtaining option prices and the derivatives of the pricing function with respect to the variables
that correspond to the model parameters are the principal problems we are facing in the real-
time option valuation or model calibration.

The objective of this Chapter is, fixed a complex model for the stock’s dynamics, to
develop a fast numerical method able to price simultaneously options from several stocks
and/or several model parameters. Furthermore, we want that the method can be used in just
one single computer or calculator. Thus, there are three mutually related problems that must
be handled: velocity, precision and storage cost.

Our first priority is to solve the velocity problem. In Section 1.3, a fast tensorial Chebyshev
polynomial interpolation is developed. As expected with polynomial interpolation, the preci-
sion problem can be solved increasing the number of interpolation points. This leaves us with
the third and last problem: storage-cost, commonly referred as “The Curse of Dimensionality”.
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This curse is drastically reduced in Section 1.4, where, focusing on retaining the solution
of the velocity problem, a Reduced Bases Approximation method is constructed upon the
polynomial obtained in Section 1.3. The result will be a low storage cost polynomial which is
able to price options (or calibrate model parameters) very fast for several stocks at the same
time.

The method is general enough to apply it with different models for stock dynamics or
option types (most of other option types lack of an explicit formula either). In particular,
we will test it for the NGARCH(1,1) model, which has 8 parameters, and use it to price
S&P500 European Options. A brief introduction to GARCH models is done in Section 1.2
and numerical results with real market data are presented in Section 1.5.

1.2 GARCH Models.
As it has been mentioned before, market data do not satisfy, among others, the hypothesis
of constant volatility in the Black-Scholes model. Furthermore, non-constant volatility is not
the only empirical property observed. Others are:

(i) Thick tales: asset returns tend to be leptokurtic, i.e., the kurtosis value is large.

(ii) Volatility clustering: large changes tend to be followed by large changes and small
changes tend to be followed by small changes.

(iii) Leverage effects: there is a tendency for changes in stock prices to be negatively corre-
lated with changes in stock volatility.

(iv) Non-trading periods: information accumulates while markets are closed.

(v) Forecastable events: for example, volatility tends to be higher around earnings report
dates.

ARCH models (AutoRegressive Conditional Heterodastic) introduced by Engle in [29] are
a kind of stochastic processes in which recent past gives information about future variance.
Several ARCH models have been proposed along the years, trying to capture some of the
market properties.

In [7], a complete review of several ARCH models is presented. In that paper, the authors
list a number of conditions that guarantee that the models are well defined. Also, the authors
study the market properties that each model is able to capture and reference articles where
these desirable properties are contrasted with empirical results.

Let {ε̄t(θ)}t=0,1,... denote a discrete time stochastic process with conditional mean and
variance functions parametrized by the finite dimensional vector θ ∈ Θ ⊆ <m. θ0 will denote
the parameters value, a priori unknown, that has to be estimated from the available market
data.
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Let Et−1(. ) denote the mathematical expectation, conditional on the past, of the process,
along with any other information available at time t − 1. We say that the process {ε̄t(θ0)}
follows an ARCH model if the conditional mean is zero

Et−1(ε̄t(θ0)) = 0, t = 1, 2, ..., (1.5)

and the conditional variance,

σ2
t (θ0) ≡ V art−1(ε̄t(θ0)) = Et−1(ε̄2t (θ0)), t = 1, 2, ..., (1.6)

depends non-trivially on the σ-field generated by past observations {ε̄t−1(θ0), ε̄t−2(θ0), ...}.

Engle’s first model was ARCH(q):

σ2
t = ω +

q∑
i=1

αiε̄
2
t−i, (1.7)

where ω and {αi}qi=1 are the model parameters.

A more general type of models is the class GARCH(p, q) (Generalized ARCH), developed
by Bollerslev in [6]. They are defined by:

σ2
t = ω +

q∑
i=1

αiε̄
2
t−i +

p∑
j=1

βjσ
2
t−j. (1.8)

ARCH models must satisfy certain conditions in order to be well defined. For example,
for model GARCH(p, q):

1. ω, αi, βi ≥ 0 implies σ2
t ≥ 0.

2.
∑
αi +

∑
βj < 1 implies Et−1(σ2

t ) <∞.

GARCH models are suitable to capture thick tailed returns and volatility clustering, but
are not directly suited to capture leverage effects, since the conditional variance depends just
on the size of the lagged residuals but not on their sign.

Another model used in the literature is the Non-lineal ARCH, derived by Higgins and
Vera in [36],

σγt = ω +

q∑
i=1

αi |ε̄t−i|γ +

p∑
j=1

βjσ
γ
t−j, (1.9)

which can be slightly modified

σγt = ω +

q∑
i=1

αi |ε̄t−i − κ|γ +

p∑
j=1

βjσ
γ
t−j, (1.10)
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allowing now to capture leverage effect, since σγt depends both on the size and the sign of the
lagged residuals.

It should be remarked now that all these models are broadly used in option valuation.
[9], [26], [33], [54] and [59] are just a few examples where option prices are obtained through
GARCH models.

Once we have chosen one particular GARCH specification, we have to calibrate or estimate
the value of the parameters from market data. The two most common ways to calibrate the
model are with respect to the stock prices or with respect to the option prices.

We must point out that the values obtained from both procedures usually do not match,
existing a small gap between them. Any chosen GARCH specification probably will not
incorporate all the information about the stock dynamics and options will be mispriced. If
the main objective is option valuation, better results will be obtained calibrating directly from
option prices.

In the first estimation procedure, a maximum likelihood estimator (see [60]) is employed
in order to find the model parameters that have the best fit to the historical series of the
stock price.

In the second one, we search the parameters that minimize the mean square error between
the prices of a set of traded option contracts and the theoretical prices obtained by the model
for the same contracts (see [13]).

We remark that even if we use the first technique and some models achieve a better
theoretical fit, the may work worse than others when used to price traded options in the
market. We refer to [13], [14] and references therein for a study of this phenomena.

Since our objective is option valuation, when estimating parameters, we will follow the
minimization of the mean square error approach for the rest of Chapters 1 and 2. We will
explain this technique in detail when we carry out a performance comparison between Black-
Scholes and GARCH models.

In [13], a study of the performance of several GARCH models, following the two ways of
model calibration mentioned above, is carried out. In this thesis, we have chosen one of the
models that gave best results. This one will be referred as NGARCH(1,1), and it will be used
for the rest of the Chapter.

This model is defined in the physical probability P by: ln

(
S̄t
S̄t−1

)
≡ R̄t = r + λ

√
σ2
t −

1

2
σ2
t +

√
σ2
t z̄t,

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1(z̄t−1 − θ)2,

(1.11)

where
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(i) S̄t: denotes the stock price at date t.

(ii) σ2
t : is the variance of the stock at date t.

(iii) r: is the risk-free rate.

(iv) β0, β1, β2, λ, θ: are the GARCH model parameters.

(v) z̄t is a normally distributed random variable with mean 0 and variance 1.

For pricing options, we need to obtain the existence and uniqueness of a Risk-free measure
Q that allows us, avoiding any arbitrage opportunity, to obtain today’s option price as the
discounted (at the risk-free rate) expectation of the future value. This has been done, with
different arguments, both in [24] and in [40].

The dynamics of the stock in the new measure Q must be computed. Two different ways
of analysis are presented in [24], [40]. We will go deeply in these results later in Chapter 2.
Now, we directly move to the solution. The dynamics in the Risk-free measure Q is given by: ln

(
S̄t
S̄t−1

)
≡ R̄t = r − 1

2
σ2
t +

√
σ2
t z̄

Q
t ,

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1(z̄t−1 − (θ + λ))2,

(1.12)

where z̄Qt is a normally distributed random variable with mean 0 and variance 1.
The dynamics in the Risk-free measure allow us to compute the option price as:

C(S) = e−r(tM−t)EQ
[
max {S̄tM −K, 0}|S̄t = S

]
. (1.13)

For this model, there is no known closed form solution and several numerical methods
can be employed, being Monte-Carlo based methods ([25], [59]), Lattice methods ([46], [54]),
Finite Elements ([1]) or Spectral methods ([9]) some of them.

This Section finishes with a performance comparison between the Black-Scholes pricing
model and the NGARCH(1,1) as a justification of the employment of this kind of models in
option valuation.

1.2.1 In The Sample / Out The Sample analysis

We are going to carry out two kind of analysis with real market data (S&P500) following the
lines developed in [13].

For the In The Sample daily analysis, we first fix a date t0 and consider the set of all
European Call contracts traded along that day. Let

(i) Nt0 denote the amount of contracts negotiated on day t0.

(ii) Ci
t0
denote the market price of contract i.
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(iii) Ci(Sit0 , tMi, Ki) denote the model’s price (Black-Scholes or NGARCH(1,1)) of contract
i.

(iv) rt0 be the constant risk-free rate corresponding to the 3-months US bond negotiated on
day t0.

For simplicity reasons, we assume that for each t0, the rate rt0 is the constant interest rate
r employed in the valuation formulas (1.12)-(1.13) or in the Black-Scholes explicit formula.

Our objective, for the In The Sample analysis (In), is to find, for each day t0, the parameter
values:

a) σ2 for Black-Scholes.
b) {σ2

t0
, β0, β1, β2, (λ+ θ)} for NGARCH(1,1).

that give the minimum mean square error (MSE) between the theoretical option prices and
the traded ones. Therefore, our objective is to find, for each day t0, the parameter values that
minimize the function

InMSE(t0) =
1

Nt0

Nt0∑
i=1

(
Ci
t0
− Ci(Sit0 , tMi, Ki)

)2
. (1.14)

The results plotted on Figure 1.1 are the square root of InMSE, which represent the daily
error, in monetary terms, for all Wednesdays (or the closest day if the market was closed)
between 12-26-1991 and 12-30-92 (54 days). We plot each negotiation day t0 (horizontal axis)
versus the root of InMSE (vertical axis) of Black-Scholes(blue) and NGARCH(1,1)(red).
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Figure 1.1: Error, in monetary terms, of the In The Sample analysis.

The mean values of the root of InMSE along the 54 days are 1.53 and 0.30 for Black-Scholes
and NGARCH(1,1) respectively.
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While this result represents a great improvement, it is not so surprising since in the Black-
Scholes model we only have one degree of freedom (σ2) while in NGARCH(1,1) we have five
(σ2

t0
, β0, β1, β2, (λ+ θ)). More remarkable is the following result.

For the Out The Sample analysis (Out), we want to study how both models predict
contract prices before the market opens. The procedure is the following:

1. Fix a date (t0) and estimate the model parameter values for the contracts negotiated in
the market a week ago (t0 − 7).

2. Compute the theoretical prices of the contracts of day t0 with the parameters obtained
in t0 − 7, all the information available between [t0 − 7, t0] and the allowances of the
model.

3. Compare the results with the real market prices of day t0.

Since the Black-Scholes model assumes constant variance, in Step 2, we have to compute
contract prices on day t0 with the variance obtained on day t0 − 7.

On the other hand, the NGARCH(1,1) model allows us to update the variance. If we
know the S&P500 movements between [t0 − 7, t0], using the model equations (1.12) we can
obtain a volatility updating formula

σ̂2
j = β0 + β1σ̂

2
j−1 + β2σ̂

2
j−1


(
R̄j − r +

σ̂2
j−1

2

)
√
σ̂2
j−1

− (λ+ θ)

2

, j = t0 − 6, t0 − 5, ..., t0,

σ̂2
t0−7 = σ2

t0−7,
(1.15)

where {σ2
t0−7, β0, β1, β2, (λ+θ)} are the parameters estimated on date t0−7 and R̄j = ln

(
S̄j
S̄j−1

)
are obtained from market data. We refer to [13] where this, and others, estimation procedures
are described.

Concerning the risk-free rate r, and for simplicity reasons, we employ r = rt0−7 for the
updating formula. We could have employed a variable interest rate in the updating formula,
but this is postponed to Chapter 2. Within the time periods involved (1 week), the movements
of the stock are much more relevant than the movements of the risk free rate.

Thus, an estimation of today’s variance σ̃t0 is obtained: σ̂2
t0
for the NGARCH(1,1) model

and σ2 of t0 − 7 for the Black-Scholes model.

If Nt0 denotes the amount of contracts negotiated on day t0, let i ∈ {1, 2, ..., Nt0}. The
option prices of day t0 are computed with formula

Ci(S
i
t0
, tMi, Ki, σ̃

2
t0

),
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where, for NGARCH(1,1), the values of the parameters {β0, β1, β2, (λ+ θ)} are those of date
t0 − 7.

If we want to know how well we have predicted option prices, we compare the results
obtained with the traded prices computing the mean square error.

OutMSE(t0) =
1

Nt0

Nt0∑
i=1

(
Ci
t0
− Ci(Sit0 , tMi, Ki, σ̄

2
t0

)
)2
. (1.16)

The results plotted on Figure 1.2 show the root of OutMSE, which represents the error,
in monetary terms, when prices are predicted with both models for all Wednesdays between
2-01-1992 and 12-30-92 (53 days). We plot each negotiation day t0 (horizontal axis) versus
the root of OutMSE (vertical axis) of Black-Scholes(blue) and NGARCH(1,1)(red).
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Figure 1.2: Error in monetary terms of the Out The Sample analysis.

The mean values of the square root of OutMSE are 1.60 and 0.64 for the Black-Scholes
model and NGARCH(1,1) respectively.

In conclusion: GARCH models are better when used to fit to market data and, more
relevant, they are also capable to incorporate changes in the stock market to option prices.

The principal drawback of GARCH models is their computational cost. It will depend
on the numerical method employed, but all the ones mentioned (Monte-Carlo, Lattice, Spec-
tral...) require several seconds to compute option prices and several minutes to estimate
parameter values. This can result in an unpractical procedure, since option prices change
almost continuously. The objective of the following Section is to design a numerical method
that drastically reduces the computing time associated with the valuation of option prices
with GARCH models.
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1.3 Polynomial Interpolation
What we propose here is a Chebyshev polynomial interpolation procedure for option valuation
with GARCH (or other) models.

Stock price changes almost constantly, so option prices must be continuously updated. The
properties of Chebyshev polynomials (see [55]) enables us to use time-competitive and accurate
enough techniques for computing polynomial coefficients, evaluation and differentiation.

Furthermore, many stocks from different companies are traded simultaneously. Several
options, for different prices, maturities, possibly with different model parameter values, must
be priced at the same time, what from now on will be referred as tensorial valuation. This will
be achieved through a suitable defined multidimensional array operation and the employment
of efficient algorithms.

The interpolation will be done using Chebyshev polynomials and nodes in the interval
where the parameters are defined.

Definition 1.3.1. Let us define

Tn(x) = cos (n arccos(x)) , (1.17)

where 0 ≤ arccos(x) ≤ π.
It is well known (see [55]) that this function is a polynomial of degree n, called the Cheby-

shev polynomial of degree n.

Through the whole thesis, Tn(x) will denote the Chebyshev polynomial of degree n.

Definition 1.3.2. Let N ∈ N. The N + 1 Chebyshev nodes {α̃k}Nk=0 in interval [a, b] corre-
spond to the extrema of Tn(x) and they are given by:

α̃k =
1

2

[
cos

(
πk

N

)
(b− a) + (b+ a)

]
, k = 0, 1, ..., N. (1.18)

We also define the N + 1 Chebyshev nodes {αk}Nk=0 in interval [−1, 1], where

αk = cos

(
πk

N

)
, k = 0, 1, ..., N. (1.19)

Definition 1.3.3. Let F̃ (x̃) be a continuous function defined in x̃ ∈ [x̃min, x̃max].

We define the function F (x), x ∈ [−1, 1] as

F (x) = F̃ (x̃),

where
x̃ =

x̃max − x̃min

2
x+

x̃max + x̃min

2
, x ∈ [−1, 1]. (1.20)
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For N ∈ N, let INF (x) be the N degree interpolant of function F (x) at the Chebyshev
nodes {αk}Nk=0, i.e. the polynomial which satisfies

INF (αk) = F (αk) = F̃ (α̃k), k = 0, 1, ..., N.

Polynomial INF (x) will be given by

INF (x) =

N1∑
l=0

p̂lTl(x), x ∈ [−1, 1], (1.21)

where p̂l ∈ R.
Here we present just the definitions that will be needed for the proposed method. The

practical computation of the coefficients p̂l is postponed to Subsection 1.3.1.

Definition 1.3.4. Let x̃ = (x̃1, x̃2, ..., x̃n) and F̃ (x̃) be a continuous function defined in

x̃j ∈ [x̃min
j , x̃max

j ], j = 1, 2, ..., n. (1.22)

For x = (x1, x2, ..., xn), we define the function F (x), x ∈ [−1, 1]n as

F (x) = F̃ (x̃),

where

x̃j =
x̃max
j − x̃min

j

2
xj +

x̃max
j + x̃min

j

2
,

{
xj ∈ [−1, 1],

j = 1, 2, ..., n.
(1.23)

For N = {N1, N2, ..., Nn} ∈ Nn, we define

LN = {l = (l1, l2, ..., ln) / 0 ≤ lj ≤ Nj, j = 1, 2, ..., n} . (1.24)

For j = 1, 2, ..., n, let
{
α̃kj
}Nj
k=0

be the Nj + 1 Chebyshev nodes in [x̃min
j , x̃max

j ] and
{
αkj
}Nj
k=0

be the Nj + 1 Chebyshev nodes in [−1, 1].

We use the notation α̃l =
(
α̃l11 , α̃

l2
2 , ..., α̃

ln
n

)
and αl =

(
αl11 , α

l2
2 , ..., α

ln
n

)
.

Let INF (x) be the n-dimensional interpolant of function F (x) at the Chebyshev nodes{
αl
}
l∈LN , i.e. the polynomial which satisfies

INF (αl) = F (αl) = F̃ (α̃l), l ∈ LN .

Polynomial INF (x) will be given by

INF (x) =
∑
l∈LN

p̂lT
l(x), x ∈ [−1, 1]n, (1.25)

where
p̂l = p̂(l1,l2,...,ln) ∈ R,

T l(x) = Tl1(x1)Tl2(x2)...Tln(xn).
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The function we want to interpolate is the one which gives the option price of a stock
whose dynamics are given by the NGARCH(1,1) model. Recall that in the Risk-free measure
Q, this price was given by

C(S) = e−r(tM−t)EQ[max {S̄tM −K, 0}|St = S],

where the dynamics of the stock was modelled by ln

(
S̄t
S̄t−1

)
≡ R̄t = r − 1

2
σ2
t +

√
σ2
t z̄t

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1(z̄t−1 − (θ + λ))2.

and

(i) tM : is the maturity date of the contract.

(ii) σ2
t : is the variance of the stock at date t.

(iii) S̄t: denotes the stock price at date t.

(iv) r: is the risk-free rate.

(v) β0, β1, β2, (λ+ θ): are the Garch model parameters.

Let today be t = 0 and S0, σ2
0 denote today’s stock price and variance respectively. Since

the pricing model is linear in the relation S
K
, the strike of the option does not need to be

included. We can fix it for K = K0 and option prices for other strikes can be directly
obtained by interpolation.

Therefore, the option price is a function of 8 real variables:

F̃
(
tM , σ

2
0, S0, r, β0, β1, β2, (λ+ θ)

)
= F̃ (x̃), (1.26)

where, in order to simplify the notation, we write

x̃ = [x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8] = [tM , σ
2
0, S0, r, β0, β1, β2, (λ+ θ)].

We restrict to a bounded domain

Ω̃ = [x̃min
1 , x̃max

1 ]× [x̃min
2 , x̃max

2 ]× ...× [x̃min
8 , x̃max

8 ], (1.27)

where we can compute the 8-dimensional interpolant INF (x) as it has been given in Definition
1.3.4

We remark that the number of variables depends on the chosen GARCH specification.
Although we are dealing with the NGARCH(1,1) model, all the following algorithms will be
described for a function of n variables.
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In the numerical examples, we will return to the original notation of the specific NGARCH(1,1)
model and specify the values of the respective domains where the variables are defined.

Now we proceed to outline the main ideas of the proposed numerical method.

Polynomial Interpolation Strategy:
The procedure has two different steps that we next describe.

First step: Off line computation.

This step is called Off line computation because it corresponds to the construction of the
interpolant of a function (an option pricing function in our case) and it has to be done just
once.

When the polynomial has been built, we can employ it as many times as we want and
whenever we want in order to price options in the market. We do not need to repeat this first
step again.

Suppose that F̃ (x̃) is a n variable function as the one given in Definition 1.3.4. The degree
of the interpolant is denoted by N = (N1, ..., Nn) ∈ Nn.

Nj + 1, j = 1, ..., N states the number of interpolation points (Chebyshev nodes in this
case) for the interval [x̃min

j , x̃max
j ], j = 1, ..., n of each of the variables. In the numerical

examples we will state how to pick the intervals and study the behaviour of the interpolation
error.

Once fixed N, in order to construct the interpolant we will need to compute

F̃
(
α̃k1

1 , α̃
k2
2 , ..., α̃

kn
n

)
,

{
∀kj ∈ {0, ..., Nj},
j = 1, 2, ..., n,

where the α̃kjj are the Chebyshev nodes from Definition 1.3.4. If F̃ (x̃) is an option pricing
function, this can be done by means of one of the mentioned numerical methods (Monte Carlo,
Lattice, Spectral ...).

In this thesis, the numerical method employed for computing the option prices in the
Chebyshev nodes will be the spectral method developed in [9] and will be referred as B-
F method. This numerical method gives enough precision with few grid points, and the
employment of FFT techniques makes it a low-time consuming method. Besides, fixed a
maturity tM , it is implemented in a way that computes option prices for several stock prices,
volatilities and all discrete maturities between [0, tM ] at the same time.

Finally, with the function evaluated at the Chebyshev nodes, we build the interpolant

INF (x) =
∑
l∈LN

p̂lT
l(x), x ∈ [−1, 1]n,
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with the Algorithm CnV described in Subsection 1.3.1. We remark that the interpolant has
to be computed just once and it can be employed as many times as we want.

Second step: In line computation

This second step is called In line computation because we employ the polynomial built in
the previous step to price contracts or calibrate model parameters from market data on real
time.

As we mentioned before, several options for different asset prices, maturities and possibly
with different model parameter values must be priced at the same time. Furthermore, the
asset prices (upon the options are negotiated) change almost continuously while the markets
are opened.

This means that, almost constantly, we will need to price options for a finite set of values
Θ ∈ Ω̃, such that for qj ∈ N, 1 ≤ j ≤ n, we have that

Θ =
{
x̃ = (x̃1, x̃2, ..., x̃n) / x̃j ∈ {x̃1

j , ..., x̃
qj
j }, x̃kj ∈ [x̃min

j , x̃max
j ], 1 ≤ k ≤ qj

}
.

We point that |Θ| = ∏n
j=1 qj. It should be remarked that, in the real market, set Θ ∈ Ω̃

probably varies with time.

These prices will be computed with polynomial INF (x), where the relation between x̃
and x is given by formula (1.23).

The algorithms presented in Subsection 1.3.2 allow us to evaluate the interpolation polyno-
mial in a set of points like Θ very fast. Furthermore, numerical algorithms can be adapted in
order to estimate the model parameters in the sense of the In The Sample analysis introduced
in Subsection 1.2.1.

1.3.1 Computation of the interpolating polynomial.

One variable:

Let F̃ (x̃) and N ∈ N be as given in Definition 1.3.3 and suppose that we want to compute
the Chebyshev interpolant

IN1F (x) =

N1∑
l=0

p̂lTl(x), x ∈ [−1, 1].

If we employ Definitions 1.3.1 and 1.3.2, it must hold that

F̃ (α̃k) = F (αk) =
N∑
l=0

p̂lTl(α
k) =

N∑
l=0

p̂l cos(l(arccos(αk))) =
N∑
l=0

p̂l cos

(
l
πk

N

)
,



1.3. Polynomial Interpolation 27

where {α̃k}Nk=0, {αk}Nk=0 are the Chebyshev nodes in [x̃min, x̃max] and [−1, 1].

There are several efficient algorithms that allow us to obtain the coefficients {p̂l}Nl=0. We
are going to present one that can be found in [10].

We define p̂l = p̂2N−l if l > N . Therefore, we can write:

F (αk) =
N∑
l=0

p̂l
2

cos

(
l
2πk

2N

)
+

2N∑
l=N

p̂l
2

cos

(
l
2πk

2N

)
.

On the other hand

p̂0

2
cos

(
0

2πk

2N

)
=
p̂2N

2
cos

(
2N

2πk

2N

)
,

sin

(
0

2πk

2N

)
= sin

(
N

2πk

2N

)
= sin

(
2N

2πk

2N

)
= 0,

p̂l
2

sin

(
l
2πk

2N

)
= − p̂2N−l

2
sin

(
(2N − l)2πk

2N

)
,

so we have that

F (αk) = p̂0

(
cos

(
0

2πk

2N

)
+ i sin

(
0

2πk

2N

))
+

N−1∑
l=1

p̂l
2

(
cos

(
l
2πk

2N

)
+ i sin

(
l
2πk

2N

))

+ p̂N

(
cos

(
N

2πk

2N

)
+ i sin

(
N

2πk

2N

))
+

2N−1∑
l=N+1

p̂l
2

(
cos

(
l
2πk

2N

)
+ i sin

(
l
2πk

2N

))
=

1

2N

2N−1∑
l=0

Xl exp

(
il

2πk

2N

)
,

because the i sin(.) part cancels in the expansion of the expression.

Now, we can apply time-optimal FFT-techniques for obtaining the {p̂l}Nl=0.

Suppose we are given
{
F (αk)

}N
k=0

. The algorithm that could be implemented is

Algorithm C1v:
1. Construct z =

[
F (α0), F (α1), ..., F (αN−1), F (αN), F (αN−1), ..., F (α2), F (α1)

]T .
2. Compute

y =
real (FFT(z))

2N
.

3. 
p̂0 = y(1),

p̂l = y(l + 1) + y(2N − (l − 1)) if 0 < l < N,

p̂N = y(N).
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Several variables:

Definition 1.3.5. Let A be an array of dimension n1 × n2 × ...× nm. We denote the vector

A(j1, ..., jns−1 , :, jns+1 , ..., jm) = {A(j1, ..., jns−1 , j, jns+1 , ..., jm)}nsj=1,

where obviously 1 ≤ ji ≤ ni, ∀i ∈ {1, 2, ...,m} − {s}.

Let B be an array of dimension a×n1×n2× ...×nm. We define the permutation operator
P such that if:

D = P(B),

we have that dim(D) = n1 × n2 × ...× nm × a and

D(j1, ..., jm, :) = B(:, j1, ..., jm).

Let F̃ (x̃) andN ∈ Nn be as given in Definition 1.3.4 and suppose that we want to construct
the interpolant

INF (x) =
∑
l∈LN

p̂lT
l(x), x ∈ [−1, 1]n.

Suppose that we have already computed the function value at the Chebyshev nodes

F̃
(
α̃k1

1 , α̃
k2
2 , ..., α̃

kn
n

)
= F

(
αk1

1 , α
k2
2 , ..., α

kn
n

)
,

{
∀kj ∈ {0, ..., Nj},
j = 1, 2, ..., n,

which are stored in an array Γ(N1+1)×(N2+1)×...×(Nn+1) such that

Γ(k1 + 1, k2 + 1, ..., kn + 1) = F
(
αk1

1 , α
k2
2 , ..., α

kn
n

)
.

The coefficients p̂l are obtained through the following algorithm.

Algorithm Cnv:
1. B1 = Γ.

2. For i=1 to n
2.1. {m1,m2, ...,mn} = dim(Bi).
2.2. For j2 = 1 to m2, for j3 = 1 to m3, ..., for jn = 1 to mn

Ci(:, j2, j3, ..., jn) = Algorithm C1v (Bi(:, j2, j3, ..., jn)) .

2.3. Bi+1 = P(Ci).

3. p̂l = Bn+1(l1 + 1, l2 + 1, ..., ln + 1).

We remark that FFT routine in Matlab admits multidimensional valuation. Step 2.2 of
the previous algorithm can be computed without using loops and barely takes a couple of
seconds even with the biggest polynomials of the numerical examples.
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1.3.2 Tensorial Evaluation and Differentiation of the interpolation
polynomial.

Definition 1.3.6. Let A and B be two arrays, (A)a×n1×n2×...×nk and (B)a×b respectively, and
such that b > 1.

We define the tensorial array operation C = A⊗B, as the array C given by:

C(j1, ..., jk, :) = P (B′·A(:, j1, ..., jk)) , (1.28)

where · denotes the usual product of matrix times a vector and P is the permutation operator
introduced in Definition 1.3.5.

It is easy to check that dim(C) = n1 × n2 × ...× nk × b.

Concerning the implementation in Matlab of the tensorial array operation,

C = permute (multiprod(B′, A), [2 : n 1]) ,

where permute is a standard procedure implemented in Matlab.

The algorithm multiprod, implemented by Paolo de Leva and available in Mathworks (see
[50]), makes the required kind of tensorial operation simultaneously in all variables in a very
efficient way.

Suppose now that we have a polynomial

INF (x) =
∑
l∈LN

p̂lT
l(x) =

N1∑
l1=0

N2∑
l2=0

...
Nn∑
ln=0

p̂lTl1(x1)Tl2(x2)...Tln(xn).

We want to evaluate the polynomial in a finite set of points Θ, such that for qj ∈ N, 1 ≤
j ≤ n, we have that

Θ =
{
x̃ = (x̃1, x̃2, ..., x̃n) / x̃j ∈ {x̃1

j , ..., x̃
qj
j }, x̃kj ∈ [x̃min

j , x̃max
j ], 1 ≤ k ≤ qj

}
.

For computational reasons, that we detail below, we impose that qj > 1, j = 1, 2, ..., n.

The evaluation algorithm has two steps.

1. Evaluate the Chebyshev polynomials:

We use the recurrence property of Chebyshev polynomials:

T0(x) = 1, T1(x) = x, Tl(x) = 2xTl−1(x)− Tl−2(x), l = 2, 3, 4, ...,

that with the number N of interpolation points involved in the option pricing problem works
fairly well.
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We employ the notation ηj = {xkj}
qj
k=1, obtained from Θ and (1.23). With the recurrence

property, we compute

T (η1) = T (η1)(N1+1)×q1 =
(
Tl(x

k
1)
)

0≤l≤N1, 1≤k≤q1
,

T (η2) = T (η2)(N2+1)×q2 =
(
Tl(x

k
2)
)

0≤l≤N2, 1≤k≤q2
,

...

T (ηn) = T (ηn)(Nn+1)×qn =
(
Tl(x

k
2)
)

0≤l≤Nn, 1≤k≤qn
,

where the results are stored in matrices.

2. Evaluate the rest of the polynomial.
The evaluation of the polynomial INF (x) for the whole set of points Θ can be done at

once using the tensorial array operation.
The polynomial coefficients are stored in a (N1 + 1)× (N2 + 1)× ...× (Nn+ 1)-dimensional

array A.
A(l1 + 1, l2 + 1, ..., ln + 1) = p̂(l1,l2,...,ln),

and we compute
INF (Θ) = (... [(A⊗ T (η1))⊗ T (η2)] ...)⊗ T (ηn), (1.29)

where the result will be an q1 × q2 × ...× qn-dimensional array which contains the evaluation
of the interpolant in all the points of set Θ.

We remark that the previous definition must not be seen as a product with the usual
properties. The order of the parenthesis has to be strictly followed in order to be consistent
with the dimensions.

The reason why we imposed qj > 1, j = 1, 2, ..., n is also related with the consistency of
the dimensions. If qi = 1, by default, multiprod algorithm does not recognize

q1 × ...× qi−1 × 1× qi+1 × ...× qn − dimension,

but collapses the array to

q1 × ...× qi−1 × qi+1 × ...× qn − dimension.

We recall that ⊗ consists of multiprod and a permutation. If qi = 1, a wrong dimension
will be permuted in the valuation algorithm.

Computationally it is easier to impose that set Θ contains at least two different values for
each of the variables and, as we will see in the numerical examples, this will not drastically
affect the computational cost of the method.

Polynomial differentiation:

Concerning the option pricing problem we are dealing with, we include a brief commentary
about the In the Sample analysis introduced in Subsection 1.2.1.
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The estimation of the model parameters from real market prices is done with a standard
Newton algorithm. Next, we describe the evaluation of the Jacobian that we need in the
algorithm.

Note that if x̃ ∈ [a, b] and we have interpolated function F̃ (x̃)

F̃ (x̃) ≈ INF (x) =
N∑
l=0

p̂lTl(x),

where
x̃ =

b− a
2

x+
b+ a

2
, x ∈ [−1, 1],

we can approximate, if function F is regular enough (see [10]),

F̃ ′(x̃) ≈ (INF (x))′ =
2

b− a
N−1∑
l=0

q̂lTl(x),

where (see [10, (2.4.22)]) for l = 0, 1, ..., N − 1:

q̂l =
2

cl
+

N∑
j=l+1

j+l odd

jp̂j, where cl =

{
2, l = 0,

1, l ≥ 1.

This implies that the coefficients of the derivatives of the polynomials need to be computed
each time or stored in memory. Both options do not fit with the objective of this work.

If the coefficients are computed each time they are needed, that would increase the to-
tal time cost of the In the Sample analysis. This worsens the objective of doing real time
parameter calibration.

On the other hand, as we are about to see, there is a memory storage problem in the
polynomial interpolation technique. To store the coefficients of the derivative means to almost
double the memory requirements of the method.

For these reasons, we prefer to employ a fast computing way to approximate the derivative,
which does not require any more memory storage. We approximate

F̃ ′(x̃) ≈ 2

b− a
INF (x+ h)− INF (x)

h
,

where 0 < h << 1. This is the technique employed in the numerical examples.

As it has been seen, all the algorithms developed in Subsections 1.3.1 and 1.3.2 are general
enough and can be exported to other kinds of models, contracts, etc.. The only thing that
we need to know is how many variables the interpolated function has and everything is
straightforward.
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1.3.3 Interpolation Error

In the first place, we fix the intervals in which the interpolant of the option price will be
constructed.

We recall that the model was linear in the relation S
K
, so strike is fixed at K = 1. The

rest of variables are defined as follows:

tM ∈ [0, 365], β0 ∈ [0, 2· 10−6],

h0 ∈ [0. 25· 10−4, 2. 25· 10−4], β1 ∈ [0. 60, 0. 95],

S0 ∈ [0. 75, 1. 20], β2 ∈ [0. 02, 0. 25],

r ∈ [0. 02, 0. 085], (λ+ θ) ∈ [0. 20, 2].

These intervals are chosen because they cover all the values empirically observed in market
data along several years.

The stability condition β1 +β2 < 1 (see [7]) guarantees that the volatility process does not
blow to ∞. In the B-F numerical method, the volatility varies in a big, but finite interval.
Therefore, no divergence problems appear since the volatility cannot grow over a certain level.
This generates a numerical localization error (see [9]), but it can be made as small as desired.
This error mainly affects to values β1 + β2 > 1 or extremely high volatilities.

The volatility interval in the B-F method was chosen big enough in order to cover all the
volatility values observed in the market and minimize the localization error. Furthermore,
parameter values such that β1 + β2 > 1 where not observed in any of the experiments with
market data. For simplicity reasons, we do not impose this condition.

We are going to carry out a standard error analysis doubling the value of N . Note that
with Chebyshev nodes, each new set of points will contain all of the previous one. The
following table details the degree N∗ of the interpolation polynomial in each of the variables
and the total storage cost of the polynomial coefficients. We remark that the number of
interpolation points of variable x∗ is N∗ + 1.

NtM Nβ1 Nβ2 N(λ+θ) Nr Nβ0 Nh0 NS Storage cost(bytes)
I3F 3 3 3 3 3 3 3 3 5. 24· 105

I6F 6 6 6 6 6 6 6 6 4. 61· 107

I12F 12 12 12 12 12 12 12 12 6. 52· 109

Table 1.1: Degree of the interpolation polynomial INF in each of the variables and storage
cost of the polynomial coefficients. The number of interpolation points in each of the variables
is N∗ + 1.

The storage cost of the polynomials is explicitly computable. For the polynomials de-
scribed in the table, this formula is (N∗ + 1)8. The growth of the storage cost, as we increase
the value of N∗, is commonly referred as the “Curse of dimensionality”.
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Fixed an enough precision for the B-F method, we assume for the rest of the Chapter that
the option price obtained with this method is the reference option price. The construction of
the polynomial and the error analysis will be carried referencing to the values obtained with
it.

Once fixed N , we compute the Chebyshev nodes {α̃l}l∈LN with formula (1.18). We
compute the function values {F̃

(
α̃l
)
}l∈LN with B-F method and construct INF with the

algorithms developed in Subsection 1.3.1.

Independently, we have to build a control sample which allows us to measure how well the
interpolation polynomial prices options in the domain Ω̃. We have chosen a sample uniformly
distributed on Ω̃.

Definition 1.3.7. For each variable x̃j ∈ [x̃min
j , x̃max

j ] and for a given m ∈ N we define

∆m
x̃j

=
x̃max
j − x̃min

j

m
,

and the set of points
Θm
x̃j

=
{
x̃min + ∆x̃j · i

}m−1

i=1
, j = 1, 2..., 8.

This set of equally spaced points will be used to build a control sample. Points that corre-
spond to i = {0,m} are not included because they always correspond to Chebyshev nodes.

Sample Θm will denote the set of option prices for all the possible combinations of values
in sets Θm

x̃j
, i.e.

Sample Θm = {F̃
(
Θm
x̃1
,Θm

x̃2
, ...,Θm

x̃8

)
}, |Sample Θm| = (m− 1)8,

computed with B-F method.

We compute Sample Θm and numerate its elements. Let

• CB−F
j be the j contract price of Sample Θm.

• CINF
j be the j contract price evaluated with polynomial INF .

We define

MSESample Θm(INF ) =
1

(m− 1)8

(m−1)8∑
j=1

(
CB−F
j − CINF

j

)2
.

For the numerical examples, we have built Sample Θ7. The number of elements of this
sample is 1679616 ≈ 1. 68· 106.
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The following table shows, forN = 3,6,12, the memory storage requirements of INF , the
computational cost (seconds) of computing Sample Θ7 with INF and the MSESample Θ7(INF ).

Storage (bytes) Computational Cost (seconds) Mean Square Error (MSE)
I3F 5. 24· 105 0. 11 0. 69186· 10−4

I6F 4. 61· 107 0. 46 0. 12298· 10−4

I12F 6. 52· 109 91 0. 01203· 10−4

Table 1.2: Storage cost of INF , computational cost of evaluating Sample Θ7 with INF and
the Mean Square Error committed by the interpolation polynomial INF when evaluating the
contract prices of Sample Θ7.

In the previous table, we can check that the computational cost of I3F and I6F is fairly
good, but it blows to 91 seconds in the case of I12F . Although this time might not seem too
high for computing ≈ 1. 68· 106 contracts, it is unacceptable for practical applications in real
time trade. In the markets, the stock price might have changed a few times before we have
finished the computation, making the results worthless.

The reason why the computational cost has increased so much is due to the “Curse of
dimensionality”. We remark that I12F is above the operational limit of the Matlab/computer
employed in the analysis to be stored in just one single array. Although the storage problem
can be handled, splitting the polynomial in several parts and loading/discarding the needed
data, unfortunately, in velocity terms, this implies a great increase of computational work.

Concerning I12F , let {tMi}12
i=0 denote the 13 Chebyshev nodes in interval [0, 365]. For

each value of tMi we build the 7-variable interpolation polynomial for the rest of the variables.
This way, we have polynomial I12F stored as 13 smaller polynomials which can be handled.

In our example, the 91 seconds are mostly due to several uses of the function load when
we call each of the 7-variable smaller polynomials.

We mention that if the polynomial was even bigger, the splitting procedure can be extended
to other variables, so storage is not an unsolvable problem. Nevertheless, it worsens the
computational costs because it implies that we need to load data from the memory very
frequently.

We point that the objective of the next Section is to build a new smaller polynomial which
preserves the information and that can be rapidly evaluated with the algorithms described in
Subsection 1.3.2

Concerning the error of the interpolation polynomials, the following picture shows the
log-log of the Memory Storage versus the Mean Square Error.
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Figure 1.3: Interpolation Error Convergence. We plot the log-log of the Memory requirements
(horizontal axis) vs the Mean Square Error (vertical axis) of each polynomial INF .

The slope of the regression line of the previous figure is −0.43. We have a good error
behaviour, achieving a precision of 0. 01203· 10−4 with N = {12, 12, ..., 12}. If more precision
is required, we can build bigger interpolation polynomials, which can be handled thanks to
the splitting technique that we described before.

For completing the analysis, we are going to study the error, in monetary terms, including
an In the Sample / Out the Sample analysis with real market data.

We are going to repeat exactly the In/Out The Sample analysis done in Subsection 1.2.1.
On Figure 1.4 we include the results obtained with polynomial I12F (red) to see that, from
a practical point of view, we are already really close to NGARCH(1,1) (green) and that we
outperform Black-Scholes (blue).

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Negotiation Day

√
In

M
S
E

In The Sample

 

 

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Negotiation Day

√
O
u
tM

S
E

Out The Sample

 

 

Black−Scholes

NGARCH(1,1)

I
12

F

Black−Scholes

NGARCH(1,1)

I
12

F

Figure 1.4: We plot each negotiation day t0 (horizontal axis) vs the root of InMSE (left) and
OutMSE (right) when prices are computed with Black-Scholes (blue),NGARCH(1,1) (green)
and I12F (red).

The mean values of the root of InMSE and OutMSE have been:
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Black-Scholes NGARCH(1,1) I12F
In The Sample 1. 53 0. 30 0. 32
Out The Sample 1. 60 0. 64 0. 66

Table 1.3: Mean error, in monetary terms, of the 54/53 different days when we adjust (In) or
predict (Out) traded option prices with Black-Scholes model, NGARCH(1,1) and I12F .

The previous table shows that interpolant I12F is capable to adjust / predict prices better
than the Black-Scholes model and with a similar accuracy as the NGARCH(1,1) model, the
function which interpolates.

These results also show that the interpolant is consistent in the sense that, although the
parameters estimated In The Sample are not exactly the same (but are fairly close) to the
ones obtained with NGARCH(1,1), when market conditions change and we try to predict (Out
The Sample), the prices obtained are also close to the ones obtained with NGARCH(1,1).

Also note that we have two kinds of errors here. The first one is the error due to the ade-
quacy of the NGARCH(1,1) model to market data, which cannot be reduced unless we change
the model. It is given in the table by the column of NGARCH(1,1). The second one is the
interpolation error, which is given by the differences between the columns of NGARCH(1,1)
and I12F . This one can be reduced as much as we want increasing the number of interpolation
points.

1.4 Reduced Bases Approach

The objective of this Section is to build a new polynomial which gives comparable accuracy,
but which has less memory requirements.

Suppose we are given a high degree polynomial PN. The objective is to construct from it
a smaller polynomial, as we will see in memory terms but not in degree, which globally values
as well as the original one.

The method we are going to develop could be exported to other kinds of polynomials,
but since our evaluation algorithms are designed for the Chebyshev ones, the construction is
focused to take advantage of their properties. It is also general enough to be applied to any
n-variables polynomial.

1.4.1 Hierarchical orthonormalization

Suppose we have a polynomial

PN (x1, ..., xn) , N = [N1, N2, ..., Nn] ∈ Nn, (1.30)

where N denotes the degree in each of the variables.
Our objective is, given a set of points Φ = {φi}mΦ

i=1 and ε > 0, to construct a polynomial
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QNΦ
ε from PN , such that

1

mΦ

mΦ∑
i=1

||PN (φi)−QNΦ
ε (φi)||2 < ε, (1.31)

where polynomial QNΦ
ε has the smallest size (in memory terms) compatible with (1.31).

Although another set of points could be chosen, since in our option pricing problem poly-
nomial PN = INF , the interpolation polynomial of a certain function F̃ (x̃), the natural set
of points Φ will be the set of points used in the construction of the interpolation polynomial,
i.e., the Chebyshev nodes Φ = {αl}l∈LN .

Our approach will be to use a set of Orthonormal Function Bases that will be hierarchically
chosen. All polynomials that appear in the procedure we are going to construct must be writ-
ten in function of Chebyshev polynomials. Hence, it is natural to employ the weighted norm
associated with them and to exploit all the related properties which will simplify enormously
all the calculus involved.

Definition 1.4.1. Given two functions f(x1, ..., xn) and g(x1, ..., xn), where (x1, ..., xn) ∈
[−1, 1]n, we define the weighted scalar product < f, g >Lω as:

< f(x1, ..., xn), g(x1, ..., xn) >Lω=

∫ 1

−1

...

∫ 1

−1

f(x1, ..., xn)g(x1, ..., xn)√
1− x2

1...
√

1− x2
n

dx1...dxn.

We denote by ||· ||Lω the norm induced by this scalar product.

Lemma 1.4.1. The Chebyshev polynomials, Ti(x), are orthogonal with respect to the scalar
product < f, g >Lω . Furthermore, if H(x) is a polynomial of degree less or equal to 2n + 1
then ∫ 1

−1

H(x)√
1− x2

dx =

n∑′′

j=0

π

n
H(xj) =

n−1∑
j=1

π

n
H(xj) +

π

2n
H(x0) +

π

2n
H(xn),

where {xj}nj=0 are the Chebyshev nodes in [-1,1]. (Gauss-Lobato-Chebyshev cuadrature)

The proof can be found in [55].

Definition 1.4.2. Let f(xj, xj+1, ..., xn) and g(xj, xj+1, ..., xn) be two functions such that
(xj, xj+1..., xn) ∈ [−1, 1]n−j+1.

Based on the previous scalar product, we define function

< f, g >Lj+1,n
ω

(xj) =

∫ 1

−1

...

∫ 1

−1

f(xj, ..., xn)g(xj, ..., xn)√
1− x2

j+1...
√

1− x2
n

dxj+1...dxn.

For simplicity in the notation, we denote < f, g >Lj+1,n
ω

(xj) =< f, g >Lj+1,n
ω

.



38 Chapter 1. Reduced Bases Function Approach to Option Valuation

The algorithm of the hierarchical Gram-Schmidt procedure that we are about to propose
has n− 1 steps if the polynomial PN (x1, ..., xn) has n variables.

Hierarchical orthonormalization procedure:

Let us consider PN (x1, ..., xn) and for simplicity assume that xj ∈ [−1, 1]. Let us
consider also a set of points Φ = {φi}mΦ

i=1, φi ∈ [−1, 1]n. (As mentioned before, in the
numerical examples we take Φ = {αl}l∈LN but other sets of points could be considered).

Step 1:
Let {αi1}N1

i=0 denote the N1 + 1 Chebyshev nodes in [−1, 1] and define Pi(x2, ..., xn) =
PN (αi1, x2, ..., xn). It is easy to check that we can rewrite PN as:

PN (x1, ..., xn) =

N1∑
i=0

ai(x1)Pi(x2, ..., xn) = R1(x1, ..., xn),

where ai(x1) is a N1-degree polynomial such that for m = 0, 1, ..., N1 it holds that:{
ai(α

i
1) = 1,

ai(α
m
1 ) = 0, i 6= m.

For i1 ∈ {0, ..., N1}, we set q̃1
i1

= Pi1 and q1
i1

=
q̃1
i1

‖q̃1
i1
‖
Lω

and look for:

j1 = argmin
i1

∥∥R1− < R1, q
1
i1
>L2,n

ω
q1
i1

∥∥
Lω
.

We define qj1 = q1
j1

and R2 = R1− < R1, qj1 >L2,n
ω
qj1 .

For i2 ∈ {0, ..., N1} − j1, we set q̃2
i2

= Pi2− < Pi2 , qj1 >L2,n
ω

qj1 and q2
i2

=
q̃2
i1

‖q̃2
i1
‖
Lω

and we

look for
j2 = argmin

i2

∥∥R2− < R2, q
2
i2
>L2,n

ω
q2
i2

∥∥
Lω
.

We define qj2 = q2
j2

and R3 = R2− < R2, qj2 >L2,n
ω
qj2 .

If we proceed iteratively, at the end we will obtain a set of {qjk}N1
k=0 orthonormal polyno-

mials such that

PN (x1, ..., xn) =

N1∑
k=0

A1
jk

(x1)qjk(x2, ..., xn),

where A1
jk

(x1) =< PN , qjk >L2,n
ω
, k = 0, 1, ..., N1.

We can now approximate PN (x1, ..., xn) by

PN (x1, ..., xn) ≈ Q1 =

M1∑
k=0

A1
jk

(x1)qjk(x2, ..., xn),
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where M1 is the first index such that

1

mΦ

mΦ∑
i=1

∥∥PN (φi)−Q1(φi)
∥∥2
< ε. (1.32)

Let us observe that the polynomials qjk that were picked first were those that, in the sense
of (1.32), had more “information” about PN . Indeed, usually with very few ones (depending
on the variable), a good approximation to the original polynomial is achieved.

Furthermore, the amount of storage required is considerably reduced.

Step 2:
Each of the qjk(x2, ..., xn) is a n − 1 variable polynomial, and we can proceed the same

way as we did in Step 1.

For each of the jk, let {αi2}N2
i=0 be the N2 + 1 Chebyshev nodes in [−1, 1] and

qjk(x2, ..., xn) =

N2∑
i=0

ajki (x2)P jk
i (x3, ..., xn) = Rjk

1 (x2, ..., xn),

where P jk
i (x3, ..., xn) = qjk(α

i
2, x3, ..., xn).

For i1 ∈ {0, ..., N2}, we set q̃jk,1i1
= P jk

i and qjk,1i1
=

q̃
jk,1

i1∥∥∥q̃jk,1i1

∥∥∥
Lω

and look for:

l1 = argmin
i1

∥∥Rjk
1 − < Rjk

1 , q
jk,1
i1

>L3,n
ω
qjk,1i1

∥∥
Lω
.

We define qjk,l1 = qjk,1l1
and Rjk

2 = Rjk
1 − < Rjk

1 , qjk,l1 >L3,n
ω
qjk,l1 .

Now, for i2 ∈ {0, ..., N2} − l1, we set q̃jk,2i2
= P jk

i2
− < P jk

i2
, qjk,l1 >L3,n

ω
qjk,l1 and qjk,2i2

=
q̃
jk,2

i2∥∥∥q̃jk,2i2

∥∥∥
Lω

. Again we look for

l2 = argmin
i2

∥∥Rjk
2 − < Rjk

2 , q
jk,2
i2

>L3,n
ω
qjk,2i2

∥∥
Lω
.

We define qjk,l2 = qjk,2l2
and Rjk

3 = Rjk
2 − < Rjk

2 , qjk,l2 >L3,n
ω
qjk,l2 .

If we proceed iteratively, at the end we will obtain

Q1 =

M1∑
k=0

A1
jk

(x1)

(
N2∑
m=0

A2
jk,lm

(x2)qjk,lm(x3, ..., xn)

)
,

where A2
jk,lm

(x2) =< qjk(x2, ..., xn), qjk,lm(x3, ..., xn) >L3,n
ω
, m = 0, 1, ..., N2.
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We will approximate PN (x1, ..., xn) by

PN ≈ Q2 =

M1∑
k=0

A1
jk

(x1)

(
M2∑
m=0

A2
jk,lm

(x2)qjk,lm(x3, ..., xn)

)
,

where M2 is the first index such that

1

mΦ

mΦ∑
i=0

∥∥PN (φi)−Q2(φi)
∥∥2
< ε. (1.33)

We proceed iteratively until completing Step n-1 where we stop. We will have arrived to
a new polynomial that can be written in the form

PN ≈ QNΦ
ε =

M1,M2,...,Mn−1∑
i1,i2,...,in−1

A1
i1

(x1)A2
i1,i2

(x2)...An−1
i1,i2,...,in−1

(xn−1)qn−1
i1,i2,...,in−1

(xn).

Note thatNΦ
ε = {M1, ...,Mn−1, Nn} is the number of function bases used in each variable.

Note also that, in general, the degree of QNΦ
ε is still N1 ×N2 × ...×Nn.

We remark that the last value of NΦ
ε is Nn because the last variable remains untouched.

An improved result (in memory terms) can be obtained if the variables of polynomial PN are
reordered before the Reduced Bases procedure and Nn is the smallest among the Ni.

Visually, we can check the big memory saving. The following picture shows an example
of the first three steps of the algorithm if N1 = 5, N2 = 3, N3 = 4, ....

Figure 1.5: Truncated Orthonormal decomposition. The colored ’×’ mark the function bases
discarded (equivalent to memory savings) in each step (Step 1-red, Step 2-green and Step
3-yellow) of the Hierarchical orthonormalization procedure.
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The tree represents the orthonormal decomposition in each of the variables and the colored
’×’ the function bases that are discarded in each step: 3 function bases (Step 1-red), 2 function
bases (Step 2-green) and 1 function bases (Step 3-yellow). The proportion of the tree that
has been discarded represents approximately the memory savings with respect to the original
polynomial PN obtained by our method.

The last step is to adequate the algorithms for tensorial valuation to QNΦ
ε .

1.4.2 Tensorial valuation for Reduced Bases

Polynomial QNΦ
ε is rewritten for tensorial evaluation as

QNΦ
ε =

M1,M2,...,Mn−1∑
i1,i2,...,in−1

A1
i1

(x1)A2
i1,i2

(x2)...An−1
i1,i2,...,in−1

(xn−1)qn−1
i1,i2,...,in−1

(xn) =

=

M1∑
i1=0

A1
i1

(x1)

M2∑
i2=0

A2
i1,2

(x2)...

Mn−2∑
in−2=0

An−2
i1,n−2

(xn−2)

Mn−1∑
in−1=0

An−1
i1,n−1

(xn−1)qn−1
i1,n−1

(xn).

where we denote i1,j = (i1, i2, ..., ij).

Each polynomial is written in function of the Chebyshev polynomials:

A1
i1

(x1) =

N1∑
j=0

a1
j,i1
T (x1),

A2
i1,2

(x2) =

N2∑
j=0

a2
j,i1,2

T (x2),

...

An−1
i1,n−1

(xn−1) =

Nn−1∑
j=0

an−1
j,i1,n−1

T (xn−1),

qn−1
i1,n−1

(xn) =
Nn∑
j=0

anj,i1,n−1
T (xn),

(1.34)

and QNΦ
ε is kept in memory storing the coefficient of the previous polynomials in n different

multidimensional arrays.

Suppose that we want to evaluate the polynomial in a finite set of points Θ, such that for
qj ∈ N, 1 ≤ j ≤ n, we have that

Θ =
{
x̃ = (x̃1, x̃2, ..., x̃n) / x̃j ∈ {x̃1

j , ..., x̃
qj
j }, x̃kj ∈ [x̃min

j , x̃max
j ], 1 ≤ k ≤ qj

}
.

We employ the notation ηj = {xkj}
qj
k=1, obtained from Θ and (1.23).
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The evaluation of polynomials A1
i1

(η1), ..., An−1
i1,n−1

(ηn−1), qn−1
i1,n−1

(ηn) when they are given by
(1.34) can be done efficiently using the first algorithm from Subsection 1.3.2.

Thus, suppose that we have evaluated them and stored the results in arrays:

A1
i1

(η1) = (A1)(M1+1)×q1 ,

A2
i1,2

(η2) = (A2)(M1+1)×(M2+1)×q2 ,

...

An−1
i1,n−1

(ηn−1) = (An−1)(M1+1)×(M2+1)×...×(Mn−1+1)×qn−1 ,

qn−1
i1,n−1

(ηn) = (An)(M1+1)×(M2+1)×...×(Mn−1+1)×qn .

Definition 1.4.3. Let A and B be two arrays such that{
(A)m1×m2×...×mk×a,

(B)m1×m2×...×mk×b1×...×bs .

We define the special tensorial array operation C = A⊗̃B as:

C(j1, ..., jk−1, :, jk+1, ..., jk+s) = A(j1, ..., jk−1, :, :)
′·B(j1, ..., jk−1, :, jk+1, ..., jk+s),

where · denotes the usual product of matrix times a vector.
It is straightforward that dim(C) = m1 ×m2 × ...×mk−1 × a× b1 × ...× bs.

multiprod command is employed again to implement the special tensorial array operation.

The tensorial valuation for the reduced bases polynomial can be written as:

QNΦ
ε = A1

i1
(η1)⊗̃

(
...⊗̃

(
An−2
i1,n−2

(ηn−2)⊗̃
(
An−1
i1,n−1

(ηn−1)⊗̃qn−1
i1,n−1

(ηn)
))

...
)
,

where again the order fixed by the parenthesis must be strictly followed in order to be con-
sistent with the dimensions of the arrays.

The result will be a q1 × q2 × ... × qn-dimensional array which contains the evaluation of
the polynomial with all the possible combinations of the given values to each of the variables.

1.4.3 Comments about the Reduced Bases method.

Although in the numerical experiments we will see that the results are quite good in the
sense of reduction of memory requirements and computational time cost, we must point that
the procedure presented could be improved.
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We remark that QNΦ
ε is not optimal in various senses. First of all, the hierarchical criteria

to select the function bases is not necessarily the optimal. For example, there might exist a
combination of several function bases that give a less overall error than the ones chosen by
our criterium. The selection criterium that we employ is very fast because, when we have to
order hierarchically the function bases in each step, we only need to reevaluate the function
bases that have not already been ordered.

Another factor that could be improved is the criterium for truncation. We can orthonor-
mally decompose the whole polynomial hierarchically

PN =

N1,N2,...,Nn−1∑
i1,i2,...,in−1

A1
i1

(x1)A2
i1,i2

(x2)...An−1
i1,i2,...,in−1

(xn−1)qn−1
i1,i2,...,in−1

(xn),

and notice that we can independently truncate one branch of the tree or another. For example:

PN ≈
M1,N2,N3...,Nn−1∑

i1,i2,...,in−1

A1
i1

(x1)A2
i1,i2

(x2)...An−1
i1,i2,...,in−1

(xn−1)qn−1
i1,i2,...,in−1

(xn),

or

PN ≈
N1,M2,N3,...,Nn−1∑

i1,i2,...,in−1

A1
i1

(x1)A2
i1,i2

(x2)...An−1
i1,i2,...,in−1

(xn−1)qn−1
i1,i2,...,in−1

(xn).

Our procedure does not maximize memory savings over the whole polynomial. A method
which maximizes the memory savings versus the deterioration of the error when we truncate
function bases of one or other variable could be designed.

1.5 Numerical Results

We are going to apply the Reduced Bases procedure developed in Section 1.4 to polynomial
I12F built in Subsection 1.3.3.

As mentioned before, although a different set of points could be used, the set of points
employed in the Hierarchical procedure will be the set of interpolation points employed in the
construction of the interpolation polynomial I12F , i.e. the Chebyshev nodes Φ = {αl}l∈LN .

We also want to know how the new polynomial valuates option prices over the whole
domain Ω̃. In order to check this, we are going to employ Sample Θ7 (≈ 1. 68· 106 contracts)
defined in Subsection 1.3.3, whose points do not correspond to those of Φ and are equally
distributed over Ω̃.

The first experiment that we are going to do is to check the numerical results when just
Step 1 of the algorithm of the Hierarchical orthonormalization is applied. Once we have
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decomposed

I12F ≈
M1∑
k=0

A1
jk

(x1)qjk(x2, ..., xn),

for M1 = 0, 1, ..., 12, we check how does the approximation valuates options, both in Sample
Φ and in Sample Θ7.

The following table shows the number of function bases retained (M1+1), the total storage
cost in each case and the Mean Square Error when they are employed to compute the option
prices of Sample Φ and of Sample Θ7.

Function Bases Storage cost (bytes) MSESample Φ MSESample Θ7

1 5. 01· 108 3. 41· 10−4 2. 5459961130· 10−4

2 1. 00· 109 0. 14· 10−4 0. 0886299162· 10−4

3 1. 51· 109 3. 79· 10−6 0. 0241547107· 10−4

4 2. 00· 109 8. 53· 10−7 0. 0180563533· 10−4

5 2. 50· 109 6. 72· 10−8 0. 0123753987· 10−4

6 3. 01· 109 8. 79· 10−9 0. 0121988751· 10−4

7 3. 51· 109 2. 30· 10−9 0. 0120682703· 10−4

8 4. 01· 109 3. 89· 10−10 0. 0120340513· 10−4

9 4. 51· 109 5. 29· 10−11 0. 0120324036· 10−4

10 5. 01· 109 1. 77· 10−12 0. 0120330154· 10−4

11 5. 52· 109 2. 33· 10−14 0. 0120330374· 10−4

12 6. 02· 109 3. 22· 10−16 0. 0120330568· 10−4

13 6. 52· 109 1. 18· 10−28 0. 0120330555· 10−4

I12F 6. 52· 109 0 0. 0120330555· 10−4

Table 1.4: Number of function bases retained after Step 1 of the Hierarchical orthonormal-
ization. We include the storage costs in each case and the MSE committed when evaluating
Sample Φ and Sample Θ7.

In the previous table we can check that, as expected, the error over Sample Φ worsens each
time that we discard one of the function bases. But our objective is to obtain a polynomial
which valuates options over the whole domain Ω̃, not just over Sample Φ.

The global error is represented by MSESample Θ7 . Note that with just 5 or 6 function bases
for the first variable, we obtain a polynomial which valuates with comparable accuracy as
I12F but which requires half the storage cost.

We run now the Hierarchical orthonormalization algorithm completely (Steps 1-7). We
fix three different values of the parameter ε. Remember that ε limits the maximum Mean
Square Error allowed when we evaluate Sample Φ with the polynomials obtained from the
procedure.

In the following table, we include the memory requirements of each polynomial and the
error committed when they are employed to compute the contracts of Sample Θ7.
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ε MSE (Sample Θ7) Storage cost (bytes) Memory Savings
I12F 0. 01203· 10−4 6. 52· 109

Q1 4· 10−7 0. 01194· 10−4 6. 263· 107 99. 038 %

Q2 5. 5· 10−7 0. 01229· 10−4 4. 431· 107 99. 319 %

Q3 6· 10−7 0. 01249· 10−4 3. 325· 107 99. 489 %

Table 1.5: Mean Square Error committed when evaluating Sample Θ7 with three different
polynomials constructed from I12F after applying the Hierarchical orthonormalization proce-
dure. We include the storage cost and the memory savings with respect to the storage cost
of I12F .

The previous table shows that with the Reduced Bases approach we obtain much smaller
polynomials (in memory terms) which give an overall error of the same order as the original
I12F . We remark that, as expected, if ε→ 0, the error committed when evaluating Sample Θ7

converges to 0. 01203· 10−4, the interpolation error of I12F .

Concerning the computational cost, we recall that B-F method admits tensorial valuation
in three variables: volatility, stock price and maturity. We define the following sets of points:

1. One value for each of the variables: 1 contract.

2. 7 different stock prices, 6 different volatilities, 5 different maturities and one value for
the rest of the variables: 210 contracts.

3. Sample Θ7, i.e. 6 different values for each of the variables: 1679616 contracts

We remark that evaluate Sample Θ7 would be equivalent to price options in the real
market for several stocks with different parameter values for the NGARCH(1,1) model. The
following table summarizes the results.

1 contract 210 contracts Sample Θ7 (≈ 1.68· 106 contracts)
B-F method 41 s 41 s 3 · 105 s

I12F 91 s 91 s 91 s
Q1 0. 301 s 0. 303 s 0. 768 s
Q2 0. 216 s 0. 218 s 0. 583 s
Q3 0. 162 s 0. 164 s 0. 499 s

Table 1.6: Computational cost of evaluating different sets of contracts with B-F method,
the interpolation polynomial I12F and different polynomials constructed from I12F with the
Reduced Bases approach.

B-F method needs the same time for computing 1 or 210 contracts (because it admits
tensorial valuation for S, σ2

0 and T ). For computing Sample Θ7, B-F method needs to be
evaluated for each different value of {β0, β1, β2, r, (λ+ θ)}, which requires 7776 different eval-
uations of 41 seconds each.
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I12F requires the same computational time in the three examples because, as it was
mentioned in Subsection 1.3.3, the polynomial is too big and it has to be stored in different
parts. The computational cost is due to several employments of function load.

With the polynomials obtained from the Reduced Bases approach, we have retrieved the
tensorial valuation velocity achieved when we were working with the smaller polynomials I3F ,
I6F but with more precision. This can be checked in the following table.

MSE (Sample Θ7) Memory Storage (bytes) Computational cost
I3F 0. 69186· 10−4 5. 24· 105 0. 11 s
I6F 0. 12298· 10−4 4. 61· 107 0. 46 s
Q3 0. 01249· 10−4 3. 325· 107 0. 49 s

Table 1.7: Mean Square Error committed by interpolation polynomials I3F and I6F and by
polynomial Q3 when evaluating Sample Θ7, their storage cost and their computational cost
when used to evaluate Sample Θ7.

As we can see in the previous table, polynomial Q3 requires the same memory storage as
I6F but it gives one digit more of precision. Now we have polynomials that can be stored in
memory without problems and are capable of valuate multiple option prices for several model
parameter values at once.

Finally, we check the performance of polynomials Qi when they are applied to the problem
of estimating parameters with real market data. Concerning the In the Sample analysis, the
results are plotted in Figure 1.6.
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Figure 1.6: Error, in monetary terms, of the In the Sample analysis. We plot each negotiation
day t0 (horizontal axis) vs the root of the InMSE (vertical axis) of Black-Scholes (blue),
B-F(NGARCH(1,1)) (black), I12F (red), Q1 (cyan), Q2 (violet), Q3 (yellow).

On the previous picture we can observe the difference between B-F method and I12F due
to the interpolation error. We can also observe that polynomials Qi are fairly close to I12F .
Polynomials Qi, i = 1, 2, 3 outperform Black-Scholes every day.
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The average In the Sample error committed in 1992 has been:

Black-Scholes B-F I12F Q1 Q2 Q3

Mean
(√

InMSE
)

1.53 0. 303 0. 321 0. 319 0. 324 0. 323

Table 1.8: Mean error, in monetary terms, committed when adjusting model parameters to
traded option prices with the Black-Scholes model, Garch, interpolation polynomial I12F and
the three different polynomials obtained after applying the Reduction Bases approach.

We can compute the mean of the absolute value of the daily difference (MDD) between
each of the polynomials Qi and I12F to see how much have they moved away from I12F :

InMDDQi =
1

54

54∑
j=1

∣∣∣√InMSE
Qi

j −
√
InMSE

I12F

j

∣∣∣ ,
which gives

Q1 Q2 Q3

InMDDQi 0. 00482 0. 00806 0. 00811

Table 1.9: Mean of the absolute value of the daily monetary error difference between inter-
polation polynomial I12F and polynomials Qi, when adjusting model parameters.

This table, jointly with the previous one, show that while ε grows (moderately), we move
away from I12F more and more. Some days achieve a better adjust while others get a worse
one. Obviously, until certain limit value of ε, where the error will grow much more.

Concerning the Out the Sample analysis, the following Figure shows the results obtained:
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Figure 1.7: Error, in monetary terms, of the Out the Sample analysis. We plot each nego-
tiation day t0 (horizontal axis) vs the root of the OutMSE (vertical axis) of Black-Scholes
(blue), B-F (NGARCH(1,1)) (black), I12F (red), Q1 (cyan), Q2 (violet), Q3 (yellow).
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The previous Figure implies that the Reduced Basis approach is consistent. The polyno-
mials obtained with it can be employed to predict option prices from the market.

The average Out the Sample error committed in 1992 has been:

Black-Scholes B-F I12F Q1 Q2 Q3

Mean
(√

OutMSE
)

1.60 0. 642 0. 664 0. 658 0. 662 0. 662

Table 1.10: Error, in monetary terms, when predicting traded option prices with the Black-
Scholes model, Garch, interpolation polynomial I12F and three polynomials obtained after
applying the Reduction Bases approach.

We also compute the mean of the absolute value of the daily difference between each of
the polynomials Qi and I12F .

OutMDDQi =
1

53

53∑
j=1

∣∣∣√OutMSE
Qi

j −
√
OutMSE

I12F

j

∣∣∣ ,
which gives

Q1 Q2 Q3

OutMDDQi 0. 0203 0. 0241 0. 0286

Table 1.11: Mean of the absolute value of the daily monetary error difference between inter-
polation polynomial I12F and and polynomials Qi, when predicting traded option prices.

This table and the previous one give the same conclusions as the ones of the In the Sample
analysis. This analysis can be also seen as a consistency one. Although slightly different
parameters were obtained for each of the Qi in the In the Sample analysis, the new prices
obtained when trying to predict with each polynomial Qi are fairly close.

Concerning the computational cost of the In the Sample analysis (a least square search),
we point out that while with the usual methods (Monte-Carlo, Lattice, Spectral) it takes
several minutes to estimate the parameters of one negotiation day t0, this can be done in a
few seconds with polynomials Qi.



Chapter 2

Option Pricing with Variable Interest
Rates.

2.1 Introduction

In the previous Chapter, GARCH models were introduced in order to obtain an approximation
to the stock’s dynamics more realistic than the Black-Scholes dynamics. The objective of this
Chapter is to study the other component of the Option replicating portfolio, the bond.

We recall that in the Black-Scholes model, the bond’s dynamics is deterministic. However,
the market trades several bonds with different risk-free rates. Furthermore, traded risk-free
rates do not remain constant in time.

It is usually assumed that, specially for short maturities, constant interest rates can be
used for the purpose of pricing options. Moreover, a deeper study is certainly of interest.

When a constant interest rate is assumed r(t) ≡ r0, the bond price is given by the formula

B(t0, T ) = e−r0(T−t0), (2.1)

where t0 denotes the current date and T denotes maturity.
For the rest of the Chapter, we denote by B3−US (t0, t0 + 1

4

)
the price of the 3 months

US Treasury Bond negotiated at date t0 in the Bond market (with t measured in years). We
denote by r3−US

t0 the annualized constant risk-free rate of the 3-month US Treasury Bond, i.e.
the value which satisfies, at date t0, that

B3−US
(
t0, t0 +

1

4

)
= e−

1
4
r3−US
t0 . (2.2)

As a first approach, we will employ the NGARCH(1,1) model defined in equation (1.11).
We will perform a daily In the Sample analysis with the S&P500 European Option contracts
negotiated on Wednesdays between 1990 and 1992, as described in Subsection 1.2.1. The
interest rate r of the NGARCH(1,1) model is treated just as another parameter that must be
estimated from traded option prices on day t0.

49
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The results obtained are plotted in Figure 2.1. In the left side we have plotted, for each
Wednesday t0 between 1990 and 1992, the value of r3−US

t0 (blue) and the estimated value rt0
(red). In the right side, we have plotted the estimated variance (green) of the market for each
negotiation day (σ2

0 of NGARCH(1,1) model at date t0).
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Figure 2.1: On both Figures we plot each negotiation day t0 (horizontal axis) vs the estimated
(from option prices) risk-free rate (left-red), the negotiated rate in the bond market, r3−US

(left-blue) and the estimated (from option prices) initial variance (σ2
0 of NGARCH(1,1) (right-

green).

As we can observe on the left side of Figure 2.1, the values of r3−US
t0 and rt0 are pretty close

many days. Nevertheless, there are some discrepancies at zones marked between discontinuous
vertical lines, and which correspond to high volatility periods in the stock market (implied
variance σ2

0 of option prices), as it can be checked on the right side of Figure 2.1. The
previous results show that the interest rate of the pricing model is closely related with the
one negotiated in the bond market, except at periods of high volatility, where the model is
unable to reproduce the market behaviour.

The first natural extension is to consider deterministic variable interest rates in the context
of the NGARCH(1,1) model. In Section 2.2, following the line presented in [24], we include
a proof of the valuation formula for this case. An alternative proof, following the line of [40],
can also be derived.

Though this model may be a good first approach, it has several shortcomings. The usual
models for variable interest rates tend to have several parameters and they have also to be
estimated. If we do so just employing the traded options, we found ourselves with very few
data (around 60 contracts per day and just four different maturities) that make it unlikely
that the parameter estimation will produce a reasonable fit.

A way of constructing a model without increasing unacceptably the number of parameters
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is to consider variable stochastic interest rates, assuming that the stock and the bond share
the same underlying volatility process. In Section 2.3 a continuous model with Stochastic
Volatility (SV) and Stochastic Interest Rates (SIR) is derived. Starting from Heston’s SV
model, introduced in [34], an extension that allows SIR will be derived, following the lines
proposed in the same article.

An explicit formula for the bond and a semi-explicit formula for the option price will be
given and analysis with real market data will be carried out. The results will be presented in
Section 2.4.

2.2 GARCH with variable deterministic interest rates
Let (Ω,F , P ) be a filtered probability space, where P denotes the physical probability mea-
sure.

The initial hypothesis that we need are:

1. Future interest rates (rt) are considered deterministic.

2. Interest rates only change at discrete times and are right continuous.

3. Under the physical probability measure, the stock (S̄t) dynamics is given by:

 ln

(
S̄t
S̄t−1

)
≡ R̄t = rt−1 + λ

√
σ2
t −

1

2
σ2
t +

√
σ2
t z̄t,

σ2
t = g(σ2

t′ , z̄t′), t′ ≤ t− 1,

(2.3)

where λ is a constant, rt = r(t) is a (known a priori) function of time, positive, right continuous
and which only changes at discrete times, g is a given function (which corresponds to a
GARCH specification) and z̄t|Ft−1 is a normally distributed random variable with 0 mean
and variance 1.

Following the line presented in [24], we define:

Definition 2.2.1. A probability measure Q is said to satisfy the locally Risk-Neutral valuation
relationship with variable Deterministic Rate (RNDR) if:

1. Q is absolutely continuous with respect to the physical measure P .

2.
S̄t
S̄t−1

∣∣∣∣Ft−1 has a log-normal distribution under Q.

3. EQ

(
S̄t
S̄t−1

∣∣∣∣Ft−1

)
= ert−1.

4. V arQ
(

S̄t
S̄t−1

∣∣∣∣Ft−1

)
= V arP

(
S̄t
S̄t−1

∣∣∣∣Ft−1

)
= σ2

t .
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almost surely with respect to measure P .

The results that we are going to present are very similar to the ones in [24]. Prior to the
main theorems, we present a definition and two auxiliary lemmas that will be needed.

Given Z̄t, a random variable such that Z̄t
∣∣Ft−1 is normally distributed with 0 mean and

variance K under probability P , we define a new measure Q by:

dQ = e

t=T∑
t=1

(rt−1−ρ+Ȳt)
dP. (2.4)

where 
Ȳt = νt−1 + Z̄t,

νt−1 = −rt−1 + ρ− K2

2
,

(2.5)

and ρ is a constant.

Lemma 2.2.1. Q is a probability measure absolutely continuous with respect to measure P .
Furthermore, for each random variable W̄t that is Ft-measurable, we have that

EQ(W̄t|Ft−1) = EP (W̄te
(rt−1−ρ)+Ȳt |Ft−1).

Proof. By the definition of Ȳt, it is clear that

T∑
t=1

(rt−1 − ρ+ Ȳt) =
T∑
t=1

(rt−1 − ρ+ νt−1 + Z̄t) =
T∑
t=1

(
Z̄t −

K2

2

)
,

where we recall that Z̄t is a random variable such that Z̄t
∣∣Ft−1 is normally distributed with

0 mean and variance K under probability P . Therefore,

EP (e−ρ+Ȳt|Ft−1) = e−rt−1 .

Let us check that Q is a probability measure
(∫

Ω

1dQ = 1

)
.

∫
Ω

1dQ = EP

[
e

T∑
i=1

(ri−1−ρ+Ȳi)

∣∣∣∣∣F0

]
= EP

[
e

T−1∑
i=1

(ri−1−ρ+Ȳi)
erT−1−ρ+ȲT

∣∣∣∣∣F0

]
=

= EP

[
e

T−1∑
i=1

(ri−1−ρ+Ȳi)
erT−1EP (e−ρ+ȲT |FT−1)

∣∣∣∣∣F0

]
= EP

[
e

T−1∑
i=1

(ri−1−ρ+Ȳi)

∣∣∣∣∣F0

]
,

so, we obtain the desired result reasoning recursively.

The second part of the Lemma is given by Radon-Nikodym’s theorem.
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Although we detail it below (see Theorem 2.2.1), we mention now that, under the hypoth-
esis over the representative agent and the utility function, it exists a probability measure Q,
given as in (2.4), such that

S̄t−1 = EP (e−ρ+ȲtS̄t|Ft−1) (2.6)

Lemma 2.2.2. Suppose that S̄t follows (2.3) under probability P and that (2.6) holds.
This implies:

1.
S̄t
S̄t−1

∣∣∣∣Ft−1 has a log-normal distribution under Q.

2. EQ

(
S̄t
S̄t−1

∣∣∣∣Ft−1

)
= ert−1.

3. V arQ
(

S̄t
S̄t−1

∣∣∣∣Ft−1

)
= V arP

(
S̄t
S̄t−1

∣∣∣∣Ft−1

)
= σ2

t a.s. with respect to measure Q.

Proof. In order to prove statement (2), we use Lemma 2.2.1:

EQ

(
S̄t
S̄t−1

∣∣∣∣Ft−1

)
= EP

(
S̄t
S̄t−1

e(rt−1−ρ)+Ȳt

∣∣∣∣Ft−1

)
=
ert−1

St−1

EP (S̄te
−ρ+Ȳt |Ft−1) = ert−1 .

by the hypothesis of the lemma.

To prove statements (1) and (3), consider the conditional moment generating function

W̄t = log

(
S̄t
S̄t−1

)
under measure Q. Thus,

EQ
(
ecW̄t

∣∣∣Ft−1

)
= EP

(
ecW̄t+(rt−1−ρ)+Ȳt

∣∣∣Ft−1

)
,

where c is a constant.

Under measure P , since S̄t follows process (2.3), it holds that W̄t

∣∣Ft−1 is normally dis-

tributed, with variance σ2
t and mean µt = EP

(
log
(

S̄t
S̄t−1

)∣∣∣Ft−1

)
= rt−1 + λ

√
σ2
t .

On the other hand, Ȳt is Ft−1-conditionally normal, thus

Ȳt = α + βW̄t + Ūt,

where W̄t and Ūt are independent normal processes and α, β are constants. It holds that

EQ
(
ecW̄t

∣∣∣Ft−1

)
= eα+(rt−1−ρ)EP

(
e(β+c)W̄t+Ūt

∣∣∣Ft−1

)
= eα+(rt−1−ρ)+

E( Ū2
t |Ft−1)

2 EP
(
e(β+c)W̄t

∣∣∣Ft−1

)
= eα+(rt−1−ρ)+

E( Ū2
t |Ft−1)

2
+βµt+β2 σ

2
t
2

+c(µt+βσ2
t )+c2

σ2
t
2 .
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Now, if c = 0,

eα+(rt−1−ρ)+
E( Ū2

t |Ft−1)
2

+βµt+β2 σ
2
t
2 = 1,

since EQ (1|Ft−1) = 1. This leads us to

EQ
(
ecWt

∣∣Ft−1

)
= ec(µt+βσ

2
t )+c2

σ2
t
2 ,

which implies that

log

((
S̄t
S̄t−1

)∣∣∣∣Ft−1

)
is normally distributed with mean µt + βσ2

t and variance σ2
t under measure Q.

Definition 2.2.2. A utility function U(x) is a strictly increasing and strictly concave function
with continuous second order derivative.

The increasing property models that investors prefer more to less (wealth or consumption)
and the concave property models that investors are risk-averse.

Definition 2.2.3. The coefficient of absolute risk aversion for a given utility function U(x),
is

Ra(x) = −U
′′(x)

U ′(x)
, (2.7)

and the coefficient of relative risk aversion is defined by

Rr(x) = xRa(x). (2.8)

Theorem 2.2.1. If the representative agent is an expected utility maximizer and the utility
function is time separable and additive, then RNDR holds under any of the following two
conditions:

1. The utility function is of constant relative risk aversion and changes in the logarithmic
aggregate consumption are distributed normally, under measure P, with deterministic
mean (known a priori) and constant variance.

2. The utility function is of constant absolute risk aversion and changes in the aggre-
gate consumption are distributed normally, under measure P, with deterministic mean
(known a priori) and constant variance.

Proof. Let U(Ct) and Ct be the utility function and aggregate consumption at instant t. If ρ
is the impatience factor, the maximization of the utility function gives the following equation
(see [24]):

S̄t−1 = EP

[
e−ρ

U ′(Ct)

U ′(Ct−1)
S̄t

∣∣∣∣Ft−1

]
.
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If U(Ct) is a utility function of constant absolute risk aversion Ra(Ct) = κ, then it holds
that

U ′′(C)

U ′(C)
= −κ,

which implies ∫ t

t−1

U ′′(C)

U ′(C)
dt =

∫ t

t−1

−κdt,

leading to

log

(
U ′(Ct)

U ′(Ct−1)

)
= −κ(Ct − Ct−1).

On the other hand if U(Ct) is a utility function of relative risk aversion Rr(Ct) = κ, then
it holds that

U ′′(C)

U ′(C)
= − κ

C
,

which employing the same arguments leads to

log

(
U ′(Ct)

U ′(Ct−1)

)
= −κ log

(
Ct
Ct−1

)
.

In any case, under the hypothesis of the Theorem, ln
(

U ′(Ct)
U ′(Ct−1)

)
distributes normally. This,

jointly with Lemmas 2.2.1 and 2.2.1 completes the proof.

Theorem 2.2.2. The stock’s dynamics in measure Q is given by: ln

(
S̄t
S̄t−1

)
≡ R̄t = rt−1 −

1

2
σ2
t +

√
σ2
t ε̄t,

σ2
t = g(σ2

t′ , ε̄t′ − λ), t′ ≤ t− 1.

where ε̄t is a normally distributed random variable with mean 0 and variance 1.

Proof. Identical to the one of Theorem 2.2 in [24] with the corresponding rt−1.

Corollary 2.2.1.

S̄T = S̄t exp

[
T∑

i=t+1

ri−1 −
1

2

T∑
i=t+1

σ2
i +

T∑
i=t+1

ε̄i

]
.

Corollary 2.2.2. The discounted price process e
−

T∑
i=1

ri−1

S̄t is a Q-martingale.

Corollary 2.2.3. The price of the European Option price is given by the conditional expec-
tation:

C(S) = e
−

T∑
i=t+1

ri−1

EQ
[
max(S̄T −K, 0)|S̄t = S

]
.
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There are two different possibilities to estimate the model parameter values from market
data.

The first one is to do a cross estimation. We fix an interest rate model. With the set
of historical data of the Bond market, we estimate its parameter values. Afterwards, we
estimate the future interest rates. Assuming that the results obtained for future interest rates
are deterministic, we enforce their values into the pricing model of the option.

Another option is to assume that the option price incorporates all the information. On a
fixed date t0, we can try to estimate the parameter values of the pricing model and those of
the interest rate model with just the traded options and the bond price on date t0. This is
the criteria that we prefer to follow (and the criteria employed in the analysis of Subsection
1.2.1).

Unfortunately, we usually have very few contracts and very few maturities (around 60
contracts per day with just 4 different maturities). This makes difficult to carry out a param-
eter estimation with a reasonable fit. If we employ complex rate models, the number of total
parameters grows too much and we do not have enough differentiated contracts.

Trying to solve the lack of enough traded contracts, we relaxed the assumption of de-
terministic rates. The idea is to incorporate a stochastic interest rate model directly to the
pricing model of the option. We will modify a continuous pricing model in order to do so. An-
other objective is to not increase much the total number of parameters, so a good estimation
can be carried out with the available contracts.

2.3 Stochastic Volatility and Stochastic Interest Rates

In [34], Heston proposes a Stochastic Volatility model with constant interest rate and derives a
semi-explicit valuation formula. Heston also describes, in general terms, how the model could
be extended to incorporate Stochastic Interest Rates. This Section is devoted to the con-
struction of an extension of Heston’s Stochastic Volatility model with a particular stochastic
bond model.

The Subsection will be organized as follows.

First, we will review Heston’s original model with constant interest rates.

In a second step, we will make the theoretical development of the extended model as
presented in [34].

In a third step, we will search for a stochastic bond formula that can be nested within this
framework, i.e., that fits with the specifications of the pricing model. The construction of the
bond model must be considered independent of the rest of the text. Our first objective will be
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to find an explicit and suitable bond formula that can be incorporated to the pricing model
of the option. The second objective will be to do not increase too much the total number of
parameters.

Finally, we will assume that the market is composed by the stock and the discounted
bond computed in the previous step. We will see that, under certain parameter restrictions,
the resulting model is of the type proposed by Heston in [34]. We will derive a semi-explicit
formula and obtain a pricing model which has just one more parameter than the original
Heston’s SV. Thus, we will have incorporated stochastic interest rates without increasing
much the number of parameters. Therefore, a satisfactory estimation can be carried out with
the available traded contracts.

2.3.1 Heston SV model

We recall that in Heston’s model [34], the dynamics is:{
dS̄(t) = µS̄(t)dt+

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = κ[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

(2.9)

where z̄1 and z̄2 are Wiener processes. Employing the notation of [3] or [34], we define the
(instantaneous) correlation coefficient ρ by

ρdt = Cov(dz̄1, dz̄2) (2.10)

where Cov(. , . ) stands for covariance.

We assume that a constant rate risk-free bond exists: B(t, T ) = e−r0(T−t).

In [34], it is claimed that these assumptions are insufficient to price contingent claims,
because we have not made an assumption that gives the price of “volatility risk”. By no
arbitrage arguments (see [3] or [34]), the value of any claim must satisfy:

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ r0S

∂U

∂S
+ (κ(θ − v)− λ(S, v, t))

∂U

∂v
− r0U +

∂U

∂t
= 0

(2.11)
where S̄(t) = S, v̄(t) = v and λ(S, v, t) represents the price of volatility risk.

For the rest of the Chapter, we will assume that any risk premia is of the form λ(S, v, t) =
λv. It should be remarked that, once fixed the components of the market, the risk premia is
independent of the claim, i. e. the same risk premia is used to price all the claims (see [3]).

Remark 2.3.1. As Heston claims in ([34]), this choice of risk premia is not arbitrary. In the
consumption model derived in [8],

λ(S, v, t)dt = γCov
[
dv̄,

dC̄

C̄

]
,
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where γ is the relative risk aversion of an investor, C̄(t) is the consumption and Cov(. , . )
denotes the covariance. The consumption process in [17] is

dC̄(t) = µcv̄(t)C̄(t)dt+ σc
√
v̄(t)C̄(t)dz,

where consumption growth has constant correlation with the spot-asset return, which leads
to the indicated risk premia.

Thus, the price of the European Call Option U(S, v, t) satisfies the partial differential
equation:

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ r0S

∂U

∂S
+ (κ(θ − v)− λv)

∂U

∂v
− r0U +

∂U

∂t
= 0, (2.12)

subject to the following conditions:

U(S, v, T ) = max(0, S −K),

U(0, v, t) = 0,

∂U

∂S
(∞, v, t) = 1,

r0S
∂U

∂S
+ κθ

∂U

∂v
− r0U + Ut

∣∣∣∣
(S,0,t)

= 0,

U(S,∞, t) = S.

(2.13)

Heston conjectures a solution similar to the Black-Scholes model:

U(S, v, t, T,K) = S ·R1 −K ·B(t, T ) ·R2, (2.14)

The following semi-explicit formula for the price of the European Option is obtained

U (x, v, τ, ln(K)) = x ·R1 (x, v, τ ; ln(K))− ln(K) ·B(t, T ) ·R2 (x, v, τ ; ln(K)) , (2.15)

where x = ln(S), τ = T − t and function Rj, j ∈ {1, 2} is given by

Rj(x, v, τ ; ln(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ ln(K)fj(x, v, τ, φ)

iφ

]
dφ, (2.16)

where
fj(x, v, τ ;φ) = eC(τ ;φ)+D(τ ;φ)+iφx,

C(τ ;φ) = r0φiτ +
a

σ2

{
(bj − ρσφi+ d)τ − 2 ln

[
1− gedτ

1− g

]}
,

D(τ ;φ) =
bj − ρσφi+ d

σ2

[
1− edτ
1− gedτ

]
,

g =
bj − ρσφi+ d

bj − ρσφi− d
,

d =
√

(ρσφi− bj)2 − σ2(2ζjφi− φ2),

ζ1 =
1

2
, ζ2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ.

(2.17)
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The following result is also given in [34]:

Theorem 2.3.1. Given the processes:{
dx̄(t) = [r0 + ζj v̄(t)]dt+

√
v̄(t)dz̄1,

dv̄(t) = (a− bj)v̄(t)dt+ σ
√
v̄(t)dz̄2,

then Rj, given by (2.16)-(2.17), is the probability that the contract finishes “In the money”.

Rj(x, v, t; ln(K)) = Pr [ x̄(T ) ≥ ln(K)| x̄(t) = x, v̄(t) = υ] . (2.18)

Proof. See [34]

2.3.2 The extended model

We propose (see [34]) the following market dynamics in the physical measure:
dS̄(t) = µSS̄(t)dt+ σs(t)

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = κ[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = µbB̄(t, T )dt+ σb(t)
√
v̄(t)B̄(t, T )dz̄3(t),

(2.19)

We also denote
ρsvdt = Cov(dz̄1, dz̄2),

ρsbdt = Cov(dz̄1, dz̄3),

ρvbdt = Cov(dz̄2, dz̄3).

(2.20)

Let X̄(t) = (S̄(t), v̄(t), B̄(t, T )). Let us assume that the short rate of interest is a deter-
ministic function of the state factors, i.e. r̄ = r̄(X̄(t)), (short rates are stochastic but, at any
fixed time t, they can be computed from the state of the market). Assuming as in [34] that
the risk premia is of the form λv, any claim satisfies the partial differential equation (see [3],
pg 218):

∂U

∂t
+

1

2
σ2
svS

2∂
2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2∂
2U

∂B2
+ ρsvσsσSv

∂2U

∂s∂v
+ ρsbσsσbvSB

∂2U

∂S∂B

+ ρvbσbσBv
∂2U

∂v∂B
+ rS

∂U

∂S
+ [k(θ − v)− λv]

∂U

∂v
− rU + rB

∂U

∂B
= 0,

(2.21)
where X̄(t) = X = (S, v, B), r = r (X) and subject to the terminal condition of the claim
(European Call) and proper boundary data (see (2.13)) and B(T, T ) = 1.

There also exists a risk-neutral measure π. The value of any T-claim U(t,X) is given by
the conditional expectation:

U(t,X) = Eπ
[
e−

∫ T
t r̄(X̄(s))dsU(X̄(T ))

∣∣∣ X̄(t) = X
]
, (2.22)
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and the market dynamics in the risk neutral measure is given by
dS̄(t) = rS̄(t)dt+ σs(t)

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = [kθ − kv̄(t)− λv̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = rB̄(t, T )dt+ σb(t)
√
v̄(t)B̄(t, T )dz̄3(t).

(2.23)

The change of variable x = ln
(

S
B(t,T )

)
implies that the PDE in the new variable can be

written as:

∂U

∂t
+

(
1

2
σ2
sv +

1

2
σ2
bv − ρsbσsσbv

)
∂2U

∂x2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2∂
2U

∂B2

+
(
−σ2

bvP + ρsbσsσbvB
) ∂2U

∂x∂B
+ (ρsvσsσv − ρvbσbσv)

∂2U

∂x∂v
+ (ρvbσbσvB)

∂2U

∂v∂B

+

(
−1

2
σ2
sv +

1

2
σ2
bv

)
∂U

∂x
+ [k(θ − v)− λv]

∂U

∂v
+ rB

∂U

∂B
− rU = 0.

(2.24)

Similar to the simple SV model, Heston conjectures a solution of the form:

U(t, x, P, v) = exB(t, T )R1(t, x, v)−KB(t, T )R2(t, x, v), (2.25)

Substituting (2.25) into equation (2.24), we obtain that Rj(t, x, v) must satisfy, for j = 1, 2:

1

2
σ2
xv
∂2Rj

∂x2
+ ρxvσxσv

∂2Rj

∂x∂v
+

1

2
σ2v

∂2Rj

∂v2
+ ζjv

∂Rj

∂x
+ (a− bjv)

∂Rj

∂v
+
∂Rj

∂t
= 0, (2.26)

where
1

2
σ2
x =

1

2
σ2
s − ρsbσsσb +

1

2
σ2
b ,

ρxv =
ρsvσsσ − ρbvσbσ

σxσ
,

ζ1 =
1

2
σ2
x, ζ2 = −1

2
σ2
x, a = kθ,

b1 = k + λ− ρsvσsσ,
b2 = k + λ− ρbvσbσ,

(2.27)

subject to the condition at maturity corresponding to the European Option Call:

Rj(T, x, v; ln(K)) = I{x≥ln(K)},

where I denotes the indicator function.

Remark 2.3.2. In Subsection 2.3.4 we will see that, with the bond model that we are going
to propose, short rates are of the form r = µ + βv (µ, β constant) and, using no arbitrage
arguments, that the risk premia must be λ(S, P, v, t) = λv, so we can apply Heston’s results.

The following proposition is proven in [34].

Proposition 2.3.1. Functions Rj, j ∈ {1, 2} in (2.25) can be interpreted as the probabilities
that process x finishes in the money. There exists a semi-explicit pricing formula (that we
derive in Subsection 2.3.4) which is obtained through the characteristic function.
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2.3.3 The stochastic bond.

We are looking for a bond formula which can be nested in (2.19). Longstaff and Schwartz
develop in [45] a model for interest rates that we are partly going to use.

The interest rate model derived in [45] depends on 6 different parameters. Since we do
not want to increase too much the total number of parameters in the pricing model of the
option, we are going to develop a simpler model based in it.

We mentioned before that the construction of the bond model should be considered inde-
pendent of the rest of the text.

Without loss of generality, we can assume that the bond is offered to the market by an
entity (the US government for example), whose unique function in the market is to trade the
bond. This bond is constructed, by no arbitrage arguments, upon a certain asset Q̄. We
assume that asset Q̄, although dependant of the state of the market, is only accessible to the
the entity which offers the bond. Therefore, any other investor who invests in the market
described by (2.19) can only negotiate upon the traded stock S̄ and the bond.

We suppose the existence of an asset with dynamics:{
dQ̄ = (µ+ δv̄)Q̄dt+ σQ̄

√
v̄Q̄dZ̄,

dv̄ = [k(θ − v̄)]dt+ σ
√
v̄dz̄2.

(2.28)

where v̄(t) is the same volatility process of (2.19).

Following the development in [45], we assume that individuals have time-additive prefer-
ences of the form

Et

[∫ ∞
t

exp(−ρs) log(C̄s)ds

]
, (2.29)

where E[· ] is the conditional expectation operator, ρ is the utility discount factor and C̄s
represents consumption at time s.

The representative investor’s decision problem is equivalent to maximizing (2.29) subject
to the budget constraint

dW̄ = W̄
dQ̄

Q̄
− C̄dt, (2.30)

where W̄ denotes wealth.

Standard maximization arguments employed in [45] lead to the following equation for the
wealth dynamics

dW̄ = (µ+ δv̄(t)− ρ)W̄dt+ σQ̄W̄
√
v̄(t)dZ̄. (2.31)

Applying Theorem 3 in [16], the value of a contingent claim B(τ, v) must satisfy the partial
differential equation

−Bt =
σ2v

2
Bvv + (kθ − kv − λv)Bv − rB, (2.32)
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where v̄(t) = v, the market price of risk is λv and r̄(t) = r is the instantaneous riskless rate.

To obtain the equilibrium interest rate r̄, Theorem 1 of [16] is applied. This theorem
relates the riskless rate to the expected rate of change in marginal utility. The result obtained
is that

r̄(t) = µ+ (δ − σ2
Q̄)v̄(t) = µ+ βv̄(t), (2.33)

The price of a riskless unit discount bond B(τ, v), where τ = T − t is obtained solving
equation (2.32) subject to the maturity condition B(0, v) = 1.

Remark 2.3.3. In Subsection 2.3.4 we will prove that r̄ is the instantaneous interest rate
employed in the market dynamics given in equation (2.23) of Subsection 2.3.2.

For the rest of the text, we assume that β > 0. We will see that when parameter β → 0+,
the function B(τ, v) approaches to the bond price when the risk-free rate is considered constant
(B(τ, v) = e−µτ ).

Now, we proceed to give the main result of this Subsection.

Theorem 2.3.2. The riskless unit discount bond B(τ, v), where τ = T − t denotes the time
until maturity, v̄(τ) = v and r̄(t) = r = µ+ βv, is given by the formula:

B(τ, v) = F (τ)eG(τ)v, (2.34)

where

F (τ) = exp

(
−
(
µ+

kθ

b

)
τ + kθ

(
b+ c

bc

)
ln
(
b+ cedτ

)
− kθ

(
b+ c

bc

)
ln(b+ c)

)
,

G(τ) =
edτ − 1

b+ cedτ
,

(2.35)

and
d = −

√
(k + λ)2 + 2βσ2,

b =
(k + λ)− d

2β
,

c =
−(k + λ)− d

2β
.

(2.36)

Proof. For simplicity, along the proof, we will employ the notation:

η = kθ, α = k + λ.

The claim satisfies the partial differential equation (2.32) subject to the maturity condition
B(0, v) = 1. With the notation that we have just introduced, we have to solve:Bτ =

σ2

2
vBvv + (η − αv)Bv − (µ+ βv)B,

B(0, v) = 1.
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We conjecture a solution of the form:

B(τ, v) = F (τ)eG(τ)v.

Thus, we have that

Bv = F (τ)G(τ) exp(G(τ)v),

Bvv = F (τ)G2(τ) exp(G(τ)v),

Bτ = [F ′(τ) + F (τ)G′(τ)v] exp(G(τ)v),

and condition B(0, v) = 1 imposes that F (0) = 1 and G(0) = 0.

Substituting into the PDE

σ2

2
vF (τ)G2(τ) + (η − αv)F (τ)G(τ)− (µ+ βv)F (τ) = F ′(τ) + F (τ)G′(τ)v. (2.37)

As the previous equation is an identity in v, we obtain two equations:
σ2

2
F (τ)G2(τ)− αF (τ)G(τ)− βF (τ) = F (τ)G′(τ),

ηF (τ)G(τ)− µF (τ) = F ′(τ).

For the first one, as candidate for solution we take:

G(τ) =
a+ edτ

b+ cedτ
=

edτ − 1

b+ cedτ
,

as G(0) = 0 implies a = −1 and b 6= −c.

Thus, obtaining G2(τ), G′(τ) and substituting, we obtain a second degree equation given
in function of exp(2dτ), exp(dτ), 1, which implies that:

σ2 − 2αc− 2βc2 = 0,

−2σ2 − 2α(b− c)− 4βbc = 2(bd+ cd),

σ2 + 2αb− 2βb2 = 0.

Solved for b and c, we obtain:

c =
−α±

√
α2 + 2βσ2

2β
,

b =
α±

√
α2 + 2βσ2

2β
.

As b 6= −c, two solutions are eliminated. Another one is rejected when solving the other
ODE as it appears ln(b+ c), which must be positive. The solution is then:
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c =
−α +

√
α2 + 2βσ2

2β
,

b =
α +

√
α2 + 2βσ2

2β
,

d = −
√
α2 + 2βσ2.

For the second equation, we obtain:{
ηF (τ)G(τ)− µF (τ) = F ′(τ),

F (0) = 1.

After substituting, we arrive to:

F (τ) = exp

(
−
(
µ+

η

b

)
τ + η

b+ c

bc
ln(b+ cedτ )− η b+ c

bc
ln(b+ c)

)
,

which completes the proof.

For the rest of the Chapter, we denote B̄(τ, v̄) = B(τ, v̄).

Proposition 2.3.2. The bond dynamics in the physical measure is given by

dB̄(τ, v̄) = [µ+ βv̄ + λv̄] B̄(τ, v̄)dt+G(τ)σ
√
v̄B̄(τ, v̄)dz̄2

= (r̄(t) + λv̄)B̄(τ, v̄)dt+G(τ)σ
√
v̄B̄(τ, v̄)dz̄2,

(2.38)

where r̄(t) denotes the instantaneous riskless rate and z̄2 is the same Wiener process as in
equation (2.19).

Proof. We have that
dv̄ = [k(θ − v̄)]dt+ σ

√
v̄dz̄2,

B(τ, v) = F (τ)eG(τ)v,

so applying Itô’s formula we get to

dB̄(τ, v̄) =− [F ′(τ) + F (τ)G′(τ)v̄] eG(τ)v̄dt+G(τ)B̄(τ, v̄)
(
[k(θ − v̄)] dt+ σ

√
v̄dz̄2

)
+

+
1

2
G2(τ)B̄(τ, v̄)σ2v̄dt,

where we have used that Bt = −Bτ .

Now, taking in account equation (2.37)

F ′(τ) + F (τ)G′(τ)v = F (τ)

[
σ2

2
vG2(τ) + [kθ − (k + λ)v]G(τ)− (µ+ βv)

]
,



2.3. Stochastic Volatility and Stochastic Interest Rates 65

we come to

dB̄(τ, v̄) =−
[
σ2

2
v̄G2(τ) + [kθ − (k + λ)v̄]G(τ)− (µ+ βv̄)

]
B̄(τ, v̄)dt+

+G(τ)B̄(τ, v̄)
(
[k(θ − v̄)] dt+ σ

√
v̄dz̄2

)
+

1

2
G2(τ)B̄(τ, v̄)σ2v̄dt,

and rearranging terms the proof is complete.

The following result will be interesting in the following Subsection, where we incorporate
the bond to the pricing model of the option. It states that when parameter β approaches to
0+, then function B(τ, v) converges to the price of the bond when constant risk-free rates are
employed, i.e., the bond employed in the simple SV model.

Proposition 2.3.3. Consider the functions given by

F (τ) = exp

(
−
(
µ+

kθ

b

)
τ + kθ

(
b+ c

bc

)
ln
(
b+ cedτ

)
− kθ

(
b+ c

bc

)
ln(b+ c)

)
,

G(τ) =
edτ − 1

b+ cedτ
,

and
d = −

√
(k + λ)2 + 2βσ2,

b =
(k + λ)− d

2β
,

c =
−(k + λ)− d

2β
.

If β → 0+, then we have that:

F (τ)→ exp(−µτ),

G(τ)→ 0.

Proof. Expanding the previous definitions for F (τ) and G(τ) and condensing the terms in
function of β, we will get to an expression equivalent to

kθ

b
= 2βα1(β),

kθ

(
b+ c

bc

)
ln
(
b+ cedτ

)
= α2(β)β ln

(
α3(β)

β

)
,

kθ

(
b+ c

bc

)
ln(b+ c) = α4(β)β ln

(
α5(β)

β

)
,

edτ − 1

b+ cedτ
= βα6(β),

where it is easy to check that lim
β→0+

αi(β) ∈ R,∀i = 1, ..., 6 and lim
β→0+

αi(β) > 0, i = 3, 5, being

then straightforward the result.
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Lemma 2.3.1. Let G(τ) be given by (2.35). Then it holds:
G(τ) =

edτ − 1

b+ cedτ
−→
τ→0

0,

G(τ) 6= 0, τ > 0,

G(0) = 0.

Proof. We recall that G(τ) is given by

G(τ) =
edτ − 1

b+ cedτ

where
d = −

√
(k + λ)2 + 2βσ2,

b =
(k + λ)− d

2β
,

c =
−(k + λ)− d

2β
.

and since, by hypothesis β, σ2 > 0, the result follows.

Remark 2.3.4. As B̄(τ, v̄) is the stochastic process of a bond price, the stochastic component
G(τ)σ

√
v̄ of equation (2.38) must vanish at maturity so the bond reaches par at maturity with

probability one.
This is also satisfied due to the previous Lemma.

2.3.4 Valuation Formula

Suppose that the market is formed by a stock given by (physical measure){
dS̄(t) = µSS̄(t)dt+ σs(t)

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = κ[θ − v̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

and by a bond
B̄(t, T ; v̄) = B̄(τ ; v̄) = F (τ)eG(τ)v̄,

where τ = T − t and F (τ), G(τ) are explicitly given by formulas (2.35)-(2.36).

If we compute the bond dynamics, Proposition 2.3.2 enforces that, in order to be consistent
with model (2.19), 

σb(τ) = σG(τ),

ρbv = 1,

ρbs = ρvs,

(2.39)

and for simplicity reasons we have taken σS(t) ≡ 1.
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The sign and magnitude of the correlation between the bond and the stock seems to be
difficult to estimate from market data (see [39]). Condition ρbs = ρvs, although restrictive,
does not violate market empirical observations in the sense of the sign (positive/negative).

Proposition 2.3.4. The short interest rate is given by r = µ + βv and the risk premia
λ(S, v, B, t) = λv where λ is the constant employed in the bond formula (2.34).

Proof. Let us assume that it exists a deterministic function r̄ = r̄
(
X̄(t)

)
where X̄(t) =

(S̄(t), v̄(t), B̄(t, T )) for the short interest rate. Using the results in [3], pg 218, any contingent
claim must satisfy

∂U

∂t
+

1

2
σ2
svS

2∂
2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
σ2
bvB

2∂
2U

∂B2
+ ρsvσsσSv

∂2U

∂s∂v
+ ρsbσsσbvSB

∂2U

∂S∂B
+

+ ρvbσbσBv
∂2U

∂v∂B
+ rS

∂U

∂S
+ [k(θ − v)− λ(S, v, B, t)]

∂U

∂v
− rU + rB

∂U

∂B
= 0.

where X̄(t) = X = (S, v, B).

Suppose that, fixed a maturity T (τ = T − t), we want to price the contingent claim which
values 1 at maturity. In order to avoid any arbitrage opportunity, this claim has to be the
bond,

U(S, v, B, τ) = F (τ)eG(τ)v,

thus, it must hold that

−
(
F ′(τ)eG(τ)v + F (τ)G′(τ)veG(τ)v

)
+

1

2
σ2vF (τ)G2(τ)eG(τ)v+

+ [k(θ − v)− λ(S, v, B, t)]F (τ)G(τ)eG(τ)v − rF (τ)eG(τ)v = 0.

On the other hand, by construction of the bond, we know that

−
(
F ′(τ)eG(τ)v + F (τ)G′(τ)veG(τ)v

)
+

1

2
σ2vF (τ)G2(τ)eG(τ)v+

+ [k(θ − v)− λv]F (τ)G(τ)eG(τ)v − (µ+ βv)F (τ)eG(τ)v = 0.

We subtract both expressions and divide by F (τ)eG(τ)v to get to

(−λ(S, v, B, t) + λv)G(τ) + (−r + (µ+ βv)) = 0.

The previous expression must hold for all v, τ . From Proposition 2.3.1 we know that
G(τ) 6=0, τ 6= 0 and that G(0) = 0. Standard arguments yield the desired result.

In the riskless measure, the dynamics is:
dS̄(t) = rS̄(t)dt+

√
v̄(t)S̄(t)dz̄1(t),

dv̄(t) = [kθ − kv̄(t)− λv̄(t)]dt+ σ
√
v̄(t)dz̄2(t),

dB̄(t, T ) = rB̄(t, T )dt+ σG(τ)
√
v̄(t)B̄(t, T )dz̄2(t),

(2.40)
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where the riskless rate is r̄(t) = µ+ βv̄(t).

If we compare it with the original SV model of Heston, note that just one new parameter
has appeared, β, which models the stochastic component of the bond.

Proposition 2.3.3 states that, as β approaches to 0+, the function which gives the bond
price B(τ, v) converges, for any fixed v, to e−µτ , which is the price of a bond when constant risk
free rates are employed. Therefore, the original SV model can be considered a particular case
of this one. This will be used to check, in the numerical experiments, the general assumption
of constant interest rates when pricing options.

For the rest of the Chapter, we impose β ≥ 0 where β = 0 denotes the the original SV
model.

Now we are going to develop a semi-explicit formula. We recall that Heston conjectured
in [34] a solution

U(t, x, P, v) = exB(t, T )R1(t, x, v)−KB(t, T )R2(t, x, v),

where Rj, j ∈ {1, 2} satisfies (2.26)-(2.27).

Substituting the parameter restrictions (2.39) into (2.26)-(2.27), we obtain

1

2
σ2
xv
∂2Rj

∂x2
+ ρxvσxσv

∂2Rj

∂x∂v
+

1

2
σ2v

∂2Rj

∂v2
+ ζjv

∂Rj

∂x
+ (a− bjv)

∂Rj

∂v
+
∂Rj

∂t
= 0, (2.41)

where
1

2
σ2
x =

1

2
− ρsvσG(τ) +

1

2
σ2G2(τ),

ρxv =
ρsv − σG(τ)

σx
,

ζ1 =
1

2
σ2
x, ζ2 = −1

2
σ2
x, a = kθ,

b1 = k + λ− ρsvσ,
b2 = k + λ− σ2G(τ).

(2.42)

Lemma 2.3.2. Let τ = T − t. The solution of equation

1

2
σ2
xv
∂2fj
∂x2

+ ρxvσxσv
∂2fj
∂x∂v

+
1

2
σ2v

∂2fj
∂v2

+ ζjv
∂fj
∂x

+ (a− bjv)
∂fj
∂v
− ∂fj
∂τ

= 0, (2.43)

subject to f(x, v, 0;φ) = eiφx is the characteristic function of Rj.

Proof. See Appendix in [34].

In order to obtain the solution (2.43), the characteristic function is conjectured to be

fj(x, υ, τ, φ) = eC(τ,φ)+D(τ,φ)υ+iφx.
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Thus it holds that:

∂f

∂t
= f

(
∂C

∂t
+
∂D

∂t
υ

)
= f

(
−∂C
∂τ
− ∂D

∂τ
υ

)
,

∂f

∂x
= fiφ,

∂f

∂v
= fD,

∂2f

∂x2
= −fφ2,

∂2f

∂v2
= fD2,

∂2f

∂v∂x
= iφDf.

Substituting in the PDE, we come to:

−1

2
σ2
xvfφ

2 + ρxvσxσviφDf +
1

2
σ2vfD2 + ujvfiφ+ (a− bjv)fD + f

(
−∂C
∂τ
− ∂D

∂τ
υ

)
= 0.

As the previous expression in an identity in v we obtain the next two equations:
− 1

2
σ2
xφ

2 + ρxvσxσiφD +
1

2
σ2D2 + ujiφ− bjD −

∂D

∂τ
= 0,

aD − ∂C

∂τ
= 0,

plus the condition C(0) = D(0) = 0.

The first equation is a Ricatti equation, but as σx(t) depends on time and not being
constant, a direct solution has not been found and it has to be solved numerically, for example,
by means of the routine of matlab ode 45.

Corollary 2.3.1. The price of the option is then given by:

Rj(x, v, τ, ln(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ ln(K)fj(x, v, τ, φ)

iφ

]
dφ,

where
fj(x, υ, τ, φ) = eC(τ,φ)+D(τ,φ)υ+iφx.

Remark 2.3.5. For both SV and SVSIR models, a change of variables has been realized
k∗ = k + λ,

θ∗ =
kθ

k + λ
,

so the variance equation reads in the risk-neutral measure as

dv̄ = k∗ [θ∗ − v̄(t)] dt+ σ
√
v̄(t)dz̄2(t). (2.44)
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2.4 Numerical Results

2.4.1 Analysis with the SV model

In this Subsection we will perform an In/Out the Sample analysis, similar to the one we
performed in Chapter 1, with real market data and Heston’s SV model. We will employ the
S&P500 options negotiated all Wednesdays (or the closest if the market was closed) between
01-03-1990 and 12-30-92 (157 days).

For the In The Sample daily analysis, we fix a date t0 and consider all European Call
contracts traded along that day. Our objective is to find the parameter values for day t0 that
minimize:

InMSE(t0) =
1

Nt0

Nt0∑
i=1

(
Ci
t0
− Ci(Sit0 , tiM , Ki)

)2
, (2.45)

where

(i) Nt0 denotes the amount of contracts negotiated on day t0.

(ii) Ci
t0
denotes the market price of contract i.

(iii) tiM and Ki denote respectively the maturity and strike of contract i.

(iv) Ci(Sit0 , t
i
M , Ki) denotes the model’s price of contract i.

In order to compare results, we compute Ci(Sit0 , t
i
M , Ki) for Heston’s SV model, for the

Black-Scholes model and for the NGARCH(1,1) model employed in Chapter 1. In all the
models, the risk-free rate employed was r3−US

t0 , i.e. the annualized constant risk-free rate of
the 3-month US Treasury Bond.
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Figure 2.2: Error in monetary terms for the In The Sample analysis. We plot each negotiation
day (horizontal axis) vs the root of InMSE (vertical axis) with Black-Scholes (blue), Heston’s
SV (green) and NGARCH(1,1) (red).
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The results plotted in Figure 2.2 are the square root of InMSE for each negotiation day t0.
This error represents the daily error, in monetary terms, for all Wednesdays (or the closest if
the market was closed) between 01-03-1990 and 12-30-92 (157 days) for the three models.

As we can see, Heston’s model performs much better than the Black-Scholes model and
very similar as the NGARCH(1,1) model. The mean value of the root of InMSE along the
157 days has been 1.534 for the Black-Scholes model, 0.321 for the Heston’s SV model and
0.315 for the NGARCH(1,1) model.

The fact that the results of the NGARCH(1,1) and the SV models are so similar is not
surprising. The close relation between ARCH and SV models can be found, for example, in
[15] or [51], where it is proven that ARCH models could be seen as a discrete counterpart of
SV models.

Furthermore, due to their close relation, we can combine the information obtained from
both in the Out the Sample analysis as we are about to see.

The Out The Sample analysis is identical to the one explained in Section 1.2.1. Suppose
that we are at day t0. With the estimated parameters on date t0 − 7, the stock movements
along the week [t0− 7, t0] and the allowances of the model, we try to predict the option prices
before the market opens.

We recall that for the NGARCH(1,1) model, we gave in Chapter 1 an updating volatility
formula

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1


(
Rt−1 − r +

σ2
t−1

2

)
√
σ2
t−1

− (λ+ θ)

2

, (2.46)

as an estimator (from the movements of the stock) of today’s market’s volatility.

For the SV model, we are going to employ the empirically observed close relation between
SV and NGARCH(1,1). The following technique is similar to the one found in [45]. We
employ (2.46) as a volatility estimator in the SV model.

Although (2.46) is possibly not the best volatility estimator, it is interesting to check if
the results obtained so far are consistent when we employ the information from one model
into the other when we try to predict future option prices.

Let t0 denote today. The procedure for the Out the Sample analysis is as follows:

a) Estimate the NGARCH(1,1) and SV parameters on day t0 − 7. Estimate Black-Scholes
implied volatility on day t0 − 7.

b) Enforce the NGARCH(1,1) parameters into the updating formula (2.46).

c) With the stock movements along [t0 − 7, t0] and the last Wednesday markets’s volatility
estimated for NGARCH(1,1) and Heston’s SV, compute an estimation of todays market’s
volatility for both models. For the Black-Scholes model, the volatility is not updated (since
it is assumed constant).
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d) Option prices are computed for each model with their respective parameters and their
respective volatility estimation.

If Nt0 denotes the amount of contracts negotiated on day t0, let i ∈ {1, 2, ..., Nt0}. The
option prices of day t0 are computed with formula

Ci(S
i
t0
, tMi, Ki, σ̃

2
t0

),

where, for NGARCH(1,1) and SV models, the values of the parameters are those of date t0−7
and σ̃2

t0
corresponds to the estimation of market’s volatility of each model.

If we want to know how well we have predicted option prices, we compare the results
obtained with the traded prices computing the mean square error.

OutMSE(t0) =
1

Nt0

Nt0∑
i=1

(
Ci
t0
− Ci(Sit0 , tMi, Ki, σ̃

2
t0

)
)2
. (2.47)

The results of Figure 2.3 show the square root of the OutMSE when prices are predicted
with all the models for all Wednesdays between 2-01-1992 and 12-30-92 (53 days).
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Figure 2.3: Error in monetary terms for the Out The Sample analysis. We plot each negoti-
ation day (horizontal axis) vs the root of OutMSE (vertical axis) with Black-Scholes (blue),
Heston’s SV (green) and NGARCH(1,1) (red).

The mean values of the root of OutMSE along the 53 days have been 1.606 for Black-
Scholes, 0.597 for Heston’s SV and 0.642 for NGARCH(1,1) models.
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Again, SV and NGARCH(1,1) perform similar and much better than Black-Scholes. The
estimator employed for updating the volatility seems to have been consistent. Although it is
not the objective of this work, we have empirically checked the close relation between Garch
and SV when they are applied to option pricing.

2.4.2 Analysis with the SVSIR model

We establish how we deal with the parameters of the stochastic bond.

At a fixed day t0, in order to make an equivalent comparison with the simple SV model,
we enforce that the stochastic bond value matches with the value negotiated in the market
for the 3-months (τ = 0.25) US Bond, which is denoted by B3−US(t0). This gives us the first
constraint:

B(0.25, v) = B3−US(t0) (2.48)

We recall that the stochastic interest rate depends on two parameters r = µ+βv, where β
modules the stochastic component. We have already imposed that β ≥ 0 (β = 0 corresponds
to the SV model). We also impose µ ≥ 0 to ensure the positiveness of the interest rate.

Our criteria, in the In the Sample analysis, has been to let, if possible, β free and enforce
the value of µ so (2.48) and µ ≥ 0 are fulfilled.

If we substitute constraint (2.48) into the bond formula (2.34) we obtain

µ = − 1

0.25
log

(
B3−US (t0) e−G(0.25)v exp

(
kθ

[
0.25

b
− b+ c

bc
ln

(
b+ ce0.25d

b+ c

)]))
(2.49)

The In the Sample analysis is identical to the one described in the previous Subsection
but, for the bond parameters µ and β, we impose:

a) β free (estimated from option prices) if µ > 0 where µ is computed with formula (2.49).

b) µ = 0 and β = arg
β

{
B(v, 0.25) = B3−US(t0) : µ = 0

}
otherwise.

subject to β ≥ 0 in both cases (β = 0 corresponds to the SV model).

Constant rate assumption:
It is generally assumed that constant interest rates (β ≡ 0) can be employed to value

options, specially for those with short maturities. Our first objective is to check if traded
option prices seem to incorporate a stochastic component to the bond.

Figure 2.4 shows, for each negotiation day t0, the estimated initial volatility v(t0) and a
colored mark depending on the estimated value of βt0 .
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Figure 2.4: Analysis of Constant / Non Constant interest rates assumption from market
data. For each negotiation day t0 (horizontal axis), we plot the estimated initial volatility
v(t0) (blue) and mark with a colored ’×’ the cases: βt0 = 0 (red), βt0 , µt0 > 0 (green) and
βt0 > 0, µt0 = 0 (black).

We recall that the instantaneous interest rate is given by r = µ+βv, where β modules the
stochastic component. β = 0 implies that the market has employed a constant interest rates
to price the options. The numerical values estimated for β vary between β ∈ [0, 0. 4269]. Of
the 157 days of the estimation, 34 of them (21 %) correspond to β = 0 (constant rate bond)
and 26 of them (16 %) to µ = 0 (“purely” stochastic).

We are going to study the performance results. The In The Sample analysis is identical
to the one of the previous subsection.
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Figure 2.5: Error in monetary terms of the In The Sample analysis. We plot each negotiation
day t0 (horizontal axis) vs the root of the InMSE (vertical axis) with Heston’s SV (blue) and
SVSIR (red).
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Obviously, as SV model can be considered a particular case of the SVSIR model, the
results of the second one will always be equal or better than those of the first one. We plot,
for each negotiation day t0, the InMSE of SV and SVSIR models.

The mean values of the square root of InMSE have been 0.321 and 0.281 for the SV and
SVSIR respectively. There is only a significant gain (in the sense of InMSE) for the SVSIR
model in the 60 first days (which correspond to high-volatility periods (see Figure 2.4)), being
the results very similar for both models for the rest of the days.

Concerning the Out The Sample analysis, we employ the same updating volatility formula
as in the previous Subsection with the same estimated parameters of the NGARCH(1,1)
model. Although this estimator would not be suitable for this model (in NGARCH(1,1) no
stochastic rates were allowed), the results are again fairly close for both models. We will go
back to this point at the end of the analysis.

The root of the OutMSE obtained for the prediction are plotted, for each negotiation day
t0, in the following picture:
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Figure 2.6: Error in monetary terms of the Out The Sample analysis. We have plotted the
root of the OutMSE (vertical axis) for each negotiation day t0 (horizontal axis). We present
the results obtained for Heston’s SV (blue) and SVSIR (red) models.

The mean values of the root of OutMSE have been 0.597 and 0.619 for the SV and SVSIR
respectively. The prediction is very similar with both models.

It should be remarked that, although the results obtained are quite close, only 18 of the
53 days correspond to β = 0 (the same parameter values for both SV and SVSIR). The
parameter values obtained for the other 35 days vary from one model to another.

The similar results obtained with both models have an empirical explanation. The esti-
mated values of k∗ and θ∗ (see equation (2.44)) are different in both models.

Nevertheless, the estimated value of k∗θ∗ (the stationary value which the volatility process
approaches) seems to follow a certain distribution. The following picture shows the histogram
of the values obtained for k∗θ∗:
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Figure 2.7: Histogram of parameter k∗θ∗. With the estimated parameters of the In the
Sample analysis, we have divided the horizontal axis (value of k∗θ∗) in 11 equal subintervals.
We have plotted, in the vertical axis, the number of times that the value k∗θ∗ lies in each of
the subintervals for the SV(blue) and SVSIR(red) models.

The empirically observed distribution of the market value of k∗θ∗ is very similar with both
models. Although different values for k∗ and θ∗ are obtained with each model, the value of
k∗θ∗ does not differ that much. Indeed, the greatest differences seem to occur in high-volatility
periods, when the SVSIR model performs significantly better than the SV model in the In
the Sample analysis (see Figures 2.4 and 2.5).

Summarizing the results, the SVSIR achieves a better error in the In The Sample analysis.
If our objective is just to obtain indicative market prices (Out the Sample), the constant rate
assumption seems to be not too far from reality. Stochastic rates have a limited effect in the
performance of the model (in the sense of OutMSE). This may be a consequence of the model
choice of volatility estimator.

Concerning the updating volatility formula, it must be remarked that, in practice, it is a
rough predictor not only for the SVSIR model, but also for the SV one. Numerical experiments
show that it may be not very reliable when big shocks occur in the market along the week:
The values obtained for the new volatility tend to be higher than those that the market will
actually employ.

As a future research, it could be worthy to explore other volatility predictors (see [61] for
example) for the Out The Sample analysis.



Chapter 3

Optimal Investment with Transaction
Costs under Potential Utility.

3.1 Introduction

Let us consider an investor whose wealth can be inverted in a risky stock and in a riskless bank
account. Assume that the investor’s decisions are driven by the objective of maximizing the
utility that his future wealth will provide him, one hypothesis of social behaviour frequently
assumed in Economy.

In order to model this, we define a suitable Utility function (twice differentiable, strictly
increasing (more is better than less) and strictly concave (investors are risk averse), which
reflects the preferences of the investor. The Optimal Investment problem in a finite horizon
consists in finding the trading strategy which maximizes the expected future value of the
utility of the terminal wealth.

This problem is usually formulated in terms of a Hamilton-Jacobi-Bellman equation. If
the investor is of Constant Relative Risk Aversion (CRRA) (see Definition 2.2.2 in Chapter
2), the problem can be explicitly solved (see [48]) and the solution consists in keeping a fixed
proportion between the money invested in the risky asset and in the bank account.

Since the stock price changes continuously, the solution proposed by Merton in [48] implies
that, without any cost, we can transfer the money from the bank account to the stock and
viceversa. Otherwise, if each time that we buy or sell the stock we have to pay an extra
amount of money, we would incur in huge transaction costs due to the continuous rebalancing
of the portfolio. This would make Merton’s strategy unfeasible.

On the other hand, given that the hypothesis of the absence of transaction costs is unre-
alistic, proportional transaction costs were introduced in [47]. In this case, we usually lack an
explicit solution of the problem, which has to be solved by numerical methods.

Spectral methods (see [10]), are a class of spatial discretizations for partial differential

77
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equations which usually offer a very fast convergence, enabling us to represent functions very
precisely with relatively few nodes.

The main objective of this Chapter is to construct a spectral method specifically adapted
to the Optimal Investment problem with Potential Utility when proportional transaction costs
are present.

The outline of the Chapter is as follows. In Section 3.2, a description of the Optimal
Investment problem as it can be found in [21] or [56] is presented. In Section 3.3, the problem
is reformulated as a parabolic double obstacle problem as it was done in [23], where some
explicit formulas and properties of the problem were derived. In Section 3.4 we propose an
equivalent formulation of the problem employing polar coordinates. Sections 3.5 and 3.6
are respectively devoted to the development of a Central Finite Differences method and a
Mesh-adapted Chebyshev-collocation method which solve the problem developed in Section
3.4. Section 3.7 is devoted to the numerical analysis of both methods and a performance
comparison (error committed vs computational cost) between them.

3.2 The Optimal Investment Problem
Let us consider an investor who holds X̄(t) and Ȳ (t) in bank and stock accounts respectively.
Let (Ω,F , P ) be a filtered probability space. In absence of transactions costs, we assume (see
[48]) that the dynamics of both processes are given by:{

dX̄(t) = rX̄(t)dt,

dȲ (t) = αȲ (t)dt+ σȲ (t)dz̄t,
(3.1)

where r denotes the constant risk-free rate, α is the constant expected rate of return of the
stock, σ > 0 is the constant volatility of the stock and z̄t is a standard Brownian motion such
that F z̄

t ⊆ F where F z̄
t is the natural filtration induced by z̄t.

Remark 3.2.1. The bank account plays the same role as the bond in the two previous
Chapters. Notation has been slightly altered to emphasize that in this model we work with
the amount of money invested in the stock and in the bank account instead of the stock price
and the bond price.

The investor can change, at any time t, the amount of money invested in the stock to the
bank account or viceversa. Thus, in absence of transaction costs (TC), the evolution of X̄(t),
Ȳ (t) can be modelled by the following equations:{

dX̄(t) = rX̄(t)dt− dL(t) + dM(t),

dȲ (t) = αȲ (t)dt+ σȲ (t)dz̄t + dL(t)− dM(t),
(3.2)

where L(t), M(t) are adapted right-continuous, nonnegative and nondecreasing processes
which represent the cumulative monetary values of the stock purchased or sold respectively.
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The net wealth, or the money the investor would have if he closes his positions, in absence
of transaction costs, is given by

W̄ (t) = X̄(t) + Ȳ (t). (3.3)

Let U be a Utility function, i.e. a function with continuous second order derivatives,
strictly increasing and strictly concave (see Definition 2.2.2 in Chapter 2). The Optimal
Investment problem at time t = t0 consists in finding an admissible strategy that maximizes
the Expected Utility of the terminal wealth:

sup
(L,M)∈At0 (x,y)

E
[
U
(
W̄ (T )

)∣∣ (X̄(t0), Ȳ (t0)) = (x, y)
]
, (3.4)

where E is the conditional expectation at time t0 subject to (X̄(t0), Ȳ (t0)) = (x, y) ∈ S and
S denotes the Solvency Region. The Solvency Region is defined after the particular choice of
the Utility Function, so we ensure that the problem is well defined. The set At0(x, y) denotes
the set of all admissible strategies starting at (x, y) for t ∈ [t0, T ].

Suppose that the investor is of Constant Relative Risk Aversion (CRRA). This means (see
Definition 2.2.3 in Chapter 2) that the Utility function satisfies

−WU ′′(W )

U ′(W )
= 1− γ,

where γ is a constant.

In [48], this problem is solved in terms of a Hamilton-Jacobi-Bellman equation which is
explicitly solved. The optimal investment strategy can be analytically obtained, and consists
in keeping a fixed proportion between the wealth in the bank and in the stock:

X̄(t)

Ȳ (t)
= −α− r − (1− γ)σ2

α− r = xM , (3.5)

which is commonly referred as the Merton Line.

Since the stock value changes continuously, the portfolio needs to be constantly updated.
In practice, the implementation of the optimal strategy would require negligible transaction
costs.

In presence of transaction costs equal to a fixed percentage of the transacted amount (pro-
portional transaction costs), the evolution of X̄(t), Ȳ (t) is given by the following equations:{

dX̄(t) = rX̄(t)dt− (1 + λ)dL(t) + (1− µ)dM(t), X̄(t0) = x,

dȲ (t) = αȲ (t)dt+ σȲ (t)dz̄t + dL(t)− dM(t), Ȳ (t0) = y,
(3.6)

where λ, µ ∈ [0, 1) represent the constant proportional transaction costs incurred on the
purchase or sale of the stock.
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In this case, the net wealth is given by:

W̄ (t) =

{
X̄(t) + (1− µ)Ȳ (t), if Ȳ (t) ≥ 0,

X̄(t) + (1 + λ)Ȳ (t), if Ȳ (t) < 0,
(3.7)

for the cases where the investor is long or short in the stock respectively.

This Chapter is devoted to the numerical solution of the problem

sup
(L,M)∈At0 (x,y)

E
[
U
(
W̄ (T )

)∣∣ (X̄(t0), Ȳ (t0)) = (x, y)
]
, (3.8)

subject to equations (3.6)-(3.7) when U is the Potential Utility function

U (W ) =
W γ

γ
, γ < 1, γ 6= 0. (3.9)

Since the Potential Utility function is defined only for positive values (no negative wealth
is allowed), we define the Solvency Region as:

S =
{

(x, y) ∈ R2 | x+ (1 + λ)y > 0, x+ (1− µ)y > 0
}
. (3.10)

The Solvency Region is represented in Figure 3.1, where the x and y axis respectively
correspond to the amount of money invested in the bank account and in the stock account.
The investor’s position in the bank and stock accounts must lie above the frontier of the
Solvency Region (blue lines) in order to have a positive wealth.

−100 0 100
−100

0

100

Solvency Region

x+(1−µ)y=0

x+(1+λ)y=0

Figure 3.1: Solvency Region in Cartesian coordinates. Horizontal axis: capital invested in
the bank account. Vertical axis: capital invested in the stock account.

We say that (L,M) = (L(t),M(t)), t ∈ [t0, T ] is an admissible investment strategy if,
given an initial condition (X̄(t0), Ȳ (t0)) = (x, y) ∈ S, then (X̄(t), Ȳ (t)) ∈ S, ∀t ∈ [t0, T ].

The Solvency Region implies that, at any time, the investor’s positions in the stock and
the bank account can be one of the following:
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1. A positive amount of money invested in the stock and in the bank accounts.

2. A negative amount of money in the bank account but positive in the stock (leverage).

3. A negative amount of money in the stock account but positive in the bank account
(short-selling).

and in the three cases the necessary condition is that, for any t ∈ [t0, T ], the investor’s total
wealth is positive.

Let t0 = 0. We denote by ϕ(x, y, t) the optimal value function, i.e. the function that is
given by:

ϕ(x, y, t) = sup
(L,M)∈At(x,y)

E
[
U
(
W̄ (T )

)∣∣ (X̄(t), Ȳ (t)) = (x, y)
]
, (x, y, t) ∈ S× [0, T ]. (3.11)

As remarked in [21], the choice of the Potential Utility function is interesting since it leads
to the homothetic property in the optimal value function,

ϕ(ρx, ρy, t) = ργϕ(x, y, t), ρ > 0,

which allows us to reduce the problem to another with one spatial-like variable.

For the rest of the chapter, we will suppose that λ+µ > 0 (note that this means that trans-
action costs exist). In terms of the corresponding Hamilton-Jacobi-Bellman (HJB) equation
(see [56]), the optimal value function is the viscosity solution of:

min
{
−ϕt − L̂ϕ, −(1− µ)ϕx + ϕy, (1 + λ)ϕx − ϕy

}
= 0, (x, y) ∈ S, t ∈ [0, T ), (3.12)

subject to:

ϕ(x, y, T ) =

{
U(x+ (1− µ)y), if y > 0,

U(x+ (1 + λ)y), if y ≤ 0,
(3.13)

where
L̂ϕ =

1

2
σ2y2ϕyy + αyϕy + rxϕx. (3.14)

The existence and uniqueness of a viscosity solution of the problem is proved in [21]. We
refer the reader to it or to Chapter 4 where the arguments used to find the optimal trading
strategies in this kind of problems are presented. Here, we are interested in the formulation
of the problem presented in [23], where some regularity properties and explicit formulas for
certain cases are obtained.

For simplicity reasons, we will suppose that α > r. With this hypothesis, whether we
are in a scenario with or without transaction costs, short-selling will always be a suboptimal
strategy (see [48] and [20] or [56] respectively for each case). This means that the optimal
trading strategy is always to have a nonnegative amount of money invested in the stock.
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At any time t, the spatial domain is divided in three regions, namely in financial terms,
the Buying Region ((1 + λ)ϕx − ϕy = 0), the Selling Region (−(1− µ)ϕx + ϕy = 0) and the
No Transactions Region (−ϕt − L̂ϕ = 0). The Selling and Buying Regions do not intersect
(the No Transactions Region will lie between them) and the optimal trading strategy is:

(a) If we are in the Buying Region, to buy the stock with the bank account money until
reaching the frontier between the Buying and No Transactions regions.

(b) If we are in the Selling Region, to sell the stock and invest the money in the bank account
until reaching the frontier between the Selling and No Transactions regions.

(c) If we are in the No Transactions Region, to do nothing.

For finishing the Subsection, we give the following result.

Proposition 3.2.1. The value function

ϕ(x, y, t) = sup
(L,M)∈At(x,y)

E
[
U
(
W̄ (T )

)∣∣ (X̄(t), Ȳ (t)) = (x, y)
]
, (x, y, t) ∈ S× [0, T ].

is a strictly increasing function of x and y.

Proof. For any fixed (x, y, t), consider the associated optimal trading strategy πo.

Let W πo(T ) be the expected terminal wealth when strategy πo is followed. The value
function ϕ(x, y, t) is given by

ϕ(x, y, t) = U
(
W πo

j (T )
)
.

For any initial position (x + ∆x, y, t), where ∆x > 0, consider the (suboptimal) trading
strategy πs1 which consists in retain ε1 = ∆x in the bank account until maturity while we
independently follow strategy πo with the rest of the holdings.

For any initial position (x, y + ∆y, t), where ∆y > 0, consider the (suboptimal) trading
strategy πs2 which consists in selling ∆y of the stock and then retain ε2 = ∆y(1 − µ) in the
bank account until maturity while we independently follow strategy πo with the rest of the
holdings.

For any of the two options (i = 1 or i = 2), the expected terminal wealth is:

W πsi (T ) = εie
r(T−t) +W πo(T ).

Therefore, by the suboptimality of the strategy, it holds that

ϕ(x+ ∆x, y, t) ≥ U
(
W πs1
j (T )

)
= U

(
ε1· er(T−t) +W πo(T )

)
> U

(
W πo(T )

)
= ϕ(x, y, t),

ϕ(x, y + ∆y, t) ≥ U
(
W πs2
j (T )

)
= U

(
ε2· er(T−t) +W πo(T )

)
> U

(
W πo(T )

)
= ϕ(x, y, t),

because the Utility function is a strictly increasing function.
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3.3 Parabolic double obstacle problem.
In [23], the equivalence of the previous problem to a parabolic double obstacle problem with
two free boundaries is proved. Also, several properties and some explicit formulas are ob-
tained.

A brief development of the problem is as follows. Using the homothetic property, we can
introduce a new function V (x, t) = ϕ(x, 1, t) so that:

ϕ(x, y, t) = yγV

(
x

y
, t

)
= yγV (z, t) (3.15)

where z = x
y
for the rest of the Chapter.

It is straightforward (see [23]) to check that function V (z, t) is the solution of the problem:

min
{
−Vt − L̂1V, −(1 + z − µ)Vz + γV, (1 + z + λ)Vz − γV

}
= 0, (3.16)

where
L̂1V =

1

2
σ2z2Vzz + β2zVz + β1V, (3.17)

and V satisfies the terminal condition V (z, T ) = 1
γ
(z + 1− µ)γ.

Function V is defined in Ω̂× (0, T ), where Ω̂ = (−(1−µ), ∞). We rewrite equation (3.16)
as: 

− Vt − L̂1V = 0, if
1

z + 1 + λ
<

Vz
γV

<
1

z + 1− µ,

− Vt − L̂1V ≥ 0, if
Vz
γV

=
1

z + 1− µ or
Vz
γV

=
1

z + 1 + λ,

V (z, T ) =
1

γ
(z + 1− µ)γ.

(3.18)

Let be w = 1
γ

log(γV ) and v(z, t) = wz(z, t). In [23] it is proved that function v(z, t)

satisfies the following, and equivalent to problem (3.18), parabolic double obstacle problem:

− vt − Lv = 0, if
1

z + 1 + λ
< v <

1

z + 1− µ,

− vt − Lv ≥ 0, if v =
1

z + 1 + λ
,

− vt − Lv ≤ 0, if v =
1

z + 1− µ,

v(z, T ) =
1

z + 1− µ,

(3.19)

where

Lv =
1

2
σ2z2vzz + (α− r − (2− γ)σ2)zvz − (α− r − (1− γ)σ2)v +

1

2
γσ2

(
z2v2

)
z
. (3.20)
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The double obstacle problem involves two free boundaries which divide the space in three
regions. Taking into account the relation between (3.18) and (3.19), these regions are

a) The Selling Region:

SR =

{
(z, t) ∈ Ω̂× [0, T ]

∣∣∣∣ v(z, t) =
1

z + 1− µ

}
.

b) The Buying Region:

BR =

{
(z, t) ∈ Ω̂× [0, T ]

∣∣∣∣ v(z, t) =
1

z + 1 + λ

}
.

c) The No Transaction Region:

NT =

{
(z, t) ∈ Ω̂× [0, T ]

∣∣∣∣ 1

z + 1 + λ
< v(z, t) <

1

z + 1− µ

}
.

The proof of existence and regularity of the solution to the double obstacle problem
presents some technical difficulties. For example, the degeneracy of operator L at z = 0
and the fact that the upper obstacle is infinite on the boundary z = −(1− µ).

We now present one of the main results in [23]. We define

Ω̃ = {z > z∗, 0 < t < T}, z∗ > −(1− µ),

and
v(z∗, t) =

1

z∗ + 1− µ, t ∈ [0, T ].

Let W a,b
p (Ω̃) denote the class of functions u(z, t) ∈ Lp(Ω̃) such that the weak derivatives

up to order a with respect to z and up to order b with respect to t belong to Lp(Ω̃) (see [31]).

Theorem 3.3.1. The double obstacle problem (3.19) has a unique solution

v(z, t) ∈ W 2,1
p

(
Ω̃N\{‖z‖ < δ}

)
, δ > 0, 1 < p < +∞,

where Ω̃N is any bounded set in Ω̃.

Proof. See [23].

For finishing this Subsection, we present some interesting properties and explicit formulas
that are obtained in [23].
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3.3.1 Explicit formulas and properties

Problem (3.19) has been numerically solved in [2]. A complete review of all the properties
and explicit formulas can be found in the same article, where they are numerically checked.
Here we compile the results that are employed in the error analysis (explicit formulas) or that
justify some assumptions made when we design the numerical methods.

a) There exist two continuous monotonically increasing functions

BRc
F (t), SRc

F (t) : [0, T ]→ (−(1− µ),+∞], (3.21)

such that BRc
F (t) > SRc

F (t) and the Buying and Selling Regions are characterized by

SR =
{

(z, t) ∈ Ω̂× [0, T ] | z ≤ SRc
F (t), t ∈ [0, T ]

}
,

BR =
{

(z, t) ∈ Ω̂× [0, T ] | z ≥ BRc
F (t), t ∈ [0, T ]

}
.

Furthermore, function SRc
F (t) is C∞[0, T ). (Superscript c stands for cartesian coordinates).

b) The function
BRc

F (t) = +∞, t ∈ [t̂0, T ], (3.22)

where
t̂0 = T − 1

α− r log

(
1 + λ

1− µ

)
. (3.23)

This period of time has a direct and meaningful physical interpretation: “If we are near
maturity and we do not have any amount invested in the stock, it is optimal not to invest
since the return will not compensate the transaction costs associated to the investment”.

c) If α− r − (1− γ)σ2 > 0, then

BRc
F (t) < 0, t ∈ (0, t̂1),

BRc
F (t̂1) = 0,

BRc
F (t) > 0, t ∈ (t̂1, T ),

(3.24)

where
t̂1 = T − 1

α− r − (1− γ)σ2
log

(
1 + λ

1− µ

)
. (3.25)

d) Function v(0, t) has an analytical expression:

d.1) If α− r − (1− γ)σ2 ≤ 0

v(0, t) =
1

1− µ. (3.26)
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d.2) If α− r − (1− γ)σ2 > 0

v(0, t) =


1

1 + λ
if 0 ≤ t ≤ t̂1,

1

1− µe
−(α−r−(1−γ)σ2)(T−t) if t̂1 < t ≤ T.

(3.27)

e) Frontiers approach to a stationary state.
As T →∞, there exist two values BRc

s, SR
c
s ∈ R, such that

lim
t→0+

BRc
F (t) = BRc

s,

lim
t→0+

SRc
F (t) = SRc

s,
(3.28)

where

BRc
s = − d

d+ k
k−1

(1 + λ), SRc
s = − d

d+ k
(1− µ),

d =
α− r − (1− γ)σ2

1
2
(1− γ)σ2

, β = (1− γ)d− 2γC,

C = − 2(k − 1)d2

k2
(
d+ 1

1−γ +
√

(d+ 1
1−γ )2 + 4 γ

1−γ
k−1
k2 d2

) ,
(3.29)

and k is the root of

d+ k
k−1

d+ k

( γ
β+1

+ 1
d
k

+C

γ
β+1

+ 1
k−1
k
d+C

) 1
β+1

=
1 + λ

1− µ, if β 6= −1,

d+ k
k−1

d+ k
exp

(
1

γ

(
1

d
k

+ C
− 1

k−1
k
d+ C

))
=

1 + λ

1− µ, if β = −1.

(3.30)

f) lim
t→T−

SRc
F (t) = (1− µ)xM where remember that xM denotes the Merton line.

Proposition 3.3.1. It holds that

−(1− µ) < SRc(t). (3.31)

Proof. We argue by contradiction. Properties a) (monotonicity), e), f) state that

− d

d+ k
(1− µ) = SRc

s ≤ SRc(t) ≤ (1− µ)xM ,

− d
d+k

(1 − µ) < −(1 − µ) is absurd because that would mean that it exists a finite time
such that the Selling Frontier is defined outside the Solvency Region.
− d
d+k

(1 − µ) = −(1 − µ) implies k = 0, which violates a bound over k ∈ [1, 2] given in
[23].
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In the following Section, a change of variables to polar coordinates will be proposed. We
include a numerical example of how the location of the Buying and Selling frontiers evolve in
the cartesian coordinates.

On Figure 3.2 we have plotted functions BRc
F (t) (left) and SRc

F (t) (right) and include
several of the properties compiled in this Subsection. We have enforced α− r− (1− γ)σ2 > 0
so Property c) can be applied.
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Figure 3.2: Graph of functions BRc
F (t) (left) and SRc

F (t) (right).

On Figure 3.2, we can observe that BRc
F (t) (left) is an increasing function of time. We

can also check that the value of BRc
F (t) tends to +∞ when t approaches to t̂0 by the left

and that it holds BRc
F (t̂1) = 0. Function BRc

F (t) tends to the stationary state BRc
s when we

move away from Maturity.
On the right side of Figure 3.2, we can observe that SRc

F (t) is an increasing function of
time. It holds that lim

t→Maturity−
SRc(t) = (1 − µ)xM and that SRc(t) tends to SRc

s when we

move away from Maturity.

We remark that, when we want to numerically solve the problem, one of the technical
difficulties is Property b), i.e., the fact that

BRc
F (t) = +∞, t ∈ [t̂0, T ],

3.4 Alternative approach: Polar coordinates
What we propose here is to attack the problem numerically via polar coordinates:

x = a cos θ,

y = a sin θ.

When we apply this change of variable to equations (3.12)-(3.14) we get

min

{
−ϕt − L̂ϕ, −(1− µ)

[
cos(θ)ϕa −

sin(θ)

a
ϕθ

]
+

[
sin(θ)ϕa +

cos(θ)

a
ϕθ

]
,

(1 + λ)

[
cos(θ)ϕa −

sin(θ)

a
ϕθ

]
−
[
sin(θ)ϕa +

cos(θ)

a
ϕθ

]}
= 0,

(3.32)
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subject to ϕ(θ, a, T ):
U(a· cos(θ) + (1− µ)a sin(θ)), if θ > 0,

U(a· cos(θ) + (1 + λ)a sin(θ)), if θ ≤ 0,
(3.33)

where

L̂ϕ =
1

2
σ2 (a sin(θ))2

[
sin2(θ)ϕaa +

2 sin(θ) cos(θ)

a
ϕaθ +

cos2(θ)

a2
ϕθθ +

cos2(θ)

a
ϕa −

2 sin(θ) cos(θ)

a2
ϕθ

]
+ αa sin(θ)

[
sin(θ)ϕa +

cos(θ)

a
ϕθ

]
+ ra cos(θ)

[
cos(θ)ϕa −

sin(θ)

a
ϕθ

]
.

(3.34)

The Solvency Region in the new coordinates is given by:

a ∈ [0, ∞),

θ ∈ (β1, β2),
(3.35)

where

β1 = arctan

( −1

1 + λ

)
,

β2 = arctan

( −1

1− µ

)
+ π.

(3.36)

On the left side of Figure 3.3, we have represented the Solvency Region in variables
(x, y), where x and y respectively represent the amount of money invested in the bank and
stock accounts. We also plot the Solvency Region in polar (a, θ) coordinates (right), where
x = a cos(θ), y = a sin(θ). The blue lines represent the points where our total wealth is 0 in
variables (x, y) and the red lines represent the same region in polar coordinates.
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Figure 3.3: Solvency Region in cartesian (left) and polar (right) coordinates. The cartesian
coordinates (x, y) represent (Money in the bank account, Money in the stock account).

We conjecture a solution to (3.32) of the form:

ϕ(a, θ, t) = aγ·V (θ, t). (3.37)
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Taking into account that

ϕa = γaγ−1V, ϕaa = γ(γ − 1)aγ−2V,

ϕθ = aγVθ, ϕaθ = γaγ−1Vθ,

ϕt = aγVt, ϕθθ = aγVθθ,

(3.38)

we obtain:

1. In the Buying Region, θ ∈ (β1, BRF (t)], equation (1 + λ)ϕx − ϕy = 0 is equivalent to:

Vθ = V γ
(1 + λ) cos(θ)− sin(θ)

(1 + λ) sin(θ) + cos(θ)
, (3.39)

where BRF (t) : [0, T ]→ (β1, β2) is a function such that

BRc
F (t) = cot (BRF (t)) , (3.40)

and BRc
F (t) is the function which gives the location of the Buying frontier (Subsection 3.3.1).

2. In the Selling Region, θ ∈ [SRF (t), β2), equation −(1− µ)ϕx + ϕy = 0 is equivalent to:

Vθ = V γ
(1− µ) cos(θ)− sin(θ)

(1− µ) sin(θ) + cos(θ)
, (3.41)

where SRF (t) : [0, T ]→ (β1, β2) is a function such that

SRc
F (t) = cot (SRF (t)) , (3.42)

and SRc
F (t) is the function which gives the location of the Selling frontier (Subsection 3.3.1).

3. In the No Transaction Region, θ ∈ (BRF (t), SRF (t)), equation −ϕt−L̂ϕ = 0 is equivalent
to:

Vt + g2(θ)Vθθ + g1(θ)Vθ + g0(θ)V = 0, (3.43)

where

g2(θ) =
1

2
σ2 sin2(θ) cos2(θ),

g1(θ) = (γ − 1)σ2 cos(θ) sin3(θ) + (α− r) sin(θ) cos(θ),

g0(θ) = γ

[(
(γ − 1) sin2(θ) + cos2(θ)

) 1

2
σ2 sin2(θ) + α sin2(θ) + r cos2(θ)

]
.

(3.44)

The objective of the change of variables to polar coordinates is to circumvent two of the
technical difficulties that appear when we work with function v(z, t) given by (3.19).

The first one is that the spatial-like variable z was defined in an unbounded domain
(−(1−µ),+∞). Now, we can work in a bounded domain θ ∈ (β1, β2). We remark Property b)
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in Subsection 3.3.1, which stated the importance of +∞ in this problem. In polar coordinates,
this point corresponds to θ = 0.

The second advantage of this formulation is that there are not non linear terms like (z2v2)z
that can be found in equation (3.19).

Summarizing the development, the problem that we want to numerically solve is:

min

{
−Vt − g2(θ)Vθθ − g1(θ)Vθ − g0(θ)V, −Vθ + V · γ (1 + λ) cos(θ)− sin(θ)

(1 + λ) sin(θ) + cos(θ)
,

Vθ − V · γ
(1− µ) cos(θ)− sin(θ)

(1− µ) sin(θ) + cos(θ)

}
= 0, θ ∈ (β1, β2), t ∈ [0, T ),

(3.45)

subject to:

V (θ, T ) =


(cos(θ) + (1− µ) sin(θ))γ

γ
, if θ > 0,

(cos(θ) + (1 + λ) sin(θ))γ

γ
, if θ ≤ 0.

(3.46)

where functions gi are given by (3.44).

With the results shown in the previous Subsections, it is expected that the Spatial domain
could be divided in three regions: Buying, No Transactions and Selling, where BRF (t), SRF (t)
are the respective frontiers at time t.

If this holds, let t ∈ [0, T ]. Suppose that we know the exact location of the Buying
(BRF (t)) and Selling (SRF (t)) frontiers. Suppose also that we know the values V (BRF (t), t)
and V (SRF (t), t). We can compute the function value V (θ, t) in the Buying and Selling
Regions integrating equations (3.39) and (3.41):

V (θ, t) = V (BRF (t), t)

[
(1 + λ) sin(θ) + cos(θ)

(1 + λ) sin(BRF (t)) + cos(BRF (t))

]γ
, θ < BRF (t),

V (θ, t) = V (SRF (t), t)

[
(1− µ) sin(θ) + cos(θ)

(1− µ) sin(SRF (t)) + cos(SRF (t))

]γ
, θ > SRF (t).

(3.47)

3.4.1 Explicit formulas and properties

The relation between function V (θ, t) and function v(z, t) given by (3.19), can be explicitly
computed:

v(z, t) = −
(
Vθ(θ, t) sin2(θ)− γ sin(θ) cos(θ)V (θ, t)

γV (θ, t)

)
,

z = cot(θ).

(3.48)

We can also derive some properties of functions SRF (t), BRF (t) from the properties of
functions SRc

F (t), BRc
F (t) compiled in Subsection 3.3.1.

Proposition 3.4.1. Functions SRF (t), BRF (t) given by (3.40) and (3.42) are monotonically
decreasing functions.
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It holds that BRF (t) < SRF (t) and that

BRF (t) = 0, t ∈ [t̂0, T ].

where t̂0 was defined in (3.23).

If α− r − (1− γ)σ2 > 0, then
BRF (t̂1) =

π

2

where t̂1 was defined in (3.25).
If T =∞, there exist two values BRs, SRs ∈ (β1, β2), such that

lim
t→0+

BRF (t) = BRs,

lim
t→0+

SRF (t) = SRs.

It hods that lim
t→T−

cot (SRF (t)) = (1− µ)xM .

Proof. This result is a direct consequence of Properties a), b), c), e) and f) of Subsection 3.3.1
and the relation which corresponds to the change of variable to polar coordinates

BRc
F (t) = cot (BRF (t)) , SRc

F (t) = cot (SRF (t)) .

We give a numerical example on Figure 3.4. We plot functions BRF (t) and SRF (t) and
include the results of the previous Proposition. We have enforced the parameter values so
α− r − (1− γ)σ2 > 0 holds.
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Figure 3.4: Graph of functions BRF (t) (left) and SRF (t) (right).
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On Figure 3.4, we can see that BRF (t) (left) is a decreasing function of time. It holds
that BRF (t̂1) = π/2 and that BRF (t) = 0, t ∈ [t̂0,Maturity]. Function BRF (t) tends to the
stationary value BRs as we move away from Maturity.

On the right side of Figure 3.4, we see that function SRF (t) is a decreasing function of
time. Furthermore, it tends to the stationary value SRs as we move away from Maturity and
it holds that lim

t→T−
SR(t) = arccot ((1− µ)xM) ∈ (β1, β2).

The relation between Figure 3.4 and Figure 3.2 is given by BRc
F (t) = cot (BRF (t)),

SRc
F (t) = cot (SRF (t)).

Proposition 3.4.2. Let SRc
s be the stationary value given by formula (3.28) and SRs ∈

(β1, β2) be such that SRc
s = cot(SRs).

It holds that functions SRF (t), BRF (t) given by (3.40) and (3.42) satisfy

β1 < 0 ≤ BR(t) ≤ SR(t) ≤ SRs < β2, t ∈ [0, T ],

Proof. This result is a direct consequence of the monotonicity, the limit values when t ap-
proaches T , Proposition 3.3.1 and the relation

SRc
F (t) = cot (SRF (t)) , SRc

F (t) = cot (SRF (t)) .

This Proposition justifies the two numerical methods that are proposed in the following
Sections.

3.5 Central Finite Differences Method

The numerical methods that we are going to develop are constructed upon the following
strategy.

Let π ∈ A0(x, y) denote an admissible trading strategy where x and y are the amount of
money in the bank and stock accounts at t = 0. Let πo denote the optimal trading strategy
which solves (3.8).

Let α1 ∈ (β1, 0) and α2 ∈ (SRs, β2) and define

Aα1,α2

0 (x, y) = {π ∈ A0(x, y) : θπ ∈ (α1, α2)} (3.49)

where θπ = arccot
(
xπ

yπ

)
∈ (α1, α2) and xπ, yπ are the amounts in the bank and stock

accounts if strategy π is followed.

Corollary 3.5.1. Proposition 3.4.2 implies that πo ∈ Aα1,α2

0 (x, y).
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Therefore, the solution of the problem can be found solving (3.45)-(3.46) in (α1, α2)×[0, T ]
subject to the boundary conditions:

Vθ (α1, t) = V (α1, t) γ
(1 + λ) cos(α1)− sin(α1)

(1 + λ) sin(α1) + cos(α1)
,

Vθ (α2, t) = V (α2, t) γ
(1− µ) cos(α2)− sin(α2)

(1− µ) sin(α2) + cos(α2)
.

(3.50)

where we note that these conditions are equivalent to a mandatory buying or selling the stock
if θ reaches α1 or α2 respectively (see formulas (3.39)-(3.41)).

The solution is extended to (β1, β2)× [0, T ] stating that for t ∈ [0, T ]:

θ ≤ α1 is in the Buying Region,
θ ≥ α2 is in the Selling Region,

and computing V (θ, t) with (3.47).

Let t ∈ [0, T ]. Fixed a number Nt ∈ N, we define the time mesh {tl}Ntl=0 by

tl = l∆t, l = 0, 1, ..., Nt, ∆t =
T

Nt

(3.51)

The numerical method is based on the computation of V Nt , which is an approximation in
time to function V in (α1, α2)× [0, T ]. Function V Nt is the function value which corresponds
to the optimization problem (3.8) when the allowed transactions are:

1. The minimal which ensure that θ ∈ (α1, α2) for t ∈ [0, T ].

2. Any, if t = tl0 ∈ {tl}Ntl=0 and we remain in (α1, α2).

Function V Nt converges to V as ∆t tends to 0 because the allowed strategies given by 1.
and 2. approach to Aα1,α2

0 (x, y). This implies that the optimal trading strategy πNto of the
discrete (in time) problem approaches to πo.

The objective of this Section is to numerically solve problem (3.45)-(3.46) with a Central
Finite Differences (FD) method.

Although the numerical algorithm will be fully described in Subsection 3.5.4, we mention
now that, at any time step tl0 ∈ {tl}Ntl=0, we will have to:

a) Solve the the partial differential equation which corresponds to the No Transactions Region
subject to the proper terminal condition.

b) Locate the Buying and Selling frontiers at tl0 and recompute the function value in the
Buying and Selling Regions.
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The Section is organized as follows: First, we will explain how to choose the spatial mesh
that will be employed for any time step tl0 ∈ {tl}Ntl=0. Afterwards, we will detail the FD
method. Finally, we will explain how to numerically compute the location of the Buying and
Selling frontiers.

The Section finishes with a detailed description of the numerical algorithm that must be
followed to solve the problem and a brief example of the results obtained.

3.5.1 Fixed spatial mesh

We point out that the derivative of the function value V (θ, t) in the Buying and Selling regions
grows to ∞ as we approximate the limits of the Solvency Region β1 or β2. This is the reason
why, in order to avoid numerical difficulties, the limits of the Spatial domain have been chosen
inside the Solvency Region.

We define the spatial mesh {θj}Nθj=0 by

θj = (j −N1) ∆θ, j = 0, 1, 2, ..., N1 +N2 = Nθ, (3.52)

where ∆θ > 0, N1, N2 ∈ N are parameters satisfying

∆θ < min {|β1|, β2 − SRs} ,{ |β1|
∆θ

,
β2

∆θ
,

SRs

∆θ

}
/∈ N,

1 ≤ N1 ≤
⌊ |β1|

∆θ

⌋
,

SRs

∆θ
< N2 ≤

⌊
β2

∆θ

⌋
.

(3.53)

and Nθ = N1 +N2.

It is easy to check that, by construction and thanks to Proposition 3.4.2, it holds

β1 < θ0 = −∆θN1 < 0, SRs < θNθ = ∆θN2 < β2,

which implies that θ0 is always inside the Buying Region and that θNθ is always inside the
Selling Region for all tl ∈ [0, T ].

We point out that, with this definition, θN1 = 0 and that the user is free to chose the size
of ∆θ and how close are θ0 and θNθ to the limits of the Solvency Region.

From now on, for any function f , the superscript fN denotes its numerical approximation,
where N = (Nt, Nθ) describes the size of the time and spatial meshes.

3.5.2 The Central Finite Differences method

At a fixed time step tl of the time discretization given by (3.51), suppose that we know the
function value V (θ, tl), θ ∈ (β1, β2).
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Let the spatial mesh {θj}Nθj=0 be given by (3.52) and consider (θ0, θNθ) ⊂ (β1, β2).

Let V̂ (θ, t), (θ, t) ∈ (θ0, θNθ)× [tl−1, tl] be the the function value which gives the expected
terminal value when the trading strategy is not perform transactions if θ ∈ (θ0, θNθ), buy the
stock if θ = θ0 and sell the stock if θ = θNθ , subject to V̂ (θ, tl) = V (θ, tl).

Therefore, V̂ (θ, t) is the solution of equation:

−V̂t + g2(θ)V̂θθ + g1(θ)V̂θ + g0(θ)V̂ = 0, (3.54)

subject to

Vθ (θ0, t) = V (θ0, t) γ
(1 + λ) cos(θ0)− sin(θ0)

(1 + λ) sin(θ0) + cos(θ0)
,

Vθ (θNθ , t) = V (θNθ , t) γ
(1− µ) cos(θNθ)− sin(θNθ)

(1− µ) sin(θNθ) + cos(θNθ)
,

V̂ (θ, tl) = V (θ, tl),

(3.55)

where we note that the boundary conditions are equivalent to a mandatory buying or selling
the stock if θ reaches θ0 or θNθ respectively (see formulas (3.39)-(3.41)).

The FD method will be invoked for l = Nt, Nt − 1, ..., 1 in the numerical algorithm
developed in Subsection 3.5.4. If tl = tNt = T , the function value V (θ, T ) is a known data
of the problem. If tl < T , the value of V (θ, tl) is substituted by its numerical approximation
V N(θ, tl), which has been computed in the previous step of the numerical algorithm.

The numerical approximation
{
V̂ N (θj, tl−1)

}Nθ
j=0

to function V̂ in interval (θ0, θN) is given

by the solution of:

∂V̂ N

∂t

∣∣∣∣∣
θ=θj

= g2(θ)
∂2V̂ N

∂θ2
+ g1(θ)

∂V̂ N

∂θ
+ g0(θ)V̂ N

∣∣∣∣∣
θ=θj

= L
(
V̂ N
)∣∣∣

θ=θj
, j = 1, ..., Nθ − 1,

(3.56)
subject to

V̂ N (θj, tl) = V (θj, tl) , j = 1, 2, ..., Nθ − 1,

where we impose Neumann boundary conditions (discussed at the end of the Subsection), so
that, for t ∈ [tl−1, tl]:

V̂ N
θ (θ0, t) = Vθ(θ0, tl) = V (θ0, tl)γ

(1 + λ) cos(θ0)− sin(θ0)

(1 + λ) sin(θ0) + cos(θ0)
,

V̂ N
θ (θNθ , t) = Vθ(θNθ , tl) = V (θNθ , tl)γ

(1− µ) cos(θNθ)− sin(θNθ)

(1− µ) sin(θNθ) + cos(θNθ)
.

(3.57)

It is understood that in (3.56), the derivatives with respect θ of order 1 and 2 are represen-
tations of the second order central finite differences, that is, for f = V or V̂ and t = tl−1 or tl,
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the derivatives are approximated for j = 1, ..., Nθ − 1 by

fθ(θj, t) ≈
f(θj+1, t)− f(θj−1, t)

2∆θ
,

fθθ(θj, t) ≈
f(θj+1, t)− 2f(θj, t) + f(θj−1, t)

(∆θ)2
.

(3.58)

The temporal derivative is substituted by the implicit midpoint rule

V̂ (θ, tl−1)− V (θ, tl)

∆t
= L

(
V̂ (θ, tl−1) + V (θ, tl)

2

)
. (3.59)

Since operator L is linear in V , the numerical scheme can be written as

V̂ N − ∆t

2
L
(
V̂ N
)∣∣∣∣

θ=θj , t=tl−1

= V +
∆t

2
L (V )

∣∣∣∣
θ=θj , t=tl

, j = 1, ..., Nθ − 1,

V̂ N
θ (θ0, tl−1) = V (θ0, tl)γ

(1 + λ) cos(θ0)− sin(θ0)

(1 + λ) sin(θ0) + cos(θ0)
,

V̂ N
θ (θNθ , tl−1) = V (θNθ , tl)γ

(1− µ) cos(θNθ)− sin(θNθ)

(1− µ) sin(θNθ) + cos(θNθ)
.

(3.60)

To finish the Subsection, we make some remarks.

We point out that the values of Vθ(θ0, tl) and Vθ(θNθ , tl) given in (3.57) are exact since, by
construction, θ0 and θN , are always respectively in the Buying and Selling Regions at t = tl
(see the previous Subsection and formulas (3.39) and (3.41)).

Concerning the choice of Neumann boundary conditions, a priori, neither V̂ (θ) nor V̂θ(θ)
remain constant in time at θ = {θ0, θNθ}. Indeed, the true boundary conditions are of Robin
type and would be given by (3.55).

In order to guarantee the stability of the numerical methods that we are going to develop
and to perform an equivalent comparison between them, we have imposed the Neumann
conditions in both (instead of Dirichlet ones, which gave higher errors). Therefore, we are
generating a numerical error, that will be referred as the boundary error.

The computation of V̂ N(tl−1) is just an intermediate step in order to compute the value
of V N(tl−1), the numerical approximation of the objective function. At each time step
l = Nt, Nt − 1, ..., 1 of the Numerical Algorithm, (see Subsection 3.5.4), we will compute
a numerical approximation of the Buying and Selling frontiers, and recompute the values in
the Buying and Selling regions with explicit formulas. Therefore, the boundary error in the
value of V N will be controlled by the size of ∆θ and ∆t.

3.5.3 Location of the Buying/Selling frontiers

At a fixed time step tl of the time discretization given by (3.51), suppose that we know the
function value V (θ, tl), θ ∈ (β1, β2).
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Let the spatial mesh {θj}Nθj=0 be given by (3.52) and consider (θ0, θNθ) ⊂ (β1, β2).

Let V̂ (θ, t), (θ, t) ∈ (θ0, θNθ) × [tl−1, tl] be the solution of (3.54)-(3.55). Function V̂ (θ, t)
is the function value which gives the expected terminal value when the trading strategy is to
not perform transactions if θ ∈ (θ0, θNθ), to buy the stock if θ = θ0 and to sell the stock if
θ = θNθ , subject to V̂ (θ, tl) = V (θ, tl).

Suppose that we are allowed to perform a transaction (buy or sell the stock) at t = tl−1.
Since it can never be optimal to buy and sell the stock at the same time, we compare if it
would be better to perform no transactions versus buy or sell the stock. We define:

P l−1
1 (θ) = V̂θ(θ, tl−1)− V̂ (θ, tl−1)γ

(1 + λ) cos(θ)− sin(θ)

(1 + λ) sin(θ) + cos(θ)
,

P l−1
2 (θ) = V̂θ(θ, tl−1)− V̂ (θ, tl−1)γ

(1− µ) cos(θ)− sin(θ)

(1− µ) sin(θ) + cos(θ)
,

(3.61)

whose sign has a meaningful physical interpretation for each θ ∈ (θ0, θN):

a) The sign of P l−1
1 (θ) implies that the result of buying the stock would be strictly better

(<), equivalent (=) or strictly worse (>) to not performing transactions.

b) The sign of P l−1
2 (θ) implies that the result of selling the stock would be strictly better (<),

equivalent (=) or strictly worse (>) to not performing transactions.

It is clear that the sign of P l−1
i (θ), i = 1, 2 must approach to the optimal trading strategy

of the problem given by variational inequality (3.45) at t = tl when ∆t tends to 0.

For defining an approximation in time of the Buying (BRl−1
F ) and Selling (SRl−1

F ) frontiers,
we need to prove that for i = 1, 2, the sign of P l−1

i (θ), θ ∈ (θ0, θNθ) unambiguously divides
the spatial domain in just three regions, which respectively correspond to a Buying, a No
Transactions and a Selling Region.

Functions P l−1
i (θ), i = 1, 2 are not (empirical) strictly increasing or decreasing functions

in (θ0, θNθ). Nevertheless, we can argue, employing optimality arguments, that for i = 1 or 2,
the following result holds.

Theorem 3.5.1. It exists βi ∈ (θ0, θNθ), i = 1, 2 such that

P l−1
1 (θ) < 0 if and only if θ < β1,

P l−1
2 (θ) < 0 if and only if θ > β2.

To see that the previous theorem is true (the proof is detailed below), we need to pull
back to the optimization statement of the problem to see what have we computed and which
properties does it satisfy. Let x and y be the amount of money in the bank and stock accounts.
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We define

SNθ = ((x, y) ∈ R× R : x+ cot(α0)y > 0, x+ cot(αNθ)y > 0)) , (3.62)

and the trading strategy

πNT (x, y) =
{

(L(t),M(t)) :
(
X̄(tl−1), Ȳ (tl−1)

)
= (x, y)

}
, (3.63)

which ensures that
(
X̄(t), Ȳ (t)

)
∈ SNθ , t ∈ [tl−1, tl], but no transactions are realized if this oc-

curs. We note that, from the linearity of equations (3.6), the trading strategy for an initial po-
sition (ρx, ρy), ρ > 0 is πNT (ρx, ρy) = ρπNT = {(ρL(t), ρM(t)) : (L(t),M(t)) ∈ πNT (x, y)}.

We define the function value:

ϕ̂(x, y, tl−1) = EπNT (x,y)

{
ϕ
(
X̄(tl), Ȳ (tl), tl

)
|
(
X̄(tl−1), Ȳ (tl−1)

)
= (x, y)

}
, (3.64)

where function ϕ was given in (3.11), processes X̄(t), Ȳ (t) are modelled by (3.6) and EπNT (x,y)

is the conditional expectation at t = tl−1 subject to
(
X̄(tl−1), Ȳ (tl−1)

)
= (x, y) and to follow

strategy πNT (x, y).

We recall that ϕ(x, y, t) is strictly increasing in x and y (see Proposition 3.2.1). Further-
more, it has the homothetic property (ϕ(ρx, ρy, t) = ργϕ(x, y, t), ρ > 0) and is concave (see
[21]).

We note that function ϕ̂(x, y, tl−1) corresponds to V̂ (θ, tl−1) up to the change to polar
coordinates.

Suppose now that we are allowed to perform a transaction at time tl−1. Our objective is
to maximize the expected terminal value. Therefore, we define:

ϕ̂tl−1(x, y) = sup
L,M
{ϕ̂ (x− (1 + λ)L+ (1− µ)M, y − L+M, tl−1)} . (3.65)

Employing the same arguments as in [21, Theorem 3.1], from the linearity of equations
(3.6) and strategy πNT , function ϕ̂tl−1(x, y) inherits the concavity and homothetic properties.

Proposition 3.5.1. Function ϕ̂tl−1(x, y) is strictly increasing in x and y.

Proof. Let (x, y) be the position at tl−1 and suppose that ϕ̂tl−1(x, y) is known.

For an initial position (x+ ∆x, y), ∆x > 0, we are allowed to buy or sell the stock at tl−1.
Consider the, a priori suboptimal, trading strategy which consists in buying a certain amount
ε > 0 of the stock such that

(x+ ∆x− (1 + λ)ε, y + ε) = (ρx, ρy)

with ρ > 1.
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It holds, by the suboptimality of the strategy, that

ϕ̂tl−1(x+ ∆x, y) ≥ ϕ̂tl−1(x+ ∆x− (1 + λ)ε, y + ε) = ργϕ̂tl−1(x, y) > ϕ̂tl−1(x, y)

employing the homothetic property.

The same argument can be applied to an initial position (x, y + ∆y), ∆y > 0.

Function ϕ̂tl−1(x, y) is the function value at t = tl−1 of the maximization of the expected
terminal utility when we allow a transaction at tl−1, the minimal transactions to remain in
SNθ for t ∈ [tl−1, T ] and any transactions for t ∈ [tl, T ].

Employing optimization arguments (see [21]), the Hamilton-Jacobi-Bellman equation (3.12)
holds at t = tl−1 because we are allowed to perform a transaction (not for t ∈ (tl−1, tl) where
we do not have any control but to remain in SNθ). We note that the sign of P l−1

i (θ) marks
when the different inequalities occur.

As it is remarked in [21], the homothetic property only holds when we are allowed to buy
or sell at the maximum rate, inducing the so called “bang-bang” strategies. If we are in the
Buying Region, the optimal trading strategy is to immediately buy the stock until reaching
the point where it is not optimal to do so (and the equivalent strategy in the Selling Region).
This justifies the employment of the explicit formulas for the Buying and Selling Region.

Thanks to the homothetic property of function ϕ̂tl−1 , if it is optimal to buy or sell at
t = tl−1 for (x, y), so it is for (ρx, ρy). This implies that the frontiers between regions are rays
from the origin. For finishing the argument, note that the investors try to maximize their
benefits and are risk-averse (concavity).

Let y be fixed. Suppose that for an initial position (x, y) it is optimal to buy. For any
initial position (x+ ∆x, y), ∆x > 0, we have increased our expected results (ϕ̂tl−1 is strictly
increasing) without increasing the risk, so we will be willing to buy. On the contrary, suppose
that it is not optimal to buy. For any initial position (x −∆x, y), ∆x > 0 we have reduced
our expected results without reducing the risk, so we will not be willing to buy more.

Similar arguments for the Selling Region can be obtained. This suggests that the No
Transactions Region is a wedge, lying the Buying Region above and the Selling Region below.
From now on, we assume that this conjecture is correct.

We move back to polar coordinates. We note that (see (3.35) and Figure 3.3):

θ < 0⇒ y < 0, x > −(1− µ)y,

θ = 0⇒ y = 0, x ≥ 0,

θ > 0⇒ y > 0, x > −(1 + λ)y,

which implies,
if y > 0, then x ↑ +∞⇒ θ ↓ 0+,

if y < 0, then x ↑ +∞⇒ θ ↑ 0−.
(3.66)
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Proposition 3.5.2. P l−1
1 (θ0) = P l−1

2 (θNθ) = 0.

Proof. This result is a direct consequence of the boundary conditions imposed in the definition
of V̂ (see (3.55))

We remark that there is no contradiction in the physical meaning of the sign of P l−1
i since

the boundary conditions are a mandatory buying or selling the stock if we respectively reach
θ0 or θNθ .

Proposition 3.5.3. P l−1
1 (θNθ), P

l−1
2 (θ0) > 0.

Proof. We only prove P l−1
1 (θNθ) > 0. The other result is obtained with identical arguments.

Suppose that P l−1
1 (θNθ) = 0. This implies that P l−1

1 (θNθ) = P l−1
2 (θNθ) due to the previous

Proposition. This equality leads to λ = −µ, which is a contradiction with the hypothesis that
transaction costs exist λ+ µ > 0.

The boundary condition at θNθ (see (3.55)) is equivalent to the mandatory selling the
stock. Therefore, P l−1

1 (θNθ) > 0 since P l−1
1 (θNθ) < 0 would imply that we have to buy and

sell the stock at the same time, something which is always strictly suboptimal.

Proof of Theorem 3.5.1. Since α > r, we know that it is always suboptimal to have a negative
amount of the stock. From the change to polar coordinates, this implies that

P l−1
1 (θ) < 0, θ ∈ (θ0, 0)

P l−1
2 (θ) > 0, θ ∈ (θ0, 0)

and it is enough to study θ ∈ (0, θNθ). Therefore, y > 0 for the rest of the proof.

Let β ∈ (0, θNθ) and suppose that P l−1
1 (β) < 0 (it is optimal to buy). From the homothetic

property, it is enough to study an initial position (x0, y0) such that arccot(x0/y0) = β. With
the optimization arguments shown before (the No Transactions Region is a wedge which
separates the space in three regions), the investor will be in the Buying Region for any
(x0 + ∆x, y0),∆x > 0.

Let β∆x = arccot((x0 + ∆x)/y0) ∈ (θ0, θNθ). From (3.66), it holds 0 < β∆x < β which
implies P l−1

1 (θ) < 0, θ ∈ (0, β].

Suppose now that P l−1
1 (β) > 0. This means that (x0, y0) it is not in the Buying Region.

With the optimization arguments shown before (the No Transactions Region is a wedge which
separates the space in three regions), the investor will not be in the Buying Region for any
(x0 −∆x, y0),∆x > 0.

From (3.66), it holds β < β∆x < θNθ which implies P l−1
1 (θ) ≥ 0, θ ∈ [β, θNθ).

A similar argument can be derived for function P l−1
2 (θ).

This arguments, jointly with Propositions 3.5.2 and 3.5.2 completes the proof of the The-
orem and guarantees that we will be able to define a Buying and a Selling Region.
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We define
BRl−1

F = min
{
β : P l−1

1 (θ) ≥ 0, θ ∈ [β, θNθ)
}
,

SRl−1
F = max

{
β : P l−1

2 (θ) ≥ 0, θ ∈ (θ0, β]
}
.

(3.67)

In order to check that the frontiers are well defined, we need a last result.

Proposition 3.5.4. It holds BRl−1
F < SRl−1

F .

Proof. We argue by contradiction.

If BRl−1
F > SRl−1

F , then it holds that it exists θ ∈ (θ0, θNθ) such that P l−1
i (θ) < 0, i = 1, 2,

which is absurd, because it can never be optimal to buy and sell the stock at the same time.

Suppose that BRl−1
F = SRl−1

F . Then it holds P l−1
1 (BRl−1

F ) = P l−1
2 (BRl−1

F ), leading to
λ = −µ which is a contradiction with λ+ µ > 0.

Therefore BRl−1
F and SRl−1

F divide the spatial domain in three Regions:

a) θ < BRl−1
F where it would be strictly better to buy the stock.

b) BRl−1
F ≤ θ ≤ SRl−1

F where it would be better or equivalent to do nothing.

c) SRl−1
F < θ where it would be strictly better to sell the stock.

which define an approximation (in time) to the Buying, No Transactions and Selling Regions.

We recompute the function value V̂ in the Buying and Selling Regions employing formulas
(3.47), which are consistent, since with the arguments shown we know that the optimal trading
strategies are “bang-bang” and the optimal trading strategy is to buy or sell at the maximum
rate until reaching the No Transactions Region. Once done, we have obtained the value
function which corresponds, up to the change to polar coordinates, to function ϕ̂tl−1(x, y).

In Subsection 3.5.2, we have computed
{
V̂ N(θj, tl−1)

}Nθ
j=0

.

We define the numerical approximation PN,l−1
i to functions P l−1

i by:

P
(N,l−1)
1 (θj) = V̂ N

θ (θj, tl−1)− V̂ N(θj, tl−1)γ
(1 + λ) cos(θj)− sin(θj)

(1 + λ) sin(θj) + cos(θj)
,

P
(N,l−1)
2 (θj) = V̂ N

θ (θj, tl−1)− V̂ N(θj, tl−1)γ
(1− µ) cos(θj)− sin(θj)

(1− µ) sin(θj) + cos(θj)
,

(3.68)

where V̂ N
θ (θj, t), j = 1, ..., Nθ − 1 are computed with finite differences (see (3.58)).

The numerical approximation to the location of the Buying / Selling Frontiers at t = tl−1

is given by:
BRN

F (tl−1) = θj1 , j1 = min
{
ji : P

(N,l−1)
1 (θj) ≥ 0, j ≥ ji

}
,

SRN
F (tl−1) = θj2 , j2 = max

{
ji : P

(N,l−1)
2 (θj) ≥ 0, j ≤ ji

}
.

(3.69)
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We point out that with this definition, the numerical location of the frontiers will be points
of the spatial mesh {θj}Nθj=0 and its time evolution will be piecewise constant. In the following
numerical method (see Section 3.6), P (N,l−1)

i will be functions and we will evaluate them in
order to find the location of the frontiers.

Therefore, we define the numerical approximation V N(θ, tl−1) to function V (θ, tl−1) in the
Buying and Selling Regions by

V N(θ, t) = V̂ N(BRN
F (t), t)

[
(1 + λ) sin(θ) + cos(θ)

(1 + λ) sin(BRN
F (t)) + cos(BRN

F (t))

]γ
, θ < BRN

F (t),

V N(θ, t) = V̂ N(SRN
F (t), t)

[
(1− µ) sin(θ) + cos(θ)

(1− µ) sin(SRN
F (t)) + cos(SRN

F (t))

]γ
, θ > SRN

F (t).

(3.70)

3.5.4 Numerical Algorithm

We define now the Numerical Algorithm that must be followed in order to solve the problem.
We suppose t ∈ [0, T ].

Step 0. Fix ∆θ > 0, N1, N2 ∈ N, satisfying (3.53). Build the spatial mesh

θj = (j −N1) ∆θ, j = 0, 1, 2, ..., N1 +N2

and define Nθ = N1 +N2.
Fix Nt ∈ N, compute ∆t = T

Nt
and define the temporal mesh {tl}Ntl=0

tl = l∆t, l = 0, 1, ..., Nt

Define N = (Nt, Nθ) and compute V N(θ, T ) = {V (θj, T )}Nθj=0 using formula (3.46). Set
l = Nt.

Step 1. Compute V̂ N(θ, tl−1) solving

V̂ N − ∆t

2
L
(
V̂ N
)∣∣∣∣

θ=θj , t=tl−1

= V +
∆t

2
L (V )

∣∣∣∣
θ=θj , t=tl

, j = 1, ..., Nθ − 1,

V̂ N
θ (θ0, tl−1) = V (θ0, tl)γ

(1 + λ) cos(θ0)− sin(θ0)

(1 + λ) sin(θ0) + cos(θ0)
,

V̂ N
θ (θNθ , tl−1) = V (θNθ , tl)γ

(1− µ) cos(θNθ)− sin(θNθ)

(1− µ) sin(θNθ) + cos(θNθ)
.

where operator L is defined in (3.81).

Step 2. Locate the Buying and Selling Frontiers with formulas (3.68) and (3.69). Compute:

PN,l−1
1 (θj) = V̂θ(θj, tl−1)− V̂ (θj, tl−1)γ

(1 + λ) cos(θj)− sin(θj)

(1 + λ) sin(θj) + cos(θj)
,

PN,l−1
2 (θj) = V̂θ(θj, tl−1)− V̂ (θj, tl−1)γ

(1− µ) cos(θj)− sin(θj)

(1− µ) sin(θj) + cos(θj)
,
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and define
BRN

F (tl−1) = θj1 , j1 = min
{
ji : PN,l−1

1 (θj) ≥ 0, j ≥ ji

}
,

SRN
F (tl−1) = θj2 , j2 = max

{
ji : PN,l−1

2 (θj) ≥ 0, j ≤ ji

}
.

Step 3. The numerical solution V N of the function V (θ, t) at time tl−1 is defined by:

V N(θj , tl−1) =



V̂ N(BRN
F (tl−1), tl−1)

[
(1 + λ) sin(θj) + cos(θj)

(1 + λ) sin(BRN
F (tl)) + cos(BRN

F (tl))

]γ
, θj < BRN

F (tl−1),

V̂ N(θj , tl−1), BRN
F (tl−1) ≤ θj ≤ SRN

F (tl−1),

V̂ N(SRN
F (tl−1), tl−1)

[
(1− µ) sin(θj) + cos(θj)

(1− µ) sin(SRN
F (tl)) + cos(SRN

F (tl))

]γ
, θj > SRN

F (tl),

where we have employed formula (3.70).

Step 4. Set l = l − 1. If l = 0 we have finished. Otherwise, proceed to Step 1.

We now justify why the numerical solution is convergent.
Without considering the boundary error due to the imposition of Neumann conditions,

as ∆x → 0, we approach to V Nt . Function V Nt corresponds, up to the change to polar
coordinates, to

ϕNt(x, y, t) = sup

(L,M)∈ANt,S
Nθ

t (x,y)

E
[
U
(
W̄ (T )

)∣∣ (X̄(t), Ȳ (t)) = (x, y)
]

where the set of allowed trading strategies ANt,S
Nθ

0 (x, y) includes no transactions for t /∈ {tl}Ntl=0

but those needed to remain in SNθ , given in (3.62), and admits any transactions (subject to
remain in SNθ) at discrete times {tl}Ntl=0.

We point out that the previous statement is correct because strictly increasing, concavity
and homothetic properties are inherited from one time step to the following one, so the
arguments of the previous Subsection can be applied in an iterative way.

As Nt tends to ∞ (note that it is then when the boundary error completely vanishes),
set ANt,S

Nθ

t (x, y) tends to ASNθ
t (x, y), the set which includes any trading strategy subject to

remain in SNθ . As pointed before, the optimal trading strategy πo which solves (3.11) belongs
to ASNθ

t (x, y).

Therefore, function V N converges to V as Nt and Nθ tend to ∞.

3.5.5 Numerical Example

Although the error analysis of the method is postponed to Section 3.7, it is interesting to
show now the numerical results obtained with this method.
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We choose the same parameter values as in the first numerical experiment of reference [2]:

σ = 0. 25, r = 0. 03, α = 0. 10, γ = 0. 5, λ = 0. 08, µ = 0. 02,

We fix a maturity T = 30 years in order to check the stationary values of the Buying and
Selling frontiers when maturity is big enough (see Proposition 3.4.1).

The numerical approximation V N(θ, t) is plotted on Figure 3.5, where we have colored the
function value depending on whether (θ, t) is in the Buying (blue), No Transactions (green)
or Selling (red) Regions.

Figure 3.5: Value function V N(θ, t), (θ, t) ∈ [β1, β2] × [0, 30]. View in perspective (left) and
from above (right).

At a fixed time t, the optimal trading strategy for a position

θ = arccot
(

Money in Bank account
Money in the Stock Account

)
∈ [β1, β2],

is:

1. If (θ, t) is in the Buying Region (blue in Figure 3.5), to immediately buy stock until
reaching the No Transactions Region (green in Figure 3.5).

2. If (θ, t) is in the No Transactions Region (green in Figure 3.5), to do nothing.

3. If (θ, t) is in the Selling Region (red in Figure 3.5), to immediately sell stock until
reaching the No Transactions (green in Figure 3.5).

On the right side of the previous figure (projection over the (t, θ) plane), we can check
some of the properties mentioned in Proposition 3.4.1. Consider the curve which divides the
Buying and No Transaction Regions (frontier between blue and green colors), which is the
numerical estimation of the Buying frontier (BRN

F (t)). Consider also the curve which divides
the Selling and No Transaction Regions (frontier between red and green colors), which is the
numerical estimation of the Selling frontier (SRN

F (t)).
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(i) BRN
F (t) and SRN

F (t) are decreasing functions in time.

(ii) There is a time interval [t̂0, T ] such that BRN
F (t) remains constant at θ = 0 (z = +∞ in

(3.19)).

(iii) BRN
F (t) and SRN

F (t) tend to a steady state as t approaches to 0+.

3.6 Mesh-adapted Chebyshev-collocation method

Our objective is to design a second numerical method, for the solution of problem (3.45)-(3.46),
more efficient than the previous one in terms of computational cost versus error tolerance.

The better performance is obtained looking for more spatial precision with less compu-
tational requirements. We will implement a spectral method, specifically adapted for this
problem.

Let t ∈ [0, T ]. Fix Nt ∈ N and define ∆t and the time mesh {tl}Ntl=0 as in (3.51).

We note that, thanks to formulas (3.39) and (3.41), it is enough to know the location of
the Buying and Selling frontiers and the values of V (θ, t) in the No Transactions region in
order to completely define the function V (θ, t). The problem will be solved with a spatial
time dependent adapted mesh defined in a proper interval I(tl) = [Ctl

1 , C
tl
2 ].

Fix Nθ ∈ N. From now on, for any function f , the superscript fN denotes its numerical
approximation, where N = (Nt, Nθ), Nt describes the size of the time mesh and Nθ + 1 is the
number of Chebyshev nodes.

The numerical solution at tl0 ∈ {tl}Ntl=0 is V N(θ, tl), which will be a polynomial of degree
Nθ defined in interval I(tl0) by its values at the Nθ + 1 Chebyshev nodes of interval I(tl0).

The Section is organized as follows: First, we will explain how to choose the spatial mesh
that depends on the time step. Afterwards, we will detail the Chebyshev Collocation method.
Finally, we will study the computation of the Buying/Selling frontiers.

The Section finishes with the Numerical Algorithm that must be followed in order to solve
the problem.

3.6.1 The adaptive mesh

Let Nt be a nonnegative integer and compute {tl}Ntl=0 with (3.51).

Our objective is to give a general criteria to construct an adaptive interval I(tl) that will
be employed in the numerical solution of our problem.
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We are going to give the formulas to compute I(tl) and, afterwards, we will detail the
properties that they satisfy. In the construction of interval I(tl), we will take advantage of
the behaviour of the frontiers of the different regions that were detailed in Subsection 3.4.1.

Let δ ∈ (0, 0.5) be a control parameter and assumed fixed along the numerical algorithm.
We define

k1 =
β2 − SRs

β2 − BRF (T )
,

k = min{δ, k1, BRF (T )− β1},
(3.71)

where we recall that BRF (T ) = 0 and that SRs = arccot (SRc
s) ∈ [β1, β2] is the stationary

state of the Selling frontier. The value SRc
s is explicitly computable from the initial data of

the problem (see (3.28)).

Let N ∈ N. We recall from Chapter 1 that the N + 1 Chebyshev nodes in [−1, 1] are

θ̃j = cos

(
πj

Nθ

)
, j = 0, 1, ..., N. (3.72)

For N ∈ N fixed, let jk ∈ {0, 1, 2, ..., N} be the only value such that∣∣∣θ̃N−jk − θ̃N ∣∣∣ ≤ 2k <
∣∣∣θ̃N−(jk+1) − θ̃N

∣∣∣ . (3.73)

jk is well defined because 0 < k ≤ δ < 0.5. From the definition of the Chebyshev nodes,
it is easy to check that it exists N0 such that for all N ≥ N0, it holds that jk ≥ 1.

Suppose that we are at t = tl and that we know BRF (tl) and SRF (tl).

Let Nθ ∈ N, Nθ > N0 fixed along the numerical algorithm. Interval I(tl) is given by:

Case a) If BRF (tl) = 0.

I1(tl) =

[
0,

2

θ̃jk − θ̃Nθ
SRF (tl)

]
. (3.74)

Case b) If BRF (tl) > 0.

I2(tl) =

[
BRF (tl)−M

θ̃Nθ−jk − θ̃Nθ
θ̃jk − θ̃Nθ−jk

, SRF (tl) +M
θ̃0 − θ̃jk

θ̃jk − θ̃Nθ−jk

]
, (3.75)

where M = SRF (tl)− BRF (tl).

We note that the numerical algorithm is solved for l = Nt, Nt − 1, ..., 2, 1. Note that for
tNt = T , the values

BRF (T ) = 0, SRF (T ) = arccot ((1− µ)xM) ∈ (β1, β2)

where xM is the Merton line, are known data. For tl < T , the values BRF (tl) and SRF (tl)
are substituted by BRN

F (tl) and SRN
F (tl), their numerical approximation, which has been

computed prior to the construction of I(tl) (see Subsection 3.6.5).
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The reason why two different intervals are defined is given in Subsection 3.6.4.

From the properties of the Buying Frontier (see Subsection 3.4.1), we know that it exists
an explicitly computable value t̂0 such that BRF (t) = 0, t ∈ [t̂0, T ] and BRF (t) > 0, t < t̂0.
We have taken advantage of this property in the definition of I(tl), but we remark that t̂0 is
not employed in the implementation of the algorithm.

Since the numerical algorithm is solved for l = Nt, Nt−1, ..., 2, 1, we always start employing
the interval defined in Case a) and we may or may not employ the interval defined in Case
b). The criteria to change the kind of interval from Case a) to Case b) is when we find
BRN

F (tl0) > 0 for the first time, and not the exact value of t̂0, which we do not compute.

The criterium to choose I(tl) is that it covers the three regions. In the definition that we
have given, a 100δ% (maximum) of interval I(tl) will be in the Selling Region, another 100δ%
(maximum) will be in the Buying Region and 100(1 − 2δ)% (minimum) will be in the No
Transactions Region. Furthermore, value k ensures that I(tl) ⊂ [β1, β2], the Solvency Region.

Note that we have forced that both BRF (tl) and SRF (tl) are always one of the Nθ + 1
Chebyshev nodes of interval I(tl). Note also that the restriction Nθ > N0 (jk ≥ 1) implies
that SRF (tl) is always in the interior of I(tl).

We have indirectly imposed, assumed Nt is big enough, that BRF (tl−1), SRF (tl−1) ∈ I(tl).
Since the numerical algorithm is solved for l = Nt, Nt − 1, ..., 2, 1, this implies that we can
compute a numerical approximation to the Buying and Selling frontiers in the next step. This
assertion is guaranteed for the exact solution of the problem by the following result.

Proposition 3.6.1. Let NT (t) = [BRF (t), SRF (t)] where BRF (t) and SRF (t) are the exact
location of the Buying and Selling frontiers.

For any Nθ > N0, where N0 is the restriction which guarantees that SRN
F (t) will be in the

interior of I(t), compute I(t) with (3.74) or (3.75).

It exists N1 > 0 such that for any time mesh {tl}Ntl=0 , Nt > N1 given by (3.51), it holds

NT (tl0−1), NT (tl0) ⊂ I(tl0). (3.76)

for any tl0 ∈ {tl}Ntl=0.

Proof. From Property a) of Subsection 3.3.1, we know that SRc
F (t) ∈ C∞[0, T ). Therefore,

SRF (t) = arccot (SRc
F (t)) ∈ (β1, β2) is C∞[0, T ).

Let k from (3.71) be fixed. Since SRF (t) is in the interior of I(t), it will exist ∆tk such
that ∀∆t < ∆tk it holds:

SRF (t−∆t) ∈ I(t), t ∈ [0, T ) (3.77)

This guarantees that for any time mesh {tl}Ntl=0, where Nt >
1

∆tk
, it holds that SRF (tl−1) ∈

I(tl).
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To finish the proof, note that BRF (t) is a decreasing function and BRF (tl−1) ≤ SRF (tl−1)
(see Proposition 3.4.1), so the result follows directly from the definition of I(tl).

3.6.2 Chebyshev collocation.

At a fixed time step tl of the time discretization given by (3.51), suppose that we know the
function value V (θ, tl), θ ∈ (β1, β2) and the values of BRF (tl) and SRF (tl).

For Nθ fixed, compute
I(tl) = [Ctl

1 , C
tl
2 ]

with (3.74) if BRF (tl) = 0 or with (3.75) otherwise.

As in Subsection 3.5.2, for t ∈ [tl−1, tl], consider V̂ , the function value which gives the
expected terminal value when the trading strategy is to not perform transactions if θ ∈
(Ctl

1 , C
tl
2 ), to buy the stock if θ = Ctl

1 and to sell the stock if θ = Ctl
2 , subject to V̂ (θ, tl) =

V (θ, tl).

Therefore, V̂ is the solution of equation

−V̂t + g2(θ)V̂θθ + g1(θ)V̂θ + g0(θ)V̂ = 0, (3.78)

subject to

V̂θ
(
Ctl

1 , t
)

= V̂
(
Ctl

1 , t
)
γ

(1 + λ) cos(Ctl
1 )− sin(Ctl

1 )

(1 + λ) sin(Ctl
1 ) + cos(Ctl

1 )
,

V̂θ
(
Ctl

2 , t
)

= V̂
(
Ctl

2 , t
)
γ

(1− µ) cos(Ctl
2 )− sin(Ctl

2 )

(1− µ) sin(Ctl
2 ) + cos(Ctl

2 )
,

V̂ (θ, tl) = V (θ, tl).

(3.79)

Note that the boundary conditions are a mandatory buying or selling the stock if θ reaches
respectively Ctl

1 or Ctl
2 (see equations (3.39), so θ always remains inside (Ctl

1 , C
tl
2 ).

The numerical algorithm is solved for l = Nt, Nt − 1, ..., 1. Function V (θ, T ) is a known
data and if l < Nt, function V (θ, tl) is substituted by its numerical approximation which will
have been computed in the previous step.

Consider {θ̃j}Nθj=0, the Nθ + 1 Chebyshev nodes in [−1, 1], which are given by (3.72). The
employment of the Chebyshev nodes in [−1, 1] is due to implementation purposes. Note that
the value of θ̃j, j = 0, 1, ..., Nθ does not depend of the time step tl.

We compute {θj}Nθj=0, the Nθ + 1 Chebyshev nodes in [Ctl
1 , C

tl
2 ] through the change of

variable:

θj =
Ctl

2 − Ctl
1

2
θ̃j +

Ctl
2 + Ctl

1

2
, j = 0, 1, ..., Nθ. (3.80)
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We note that θj = θj(tl), i.e. they depend on which time step we are. We also note that
θ0 = Ctl

2 and θNθ = Ctl
1 (Chebyshev nodes are ordered up-down).

The numerical approximation V̂ N(θ, tl−1), θ ∈ (θNθ , θ0) is the collocation polynomial of
degree Nθ defined by:

∂V̂ N

∂t

∣∣∣∣∣
θ=θj

= g2(θ)
∂2V̂ N

∂θ2
+ g1(θ)

∂V̂ N

∂θ
+ g0(θ)V̂ N

∣∣∣∣∣
θ=θj

= L
(
V̂ N
)∣∣∣

θ=θj
, j = 1, ..., Nθ − 1

(3.81)
subject to

V̂ N(θj, tl) = V (θj, tl), j = 1, 2, ..., Nθ − 1, (3.82)

and where we impose Neumann boundary conditions. For t ∈ [tl−1, tl],

V̂ N
θ (θNθ , t) = Vθ(θNθ , tl) = V (θNθ , tl)γ

(1 + λ) cos(θNθ)− sin(θNθ)

(1 + λ) sin(θNθ) + cos(θNθ)
,

V̂ N
θ (θ0, t) = Vθ(θ0, tl) = V (θ0, tl)γ

(1− µ) cos(θ0)− sin(θ0)

(1− µ) sin(θ0) + cos(θ0)
.

(3.83)

We remark that the formulas for Vθ(θ0, tl) and Vθ(θNθ , tl) are again consistent because, by
definition of the adaptive interval, θ0 is always inside the Selling Region and θNθ is inside the
Buying Region or it is the Buying Frontier. We detail this in Subsection 3.6.3.

For j = 0, 1, 2, ..., Nθ, consider the Chebyshev polynomials Tj
(
θ̃
)
, θ̃ ∈ [−1, 1], which

were introduced in Definition 1.3.1 in Chapter 1.

Polynomial V̂ N(θ, t) and the collocation method are defined in function of variable θ but,
taking into account the relation between θ and θ̃ given by (3.80), the implementation will
be done in function of variable θ̃ and with polynomial V̂ N(θ, t) written in function of the
Chebyshev polynomials:

V̂ N(θ, t) =

Nθ∑
j=0

âj(t)Tj(θ̃), (θ̃, t) ∈ [−1, 1]× [tl−1, tl]. (3.84)

We note that the values {âj(tl)}Nθj=0 are known by assumption (V (θ, tl) known in (3.82)),
and that we want to find the values {âj(tl−1)}Nθj=0 which satisfy (3.81)-(3.83).

The spatial derivatives of V̂ N(θ, t) are given by

∂kV̂ N(θ, t)

∂θk
=

(
2

Ct
2 − Ct

1

)k Nθ∑
j=0

âj(t)
∂kTj(θ̃)

∂θ̃k
, (3.85)

The temporal derivative is substituted by the implicit midpoint rule:

V̂ N(θ, tl−1)− V̂ N(θ, tl)

∆t
= L

(
V̂ N(θ, tl−1) + V̂ N(θ, tl)

2

)
.
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Operator L, given in (3.81), is linear in V . Jointly with the boundary conditions, the
collocation method is

V̂ N − ∆t

2
L
(
V̂ N
)∣∣∣∣

θ=θj , t=tl−1

= V̂ N +
∆t

2
L
(
V̂ N
)∣∣∣∣

θ=θj , t=tl

, j = 1, ..., Nθ − 1,

V̂ N
θ (θNθ , tl−1) = V (θNθ , tl)γ

(1 + λ) cos(θNθ)− sin(θNθ)

(1 + λ) sin(θNθ) + cos(θNθ)
,

V̂ N
θ (θ0, tl−1) = V (θ0, tl)γ

(1− µ) cos(θ0)− sin(θ0)

(1− µ) sin(θ0) + cos(θ0)
.

(3.86)

Let us see now how to write the Collocation method in function of the Chebyshev poly-
nomials and explicitly obtain the values of â(tl−1).

We define the matrices:

A0 =


T0(θ̃0) T1(θ̃0) ... TNθ(θ̃0)

T0(θ̃1) T1(θ̃1) ... TNθ(θ̃1)
... ... ... ...

T0(θ̃Nθ) T1(θ̃Nθ) ... TNθ(θ̃Nθ)

 , A1 =


T ′0(θ̃0) T ′1(θ̃0) ... T ′Nθ(θ̃0)

T ′0(θ̃1) T ′1(θ̃1) ... T ′Nθ(θ̃1)
... ... ... ...

T ′0(θ̃Nθ) T ′1(θ̃Nθ) ... T ′Nθ(θ̃Nθ)

 ,

(3.87)

A2 =


T ′′0 (θ̃0) T ′′1 (θ̃0) ... T ′′Nθ(θ̃0)

T ′′0 (θ̃1) T ′′1 (θ̃1) ... T ′′Nθ(θ̃1)
... ... ... ...

T ′′0 (θ̃Nθ) T ′′1 (θ̃Nθ) ... T ′′Nθ(θ̃Nθ)

 ,

where we remark that matrices Ai, i = 1, 2, 3 can be computed once at the beginning of the
numerical algorithm (they do not depend of the value of tl).

For k = 0, 1, 2, we define the vectors

gk =


gk(θ0)
gk(θ1)
...

gk(θNθ)


(Nθ+1)×1

, V̂
N
l =


V̂ N(θ0, tl)

V̂ N(θ1, tl)
...

V̂ N(θNθ , tl)


(Nθ+1)×1

,

and the matrix

Gk =


gk(θ0) gk(θ0) ... gk(θ0)
gk(θ1) gk(θ1) ... gk(θ1)
... ... ... ...

gk(θNθ) gk(θNθ) ... gk(θNθ)


(Nθ+1)×(Nθ+1)

,

We write the first equation of (3.86) employing matrix notation. For simplicity, we include
the nodes which correspond to j = 0 and j = Nθ, which will be altered below in order to



3.6. Mesh-adapted Chebyshev-collocation method 111

impose the boundary conditions. Let the matrix Bl−1 and vector Wl be given:

Bl−1 = A0 −
∆t

2

[
G0 ◦ A0 +

2

Ctl
2 − Ctl

1

G1 ◦ A1 +

(
2

Ctl
2 − Ctl

1

)2

G2 ◦ A2

]
,

Wl = V̂
N
l +

∆t

2

(
g0 ◦ V̂

N
l + g1 ◦

(
V̂

N
l

)′
+ g2 ◦

(
V̂

N
l

)′′)
.

(3.88)

where ◦ is the Hadamard (pointwise) product and

(
V̂

N
l

)′
=


V̂ N
θ (θ0, tl)

V̂ N
θ (θ1, tl)
...

V̂ N
θ (θNθ , tl)


(Nθ+1)×1

,
(
V̂

N
l

)′′
=


V̂ N
θθ (θ0, tl)

V̂ N
θθ (θ1, tl)
...

V̂ N
θθ (θNθ , tl)


(Nθ+1)×1

.

This way, when the spatial mesh is changed in the numerical algorithm (see Subsection
3.6.5), we only have to recompute for k = 0, 1, 2 the vectors gk, the matrices Gk and the two
derivatives of VN

l , multiply and sum to obtain matrix Bl−1 and vector Wl.

Boundary conditions are imposed changing two of the rows of Bl−1. For j = 1, ..., Nθ + 1

Bl−1(1, j) =
2

Ctl
2 − Ctl

1

T ′j−1(θ̂0),

Bl−1(Nθ + 1, j) =
2

Ctl
2 − Ctl

1

T ′j−1(θ̂Nθ),
(3.89)

and two elements of Wl :

Wl(1, 1) = V (θ0, tl)γ
(1− µ) cos(θ0)− sin(θ0)

(1− µ) sin(θ0) + cos(θ0)
,

Wl(Nθ + 1, 1) = V (θN , tl)γ
(1 + λ) cos(θN)− sin(θN)

(1 + λ) sin(θN) + cos(θN)
.

(3.90)

The Collocation method (3.86) is given by:

Bl−1


âl−1

0

âl−1
1

...
âl−1
Nθ−1

âl−1
Nθ

 = Wl,

where âl−1
j = âj(tl−1), j = 0, 1...Nθ, are the coefficients of the polynomial V̂ N(θ, tl−1), θ ∈

[θNθ , θ0] given in function of the Chebyshev polynomials.

A priori, the system is dense and O(N3) operations will be necessary to solve it. The
fact that, with relative few nodes for the spatial mesh we achieve a great precision, makes
this method competitive with respect to the Central differences method depending on the
precision that it is required.
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3.6.3 Comments about the boundary condition in the Chebyshev
collocation method

We must point that for t ∈ [t̂0, T ], the lower limit of the interval I(t) is C1(t) = 0, which is
the Buying Frontier, so that, it is not inside the Buying Region.

We note that V (θ, T )

(cos(θ) + (1− µ) sin(θ))γ

γ
, if θ > 0,

(cos(θ) + (1 + λ) sin(θ))γ

γ
, if θ ≤ 0.

is continuous but not differentiable at θ = 0.

If we choose C1(T ) < 0, oscillatory phenomena, known as the Gibbs effect, will appear.
These oscillations complicate the numerical location of the Buying frontier, described in the
following Subsection. Nevertheless, note that when we compute function V̂ , the boundary
condition at C1(t) = 0, t ∈ [t̂0, T ] must be the mandatory of buying the stock. Therefore, the
definition

Vθ(0, t) = lim
θ→0−

Vθ(θ, t) = V (0, t)γ
(1 + λ) cos(0)− sin(0)

(1 + λ) sin(0) + cos(0)

employed in (3.55) is the correct one.

Fixed t = tl, the numerical error related with the boundary is due to the imposition of
Neumann conditions for t ∈ [tl−1, tl], which are not the correct ones. As it was pointed in the
FD method, a priori, neither V̂θ(θ, t) nor V̂ (θ, t) remain constant in time. We do not employ
the Robin condition in order to guarantee the stability of the method.

The computation of V̂ N(θ, tl−1) is just and intermediate step in the computation of
V N(θ, tl−1). The error due to the imposition of Neumann conditions is controlled by the
size of ∆t and Nθ.

3.6.4 Location of the Buying/Selling frontiers

At a fixed time step tl of the time discretization (3.51), suppose that we know the function
value V (θ, tl) and the values BRF (tl) and SRF (tl).

Compute I(tl) = [Ctl
1 , C

tl
2 ] with (3.74) if BRF (tl) = 0 or with (3.75) otherwise.

For t ∈ [tl−1, tl], let V̂ be the solution of (3.78)-(3.79), i.e. V̂ , is the function value where
the only trading strategy is θ ∈ (Ctl

1 , C
tl
2 ) but no transactions are realized if θ ∈ (Ctl

1 , C
tl
2 )

subject to V̂ (θ, tl) = V (θ, tl).
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We compute P l−1
i (θ), i = 1, 2 with (3.61). We know that the sign of P l−1

i (θ), i = 1, 2
unambiguously divide the spatial domain in three Regions which correspond to the approxi-
mation in time to the Buying, No Transactions and Selling Regions (see Subsection 3.5.3).

For the Chebyshev method, we define the numerical approximation P (N,l−1)
i (θ), i = 1, 2

by :

P
(N,l−1)
1 (θ) = V̂ N

θ (θ, tl−1)− V̂ N(θ, tl−1)· γ (1 + λ) cos(θ)− sin(θ)

(1 + λ) sin(θ) + cos(θ)
,

P
(N,l−1)
2 (θ) = V̂ N

θ (θ, tl−1)− V̂ N(θ, tl)· γ
(1− µ) cos(θ)− sin(θ)

(1− µ) sin(θ) + cos(θ)
,

(3.91)

which in this case are explicit functions because V̂ N is a known polynomial in θ.

The numerical approximation to the Buying and Selling frontiers is given by:

BRN
F (tl−1) = min

{
β : P

(N,l−1)
1 (θ) ≥ 0, θ ∈ [β, Ctl

2 )
}
,

SRN
F (tl−1) = max

{
β : P

(N,l−1)
2 (θ) ≥ 0, θ ∈ (Ctl

1 , β]
}
,

Once we know the location of the frontiers and the function value in that points, we can
compute the function value in the Buying and Selling regions through the explicit formulas
given in (3.47).

3.6.5 Numerical Algorithm

The following numerical algorithm solves completely the problem. Let t ∈ [0, T ]

Step 0. Fix a number Nt and a number Nθ > N0 where N0 is the bound given in (3.73).
Compute ∆t = T

Nt
and {tl}Ntl=0 as in (3.51).

Set l = Nt. We recall properties b) and f) of Subsection 3.3.1:

BRF (T ) = 0,

SRF (T ) = arccot ((1− µ)xM) ∈ [β1, β2].

Compute I(tNt) with formula (3.74) and let {θTj }Nθj=0 denote the Chebyshev nodes in I(T ).
Compute V N(θ, T ) with (3.46).
Compute matrices A1, A2 and A3 defined in (3.87).

Step 1. Compute the polynomial V̂ N(θ, tl−1) =
∑Nθ

j=0 âj(tl−1)Tj(θ̃) solving

Bl−1


âl−1

0

âl−1
1

...
âl−1
Nθ−1

âl−1
Nθ

 = Wl,
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where Bl−1 and Wl are defined in (3.88)-(3.90).
V̂ N(θ, tl−1) is a polynomial defined in I(tl).

Step 2. Locate the Buying / Selling Frontiers

BRN
F (tl−1) = min

{
α : P

(N,l−1)
1 (θ) ≥ 0, θ ∈ [α,Ctl

2 )
}
,

SRN
F (tl−1) = max

{
α : P

(N,l−1)
2 (θ) ≥ 0, θ ∈ (Ctl

2 , α]
}
,

where P (N,l−1)
1 (θ), P (N,l−1)

1 (θ) are defined in (3.91).

Step 3. Compute the interval I(tl−1) with (3.74) if BRF (tl−1) = 0 or with (3.75) otherwise.
Compute the Chebyshev nodes {θtl−1

j }Nθj=0 in I(tl−1).
The numerical approximation V N at time tl−1 is the Chebyshev interpolation polynomial

in I(tl−1) such that for j = 0, 1, ..., Nθ:

V N(θ
tl−1

j , tl−1) =

V̂ N(BRN
F (tl−1), tl−1)

[
(1 + λ) sin(θ

tl−1

j ) + cos(θ
tl−1

j )

(1 + λ) sin(BRN
F (tl−1)) + cos(BRNθ

F (tl−1))

]γ
, θ

tl−1

j < BRN
F (tl−1),

V̂ N(θ
tl−1

j , tl−1), BRN
F (tl−1) ≤ θtl−1

j ≤ SRN
F (tl−1),

V̂ N(SRN
F (tl−1), tl−1)

[
(1− µ) sin(θ

tl−1

j ) + cos(θ
tl−1

j )

(1− µ) sin(SRN
F (tl−1)) + cos(SRN

F (tl−1))

]γ
, θ

tl−1

j > SRN
F (tl−1),

where we have employed (3.47).

Step 4. Set l = l − 1. If l = 0 we have finished. Otherwise, proceed to Step 1.

To finish this Subsection and with clarifying purposes, we are going to check visually how
does the adaptive interval I(tl) evolves through time. In the numerical algorithm, suppose
that we are in time step tl.

We are going to project the function value over the spatial axis, coloring in blue the
Buying, in green the No transactions and in red the Selling Regions. The plot represent how
the different steps of the algorithm make the adaptive interval evolve through time. The
operations that will be represented are:

1. We are in interval I(tl). Let {θt0j }Nθj=0 denote the Chebyshev nodes in I(tl). We remark
that the Buying / Selling frontiers BRN

F (tl), BRN
F (tl) are one of the Chebyshev nodes.

2. We solve the PDE through the Chebyshev collocation method (Step 1 of the numerical
algorithm).

3. We locate the new Buying / Selling frontiers BRN
F (tl−1), BRN

F (tl−1) (Step 2 of the
numerical algorithm).
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4. We recompute the function values in the Buying / Selling regions. Recompute the new
interval I(tl−1) and its Chebyshev nodes and again BRN

F (tl−1), BRN
F (tl−1) are one of

them (Step 3 of the numerical algorithm). If tl−1 > 0 we repeat for the previous time
step.

In the following Figure, each interval is split in The Buying (blue), No transactions (green)
and Selling (red) regions. The ’×’ correspond to the Nθ +1 Chebyshev nodes of each interval.
The left Figure corresponds to the first kind of interval (BRN

F (tl) = 0) and the right Figure
to the second one (BRN

F (tl) > 0).
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F
(t
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), BR

F
(t

i−1
+∆ t) > 0

θ

(1.)

(2.)

(3.)

(1.)

(2.)

(4.) → (1.)

(3.)

(4.) → (1.)

Figure 3.6: Evolution of the adaptive Mesh (Spatial domain) Itl → Itl−1
.

If Figure 3.6, (1) represents interval I(tl) of a certain time step tl. In (2) we solve the
PDE which corresponds to the No Transaction region. In (3) we locate the Buying/Selling
frontiers of the time step tl−1. In (4) we recompute the new interval I(tl−1).

3.7 Numerical Results
We establish the criteria employed in the experiments to build the spatial meshes.

For the FD method, we have fixed ∆θ0 > 0 and N0
1 , N

0
2 subject to (3.53) and computed

{θj}N
0
1 +N0

2
j=0 with (3.52). Afterwards, we have defined

θmin = θ0, θmax = θN0
1 +N0

2

When carrying the spatial error analysis, we halve the spatial mesh size and choose values
N1 and N2 so that, when we define the new spatial mesh, it holds

θ0 = θmin, , θNθ = θmax
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i.e., the limits of the spatial mesh of the FD method are the same in all the experiments.
We note that the rate of convergence of the error in the FD method does not depend of the
particular choice of values ∆θ0, N0

1 or N0
2 .

In the Chebyshev method, we have fixed the control parameter δ = 0. 1, so that, at least
80% of the interval corresponds to the No Transactions Region. The particular choice of δ
does not affect the rate of convergence of the error in the Chebyshev method.

In the implementation of the Chebyshev method, we point that the Gibbs effect has been
eliminated due to the definition of the adaptive interval I(tl). Nevertheless, we have observed
that it may still appear if the following (empirical) bounds are violated

∆t > 0.1, ∆t <
C

NC1
θ

, (3.92)

where C1 ≥ 1 and numerical experiments suggest that C1 might be a growing function of Nθ.

If the previous bounds are violated, functions P (N,l−1)
i (θ), i = 1, 2 given in (3.91) may

oscillate, complicating the location of BRN
F and SRN

F .

We consider the parameter values as in the first experiment in [2]. For t ∈ [0, 4], (t = 0
today), let:

σ = 0. 25, r = 0. 03, α = 0. 10, γ = 0. 5, λ = 0. 08, µ = 0. 02,

Figure 3.7: Value of V N(θ, t) indicating in blue if (θ, t) is in the Buying, in green if it is in
the No Transactions and in red if it is in the Selling Region.

The previous figure shows the numerical values obtained for function V N(θ, t). We have
colored the function depending in whether (θ, t) is in the Buying, Selling or No Transactions
region. We can visually check the expected monotonicity of the Buying and Selling frontiers
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studying from above (right) the two curves which divide the different colors. The Buying
frontier remains constant for a certain period [t̂N0 , T ].

Many properties of the problem have been obtained in [23], like the monotonicity of the
location of the frontiers, their limit values and some explicit formulas for certain cases. We
have included the most important of them in Subsection 3.3.1, and the rest can be found
summarized between (P1)-(P7) in [2].

The formal study of the error will be conducted for the cases where explicit formulas are
available, comparing the results of the Central differences and Chebyshev methods. The rest
of the properties, although not included, were also checked.

3.7.1 Value of the function in v(0, t)

For z = 0, we employ Property d) in Subsection 3.3.1. Since α − r − (1 − γ)σ2 > 0, it
holds that:

v(0, t) =


1

1 + λ
, 0 ≤ t ≤ t̂1,

1

1− µe
−(α−r−(1−γ)σ2)(T−t), t̂1 < t ≤ T,

(3.93)

where
t̂1 = T − 1

α− r − (1− γ)σ2
log

(
1 + λ

1− µ

)
. (3.94)

In Figure 3.8 we plot the value of v(0, t) for t ∈ [0, 4]. We note that (3.93) is continuous
but not derivable at t̂1.
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v
 (

 0
 ,
 t

 )

Figure 3.8: Analytical solution of v(0, t), t ∈ [0, 4].

The value z = 0 corresponds in polar coordinates to θ = π
2
. A numerical solution vN(0, ti)

can be computed explicitly using V N
(
π
2
, ti
)
and the formula (3.48) which relates the function

in polar coordinates and in the original variables.
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vN(z, t) = −
(
V N
θ (θ, t) sin2(θ)− γ sin(θ) cos(θ)V N(θ, t)

γV N(θ, t)

)
,

z = cot(θ).

Fixed a time partition ∆t = 3. 9· 10−4, we compute the difference between the analytical
and the numerical solution for both methods: Central differences and Chebyshev. We do so
for different number of spatial nodes Nθ. The results are plotted on the following figure.

0 1 2 3 4
−5

0

5

10
x 10

−5

Time

N
u
m

e
ri

c
a
l 

−
 A

n
a
ly

ti
c
a
l 

so
lu

ti
o
n Central Differences

 

 

0 1 2 3 4
−5

0

5

10
x 10

−5

Time

N
u
m

e
ri

c
a
l 

−
 A

n
a
ly

ti
c
a
l 

so
lu

ti
o
n

Chebyshev

 

 

0 1 2 3 4
−1

−0.5

0

0.5

1
x 10

−7

Time

N
u
m

e
ri

c
a
l 

−
 A

n
a
ly

ti
c
a
l 

so
lu

ti
o
n

N
θ
 = 1024 (Cheby)

0 1 2 3 4
−1

−0.5

0

0.5

1
x 10

−7

Time

N
u
m

e
ri

c
a
l 

−
 A

n
a
ly

ti
c
a
l 

so
lu

ti
o
n

N
θ
 = 4960 (FD)

N
θ
 = 310

N
θ
 = 620

N
θ
 = 1240

N
θ
 = 2480

N
θ
 = 4960

N
θ
 = 256

N
θ
 = 512

N
θ
 = 1024

N
θ
 = 2048

t
1

t
1

t
1

t
1

t
0

Error A

Error B

Figure 3.9: Difference between the exact value of v(0, t), t ∈ [0, 4] and the numerical solution
obtained with FD (left) and Chebyshev (right) methods for different Nθ. Upper scale is
±5· 10−5 and lower scale ±10−7.

The upper and the lower pictures of Figure 3.9 are respectively in the same scale. The left
side pictures correspond to the Central Finite Differences method and the right side pictures
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correspond to the Chebyshev method for several values of Nθ. The lower pictures (plotted
with the same scale) represent the result for Nθ = 4960 (FD) and Nθ = 1024 (Chebyshev).

On Figure 3.9 we can observe, in both methods, an error discontinuity at time t̂1, the
instant when point θ = π

2
moves from the No transactions to the Selling region. From

equation (3.93), we know that the function v(0, t) is not derivable (respect time) at instant
t̂1. The same phenomena can be observed in the numerical experiments in [2].

In the Central Differences method (left side of Figure 3.9), the error marked as “Error A”
is related with the error of approximating the derivatives V N

θ by central differences or with
the interpolation error when computing the value at θ = π

2
which, a priori, is not included in

the spatial mesh.

In the Chebyshev method (right side of Figure 3.9), we can see that the frequency of the
oscillations changes at time

t̂0 = T − 1

α− r log

(
1 + λ

1− µ

)
,

the instant when the Buying frontier starts to move. We recall that this point is where we
change the kind of adaptive mesh I(ti) (Subsection 3.6.1).

The hump marked as “Error B” on Figure 3.9 probably corresponds to the error generated
by the imposed Neumann boundary conditions for t ∈ [t̂0, T ], which we know that are not
the exact boundary conditions of the problem, since they are of Robin type (see Subsection
3.5.2).

The following pictures compares the difference between the analytical solution v(0, t), t ∈
[0, 4] and the numerical solution obtained with the Central Differences method for Nθ = 310
and Nθ = 4960.
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Figure 3.10: Difference between the exact value of v(0, t), t ∈ [0, 4] and the numerical solution
of FD method with Nθ = 310 (left) and Nθ = 4960 (right).

Both pictures on Figure 3.10 are in the same scale. We can check that both the error
discontinuity at time t̂1 and “Error A” reduce as we increase the number of spatial nodes.
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The following pictures compares the difference between the analytical solution v(0, t), t ∈
[0, 4] and the numerical solution obtained with the Chebyshev method for Nθ = 256 and
Nθ = 2048.
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Figure 3.11: Difference between the exact value of v(0, t), t ∈ [0, 4] and the numerical solution
of Chebyshev method with Nθ = 256 (left) and Nθ = 2048 (right).

Both pictures in Figure 3.11 are in the same scale. We can check that the error disconti-
nuity at time t̂1, “Error B” and the size of the oscillations for t ∈ [t̂0, T ] reduce as we increase
the number of spatial nodes.

Now we proceed to check the rate of error convergence. We define the Root of the Mean
Square Error as

RMSE{Nθ,Nt}
(
vN
)

=

√√√√ 1

Nt + 1

Nt∑
l=0

(vN(0, tl)− v(0, tl))
2
. (3.95)

The next figure shows the convergence of spatial error for ∆t = 3. 9· 10−4 and different
number of spatial nodes Nθ.
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Figure 3.12: Spatial Error convergence of vN in logarithmic scale of the FD (blue) and Cheby-
shev (red) methods.
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On Figure 3.12, we have plotted, in logarithmic scale, the number Nθ of spatial nodes
versus the value RMSE{Nθ,Nt}

(
vN
)
. The slope of the regression line of the FD method (plotted

in blue) is −1. 80 and of the Chebyshev method (plotted in red) is −1. 85.

The spectral convergence that we could expect in the Chebyshev method probably does
not occur due to both the Error discontinuity at time t̂1 and the imposed Neumann boundary
condition (see Subsection 3.6.3).

We proceed now to check the temporal error convergence. We fix Nθ = 4960 for the
Central Differences method and Nθ = 2048 for the Chebyshev method. We compute the
RMSE for different number of time partitions Nt.
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Figure 3.13: Temporal Error convergence of vN in logarithmic scale of the FD (blue) and
Chebyshev (red) methods.

In Figure 3.13, we have plotted, in logarithmic scale, the number Nt versus the value
RMSE{Nθ,Nt}

(
vN
)
. The slope of the regression line of the FD method (solid-blue) is −2. 31

as it could be expected from an order 2 method.
The slope of the Chebyshev method (solid-red) is −1. 4. We point out that in the Cheby-

shev method, for tl ∈ [t̂1, T ], the lower limit of the computational domain I(tl), given by
(3.74) or (3.75), is much closer to θ = π

2
than in the FD method. Therefore, the boundary

error due to the imposition of Neumann boundary conditions is probably bigger in the Cheby-
shev method. Furthermore, the smallest values of Nt in the Chebyshev method are near the
empirical constraints (3.92) and for bigger values we reach very soon the error limit marked
by the size of Nθ. Probably this is the reason why we cannot see an order 2 in time for the
Chebyshev method.

We carry out a second experiment doubling the value of Nθ (dashed-blue/red) to check
that the lowest value reached by the error was given by the size of the spatial mesh.

Depending on the error tolerance, we might need a big value for Nθ in the FD method
but much smaller in the Chebyshev method. This makes that, depending on the required
precision, Chebyshev performs better in computational cost than FD. This will be studied in
Subsection 3.7.4.
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3.7.2 Location of the Buying Region frontier at time t̂1
From Property c) of Subsection 3.3.1 we know that in polar coordinates BRF (t̂1) = π

2
.

Given a number of time steps Nt, we look for tl1 ∈ {tl}Ntl=0 which is nearest to t̂1 and define
the Absolute Error (just for this experiment) as:

Absolute ErrorN(t̂1) =
∣∣∣BRN

F (tl1)− π

2

∣∣∣ .
Another option to numerically compute the value BRN

F (t̂1) is to interpolate
{
BRN

F (tl)
}Nt
l=0

.
Although this would give us more precision in all the cases (1-2 digits more), we have not
employed it because the error discontinuity at t̂1 impedes us to see any error convergence (the
error oscillates between 10−5 − 10−7 for the Chebyshev method).

Fixed ∆t = 3. 9· 10−4, we compute the Absolute Error for different number of spatial nodes
Nθ. We check the Spatial Error convergence plotting, in semilogarithmic scale, the value of
Nθ versus the absolute error for both methods:
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Figure 3.14: Spatial Error convergence for instant BFR = π
2
of the FD (blue) and Chebyshev

(red) methods in semilogarithmic scale.

We recall that in the FD method, the Buying and Region frontiers were not obtained by
interpolation, but they were points from the spatial mesh (see Subsection 3.5.3). This is the
reason why the error of FD method on Figure 3.14 is step shaped (Nθ = {310, 620, 1240} give
the same value).

The spatial error reduces as we increase the value of Nθ. At equal number of nodes, the
Chebyshev method gives much smaller errors than the FD method.

Concerning the temporal error, we fix Nθ = 4960 for the Central Differences method and
Nθ = 2048 for the Chebyshev method. We compute the Absolute Error for different number
of time partitions Nt = {640, 1280, 2560, 5120, 10240}. On the following picture, we plot in
semilogarithmic scale the value of Nt versus the absolute error.
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Figure 3.15: Temporal Error convergence for instantBFR = π
2
of the FD (blue) and Chebyshev

(red) methods in semilogarithmic scale.

In this case, both results are step shaped because of the definition of Absolute Error and
the time partition when ∆t is halved. Each time partition is included in the following one
and ti1 sometimes changes and sometimes not.

The temporal error reduces as we increase the value of Nt. As in the spatial error, the
Chebyshev method outperforms the FD method.

3.7.3 First instant when is optimal to have a positive amount of the
stock.

From Property b) of Subsection 3.3.1 we know that this time is

t̂0 = T − 1

α− r log

(
1 + λ

1− µ

)
and that

{
BRF (t) = 0, t ≥ t̂0

BRF (t) > 0, t < t̂0

Given a number of time steps Nt, we look for tl0 ∈ {tl}Ntl=0 such that

tl0 ≥ t̂0 > tl0+1

For this experiment, the error behaviour of each method has to be studied independently.
In the case of the FD method, once fixed Nt, we have found that

BRNθ
F (tl) = 0, l = Nt, Nt − 1, ..., l0 + 1

and the error is due to that there might exist k > 0 such that

BRNθ
F (tl) = 0, l = l0, l0 − 1, ..., l0 − k
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Figure 3.16: Numerical estimation of the Buying Frontier with the FD method for t ∈ [0, 4]
(left) and zoom around t̂0 (right). Arrows mark the last instant when BRN

F = 0 for each Nθ.

In left picture of Figure 3.16, we plot the numerical estimation of the Buying Frontier with
the FD method for Nθ = 310 (blue), Nθ = 620 (red), Nθ = 1240 (green) ,Nθ = 2480 (celest)
Nθ = 4960 (violet). On the right picture we zoom around t̂0 and the arrows mark the last
instant when BRN

F = 0 for each Nθ.
In the Central Finite Differences method, we search for:

tFD = max
{
t ∈ {tl}Ntl=0 /BR

N
F (t) > 0

}
,

and define the absolute error (for this method and experiment)

Absolute ErrorFD =
∣∣tFD − t̂0∣∣ .

We check the spatial (∆t = 3. 9· 10−4 and several values for Nθ) and temporal (Nθ = 4960
and several values for Nt) error convergence. On Figure 3.17, we plot the errors in logarithmic
scale.
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Figure 3.17: Spatial (left) and temporal (right) error convergence of the first instant when it
is optimal to have a positive amount of stock (FD method).
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The left side picture of Figure 3.17 represents the spatial error and the right side picture
the temporal error, both in logarithmic scale. The right side picture is step-shaped again due
to the definition of the error and the choice of the time partitions when ∆t is halved.

In the case of the Chebyshev method, the error behaves differently. For this method, the
BRN

F may be bigger than 0 a few time steps prior to l0. We note that in the Chebyshev
method, the lower limit of I(tl), tl ∈ [t̂0, T ] is the Buying frontier. The boundary error due
to the imposition of Neumann conditions is probably more relevant in this method and the
cause of this behaviour.

In left picture of Figure 3.18, we have plotted the numerical estimation of the Buying
Frontier with the Chebyshev method for Nθ = 310 (blue), Nθ = 256 (blue), Nθ = 512 (red),
Nθ = 1024 (green) Nθ = 2048 (black). In the right picture we zoom around t̂0.
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Figure 3.18: Numerical estimation of the Buying Frontier with the Chebyshev method for
t ∈ [0, 4] (left) and zoom around t̂0 (right). Arrows mark the last instant when BRN

F = 0 for
each Nθ.

Let k ≥ 0 be the biggest value such that

BRN
F (tl0+k) > 0.

Remark 3.7.1. We recall that in the implementation of the Numerical Algorithm, it is at
time step tl0+k, where we change the kind of adaptive interval I(tl).

If k > 0, the location of the Buying Frontier oscillates around 0 for tl ∈ {tl0+k, ..., tl0+1}
and it is for tl < tl0 when it behaves as we could expect from Property a) of Subsection 3.3.1.

Numerical experiments show that it is better to let BRN
F (tl) oscillate around 0 rather than

imposing BRN
F (tl) = max{BRN

F (tl), 0}.

As mentioned, the oscillations observed in Figure 3.18 are probably generated by the
imposition of the Neumann conditions. The boundary error is controlled by Nt and Nθ, but
probably the spatial error is dominant. The instant when the numerical solution begins to
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oscillate is always very close to t̂0
(∣∣tl0−k − t̂0∣∣ ≤ 1. 5· 10−3

)
and the size of the oscillations

reduces as Nθ increases.

These oscillations are the error that we are going to study. They include all the negative
values (since the Buying Frontier must be always positive) and any positive value for time
steps bigger than t̂0. Thus, we define the absolute error (for this method and experiment)

Absolute ErrorCh = max

{∣∣∣∣ min
l=0,1,...,Nt

{
BRN

F (tl)
}∣∣∣∣ , ∣∣∣∣ max

l=l0+1,l=l0+2,...,Nt

{
BRN

F (tl)
}∣∣∣∣} .

We fix ∆t = 3. 9· 10−4 and compute the absolute error for several values for Nθ). In Figure
we plot, in logarithmic scale, the value of Nθ versus the absolute error.
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Figure 3.19: Spatial error convergence of the first instant when it is optimal to have a positive
amount of stock (Chebyshev method).

Remark 3.7.2. This error is also the origin of the bounds (3.92). If ∆t is very small and
Nθ is not big enough, these oscillations may be too big and complicate the location of the
frontiers for the rest of the time steps.

3.7.4 Performance Analysis

We are going to carry out a performance comparison between both numerical methods. First
of all, we fix several time / spatial discretizations:

(i) ∆t ∈ [0.02, 3. 9−4]

(ii) N ∈ [141, 1024] (Chebyshev)

(iii) N ∈ [300, 6000] (Crank-Nicholson)
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and solve the problem with all the combinations of the different discretizations for both
methods. We store the error and the computational time employed in each of them.

We plot in logarithmic scale the value of RMSE{Nθ,Nt}
(
vN(0, t)

)
versus the computational

time employed in computing vN for each different spatial and temporal meshes.
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Figure 3.20: Performance comparison of the Error at vN(0, t). In logarithmic scale, we plot
(left), the value of RMSE versus the total computational costs of CFD (blue) and Chebyshev
(red) methods and their respective lower enveloping curves (right).

The left-side picture of Figure 3.20 represents the cloud of results for the different dis-
cretizations of each method. The right-side, which is more visual, represents the lower convex
enveloping curve.

With the right-side picture, we can obtain an approximate behaviour of the evolution
of the error versus the required computational time to reach that precision. We fix the
error tolerance that we require for our problem and find which method and spatial/time
discretization reaches it first.

As we can see, the FD method (blue in Figure 3.20) performs better if we do not require
a high precision. This is due to the bounds over ∆t, Nθ (3.92) imposed for the Chebyshev
method (red in Figure 3.20). If a higher precision is required, Chebyshev performs better.

The behaviour of the value of the Buying frontier at t̂1 is also very important. It gives
the optimal investment strategy that we must follow. In this case, we plot in Figure 3.21,
in logarithmic scale, the absolute error obtained versus the computational time employed for
each different spatial/temporal meshes.
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Figure 3.21: Performance comparison (lower convex envolvent in logarithmic scale) of the
Error BRN

F (t̂1) = π
2
versus the total computational costs of the CFD (blue) and Chebyshev

(red) methods.

The conclusion of this experiment is the same as in the previous one. If more precision is
required, time partition must be refined for both methods, but the Central Differences method
requires more refined space meshes than the Chebyshev method, something that increases its
computational cost.

3.7.5 Stationary state

BRF and SRF tend to a stationary state as T → ∞ that can also be computed explicitly
(see Subsection 3.3.1 ).

Figure 3.22: Value function (Chebyshev) for (θ, t) ∈ [β1, β2]× [0, 30] colored if (θ, t) is in the
Buying(blue), No Transactions (green) and Selling Region (Red).

In the example, computed for T = 30 years with the Chebyshev method (∆t = 10−4,
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Nθ = 512), frontiers have stabilized a few years before reaching t = 0 at:

Buying Frontier: 1. 8626 (1. 8622 exact value)
Selling Frontier: 2. 1559 (2. 1561 exact value)

In this experiment, and for the Chebyshev method, temporal error is dominant if we
compare it with respect to the spatial error. In the case of the FD method, the error depends
more in both the spatial and temporal discretizations.

We define the absolute error (for this experiment) as

Absolute Error =
∣∣BRN

F (0)−BRs

∣∣
We study the spatial (Nt = 10−3 and several values for Nθ) and temporal (Nθ = 4960 for

the FD, Nθ = 512 for the Chebyshev method, and several values for Nt) error convergence.
In Figure 3.23 we plot, in logarithmic scale, the value of Nθ (left) versus the absolute value of
the error and the value of Nt (right) versus the absolute value of the error for both methods.
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Figure 3.23: Spatial (left) and Temporal (right) error convergence, in logarithmic scale, of the
Stationary State of the Buying Frontier for the CFD(blue) and Chebyshev (red) methods.

On the left side picture, we can see that the Chebyshev method reaches the error marked by
the time discretization with the smallest number of nodes (as mentioned before, the temporal
error is dominant). Therefore, if a high precision is required, Chebyshev will perform better
than the Central Finite Differences method.

The error behaviour of the Selling Frontier is similar to the one of the Buying Frontier.
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Chapter 4

Option Pricing with Transaction Costs
under Exponential Utility

4.1 Introduction

When pricing a derivative, the portfolio replication technique is based on the possibility
of building a hedging portfolio that mimics the behaviour of the derivative. In the case of an
European Option, the replicating portfolio is formed by the bond and the stock and it will be
necessary to rebalance it after each change in the stock price. Since the stock prices change
continuously, negligible transaction costs are needed. Otherwise, the replication technique
will not be feasible.

In presence of transaction costs, one can try a dominating, rather than a hedging strategy.
For the European Option, Soner et al. proved in [58] that the least expensive method of
dominate the Call under transaction costs is to buy a share of the underlying stock and hold
it until maturity.

An alternative to the construction of replicating portfolios or dominating strategies is to
price derivatives using the technique called “Indifference Pricing”. The basics of the technique
in option pricing, from the point of view of the seller, are the following. We define an adequate
function (strictly increasing and concave) that allows us to measure the utility of the wealth
and we build two scenarios for a fixed initial amount of money.

In the first one, only the stock and the bond are considered and we need to solve an
Optimal Investment problem under transaction costs. In the second one, we receive a certain
amount pw for selling an option and, with the total amount of money, we solve again an
Optimal Investment problem including this time the obligation acquired when selling the
option. The quantity pw that equals the expected terminal utility of both scenarios will be
the price of the contract.

Besides modeling transaction costs, this model is also interesting due to the following

131
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empirically observed property: “the no-linearity of the price in relation with the number of
contracts”. The no-linearity towards risk is reflected by the market when we observe the price
of the contracts in a trade panel. The price depends on the number of the contracts offered
but, if all risks were hedgeable, all the contracts should have the same price.

In [12], a full description of the “Indifference Pricing” technique and its latest applications
to several different models can be found. Furthermore, closed solutions for certain specific
cases also are included but, in general, numerical methods will have to be employed.

In this work we are going to present a numerical method specifically designed for the
model derived by Davis, Panas and Zaripopoulos in [22] where they price European Options
with transaction costs under Exponential Utility. The Exponential Utility is among the most
used utility functions and has several advantages. It usually gives quite tractable equations
and, in this case, it will also allow us to reduce one of the dimensions of the problem. But
it also has its drawbacks, since it gives numerical difficulties in lognormal models, as pointed
out in [12], due to the behaviour of the exponential utility function.

The outline of the chapter is as follows. In Section 4.2 a description of the model presented
in [22] will be done and it will be equivalently reformulated for technical reasons. In Section
4.3, we propose two changes of variables that reduce the numerical difficulties related with the
Exponential Utility. The associated partial differential equation that we obtain results to be
non-linear and a Fourier pseudospectral method is applied to solve it. Results that guarantee
the convergence and stability of the numerical solution of the pseudospectral method will
be included. Section 4.4 will be devoted to the numerical analysis. When transaction costs
disappear, and all risks become again hedgeable, the replication price, i.e. the Black-Scholes
price must be recovered. Theoretical results both in [12] and [22] guarantee it, and this will
allow us to employ explicit formulas to check the convergence error of the pseudospectral
method. The effect of incorporating transaction costs will also be studied.

4.2 The original model

4.2.1 Pricing options via utility maximization.

Let (Ω,F , P ) be a filtered probability space. Let us suppose that the market consists of a
bank account and a stock whose dynamics are respectively given by:{

dX̄(t) = rX̄(t)dt,

dS̄(t) = αS̄(t)dt+ σS̄(t)dz̄t,
(4.1)

where r denotes the constant risk-free rate, α is the constant expected rate of return of the
stock, σ > 0 is the constant volatility of the stock, and z̄t denotes the standard brownian
motion.
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Similar to Chapter 3, X̄(t) represents the amount of money invested in the bank account.
In this Chapter, the amount of money invested in the stock will be controlled by the number
of shares of the stock that the investor holds, which will be denoted by a new variable ȳ(t).

Although the utility maximization problems that we are going to propose will be solved
for any initial position, for simplicity reasons, we will assume that when we want to price
an option, and prior to enter into the market, the position of an investor is always a certain
amount of money in the bank account and no holdings in the stock.

Definition 4.2.1. The set of all admissible trading strategies available for an investor who
starts at t = 0− with an amount X̄(0−) = X0 in the bank account and ȳ(0−) = 0 in the stock
will be denoted by τ(X0).

In this Chapter, as in Chapter 3, we assume that the transaction costs are a fixed per-
centage of the transacted amount (proportional transaction costs). These percentages will be
given by:

(a) λ ∈ [0, 1): For buying shares of the stock.

(b) µ ∈ [0, 1): For selling shares of the stock.

Definition 4.2.2. We define π ∈ τ(X0) as an adapted stochastic process (Xπ(t), yπ(t)), t ∈
[0, T ], where Xπ(t) denotes the amount of money held in the bank account and yπ(t) denotes
the number of shares of the stock held by the investor at time t.

We point out that the investor may borrow from the bank at interest rate r and that
ȳ ∈ R, so that long and short positions are both accepted.

We also point out that we are allowed to buy from the first moment that we enter into
the market at t = 0. Let S̄(0) = S0 and our position (X̄(0−), ȳ(0−)) = (X0, 0). Formally, it
may occur:

(Xπ(0+), yπ(0+)) = (X0 − (1 + λ)S0ε, ε),

or
(Xπ(0+), yπ(0+)) = (X0 + (1− µ)S0ε,−ε),

where ε ≥ 0. We define (Xπ(0), yπ(0)) = (Xπ(0+), yπ(0+)).

The liquidated cash value of a portfolio, denoted by c(ȳ, S̄), is given by:

c(ȳ, S̄) =

{
(1 + λ)S̄ȳ, ȳ < 0,

(1− µ)S̄ȳ, ȳ ≥ 0.
(4.2)

We consider two different optimal investment problems.

1. Investments are realized only in the bank account and in the stock.

2. Before entering into the market, the investor sells one European Option.
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Scenario 1:

In this scenario, the investor may hold money in the bank account and in shares, but
he/she has not sold an option. The net wealth of the investor at maturity, W1(T ), is given
by:

W1(T ) = Xπ(T ) + c(yπ(T ), S̄(T )). (4.3)

The Optimal Investment problem in this scenario consists in finding, for an initial amount
of money X̄(0−) = X held in the bank account and ȳ(0−) = 0, an admissible strategy that
maximizes the Expected Utility of the terminal wealth :

V1(X) = sup
π∈τ(X)

E {U (W1(T ))} , (4.4)

where τ(X) is the set of admissible trading strategies for t ∈ [0, T ] and U is a Utility function
(a function with continuous second order derivatives, strictly increasing and strictly concave).
In this Chapter we also impose that U(0) = 0.

Scenario 2:

Suppose that the investor has sold an European Option with strike K. At maturity, the
net wealth of the investor, Ww(T ) is given by:

Ww(T ) =

{
Xπ(T ) + c(yπ(T ), S̄(T )), if S̄(T ) < K,

Xπ(T ) +K + c(yπ(T )− 1, S̄(T )), if S̄(T ) ≥ K,
(4.5)

or, equivalently, what it is held in the bank plus

(a) The net value of the portfolio if the option is not exercised.

(b) The net value of the portfolio minus one share plus the strike value.

The Optimal Investment problem in this scenario consists in finding, for an initial amount
of money X̄(0−) = X held in the bank account and ȳ(0−) = 0, an admissible strategy that
maximizes the Expected Utility of the terminal wealth :

Vw(X) = sup
π∈τ(X)

E {U (Ww(T ))} , (4.6)

where τ(X) is the set of admissible trading strategies for t ∈ [0, T ] and U is the same Utility
function as in (4.4).

The indifferent price pw(X) of one European Option for an investor with an initial amount
of money X̄(0−) = X in the bank account and ȳ(0−) = 0 is the price which leaves him
indifferent between:

1. Enter directly into the market without selling an option

2. Sell one European option, receive the amount pw(X) and enter into the market.
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Remark 4.2.1. Before entering into the market, the investor may sell one or n European
Options. Although the option price is non linear in the number of contracts, for simplicity,
the problem and the numerical examples will be solved for just one contract.

The development is identical substituting 1 by n in the definition ofWw(T ) (formula (4.5)).

We assume that a solution for both problems exists and that for j ∈ {1, w} functions Vj
are continuous and concave (concavity is inherited from the Utility function and continuity
is proved in [22]). The following result is also needed.

Proposition 4.2.1. The functions Vj(X), j ∈ {1, w} are strictly increasing.

Proof. Suppose that the initial amount of money of the investor is X0 = C ∈ R.

For j ∈ {1, w}, let πCj be an optimal trading strategy which solves:

Vj(C) = sup
π∈τ(C)

E {U (Wj(T ))} .

Let W
πCj
j (T ) be the expected terminal wealth when strategy πCj is followed. The value

function Vj is given by

Vj(C) = U
(
W

πCj
j (T )

)
.

Now, suppose that the initial position is C + ε0 where ε0 > 0.

Consider the, a priori suboptimal, trading strategy πsj which consists in keeping ε0 in the
bank account until maturity while we independently follow strategy πCj with the rest of the
assets.

The expected terminal wealth is

W
πsj
j (T ) = ε0· erT +W

πCj
j (T ).

Therefore, by the suboptimality of the strategy, it holds that

Vj(C + ε0) = sup
π∈τ(C+ε0)

E {U (Wj(T ))} ≥ U
(
W

πsj
j (T )

)
= U

(
ε0· er(T−0) +W

πCj
j (T )

)
> Vj(C),

because the Utility function is a strictly increasing function.

Definition 4.2.3. We define the indifferent price pw(X) as the quantity which equals the
functions

V1(X) = Vw (X + pw(X)) . (4.7)

Remark 4.2.2. The definition of the indifferent price makes the option price dependent of
the initial wealth of the investor X. The merit of the particular choice of Utility function
made by Davis et al. in [22] (Exponential Utility) is that the indifferent price becomes wealth-
independent and can be globally defined for all X ∈ R.
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For finishing this Subsection and prior to the development of the equations of the model,
let us study a particular interesting case presented in [22]. There, a slightly different reasoning,
but consistent with definition 4.2.3, is employed to arrive to the indifferent price.

Suppose that the investor has no holdings at all (neither stock shares nor money in the
bank account). If he follows the, a priori suboptimal, trading strategy of not investing at all,
it is clear that the terminal utility is 0 (U(0) = 0 by hypothesis). On the other hand, let X1

0

be such that:
V1(X1

0 ) = 0, (4.8)

which exists and satisfies X1
0 ≤ 0, due to the continuity, concavity and strictly increasing

properties of function V1(X) and the fact that V1(0) ≥ 0 (it is easy to check that, starting
from X = 0, function V1(X) cannot be lower bounded by the left).

The physical interpretation of quantity X1
0 in their setting is: “An investor (without hold-

ings) is indifferent between (a) do nothing and (b) “pay” X1
0 as an entry fee and enter into

the market to buy and sell the stock”.

Similarly, if the investor has no holdings at all, let Xw
0 be such that:

Vw(Xw
0 ) = 0. (4.9)

The physical interpretation of the quantity Xw
0 is: “An investor (without holdings) is

indifferent between (a) do nothing and (c) sell the option, receive Xw
0 and enter into the

market to invest in the stock and in the bank account since both strategies provide the same
expected terminal utility”.

Since scenarios (a), (b) and (c) are indifferent to an investor with no holdings in this
setting, Davis et al. define the indifferent price p∗w of the option as

p∗w = Xw
0 −X1

0 .

Davis et al. give this definition of indifference price since the Exponential Utility function
that they later employ leads to an option price which is wealth-independent, thus the value
of X does not affect the option price.

Note that in their reasoning, in scenario (a) the investor is not allowed to enter the market
at all. To enter into the market he has to “pay” X1

0 as an entry fee in scenario (b) or he is
forced to sign the option in scenario (c).

If we employ Definition 4.2.3, p∗w = pw(X1
0 ) which corresponds to the particular initial

condition X̄(0) = X1
0 (the paid fee)

V1(X1
0 ) = 0 = Vw(Xw

0 ) = Vw(X1
0 + pw(X1

0 )).

We point out that it is Definition 4.2.3 the general one. Moreover, it is implicitly employed
to derive the indifferent option price in [22] and to check that it becomes wealth-independent
under the Exponential Utility.
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The importance of this particular case is that, if no transaction costs are present (λ = µ =
0), p∗w = pw(X1

0 ) is indeed the Black-Scholes price of the option. The following result, shown
in [22], guarantees this statement.

Definition 4.2.4. Given and option negotiated over S̄, a replicating portfolio for the seller
of the option is and element π̂ ∈ τ(X̂0) for an initial endowment X̂0, such that:

(X π̂(T ), yπ̂(T )) = (−K, 1)IS̄(T )≥K .

where IS̄(T )≥K is the indicator function.
Equivalently, the replicating portfolio has the same value as the option at maturity.

If no transaction costs are present, wealth W (t) obeys the following stochastic differential
equation

dW (t) = dX̄(t) + ȳ(t)dS̄(t)

= rdX̄(t) + ȳ(t)S̄(t)αdt+ ȳ(t)S̄(t)σdz(t),

which can be rewritten as

dW (t) = rW (t)dt+ ȳ(t)S̄(t)σdz̃(t), (4.10)

where z̃(t) is a brownian motion with drift.
From the previous equation, we infer that τ(X) is a linear space, i.e. that if πi ∈ τ(X i

0), i ∈
{i1, i2}, then ∀a, b ∈ R we have that aπi1 + bπi2 ∈ τ(aX i1

0 + bX i2
0 ) where

aπi1 + bπi2 = (aXπi1 + bXπi2 , ayπi1 + byπi2 ).

Theorem 4.2.1. Suppose that both Vw(X) and V1(X) are continuous and strictly increasing
functions of X. Then p∗w = X̂0 if a replicating portfolio π̂ ∈ τ(X̂0) exists.

Proof. From the linearity of τ , any arbitrary trading strategy π ∈ τ(X0) can be written as
π = π̂ + π̃ where π̂ ∈ τ(X̂0), π̃ ∈ τ(X̃0) and X0 = X̂0 + X̃0.

Then it holds that

0 = Vw(Xw
0 )

= sup
π∈τ(Xw

0 )

E
{
U
(
Xπ(T ) + I(S̄(T )<K)c(y

π(T ), S̄(T )) + I(S̄(T )≥K)

[
K + c(yπ(T )− 1, S̄(T ))

])}
= sup

π̃∈τ(Xw
0 −X̂0)

E
{
U
(
X π̃(T ) +X π̂(T ) + I(S̄(T )<K)c(y

π̃(T ) + yπ̂(T ), S̄(T ))

+I(S̄(T )≥K)

[
K + c(yπ̃(T ) + yπ̂(T )− 1, S̄(T ))

])}
= sup

π̃∈τ(Xw
0 −X̂0)

E
{
U
(
X π̃(T )−KI(S̄(T )≥K) + I(S̄(T )<K)c(y

π̃(T ), S̄(T ))

+I(S̄(T )≥K)

[
K + c(yπ̃(T ), S̄(T ))

])}
= sup

π̃∈τ(Xw
0 −X̂0)

E
{
U
(
X π̃(T ) + c(yπ̃(T ), S̄(T ))

)}
= V1(Xw

0 − X̂0).

By definition of X1
0 , it is straightforward that X̂0 = Xw

0 −X1
0 = p∗w.
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This result will be employed in the error analysis of the numerical method proposed in
Subsection 4.3.

4.2.2 The Bellman equation.

Let us suppose now that the investors have to pay transaction cost (λ+ µ > 0) when money
is transferred from the bank account to the stock or viceversa.

Based on the model outlined in the previous Subsection, our objective now is to derive
formally a market model and the partial differential equation which is satisfied by the value
functions introduced in the previous Subsection.

Let (Ω,F , P ) be a filtered probability space. The market model equations are:
dX̄(t) = rX̄(t)dt− (1 + λ)S̄(t)dL(t) + (1− µ)S̄(t)dM(t),

dȳ(t) = dL(t)− dM(t),

dS̄(t) = S̄(t)αdt+ S̄(t)σdz̄t,

(4.11)

where L(t) and M(t) are cumulative processes of the number of shares bought and sold
respectively, z̄t denotes the standard brownian motion and λ, µ are the percentages of the
proportional transaction costs. The rest of parameters are those introduced in equation (4.1).

Definition 4.2.5. The set of admissible strategies τE(Xt0 , yt0) consists of the two dimensional,
right-continuous, measurable processes (Xπ(t), yπ(t)) which are the solution of equation (4.11),
corresponding to some pair of right-continuous, measurable Ft-adapted, increasing processes
(L(t),M(t)) such that {

X̄(t−0 ) = Xt0 , ȳ(t−0 ) = yt0 ,

(Xπ(t), yπ(t), S̄(t)) ∈ EE, ∀t ∈ [t0, T ]

where E > 0 is a constant which may depend on the policy π and

EE =
{

(X, y, S) ∈ R× R× R+ : (x+ c(y − 1, S)) er(T−t) > −E, t ∈ [t0, T ]
}
, (4.12)

where X, y and S respectively denote the money in the bank account, the number of shares and the
stock price.

By convention, L(t−0 ) = M(t−0 ) = 0 but L(t0) or M(t0) may be positive.

We also consider the two wealth functions W1 and Ww given in (4.3) and (4.5), which
respectively correspond to the two possible scenarios introduced in the previous Subsection.

Remark 4.2.3. EE was originally defined in [22] by:

E ∗E =
{

(X, y, S) ∈ R× R× R+ : (X + c(y, S)) > −E, t ∈ [t0, T ]
}
.

We have been a bit more restrictive (it is easy to check that EE ⊂ E ∗E), just to ensure that
the trading strategies {

yπ(t) ≡ 0, (no option was sold),
yπ(t) ≡ 1, (one option was sold),
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are both admissible for any initial position (t,Xt, yt, St) ∈ [t0, T ]× EE, i.e. we have explicitly
found a trading strategy which lower bounds our wealth for each scenario.

The lower bound of the wealth is needed for technical reasons (existence and uniqueness)
in Subsection 4.2.3.

Definition 4.2.6. Fix a Utility function U . For (t,X, y, S) ∈ [t0, T ]× EE, we define the two
value functions:

V EE
j (t,X, y, S) = sup

π∈τE(X,y)

E
{
U(Wj(T,X

π(T ), yπ(T ), S(T )))|
(
X̄(t), ȳ(t), S̄(t)

)
= (X, y, S)

}
,

(4.13)
where j ∈ {1, w}.

We assume, as in [22], that fixed an initial position (t,X, y, S), the value of V EE
j (t,X, y, S)

does not depend on the particular choice of E for E ≥ E0 big enough. This means that,
although the set of allowed trading strategies increases with the value of E, we obtain the
same result. In [22] it was argued that this occurred because constraint EE only ruled out
suboptimal trading strategies.

As we will see below, when there are no transaction costs, the optimal trading strategy
can be explicitly computed and only depends on the stock price. This is a consequence
of the particular choice of Exponential Utility, which makes strategies wealth-independent.
When there are transaction costs, optimal trading strategies still depend only on the stock
price. Furthermore, in Subsection 4.2.3 we prove that for (t0, X0, y0, S0) fixed, the value
of V EE

j (t0, X0, y0, S0) is bounded, no matter how big is E. This strongly suggest that the
assumption is correct.

For simplicity in the notation, we drop the dependance on EE in the definition (4.13) of the
value function and denote Vj(t,X, y, S). We assume for the rest of the Chapter that E > E0

is big enough. The notation employed in (4.13) is recovered for the existence and uniqueness
theorems in Subsection 4.2.3 and below in the development, when we consider a subset of the
allowed trading strategies.

We note that with this assumption, if E is big enough, Vj(t,X, y, S) can be defined for
any (t,X, y, S) ∈ [t0, T ]× R× R× R+.

Prior to the development of the equations, we present the following result.

Proposition 4.2.2. The value functions Vj, j ∈ {1, w} are strictly increasing functions of X
and y.

Proof. For any fixed initial position (t0, Xt0 , yt0 , St0) consider an associated optimal trading
strategy πo.

For any initial position (t0, Xt0 + ∆x, yt0 , St0), where ∆x > 0, consider the, a priori subop-
timal, trading strategy which consists in retain ∆x in the bank account until maturity while
we independently follow strategy πo with the rest of the holdings.
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For any initial position (t0, Xt0 , yt0 + ∆y, St0), where ∆y > 0, consider the, a priori sub-
optimal, trading strategy which consists in selling ∆y stocks and then retain (∆y)(1− µ)St0
in the bank account until maturity while we independently follow strategy πo with the rest
of the holdings.

In both cases, the same argument employed in Proposition 4.2.1 is applicable and the
result is straightforward.

Now, following the arguments in [22], we give the Hamilton-Jacobi-Bellman equations
associated with the two stochastic control problems j ∈ {1, w}.

Given a constant k > 0, let Bk([0, T ]) denote the set of nonnegative functions such that
are uniformly bounded by k. Consider a subclass of strategies τ ′k ⊂ τE(X, y), such that L(t)
y M(t) are absolutely continuous processes given by:

L(t) =

∫ t

0

l(ψ)dψ, M(t) =

∫ t

0

m(ψ)dψ, (4.14)

where l(t),m(t) ∈ Bk([0, T ]). Consider, for j ∈ {1, w}, the value functions given by:

V EE ,k
j (t,X, y, S) = sup

π∈τ ′k
E
{
U(Wj(T,X

π(T ), yπ(T ), Sπ(T )))|
(
X̄(t), ȳ(t), S̄(t)

)
= (X, y, S)

}
.

(4.15)

The Bellman equation for j ∈ {1, w} and k > 0 is (see [22]):

max
0≤l(t),m(t)≤k

{(
∂V EE ,k

j

∂y
− (1 + λ)S

∂V EE ,k
j

∂X

)
l(t)−

(
∂V EE ,k

j

∂y
− (1− µ)S

∂V EE ,k
j

∂X

)
m(t)

}

+
∂V EE ,k

j

∂t
+ rX

∂V EE ,k
j

∂X
+ αS

∂V EE ,k
j

∂S
+

1

2
σ2S2

∂2V EE ,k
j

∂S2
= 0,

(4.16)
where (t,X, y, S) ∈ [0, T ]× R× R× R+.

The optimal trading strategy can be found considering the following three possible cases:

∂V EE ,k
j

∂y
− (1 + λ)S

∂V EE ,k
j

∂X
≥ 0,

∂V EE ,k
j

∂y
− (1− µ)S

∂V EE ,k
j

∂X
> 0, (4.17)

where the maximum is achieved by m(t) = 0 and l(t) = k;

∂V EE ,k
j

∂y
− (1 + λ)S

∂V EE ,k
j

∂X
< 0,

∂V EE ,k
j

∂y
− (1− µ)S

∂V EE ,k
j

∂X
≤ 0, (4.18)

where the maximum is achieved by m(t) = k and l(t) = 0;

∂V EE ,k
j

∂y
− (1 + λ)S

∂V EE ,k
j

∂X
≤ 0,

∂V EE ,k
j

∂y
− (1− µ)S

∂V EE ,k
j

∂X
≥ 0, (4.19)
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where the maximum is achieved by m(t) = 0 and l(t) = 0 (do nothing).

The rest of the casuistics for the inequalities are impossible since the value functions are
strictly increasing functions of X and y (Proposition 4.2.2). For example, if it holds that

∂V EE ,k
j

∂y
− (1 + λ)S

∂V EE ,k
j

∂X
≥ 0,

∂V EE ,k
j

∂y
− (1− µ)S

∂V EE ,k
j

∂X
≤ 0,

and since S, λ ≥ 0 and µ ∈ [0, 1), this implies that

(1 + λ)S
∂V EE ,k

j

∂X
≤ (1− µ)S

∂V EE ,k
j

∂X
⇒

∂V EE ,k
j

∂X
≤ 0,

which is a contradiction.

These results suggest that the optimization problem is a free boundary problem where, if
the value function is known in the four dimensions (t,X, y, S), the optimal trading strategy
is determined by the previous inequalities.

We conjecture, as in [22], that the space is divided in three regions, The Buying Region
(BR), The Selling Region (SR) and The No Transactions Region (NT). The Buying and
Selling regions do not intersect since it is not optimal to buy and sell shares at the same time.

Definition 4.2.7. The frontiers between the No Transactions Region and the Buying/Selling
Regions will be respectively denoted by yB

j and yS
j , j ∈ {1, w}.

As k → ∞, the class of admissible strategies approaches to the one given in Definition
4.2.6. Therefore, V EE ,k

j , j ∈ {1, w} converges to V EE
j = Vj assuming that E > E0, E0 big

enough.

Complementary to the previous assertion that the value of E > E0 does not affect the
function value, Davis et al. conjecture that the buying/selling frontiers of functions V EE

j do
not depend on the particular choice of E > E0.

The optimal trading strategy is always to immediately buy/sell shares until reaching the
corresponding frontier if we are located inside the BR/SR respectively.

When we respectively approximate the Buying (respectively Selling) frontiers from the
Buying (respectively Selling) regions, the limit argument employed in [22] leads to the follow-
ing equations:

∂Vj
∂y
− (1 + λ)S

∂Vj
∂X

= 0, (t,X, y, S) ∈ BR,
∂Vj
∂y
− (1− µ)S

∂Vj
∂X

= 0, (t,X, y, S) ∈ SR,
∂Vj
∂t

+ rX
∂Vj
∂X

+ αS
∂Vj
∂S

+
1

2
σ2S2 ∂Vj

∂S2
= 0, (t,X, y, S) ∈ NT,

(4.20)
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which can be written in the form:

max

{
∂Vj
∂y
− (1 + λ)S

∂Vj
∂X

,−
(
∂Vj
∂y
− (1− µ)S

∂Vj
∂X

)
,

∂Vj
∂t

+ rX
∂Vj
∂X

+ αS
∂Vj
∂S

+
1

2
σ2S2 ∂Vj

∂S2

}
= 0,

(4.21)

where (t,X, y, S) ∈ [0, T ]× R× R× R+.

In the rest of the Chapter, we will use the following Utility function.

Definition 4.2.8. Let U(x) be the Exponential Utility function

U(x) = 1− exp(−γx). (4.22)

Note that γ = −U ′′(x)
U ′(x)

, the index of risk aversion, is independent of the investor’s wealth.

Under the Exponential Utility, the value function given in (4.13) can be rewritten as:

Vj(t,X, y, S) = sup
π∈τ(X,y)

E
{
U(Wj(T,X

π(T ), yπ(T ), S̄(T )))
}

= 1− inf
π∈τ(X,y)

E {exp(−γWj)}

= 1− inf
π∈τ(X,y)

E {exp(−γXπ(T )) exp(−γ(Wj −Xπ(T ))} ,
(4.23)

where:

Wj −Xπ(T ) =

{
c(y(T ), S(T )), j = 1,

IS(T )<Kc(y(T ), S(T )) + IS(T )≥K [c(y(T )− 1, S(T )) +K] , j = w.
(4.24)

On the other hand (see [22]), Xπ(T ) is given by the following integral version of the state
equation (4.11):

X̄(T ) =
X

δ(T, t)
−
∫ T

t

(1 + λ)S̄(t)

δ(T, t)
dL(t) +

∫ T

t

(1− µ)S̄(t)

δ(T, t)
dM(t),

where, for homogeneity with the notation in [22], δ(T, t) is the discount factor:

δ(T, t) = exp(−r(T − t)). (4.25)

Therefore, we can write the value functions as:

Vj(t,X, y, S) = 1− exp

(
−γ X

δ(T, t)

)
Qj(t, y, S), (4.26)

where Qj(t, y, S) is a convex nonincreasing continuous function in y and S given by

Qj(t, y, S) = 1− Vj(t, 0, y, S). (4.27)
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Remark 4.2.4. This result has a very important interpretation: “The amount invested in
the risky asset is independent of the total wealth.”

The indifferent price pw(X, t, S) was introduced in Definition 4.2.3 as:

V1(t,X, 0, S) = Vw(t,X + pw(X, t, S), 0, S), (4.28)

which leads to

1− exp

(
−γ X

δ(T, t)

)
Q1(t, 0, S) = 1− exp

(
−γX + pw(X, t, S)

δ(T, t)

)
Qw(t, 0, S).

The indifferent price is explicitly computable:

pw(X, t, S) =
δ(T, t)

γ
log

(
Qw(t, 0, S)

Q1(t, 0, S)

)
. (4.29)

We remark that it is independent of the initial wealth pw(X, t, S) = pw(t, S).

Substituting the value Vj into the partial differential equation, we obtain:

min

{
∂Qj

∂y
+
γ(1 + λ)S

δ(T, t)
Qj,−

(
∂Qj

∂y
+
γ(1− µ)S

δ(T, t)
Qj

)
,
∂Qj

∂t
+ αS

∂Qj

∂S
+

1

2
σ2S2∂Qj

∂S2

}
= 0,

(4.30)
defined in [0, T ]× R× R+. The terminal conditions are given by:

Q1(T, y, S) = exp(−γc(y, S)), (4.31)

and
Qw(T, y, S) = exp

(
−γ
(
I(S<K)c(y, S) + I(S≥K) [c(y − 1, S) +K]

))
. (4.32)

If the value of functions Qj, j ∈ {1, w} is known when the functions lay inside the No
Transactions Region and we know the location of the Buying/Selling frontiers for each value
of S, we can employ two equations from (4.30) in order to obtain its explicit value in these
regions. In the Buying region:

Qj(t, y, S) = Qj(t, y
B
j (t, S), S) exp

(
−γ(1 + λ)S

δ(T, t)
(y − yB

j (t, S))

)
, y ≤ yB

j (t, S), (4.33)

and in the Selling region:

Qj(t, y, S) = Qj(t, y
S
j (t, S), S) exp

(
γ(1− µ)S

δ(T, t)
(yS
j (t, S)− y)

)
, y ≥ yS

j (t, S). (4.34)

Therefore, the problem is reduced to solve equation (4.30) subject to the maturity condi-
tions (4.31)-(4.32), computing the function value in the No Transactions region and finding
the location of the frontiers.
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To finish this Subsection, we mention (see [22] and [42]) that when no transaction costs
are present (λ = µ = 0) and there are no budget constraints (E arbitrary big), the problem
is explicitly solvable. In this case, we denote the value function by Qj, j ∈ {1, w}. For j = 1
we have:

yB
1 (t, S) = yS

1 (t, S) =
δ(T, t)

γS

α− r
σ2

,

Q1(t, y, S) = exp

(
−(α− r)2

2σ2
(T − t)

)
exp

(
− γyS

δ(T, t)

)
.

(4.35)

For j = w, the value function and the optimal trading strategy can be obtained from the
results of Theorem 4.2.1 employing first formulas (4.29), (4.35) and then formula (4.33):

yB
w (t, S) = yS

w (t, S) =
δ(T, t)

γS

α− r
σ2

+
∂C (t, T ;S)

∂S
,

Qw(t, y, S) = exp

(
−(α− r)2

2σ2
(T − t)

)
exp

(
− γ

δ(T, t)
[yS − C (t, T ;S)]

)
,

(4.36)

where C (t, T ;S) and ∂C (t,T ;S)
∂S

respectively denote the price and the Delta of the European
Option.

Remark 4.2.5. We point out that if α > r, the previous formulas imply that, when there
are no transaction costs, yB

j (t, S) > 0, j ∈ {1, w}, i.e., shortselling is always a suboptimal
strategy.

Numerical experiments (see Subsection 4.4.2) suggest that this also holds when transaction
cost appear.

We also note that in the previous formulas, yB
w (t, S) has a jump discontinuity at t = T .

4.2.3 Existence and uniqueness of the solution. Comments about
constraint EE

In this Subsection, we present all the results included in [22] that characterise the value
functions V EE

j , j ∈ {1, w} given by (4.13) as weak (viscosity) solutions of the variational
inequality (4.21). The proofs can be found in [22] and in [62].

The notion of viscosity solutions was introduced by Crandall and Lions [18]. We also refer
to [19] and [44]. The notion of constrained viscosity solution was introduced by Soner [57]
and by Capuzzo-Dolcetta and Lions [11]. Some technical results employed can be found in
[37] and [43].

Definition 4.2.9. Let
F (Z,Θ, DΘ, D2Θ) = 0, [0, T ]× E , (4.37)

be a nonlinear second order p.d.e. where E ⊆ R3 is an open set and such that

F (Z, p, q, A+N) 5 F (Z, p, q, A) if N = 0.

A continuous function Θ : [0, T ]× Ē → R is a constrained viscosity solution of (4.37) if:
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1. Θ is a viscosity subsolution of (4.37) in [0, T ]× Ē → R, i.e., ∀φ ∈ C1,2([0, T ]× Ē ) and
for any local maximum point Z0 ∈ [0, T ]× Ē of Θ− φ we have that:

F (Z0,Θ(Z0), Dφ(Z0), D2φ(Z0)) 5 0.

2. Θ is a viscosity supersolution of (4.37) in [0, T ] × E → R, i.e., ∀φ ∈ C1,2([0, T ] × Ē )
and for any local minimum point Z0 ∈ [0, T ]× E of Θ− φ we have that:

F (Z0,Θ(Z0), Dφ(Z0), D2φ(Z0)) = 0.

The notion of constrained viscosity solution has some technical difficulties when we have
to deal with the boundary of the domain. The complete development of the results included
in the references mentioned at the beginning of this Subsection is too extensive to be in-
cluded. Nevertheless, we make a summary of the key concepts that are employed in the
results presented in [22].

In order to prove that the function value is a constrained viscosity solution, we need to
prove that it can be extended continuously to the frontier when needed, so that, the standard
arguments (see [57] or [37]) can be employed.

The are also some difficulties in the uniqueness result. The proof relies in a technique
presented in [37], which we sketch without entering into the details. Suppose that u1 and
u2 are respectively sub and super solutions of F = 0 in an open set Ω. Suppose also that
u1 ≤ u2 in ∂Ω and that we can find a perturbed supersolution uε2 = εu2 + (1− ε)h such that
for any ε ∈ (0, 1) it holds that u1 ≤ uε2 in ∂Ω and uε2 is a supersolution of F = 0 and of
F − (1− ε)g = 0 with g > 0. Then it can be proved, with limit arguments, that u1 ≤ u2 in Ω̄.

The value function V EE
j (t,X, y, S), j ∈ 1, w given in (4.13) is continuous in [0, T ]×EE (see

[22]) and can be extended continuously to be defined in [0, T ]× Ē . We note that the function
value is already defined in t = 0 and t = T . Furthermore, it can be explicitly computed for
t = T and/or S = 0 (the money is only in the bank account).

On the other side, with the particular choice of the Exponential Utility, the value function
V EE
j (t,X, y, S) defined in (4.13) is upper bounded for positive wealth (see (4.22)) and lower

bounded for negative wealth (see Proposition 4.2.3 below). For t ∈ [0, T ), the frontier defined
by EE is reached only for negative wealth and the strictly increasing property in y and x
allows to extend the function continuously in the remaining frontier.

In order to prove that V EE
j (t,X, y, S) is the only constrained viscosity solution, Davis et

al. prove that if u is a constrained viscosity solution such that u is upper and lower bounded
and

u(t,X, y, 0) = V EE
j (t,X, y, 0), u(T,X, y, S) = V EE

j (T,X, y, S),

which are explicitly computable, then it holds u(t,X, y, S) = V EE
j (t,X, y, S), (t,X, y, S) ∈

[0, T ]× ĒE.

The arguments employed by Davis et al. are based in the technique of [37] previously
described. If u1 and u2 are respectively (bounded) sub and supersolutions of our problem
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and u1 ≤ u2 for S = 0 and/or t = T , then u1 ≤ u2 in [0, T ] × ĒE. The proof relies in the
construction of the perturbed solution uε2 = εu2 + (1− ε)h where h is explicitly given and uε2
is a supersolution of F = 0 and F − (1− ε)g = 0 with g > 0.

We remark that the hypothesis of bounded functions is essential to define h and the reason
why EE was introduced. The following results can be found in [22].

Theorem 4.2.2. For any (t0, X0, y0, S0) ∈ [0, T ] × ĒE it exists an optimal trading strategy
which solves V ĒE

j , j ∈ {1, w}.

Theorem 4.2.3. The value function V ĒE
j (s,X, y, S) is a constrained viscosity solution of

min

{
−
(
∂Θ

∂y
− (1 + λ)S

∂Θ

∂X

)
,

(
∂Θ

∂y
− (1− µ)S

∂Θ

∂X

)
,

−
(
∂Θ

∂s
+ rX

∂Θ

∂X
+ αS

∂Θ

∂S
+

1

2
σ2S2∂

2Θ

∂S2

)}
= 0

(4.38)

in [0, T ]× ĒE

Theorem 4.2.4. Let u be a bounded upper semicontinuous viscosity subsolution of (4.38) on
[0, T ]× ĒE, and let v be a bounded from below lower semicontinuous viscosity supersolution of
(4.38) on [0, T ]× ĒE such that:

(i) u(t,X, y, 0) 5 v(t,X, y, 0) on [0, T ]× ĒE,

(ii) u(T, z) 5 v(T, z), ∀z ∈ ĒE,

where u(t,X, y, 0) = 1− exp(−γX) and u(T, z) = 1− exp(−γ(X + c(y, S))).

Then u 5 v on [0, T ]× ĒE.

Comments about constraint EE.
Constraint EE has been employed, as we have seen, to prove the existence and unique-

ness of the variational inequalities that characterize the value functions V EE
j (t,X, y, S) when

(t,X, y, S) ∈ [0, T ]× EE.

In [22] it was argued that this constraint is needed just for technical reasons and that it
does not affect the value functions (for E big enough) because it only ruled out suboptimal
strategies.

When we numerically solve the problem, for a fixed initial position and a bound E =
E0 > 0 big enough, whether we are in a scenario with or without transaction costs, the results
suggest that the option price/value functions do not change for E > E0 (or that the values
quickly converge to a certain value as E →∞).
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We are going to prove that (at least punctually) the stochastic control problem converges
as E →∞ for any fixed initial position (t0, Xt0 , yt0 , St0).

We introduce the following value functions.

Definition 4.2.10. Let VEE
j , j ∈ {1, w} denote the value functions (4.13) when there are no

transaction costs present (λ = µ = 0).
Let also Vj, j ∈ {1, w} denote the value function when there are no transaction costs and

E can be arbitrary big, i.e. .

Vj(t,X, y, S) = 1− exp

(
−γ X

δ(T, t)

)
Qj(t, y, S), j ∈ {1, w}, (4.39)

where functions Qj, j ∈ {1, w} are given in (4.35) and (4.36).

Consider a fixed initial position (t0, Xt0 , yt0 , St0) and let N0 = N0(t0, Xt0 , yt0 , St0) ∈ N be
such that

max
{

(Xt0 + c(yt0 , St0)) er(T−t0), (Xt0 + c(yt0 − 1, St0)) er(T−t0)
}
> −N0. (4.40)

Remark 4.2.6. For N ≥ N0, the (suboptimal) trading strategies

(a) yπ(t) = 0, t ∈ (t0, T ) if j = 1 (no option was sold).

(b) yπ(t) = 1, t ∈ (t0, T ) if j = w (one option was sold).

are both admissible in τN0(X0, y0) because they limit our losses by less than −N0 for t ∈ [t0, T ].
Therefore, for (t0, Xt0 , yt0 , St0) we have explicitly found an admissible strategy for N ≥ N0

and, by a suboptimality argument, all the value functions V EN
j , VEN

j , Vj, Vj, j ∈ {1, w} will
be lower bounded at point (t0, Xt0 , yt0 , St0) by

1− exp(γN0).

Lemma 4.2.1. For any N,N ′ ∈ N such that N0 ≤ N < N ′ it holds for j ∈ {1, w} that{
V EN
j (t0, Xt0 , yt0 , St0) ≤ V

EN′
j (t0, Xt0 , yt0 , St0),

VEN
j (t0, Xt0 , yt0 , St0) ≤ VEN′

j (t0, Xt0 , yt0 , St0).

Proof. Since all the admissible trading strategies in τN(X, y) are included in τN ′(X, y),

τN(X, y) ⊂ τN ′(X, y),

the result of the maximization problem will always be equal or better.
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Corollary 4.2.1. The previous result also implies that

VEN
j (t0, Xt0 , yt0 , St0) ≤ Vj(t0, Xt0 , yt0 , St0), j ∈ {1, w}.

because for the stochastic control problem Vj, j ∈ {1, w} there are no constraints upon the set
of optimal trading strategies.

We also remark that Vj(t0, Xt0 , yt0 , St0) <∞, j ∈ {1, w} since we already know that, when
there are no transaction costs, the problem has a solution which is explicitly computable.

Lemma 4.2.2. For any N > N0 it holds that

V EN
j (t0, Xt0 , yt0 , St0) ≤ VEN

j (t0, Xt0 , yt0 , St0).

Proof. This result is derived from the fact that the effect of transaction costs is to decrease
by ∆y(λS) or by ∆y(µS) our total wealth each time a transaction ∆y is realized.

Consider the optimal trading strategy πo obtained for the case where transaction costs
(λ = λ0 ≥ 0, µ = µ0 ≥ 0) are present.

For the case where there are no transaction costs, consider the (suboptimal) trading strat-
egy which consist in, each time a transaction is performed, retain ∆y(λ0S) or ∆y(µ0S) in the
bank account until maturity while we independently follow πo with the rest of the money and
assets.

The proof ends using the same argument of Proposition 4.2.1.

We note that for any value E > 0, we can always find N ∈ N, N > E which implies that
τE(X, y) ⊂ τN(X, y). The argument finishes constructing and increasing and upper bounded
sequence.

Proposition 4.2.3. For j ∈ {1, w}, we have that

lim
N→∞

V EN
j (t0, Xt0 , yt0 , St0) <∞. (4.41)

Proof. By the previous results, for N ≥ N0, it holds that

1− exp(γN0) ≤ V EN
j (t0, Xt0 , yt0 , St0) ≤ V

EN′
j (t0, Xt0 , yt0 , St0)

≤ VEN′
j (t0, Xt0 , yt0 , St0) ≤ Vj(t0, Xt0 , yt0 , St0) <∞.

where N ′ > N .
Consider the sequence {

V EN
j (t0, Xt0 , yt0 , St0)

}∞
N=N0

,

which is increasing and bounded above. Therefore, it has a limit.

The previous Proposition implies that the value of function V EE
j converges, at least punc-

tually, as E tends to ∞.
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4.2.4 Restatement of the problem: Bankruptcy state

A priori, the model is not linear in the relation S
K
, so we cannot use the technique employed

in Chapter 1 of fixing the strike K = 1 and a domain S ∈ [Smin, Smax], solving the problem
there and computing the option price for other values of S/K by interpolation. The problem
has to be solved for each strike K and each stock price S.

Furthermore, the model is not linear in the number of European Options sold. If we
negotiate n options instead of one, we have to compute, for y = 0 and S > K:

Qw(T, 0, S) = exp (γn [(1 + λ)S −K]) ,

which grows very fast.

Market data may take big values. For example, in Chapter 1, the index S&P (around 350
points) negotiates options with strike K = 300. This means that we have to work with values
equivalent to exp(50). Therefore, there is a scaling problem that must be handled.

When an European option is signed (or other derivative), the market (Clearing House),
acts as a central counterparty which mediates between the seller and the buyer of the option.
Furthermore, the market demands some type of guaranty to the seller of the option.

Let t ∈ [0, T ] and suppose that the European option has been signed at time t = 0 and
expires at t = T . The objective of the guaranty is to ensure that, at any moment 0 ≤ t ≤ T ,
the seller of the option can afford all the potential loses that he might have incurred between
[0, t], even if the option cannot be exercised prior to time T .

This guaranty can take different forms like money or other stocks or goods. Formally, the
seller of the option may not have to give anything out while he is solvent (he does not need
to alter his investment strategies), but the Clearing House can confiscate the guaranty and
expel the seller of the option from the market if he goes into theoretical bankruptcy at any
time t ∈ [0, T ] (see, for example, [5]).

Simplifying the situation, the constraint EE could be understood as a bankruptcy con-
straint. We allow any trading strategy to the seller of the option, but, if at any time t
his strategy has led him out outside EE, he is automatically expelled from the market (not
allowing him to return) and he remains with a residual bankruptcy utility forever.

Retaining the previous definitions, we introduce two new value functions.

Definition 4.2.11. Let E > 0. For t ∈ [0, T ] and j ∈ {1, w}, we define the value functions

V BE
j (t,X, y, S) =

sup
π∈τ(X,y)

E
{
U(Wj(T,X

π(T ), yπ(T ), S(T )))|
(
X̄(t), ȳ(t), S̄(t)

)
= (X, y, S)

}
, (X, y, S) ∈ EE ,

1− exp(γE), (X, y, S) /∈ EE ,
(4.42)

where τ(X, y) denotes that we allow any trading strategy.

These new value functions are defined in [0, T ] × R × R × R+ and they do not alter the
model thanks to the following result.
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Proposition 4.2.4. If (t,X, y, S) ∈ [0, T ]× EE, it holds that

V BE
j (t,X, y, S) = V EE

j (t,X, y, S).

Proof. By the definition of EE, we knew that the trading strategies{
yπ

s ≡ 0, j = 1,

yπ
s ≡ 1, j = w,

where admissible in τE(X, y), so they are in τ(X, y). Under these strategies, the final wealth
satisfies

Wj((T,X
πs(T ), yπ

s

(T ), S̄(T )) > −E, j ∈ {1, w}.
Any trading strategy π ∈ τ that lies outside EE for any t ∈ [0, T ], leads automatically to

the residual utility 1− exp(γE), which is always suboptimal.

Therefore, the optimal trading strategy must belong to τE(X, y). Consequently,

V BE
j (t,X, y, S) = V EE

j (t,X, y, S).

Proposition 4.2.5. The functions V BE
j , j ∈ {1, w} satisfy for t ∈ [0, T ] that:

V BE
j (t,X, y, S) ≥ 1− exp(γE), (X, y, S) ∈ EE,

V BE
j (t,X, y, S) = 1− exp(γE), (X, y, S) /∈ EE,

Proof. The first inequality is obtained by a suboptimality argument employing strategy πs
of the previous proof and the second one comes from the definition of function V BE

j , j ∈
{1, w}.

Thanks to Proposition 4.2.4, we inherit all the existence and uniqueness results of the
original development of the model in [22]. For the shake of completeness, we present now the
two differences with the original development of the model.

Proposition 4.2.6. Functions V BE
j , j ∈ {1, w} are not decreasing functions of X and y.

Proof. In [0, T ] × EE, functions V BE
j match with functions V EE

j , which are strictly growing
functions of X and y (see Proposition 4.2.2).

Outside that domain, functions V BE
j are constant and smaller than the function values of

any point which belongs to [0, T ]× EE.
Due to the definition of EE, for any fixed (t0, y0, S0), it exists X0 such that{

(t0, X, y0, S0) ∈ [0, T ]× EE, X > X0,

(t0, X, y0, S0) /∈ [0, T ]× EE, X ≤ X0,

and a similar argument can be obtained for y and any fixed (t0, X0, S0). Therefore, the value
functions are constant or strictly growing functions of X and y.
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In Subsection 4.2.2, we gave the possible optimal trading strategies, see equations (4.17)-
(4.19), that were obtained in [22]. There were only three possibilities (Buying/Selling/No
Transactions) thanks to the strictly growing property of functions V EE

j , j ∈ {1, w}.
Now, due to the non-decreasing property of functions V BE

j , j ∈ {1, w}, a fourth case
appears:

∂V k
j

∂y
− (1 + λ)S

∂V k
j

∂X
= 0,

∂V k
j

∂y
− (1− µ)S

∂V k
j

∂X
= 0, (4.43)

which corresponds to the Bankruptcy state. Since in this case, the investor has been expelled
from the market, no trading strategy has to be obtained.

Similar to the model presented in [22], we are interested in the limit value of the func-
tions when E → ∞. Again, thanks to Proposition 4.2.4, we inherit the results presented in
Subsection 4.2.3.

Since the option price is independent of the initial wealth, we will work numerically with
a function Qj(t, y, S) derived by formula (4.26) from Vj = V EE

j = V BE
j , j ∈ {1, w}, when E

is considered big enough.

Retaining the definitions from Subsection 4.2.2, let us fix X = X0. We apply formula
(4.26) to functions V BE

j in order to obtain functions that we will denote by QBE,X0
j .

It is clear that Qj = Q
EE,X0
j = Q

BE,X0
j , j ∈ {1, w} when E is considered big enough.

For finishing this Subsection, we give the following result.

Proposition 4.2.7. For X = X0 and E = E0 fixed, it exists M = M(X0, E0) ≥ 0 such that
∀(t, y, S),∈ [0, T ]× R× R+ it holds

0 < Q
BE0,X0
j ≤M, j ∈ {1, w}.

Proof. If we substitute formula (4.26) into formula (4.23) it directly implies that QBE0,X0
j >

0, j ∈ {1, w}.
The second statement is a consequence of formula (4.26) and Proposition 4.2.5.

4.3 Numerical Method
In this Section we introduce two changes of variables that drastically reduce the impact of
the exponential growth of functions Qj, j ∈ {1, w} and we propose a Fourier pseudospectral
method to solve the partial differential equation that we will obtain.

The procedure is as follows: First, we perform two changes of variables and compute the
corresponding variational inequality.

The second step is the localization of the problem. We fix a finite domain and perform an
odd-even extension, imposing periodic boundary conditions.
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Finally, we employ a Fourier Pseudospectral method to solve the partial differential equa-
tion. We will summarize all the steps in the numerical algorithm in Subsection 4.3.4

For finishing the Section, we will include a theoretical analysis of the stability and conver-
gence of the numerical method as well as an analysis of the localization error.

4.3.1 Change of variables.

The following two changes of variables reduce the impact of the exponential growth.
We change the stock price to logarithmic scale.

x̂ = log(S). (4.44)

so that, variational inequality (4.30) is transformed into

min

{
∂Qj

∂y
+
γ(1 + λ) exp (x̂)

δ(T, t)
Qj,−

(
∂Qj

∂y
+
γ(1− µ) (x̂)

δ(T, t)
Qj

)
,

∂Qj

∂t
+

(
α− σ2

2

)
∂Qj

∂x̂
+

1

2
σ2∂

2Qj

∂x̂2

}
= 0, j ∈ {1, w}.

(4.45)

The second stage consists in consider a new function Hj(t, y, x̂) defined by:

Hj(t, y, x̂) = log (Qj(t, y, x̂)) , j ∈ {1, w}, (4.46)

which is admissible after Proposition 4.2.7.
In Figure 4.1 we plot the values of function H1(T, y, x̂) (left) and function Hw(T, y, x̂)

(right) for x̂ ∈ [−5, 5], y ∈ [0, 2], λ = µ = 0.002, γ = 1 and log(Strike) = 3. The benefit of
working with function Hw(T, y, x̂) is that it takes much smaller values (absolute value) than
function Qw(T, y, x) = exp(Hw(T, y, exp(x̂))).

Figure 4.1: Graph of H1(T, y, x̂) (left) and Hw(T, y, x̂) (right), x̂ ∈ [−5, 5], y ∈ [0, 2], λ = µ =
0.002, γ = 1, log(Strike) = 3.



4.3. Numerical Method 153

With the second change, the variational inequality (4.30) becomes

min

{
∂Hj

∂y
+
γ(1 + λ) exp(x̂)

δ(T, t)
, −

(
∂Hj

∂y
+
γ(1− µ) exp(x̂)

δ(T, t)

)
,

∂Hj

∂t
+

(
α− σ2

2

)
∂Hj

∂x̂
+

1

2
σ2∂

2Hj

∂x̂2
+

1

2
σ2

(
∂Hj

∂x̂

)2
}

= 0, j ∈ {1, w},
(4.47)

subject to
H1(T, y, x̂) = −γc(y, exp(x̂)), (4.48)

and

Hw(T, y, x̂) = −γ
(
I(exp(x̂)<K)c(y, exp(x̂)) + I(exp(x̂)≥K) [c(y − 1, exp(x̂)) +K]

)
. (4.49)

If the value of functions Hj, j ∈ {1, w} is known when (t, y, x̂) ∈ R× R× R+ lays inside
the No Transactions Region and the location of the Buying/Selling frontiers is also known for
each value of (t, x̂) ∈ R×R+, we can explicitly compute the value of the function in the other
two regions. In the Buying region:

Hj(t, y, x̂) = Hj(t, y
B
j (t, x̂), x̂) +

(
−γ(1 + λ) exp(x̂)

δ(T, t)
(y − yB

j (t, x̂))

)
, y ≤ yB

j (t, x̂), (4.50)

and in the Selling region:

Hj(t, y, x̂) = Hj(t, y
S
j (t, x̂), x̂) +

(
γ(1− µ) exp(x̂)

δ(T, t)
(yS
j (t, x̂)− y)

)
, y ≥ yS

j (t, x̂), (4.51)

Formulas (4.50) and (4.51) correspond to formulas (4.33) and (4.34) in the new variables.

Therefore, the problem is reduced to numerically solve equation

∂Hj

∂t
+

(
α− σ2

2

)
∂Hj

∂x̂
+

1

2
σ2∂

2Hj

∂x̂2
+

1

2
σ2

(
∂Hj

∂x̂

)2

= 0, j ∈ {1, w}, (4.52)

subject to proper terminal conditions (see Subsection 4.3.2), computing the function value in
the No Transactions region and finding the location of the frontiers.

It should be remarked that, although the exponential grow is still present, working in the
logarithmic scale allows us to compute option prices very deep in the money and to use higher
values for the stock and the strike.

4.3.2 Localization of the problem

Our objective is to implement a Fourier pseudospectral method. The procedure of the local-
ization of the problem is similar to the one found in [9].
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We denote by [Lmin, Lmax] ⊂ R the approximation domain, which is a finite interval such
that it covers all the logarithmic stock prices in which we are interested to compute the
function values.

We denote by [x̂min, x̂max] ⊂ R the computational domain, which is a finite interval such
that Lmin > x̂min and Lmax < x̂max.

The truncation of the domain that we are going to propose induces the so called localization
error. This error is due to the extension of the function and the imposition of periodic
boundary conditions, since the original function is not periodic.

In Subsection 4.3.5, we will prove that the localization error can be made arbitrary small
in a fixed approximation domain [Lmin, Lmax] taking the computational domain large enough.

Although periodic boundary conditions could be directly imposed, in order to avoid the
Gibbs effect, it is better to perform first an odd-even extension and then impose periodic
conditions. We define He

j (t, y, x̂), j ∈ {1, w} by:

Hj(t, y, x̂), if x̂ ∈ [x̂min, x̂max],

2Hj(t, y, x̂max)−Hj(t, y, 2x̂max − x̂), if x̂ ∈ [x̂max, 2x̂max − x̂min],

He
j (t, y, (4x̂max − 2x̂min)− x̂), if x̂ ∈ [2x̂max − x̂min, 4x̂max − 3x̂min],

He
j (t, y, z),

{
x̂ = z + x̂min + k(4x̂max − 4x̂min)

z ∈ [x̂min, 4x̂max − 3x̂min], k ∈ Z
if x̂ /∈ [x̂min, 4x̂max − 3x̂min].

(4.53)
In Figure 4.2 we plot function He

1(T, y, x̂) (left) and function He
w(T, y, x̂) (right) for x̂ ∈

[−5, 35], y ∈ [0, 2], λ = µ = 0.002, γ = 1 and log(Strike) = 3. Functions He
j (T, y, x̂), j ∈

{1, w} correspond to those of Figure 4.1 after the odd-even extension defined by (4.53).

Figure 4.2: Graph of He
1(T, y, x̂) (left) and He

w(T, y, x̂) (right), x̂ ∈ [−5, 35], y ∈ [0, 2], λ =
µ = 0.002, γ = 1, log(Strike) = 3.
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Fix a grid t̄ = {tm}Nm=0, 0 = t0 < ... < tm < tm+1 < ... < tN = T .

For t ∈ [tm, tm+1], x̂ ∈ [x̂min, 4x̂max − 3x̂min], we define an approximate function Hp
j , j ∈

{1, w} as the solution of equation (4.52) supplemented with periodic boundary conditions:

Hp
j (t, y, x̂min) = Hp

j (t, y, 4x̂max − 3x̂min),

∂Hp
j

∂x
(t, y, x̂min) =

∂Hp
j

∂x
(t, y, 4x̂max − 3x̂min),

and with the final condition

Hp
j (tm+1, y, x̂) = He

j (tm+1, y, x̂).

We remark that in the numerical procedure (see Subsection 4.3.4), the value function
Hj(tm+1, y, x̂), x̂ ∈ [xmin, xmax] employed in (4.53) is substituted by an approximation com-
puted in the previous step of the numerical procedure.

Finally, and for notational convenience, we are going to change the spatial domain to
x ∈ [0, 2π] defining:

uj(t, y, x) = Hp
j

(
t, y, x̂min +

4x̂max − 4x̂min

2π
x

)
. (4.54)

Therefore, equation (4.52) becomes

∂uj
∂t

+ A
∂uj
∂x

+B
∂2uj
∂x2

+ C

(
∂uj
∂x

)2

= 0, j ∈ {1, w}, (4.55)

supplemented with periodic boundary conditions:

u(0, t) = u(2π, t),

ux(0, t) = ux(2π, t),

where
A =

(
2π

4x̂max − 4x̂min

)(
α− σ2

2

)
,

B =

(
2π

4x̂max − 4x̂min

)2
1

2
σ2,

C =

(
2π

4x̂max − 4x̂min

)2
1

2
σ2.

(4.56)

4.3.3 A Pseudospectral method.

For N ∈ N, let SN be the space of trigonometric polynomials

SN = span
{
eikx

∣∣ −N ≤ k ≤ N − 1
}
. (4.57)
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Definition 4.3.1. Let u(x, t) defined in [0, 2π] × [0, T ] be a continuous function. We define
the set of nodes {xj}2N−1

j=0 by

xj = j
π

N
, j = 0, 1, ..., 2N − 1, (4.58)

The Discrete Fourier Transform (DFT) coefficients {ûk(t)}N−1
k=−N are defined by

ûk(t) =
1

2N

2N−1∑
j=0

u(xj, t)e
−ikxj , k = −N, ..., N − 1. (4.59)

The trigonometric interpolant of the function u(x, t) at the nodes {xj}2N−1
j=0 is given by

IN(u(x, t)) =
N−1∑
k=−N

ûk(t)e
ikx (4.60)

where the {ûk(t)}N−1
k=−N are given by (4.59).

Let uN ∈ SN . The polynomial uN is unambiguously defined by its values at the nodes
{xj}2N−1

j=0 given by (4.58). We denote

UN =
[
uN(x0), ..., uN(x2N−1)

]T
. (4.61)

The Discrete Fourier Transform (DFT) is an invertible, linear transformation:

FN : C2N −→ C2N ,

where it holds that F−1
N = 2NF∗N = 2N

(
F̄TN
)
. We define

ÛN = [ûN−N , ..., û
N
0 , ..., û

N
N−1] = FNUN , (4.62)

The inverse operator F−1
N is explicitly computable UN = F−1

N ÛN by the inversion formula

uN(xj) =
N−1∑
k=−N

ûNk e
ikxj , j = 0, ..., 2N − 1. (4.63)

We define a diagonal matrix ∆N whose elements are given by

∆N = diag(in : −N ≤ n ≤ N − 1) =


−iN 0 ... 0 0

0 i(−N + 1) ... 0 0
... ... ... ... ...
0 0 ... i(N − 2) 0
0 0 ... 0 i(N − 1)

 . (4.64)
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The spectral derivative is given by:

DNUN = F−1
N ∆NFNUN ,

and recursively for higher order derivatives Dk
N = F−1

N ∆k
NFN .

For the rest of the Chapter, given a complex function u(x, t) defined in [0, 2π]× [0, T ], the
notation u(t) refers to a function u(·, t) ∈ L2 ([0, 2π],C).

Let uT (x) be a given function. The Fourier collocation method for equation (4.55) supple-
mented with periodic boundary conditions and subject to u(x, T ) = uT (x) consists in finding
a trigonometric polynomial uN(t) ∈ SN such that ∀j = 0, 1, ..., 2N − 1:

∂uN(xj, t)

∂t
+ A

∂uN(xj, t)

∂x
+B

∂2uN(xj, t)

∂x2
+ C

(
∂uN(xj, t)

∂x

)2

= 0,

uN(xj, T ) = uT (xj).

(4.65)

The partial differential equation can be written as

∂UN

∂t
+ ADNUN +BD2

NUN + C (DNUN ◦DNUN) = 0,

where ◦ denotes the Hadamard (entrywise) product.

Alternatively, using that ÛN = FNUN ,

∂ÛN

∂t
+ A∆NÛN +B∆2

NÛN + CFN

(
F−1
N ∆NÛN ◦ F−1

N ∆NÛN

)
= 0, (4.66)

which is condensed as
∂ÛN

∂t
= L

(
ÛN

)
+ NL

(
ÛN

)
, (4.67)

where
L
(
ÛN

)
= −

[
A∆N +B∆2

N

]
ÛN ,

NL
(
ÛN

)
= −CFN

(
F−1
N ∆NÛN ◦ F−1

N ∆NÛN

)
.

(4.68)

Expression (4.67) is equivalent to the collocation equation (4.65). For recovering the
function values at the nodes we just apply the inverse operator UN = F−1

N ÛN when necessary.

The numerical solution of (4.55) subject to u(x, T ) = uT (x) is the polynomial uN(x, t)
such that

UN(t) =
[
uN(x0, t), ..., u

N(x2N−1, t)
]T
, (4.69)

which satisfies
∂ÛN

∂t
= L

(
ÛN

)
+ NL

(
ÛN

)
,

UN(T ) = [uT (x0), ..., uT (x2N−1)]T .

(4.70)

We refer to Subsection 4.3.5 for the theoretical analysis of the stability and convergence
of the pseudospectral method. We now proceed to give the computational algorithm.
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4.3.4 Numerical algorithm

Suppose that we want to compute option prices for x̂ in the approximation domain, x̂ ∈
[Lmin, Lmax].

Therefore, we want to obtain a numerical solution for:

Hj(t, y, x̂) : [0, T ]× [ymin, ymax]× [x̂min, x̂max] −→ R.

where ymin, ymax, x̂min and x̂max are chosen to be big enough. We refer to Subsection 4.4.1 for
the empirical error analysis (localization error/ number of shares).

Definition 4.3.2. Given N = (Nt, Ny, Nx̂) ∈ N3, we define:

∆y =
ymax − ymin

Ny

, ∆x̂ =
x̂max − x̂min

Nx̂

, ∆t =
T

Nt

, (4.71)

and the sets of points
{yl}Nyl=0, yl = ymin + l∆y,

{x̂k}Nx̂k=0, x̂k = x̂min + k∆x̂,

{tm}Ntm=0, tm = m∆t.

(4.72)

For the localization procedure, we define two auxiliary sets of points.

Definition 4.3.3. We define Nx = 4Nx̂ and denote Ne = (Nt, Ny, Nx) ∈ N3. We define:

∆x̂e =
4x̂max − 3x̂min

Nx

= (∆x̂) , ∆x =
2π

Nx

, (4.73)

and the sets of points
{x̂es}Nxs=0, x̂es = x̂min + s∆x̂e,

{xs}Nxs=0, xs = s∆x.
(4.74)

We note that x̂k = x̂ek, k = 0, 1, ..., Nx̂. The set of spatial nodes {x̂es}Nxs=0 is needed in order
to define the odd-even extension given by (4.53).

The numerical solution is denoted by HN
j , j ∈ {1, w}. This solution is only computed

for the discrete values included in {yl}Nyl=0 and {tm}Ntm=0.

We remark that HN
j , j ∈ {1, w} is the numerical approximation to the function value just

in [x̂min, x̂max] but, for a particular choice of yl0 and tm0 , the functions HN
j (tm0 , yl0 , x̂), j ∈

{1, w} are a Nx = 4Nx̂ degree trigonometric polynomial defined in [x̂min, 4x̂max− 3x̂min] by its
values at {x̂es}Nxs=0 after performing the odd-even extension given in (4.53).

Let Sk be defined by
Sk = exp(x̂k). (4.75)

The algorithm is:
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Step 0: Set m = Nt (tNt = T ).
For each yl ∈ {yl}Nyl=0 and for each x̂k ∈ {x̂k}Nx̂k=0 compute

HN
j (T, yl, x̂k) = Hj(T, yl, x̂k), j ∈ {1, w}

with formulas (4.48) or (4.49).

Step 1: For each yl ∈ {yl}Nyl=0, extend the function HN
j (tm, yl, x̂) defined in [x̂min, x̂max] to

the trigonometric polynomials HNe
j (tm, yl, x̂) defined in [x̂min, 4x̂max − 3x̂min] as in Subsection

4.3.2.
For each yl ∈ {yl}Nyl=0 and for s = 0, 1, ..., 4Nx̂ − 1 define HNe

j (tm, yl, x̂
e
s) =

HN
j (tm, yl, x̂

e
s), if x̂es ∈ [x̂min, x̂max],

2HN
j tm, yl, x̂max)−HN

j (tm, yl, 2x̂max − x̂es), if x̂es ∈ [x̂max, 2x̂max − x̂min],

HN
j (tm, yl, (4x̂max − 2x̂min)− x̂es), if x̂es ∈ [2x̂max − x̂min, 4x̂max − 3x̂min],

HN
j (tm, yl, z),

{
x̂ = z + x̂min + k(4x̂max − 4x̂min)

z ∈ [x̂min, 4x̂max − 3x̂min], k ∈ Z,
if x̂es /∈ [x̂min, 4x̂max − 3x̂min],

For each yl ∈ {yl}Nyl=0 and each xs ∈ {xs}Nxs=0 write

uNxj (tm, yl, xs) = HNe
j

(
tm, yl, x̂min +

4x̂max − 4x̂min

2π
xs

)
to obtain trigonometric polynomials defined for x ∈ [0, 2π]. Set:

U yl
Nx

=
[
uNxj (tm, yl, x0), uNxj (tm, yl, x1), ..., uNxj (tm, yl, xNx−1)

]T
.

Then, for each yl ∈ {yl}Nyl=0 compute the approximated No Transactions function value
uNxj (tm−1, yl, x) as the numerical solution of the Fourier pseudospectral method:

∂Û

∂t
+ A∆Û +B∆2Û + CF

(
F−1∆Û ◦ F−1∆Û

)
= 0,

Û(tm) = F
(
uNj (tm, yl, x̄)

)
,

where Û = Û
yl
Nx , ∆Û = ∆NxÛ

yl
Nx , F = FNx , constants A,B,C are given by formula (4.56).

For each yl ∈ {yl}Nyl=0, and each x̂k ∈ {x̂k}Nx̂k=0 define

Hp
j (tm−1, yl, x̂k) = uNj (tm−1, yl, xk),

which corresponds to the function values if no transactions are realized. We remark that
x̂k ∈ [x̂min, x̂max], the values that correspond to the computational domain.

Step 2: Search the location of the buying/selling frontiers for each x̂k ∈ {x̂k}Nx̂k=0 at t = tm−1.
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We assume that the state space remains divided in three Regions (Buying/Selling/No
Transactions).

The location of the frontiers is done through the discrete counterpart of equation (4.47)
searching the biggest/smallest values for which it is not optimal to respectively buy/sell shares.
The numerical approximation to the Buying frontier is

yB
j (tm−1,x̂k) =

min
y∈{yl}

Ny
l=0

{
γ(1 + λ) exp(x̂k)

δ(T, tm−1)
∆y +Hp

j (tm−1, yl + ∆y, x̂k)−Hp
j (tm−1, yl, x̂k) > 0

}
,

and to the Selling frontier is

yS
j (tm+1,x̂k) =

max
y∈{yl}

Ny
l=0

{
−γ(1− µ) exp(x̂k)

δ(T, tm−1)
∆y +Hp

j (tm−1, yl −∆y, x̂k)−Hp
j (tm−1, yl, x̂k) > 0

}
.

We remark that with this definition, the discrete frontier is a point of the mesh {yl}Nyl=0,
so that the time evolution is piecewise constant.

Step 3: Obtain, for each x̂k ∈ {x̂k}Nx̂k=0 and each yl ∈ {yl}Nyl=0 the value of HN
j (tm−1, yl, x̂k)

employing the explicit formulas (4.50) and (4.51).
If (tm−1, yl, x̂k) belongs to the Buying Region

(
yl < yBN

j (tm−1, x̂k)
)

HN
j (tm−1, yl, x̂k) = Hp

j (tm−1, y
BN
j (tm−1, x̂k), x̂k) +

(
−γ(1 + λ) exp(x̂k)

δ(T, tm−1)
(yl − yBN

j (tm−1, x̂k, ))

)
,

If (tm−1, yl, x̂k) belongs to the No Transactions
(
yBN
j (tm−1, x̂k) ≤ yl ≤ ySN

j (tm−1, x̂k)
)

HN
j (tm−1, yl, x̂k) = Hp

j (tm−1, yl, x̂k),

If (tm−1, yl, x̂k) belongs to the Selling Region
(
yl > ySN

j (tm−1, x̂k)
)

HN
j (tm−1, y, x̂k) = Hp

j (tm−1, y
SN
j (tm−1, x̂k, ), x̂k) +

(
γ(1− µ) exp(x̂k)

δ(T, tm−1)
(ySN
j (tm−1, x̂k, )− y)

)
.

Step 4: If tm−1 = 0 end. Otherwise, m = m− 1 and proceed to Step 1.

For each yl ∈ {yl}Nyl=0 and each tm ∈ {tm}Ntm=0, redefine HN
j (tm, yl, x̂) as the trigonometric

polynomial defined [x̂min, 4x̂max − 3x̂min] by its values at x̂es ∈ {x̂es}Nxs=0 with the odd-even
extension given by (4.53).

The numerical approximation to the option price ∀x̂ ∈ [x̂min, x̂max] and for each tm ∈
{tm}Ntm=0 is computed through

pNw (tm, x̂) =
δ(T, tm)

γ

(
HN
w (tm, 0, x̂)−HN

1 (tm, 0, x̂)
)
, (4.76)
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4.3.5 Stability, consistency and convergence. Localization error.

First, we are going to study the stability and convergence of the Fourier pseudospectral
method following the lines presented in [30] or [32]. Finally, we will analyze the localization
error.

Since partial differential equation (4.55) is solved backwards, for simplicity, we perform
the change of variable τ = T − t, so that we deal with the non-linear periodic problem:

∂u

∂τ
= A

∂2u

∂x2
+B

∂u

∂x
+ C

(
∂u

∂x

)2

,

u(0, τ) = u(2π, τ), ux(0, τ) = ux(2π, τ),

u(x, 0) = u0(x)

(4.77)

where u0(x) is given and constants A,B,C are the same as in (4.56).

For the analysis, we assume that the regularity conditions upon u0(x) are the same regu-
larity conditions required upon u in the different Theorems and Propositions. The particular
initial conditions of the financial problem that we are dealing with will be discussed after the
theoretical development.

Let L2 = L2(0, 2π) denote the space of the Lebesgue-measurable functions u : (0, 2π)→ C
such that ∫ 2π

0

|u|2dx < +∞.

We denote by (·, ·) the usual L2 scalar product and by ‖.‖ the usual L2 norm which,
∀u, v ∈ L2, are given by:

(u, v) =

∫ 2π

0

u(x)v(x)dx, ‖u‖ =

(∫ 2π

0

|u(x)|2dx
) 1

2

.

Let Hs = Hs(0, 2π) denote the usual Sobolev space of order s (see [10, A.11]) and ||.||Hs

denote its norm:

||u||Hs =

(
s∑

k=0

∥∥∥∥∂ku∂xk

∥∥∥∥2
) 1

2

.

We define the norm ||u||∞ (see [10, 5.1.3]) by ||u||∞ = sup
0≤x≤2π

|u(x)|.

For any function u(τ) ∈ L2([0, 2π]), we denote by

ũk(τ) =
1

2π

∫ 2π

0

u(x, τ)e−ikxdx, k = 0,±1,±2, ...,

the nth coefficient in the Fourier expansion of u:

u(x, τ) =
∞∑

k=−∞

ũk(τ)eikx.
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We denote by PNu(τ) ∈ SN the orthogonal projection of u(τ) over SN , i.e.

PNu(τ) =
N−1∑
k=−N

ũk(τ)eikx.

For u, v ∈ SN , we denote by (u, v)N the usual discrete scalar product in SN , given by

(u, v)N =
π

N

2N−1∑
j=0

u(xj)v(xj),

and by ||u||N = [(u, u)N ]
1
2 the discrete norm in SN induced by (·, ·)N .

For any pair of functions u, v ∈ SN , it holds (see [10, (2.1.33)]):

(u, v)N = (u, v). (4.78)

We consider the subspace Hs
p ⊂ Hs defined by (see [10]):

Hs
p(0, 2π) =

{
v ∈ L2(0, 2π) : for 0 ≤ k ≤ s, the derivative

dkv
dxk

in the

sense of periodic distributions belongs to L2(0, 2π)
}
.

Stability, consistency and convergence.

We recall that in the proposed collocation method, we search for a function uN(τ) ∈ SN such
that ∀j = 0, ... , 2N − 1:

∂uN

∂τ
(xj, τ) = A

∂2uN

∂x2
(xj, τ) +B

∂uN

∂x
(xj, τ) + C

(
∂uN

∂x
(xj, τ)

)2

,

uN(0, τ) = uN(2π, τ),

uN(xj, 0) = u0(xj).

(4.79)

Fixed T>0. Let V (x, τ),W (x, τ) be two 2π-periodic and smooth functions defined in
[0, 2π]× [0, T ]. This functions will be seen as perturbed solutions of equation (4.77).

Let V N(τ) = IN(V (τ)) and WN(τ) = IN(W (τ)). We define the residuals FN(x, τ),
GN(x, τ) ∈ SN , as the trigonometric polynomials such that for j = 0, ... , 2N − 1 satisfy:

FN (xj , τ) =
∂V N

∂τ
(xj , τ)−A∂

2V N

∂x2
(xj , τ)−B∂V

N

∂x
(xj , τ)− C

(
∂V N

∂x
(xj , τ)

)2

,

GN (xj , τ) =
∂WN

∂τ
(xj , t)−A

∂2WN

∂x2
(xj , τ)−B∂W

N

∂x
(xj , τ)− C

(
∂WN

∂x
(xj , τ)

)2

.
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Theorem 4.3.1. (Stability) Let T>0 be fixed and V N , WN , FN , GN defined above.
Let M ≥ 0 such that:

‖(V N)x‖∞, ‖(WN)x‖∞ ≤M, τ ∈ [0, T ]. (4.80)

Then, it exists a constant R = R (M) such that

max
0≤τ≤T

‖eN(τ)‖2 +
A

2

∫ T

0

‖eNx (τ)‖2dτ ≤ R

(
‖eN(0)‖2 +

∫ T

0

‖FN(τ)−GN(τ)‖2dτ

)
,

where eN(τ) = V N(τ)−WN(τ).

Proof. By definition, we have for j = 0, 1, ..., 2N − 1,

∂V N

∂τ
(xj , τ) = A

∂2V N

∂x2
(xj , τ) +B

∂V N

∂x
(xj , τ) + C

(
∂V N

∂x
(xj , τ)

)2

+ FN (xj , τ),

∂WN

∂τ
(xj , τ) = A

∂2WN

∂x2
(xj , τ) +B

∂WN

∂x
(xj , τ) + C

(
∂WN

∂x
(xj , τ)

)2

+GN (xj , τ).

Subtracting both expressions, we obtain for j = 0, ... , 2N − 1 and ∀τ ∈ [0, T ]:

∂eN

∂τ
(xj) = A

∂2eN

∂x2
(xj) +B

∂eN

∂x
(xj) + C

[(
∂V N

∂x
(xj)

)2

−
(
∂WN

∂x
(xj)

)2
]

+
(
FN (xj)−GN (xj)

)
,

where eN = V N −WN . Equivalently,

∂eN

∂τ
= A

∂2eN

∂x2
+B

∂eN

∂x
+ C

(
IN

[(
∂V N

∂x

)2

−
(
∂WN

∂x

)2
])

+
(
FN −GN

)
,

since, by definition, eN , FN , GN ∈ SN .

For φ ∈ SN , taking the scalar product of the previous expression with respect to φ, we
obtain:(
∂eN

∂τ
, φ

)
=A

(
∂2eN

∂x2
, φ

)
+B

(
∂eN

∂x
, φ

)
+ C

(
IN

[(
∂V N

∂x
(xj)

)2

−
(
∂WN

∂x
(xj)

)2
]
, φ

)
+
(
FN −GN , φ

)
.

Taking φ = eN and noting that the periodic boundary conditions imply that
(
∂eN

∂x
, eN
)

= 0

and
(
∂2eN

∂x2 , e
N
)

= −
(
∂eN

∂x
, ∂e

N

∂x

)
we get:

1

2

d

dτ
||eN(τ)||2 + A||(eN)x(τ)||2 = C

(
IN

[(
∂V N

∂x

)2

−
(
∂WN

∂x

)2
]
, eN

)
+
(
FN −GN , eN

)
.
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Using (4.78)∣∣∣∣∣
(
IN

[(
∂V N

∂x

)2

−
(
∂WN

∂x

)2
]
, eN

)∣∣∣∣∣
=

∣∣∣∣∣
2N−1∑
j=0

[(
∂V N

∂x
(xj)

)2

−
(
∂WN

∂x
(xj)

)2
]
eN(xj)

∣∣∣∣∣
≤

2N−1∑
j=0

∣∣∣∣∣
[(

∂V N

∂x
(xj)

)2

−
(
∂WN

∂x
(xj)

)2
]∣∣∣∣∣ ∣∣eN(xj)

∣∣
≤

2N−1∑
j=0

∣∣∣∣(∂V N

∂x
(xj)

)
+

(
∂WN

∂x
(xj)

)∣∣∣∣ ∣∣∣∣(∂V N

∂x
(xj)

)
−
(
∂WN

∂x
(xj)

)∣∣∣∣ ∣∣eN(xj)
∣∣

≤ 2M
2N−1∑
j=0

∣∣(eN)x(xj)
∣∣ ∣∣eN(xj)

∣∣
≤ 2M‖(eN)x‖N‖eN‖N = 2M‖(eN)x‖‖eN‖,

where we have employed:∥∥∥∥∂V N

∂x
+
∂WN

∂x

∥∥∥∥
∞
≤
∥∥∥∥∂V N

∂x

∥∥∥∥
∞

+

∥∥∥∥∂WN

∂x

∥∥∥∥
∞
≤ 2M,

from the hypothesis of the theorem. Therefore, we can bound∣∣∣∣∣C
(
IN

[(
∂V N

∂x

)2

−
(
∂WN

∂x

)2
]
, eN

)∣∣∣∣∣ ≤ 2M |C|‖(eN)x‖‖eN‖.

Using Cauchy Schwartz’s inequality to bound
(
FN −GN , eN

)
, we get

1

2

d

dτ
||eN(τ)||2 + A||(eN)x(τ)||2 ≤ 2M |C|‖(eN)x(τ)‖‖eN(τ)‖+ ‖FN(τ)−GN(τ)‖‖eN(τ)‖.

We apply to both terms on the right side the inequality ab ≤
(
εa2 + 1

4ε
b2
)
, a, b > 0 with

ε = A
4M |C| and ε = 1 respectively.

1

2

d

dτ
||eN(τ)||2 + A‖(eN)x(τ)||2 ≤A

2
‖(eN)x(τ)‖2 +

2M2C2

A
‖eN(τ)‖2

+ ‖FN(τ)−GN(τ)‖2 +
1

4
‖eN(τ)‖2,

so that
1

2

d

dτ
||eN(τ)||2 +

A

2
‖(eN)x(τ)‖2 ≤ K‖eN(τ)‖2 + ‖FN(τ)−GN(τ)‖2,

where K = 2M2C2

A
+ 1

4
.
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Using Gronwall’s lemma (see [10, A.15]),

max
0≤τ≤T

‖eN(τ)‖2 +
A

2

∫ T

0

‖(eN)x(τ)‖2dτ ≤ R

(
‖eN(0)‖2 +

∫ T

0

‖FN(τ)−GN(τ)‖2dτ

)
,

with R = exp(KT ).

Proposition 4.3.1. Let u(τ) ∈ Hs+r
p , s, r ≥ 1 for τ ∈ [0, T ] continuous.

Then it exists a constant M = M

(
max

0≤τ≤T

∥∥∥∂s+1u
∂xs+1

∥∥∥) ≥ 0 such that for any N ∈ N, it holds:

∥∥∥∥∂sPN(u(τ))

∂xs

∥∥∥∥
∞
≤M,

∥∥∥∥∂sIN(u)

∂xs

∥∥∥∥
∞
≤M, τ ∈ [0, T ].

Proof. For any τ ∈ [0, T ], we decompose:∥∥∥∥∂sPN(u)

∂xs

∥∥∥∥
∞
≤
∥∥∥∥∂sPN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
∞

+

∥∥∥∥∂su∂xs
∥∥∥∥
∞
,∥∥∥∥∂sIN(u)

∂xs

∥∥∥∥
∞
≤
∥∥∥∥∂sIN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
∞

+

∥∥∥∥∂su∂xs
∥∥∥∥
∞
.

(4.81)

Inequality [10, (A.12)] implies that∥∥∥∥∂su∂xs
∥∥∥∥
∞
≤ C1

∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥
L2

,

and ∥∥∥∥∂sPN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
∞
≤ C1

∥∥∥∥∂sPN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
H1

,∥∥∥∥∂sIN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
∞
≤ C1

∥∥∥∥∂sIN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
H1

,

Applying [10, (5.1.5)] (Bernstein’s inequality), standard approximation results of projec-
tion [10, (5.1.10)] and aliasing error (‖IN(u)− PN(u)‖L2) result [10, (5.1.18)], we can bound∥∥∥∥∂sPN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
H1

≤ K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

,∥∥∥∥∂sIN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
H1

≤
∥∥∥∥∂sIN(u)

∂xs
− ∂sPN(u)

∂xs

∥∥∥∥
H1

+

∥∥∥∥∂sPN(u)

∂xs
− ∂su

∂xs

∥∥∥∥
H1

≤ N s‖IN(u)− PN(u)‖H1 +K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

≤ N s+1‖IN(u)− PN(u)‖L2 +K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

≤ K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

+K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

= 2K1N
1−r
∥∥∥∥∂s+ru∂xs+r

∥∥∥∥
L2

,
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if u ∈ Hs+r
p , r ≥ 1.

The choice of
M = (2K1 + C1) max

0≤τ≤T

∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥ ,
completes the proof.

Proposition 4.3.2. (Consistency) Let u(x, τ) be the solution of equation (4.77). Suppose
that ∀τ ∈ [0, T ], function u(τ) ∈ Hs+2

p and uτ (τ) ∈ Hs
p.

Define FN(τ) ∈ SN , ∀τ ∈ [0, T ] by

FN (xj , τ) =

[
∂IN (u)

∂τ
−A∂

2IN (u)

∂x2
−B∂IN (u)

∂x
− C

(
∂IN (u)

∂x

)2
]∣∣∣∣∣

(xj ,τ)

, j = 0, ... , 2N − 1.

(4.82)
Then it exists a constant

M = M

(
max

0≤τ≤T

{∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥ , ∥∥∥∥∂s+2u

∂xs+2

∥∥∥∥ , ∥∥∥∥∂suτ∂xs

∥∥∥∥}) ,
such that

max
0≤τ≤T

‖FN‖ ≤MN−s.

Proof. Let us define the function:

J2N =
∂IN(u(x, τ))

∂τ
− A∂

2IN(u(x, τ))

∂x2
−B∂IN(u(x, τ))

∂x
− C

[(
∂IN(u(x, τ))

∂x

)2
]
, (4.83)

and note that:
J2N ∈ S2N ,

FN = IN
(
J2N

)
.

The function u(x, τ) satisfies:

0 =
∂u(x, τ)

∂τ
− A∂

2u(x, τ)

∂x2
−B∂u(x, τ)

∂x
− C

[(
∂u(x, τ)

∂x

)2
]
. (4.84)

Subtracting (4.83) and (4.84):

J2N = J2N
1 − AJ2N

2 −BJ2N
3 − CJ2N

4 ,

with
J2N

1 =
∂IN(u(x, τ))

∂τ
− ∂u(x, τ)

∂τ
,

J2N
2 =

∂2IN(u(x, τ))

∂x2
− ∂2u(x, τ)

∂x2
,

J2N
3 =

∂IN(u(x, τ))

∂x
− ∂u(x, τ)

∂x
,

J2N
4 =

(
∂IN(u(x, τ))

∂x

)2

−
(
∂u(x, τ)

∂x

)2

,
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for all τ ∈ [0, T ].

The no linear term J2N
4 is bounded by:∥∥∥∥∥

(
∂IN(u)

∂x

)2

−
(
∂u

∂x

)2
∥∥∥∥∥ ≤

∥∥∥∥∂IN(u)

∂x
+
∂u

∂x

∥∥∥∥
∞

∥∥∥∥∂IN(u)

∂x
− ∂u

∂x

∥∥∥∥ .
From Proposition 4.3.1, it exists a constant M1 = M1

(
max

0≤τ≤T

∥∥∥∂2u
∂x2

∥∥∥) such that

max
0≤τ≤T

{∥∥∥∥∂IN(u)

∂x
(τ)

∥∥∥∥
∞
,

∥∥∥∥∂u∂x(τ)

∥∥∥∥
∞

}
≤M1,

The second term is bounded by

‖ux − (INu)x‖L2 ≤ K1N
−s
∥∥∥∥∂s+1u(x, τ)

∂xs+1

∥∥∥∥
L2

,

due to the approximation result [10, (5.1.20)].

Therefore, the no linear term J2N
4 is bounded by∥∥∥∥∥

(
∂IN(u)

∂x

)2

−
(
∂u

∂x

)2
∥∥∥∥∥ ≤ K1M1N

−s
∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥ .
Obviously, term J2N

3 can also be bounded by [10, (5.1.20)]:

∥∥J2N
3

∥∥ ≤ K1N
−s
∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥ .
Using again approximation result [10, (5.1.9)], Bernstein’s inequality [10, (5.1.5)] and

aliasing error result [10, (5.1.18)], term J2N
2 can be bounded by

‖J2N
2 ‖ ≤

∥∥∥∥∂2IN(u)

∂x2
− ∂2PN(u)

∂x2

∥∥∥∥+

∥∥∥∥∂2PN(u(x, t))

∂x2
− ∂2u(x, t)

∂x2

∥∥∥∥
≤ N2 ‖IN(u)− PN(u)‖+ ‖PN(uxx)− uxx‖

≤ K1N
−s
∥∥∥∥∂suxx∂xs

∥∥∥∥+K1N
−s
∥∥∥∥∂suxx∂xs

∥∥∥∥ = 2K1N
−s
∥∥∥∥∂suxx∂xs

∥∥∥∥ .
For the last term, using [10, (5.1.16)]:

‖J2N
1 ‖ =

∥∥∥∥IN (∂u(x, τ)

∂τ

)
− ∂u(x, τ)

∂τ

∥∥∥∥ ≤ K1N
−s
∥∥∥∥∂suτ∂xs

∥∥∥∥ ,
since interpolation does commute with derivation with respect the temporal variable.
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Thus, there exists a constantM2 ≥ 0, which depends on max
0≤τ≤T

{∥∥∥∂s+1u
∂xs+1

∥∥∥ ,∥∥∥∂s+2u
∂xs+2

∥∥∥ , ∥∥∂suτ∂xs

∥∥},
such that:

‖J2N‖ ≤M2N
−s.

Finally, using again Bernstein’s inequality [10, (5.1.5)] and the approximation result [10,
(5.1.16)], since J2N ∈ S2N we can bound

∥∥FN
∥∥ ≤ ∥∥FN − J2N

∥∥+
∥∥J2N

∥∥ =
∥∥IN (J2N

)
− J2N

∥∥+
∥∥J2N

∥∥ ≤ K1N
−s
∥∥∥∥∂sJ2N

∂xs

∥∥∥∥+
∥∥J2N

∥∥ ≤
≤ K12s

∥∥J2N
∥∥+

∥∥J2N
∥∥ ≤ (K1 · 2s + 1)

∥∥J2N
∥∥ ≤MN−s,

where M = (K12s + 1)M2.

We prove now that the threshold condition (4.80) holds for uN .

Proposition 4.3.3. Fix T>0. Let u be the solution of equation (4.77). Suppose that ∀τ ∈
[0, T ], functions u(τ) and uτ (τ) are functions in Hs+2

p and Hs
p respectively.

Then, it exists a constant M and N0 ∈ N, such that ∀N ≥ N0 it holds that

‖(uN)x(τ)‖∞ ≤M, τ ∈ [0, T ]. (4.85)

Proof. Let
M1 = max

0≤τ≤T
‖(INu(τ))x‖∞ ,

which exists from Proposition 4.3.1 under the regularity hypothesis of u.

For τ = 0 we have that ‖(uN)x(0)‖∞ = ‖(INu(0))x‖∞ ≤M1.

By a continuity argument, it must exist ε > 0 and N1 big enough such that ∀N ≥ N1 it
holds that

‖uNx (τ)‖∞ ≤ 2M1, t ∈ [0, ε]. (4.86)

We argue by contradiction. For any N ∈ N, we define:

εN = sup
τ

{
0 < τ ≤ T : ‖uNx (s)‖∞ < 2M1, s ∈ [0, τ ]

}
.

where it holds that εN > 0 because uN is the solution of an ODE system.

If (4.86) does not hold, we can find a strictly increasing sequence N1, N2, ... → ∞ and a
strictly decreasing sequence εN1 , εN2 ...→ 0 such that

lim
n→∞

max
0≤τ≤εNn

‖uNnx (τ)‖∞ = 2M1. (4.87)
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Applying Nicholsky and Bernstein inequalities,

‖uNnx (τ)‖∞ ≤ ‖uNnx (τ)− (IN(u(τ)))x ‖∞ + ‖ (INnu)x (τ)‖∞
≤ K1N

3
2
n

∥∥uNn(τ)− INnu(τ)
∥∥+ ‖ (INnu)x (τ)‖∞

≤ K1N
3
2
n

∥∥uNn(τ)− INnu(τ)
∥∥+M1.

By construction, ‖uNnx (τ)‖ ≤ 2M1, τ ∈ [0, εNn ], therefore, employing the arguments used
in the proof of the stability Theorem 4.3.1 with V Nn = INnu and WNn = uNn , it holds:

max
0≤τ≤εNn

∥∥uNn(τ)− INnu(τ)
∥∥2 ≤ R

(
‖INn(u(0))− uNn(0)‖2 +

∫ εNn

0

‖FNn(τ)‖2dτ

)
,

where ‖INn(u(0))− uNn(0)‖2 = 0 by definition of the collocation method and term ‖FNn(τ)‖
is given by (4.82).

Term ‖FNn(τ)‖ can be globally bounded in [0, T ]. Therefore in [0, εNn ], by Proposition
4.3.2 and the regularity hypothesis over u

‖FNn(τ)‖ ≤M2N
−s
n ≤M2N

−2
n ,

This implies, rearranging terms, that for any τ ∈ [0, εNn ]

max
0≤τ≤εNn

‖uNnx (τ)‖∞ ≤ KN
− 1

2
n +M1, (4.88)

where K is a constant that depends on M2 and R. This is a contradiction with (4.87) since

lim
n→∞

max
0≤τ≤εNn

‖uNnx (τ)‖∞ ≤M1 < 2M1. (4.89)

Now, let ε∗ > 0 be the maximum value for which it exists a value N0 big enough such that
∀N ≥ N0 it holds that

‖uNx (τ)‖∞ < 2M1, τ ∈ [0, ε∗].

Suppose ε∗ < T . We argue as before, so that

‖uNx (τ)‖∞ ≤ K1N
3
2
n

∥∥uNn(τ)− INnu(τ)
∥∥+M1.

and noting that ∀N ≥ N0, by Stability Theorem 4.3.1 on [0, ε∗]

max
0≤τ≤ε∗

‖uNnx (τ)‖∞ ≤ KN−
1
2 +M1, (4.90)

Again, by a continuity argument, there must exist ε∗1 > ε∗ and a value N ε∗
0 > big enough,

such that ∀N ≥ N ε∗
0 it holds that ‖(uN)x‖∞ < 2M1, τ ∈ [0, ε∗1]. Otherwise we could find a

strictly increasing sequenceN ε∗
1 , N

ε∗
2 , ...→∞ and a strictly decreasing sequence εNε∗

1
, εNε∗

2
...→

ε∗ such that
lim
n→∞

max
0≤τ≤ε

Nε
∗
n

‖uNε∗
n

x (τ)‖∞ = 2M1,

which would lead to a contradiction with (4.90) exactly with same arguments as before.
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Theorem 4.3.2. (Convergence)
Let u(τ) be the solution of (4.77). Suppose that u(τ), uτ (τ) are respectively functions in

Hs+2
p and Hs

p and continuous with respect τ ∈ [0, T ].

Then, if uN(x, τ) is the approximation obtained by the collocation method (4.79), it exists
a constant

M = M

(
max

0≤τ≤T

{∥∥∥∥∂s+1u

∂xs+1

∥∥∥∥ , ∥∥∥∥∂s+2u

∂xs+2

∥∥∥∥ , ∥∥∥∥∂suτ∂xs

∥∥∥∥}) ,
and N0 ∈ N such that ∀N ≥ N0 it holds

max
0≤τ≤T

{
‖u(τ)− uN(τ)‖

}
≤MN−s.

Proof. We decompose:

‖u(τ)− uN(τ)‖ ≤ ‖u(τ)− IN(u(τ)‖+ ‖IN(u(τ))− uN(τ)‖.

The term ‖u(τ)− IN(u(τ)‖ is bounded by the estimate [10, (5.1.16)]

max
0≤τ≤T

‖u(τ)− IN(u(τ))‖ ≤ K1N
−s max

0≤τ≤T

∥∥∥∥∂su∂xs (τ)

∥∥∥∥ .
We apply Theorem 4.3.1 to the second term ‖IN(u(τ))− uN(τ)‖, taking V N = IN(u) and

WN = uN . Note that the definition of the collocation method (4.65) implies that GN ≡ 0
and that the threshold condition (4.80) holds for N ≥ N0 big enough from Proposition 4.3.3.
Therefore,

max
0≤τ≤T

‖IN(u(τ))− uN(τ)‖2 ≤ R

(
‖IN(u(0))− uN(0)‖2 +

∫ T

0

‖FN(τ)‖2dτ

)
.

We apply Proposition 4.3.2 to bound

‖FN(τ)‖ ≤M1N
−s.

For completing the proof, note that in the collocation method uN(0) = IN(u0). Therefore,
we can bound

max
0≤τ≤T

{
‖u(τ)− uN(τ)‖

}
≤ K1N

−s max
0≤τ≤T

∥∥∥∥∂su∂xs (τ)

∥∥∥∥+
√
RM1N

−s,

by the regularity hypothesis over u.

In this Subsection we have given general regularity conditions that guarantee the results
of stability, consistency and convergence.
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Comments about threshold condition in our financial problem.

In the theoretical analysis, we implicitly assumed that the initial condition, u0(x), was smooth
enough. The numerical analysis of the pseudospectral method when we apply it to the financial
problem is postponed to Section 4.4. Nevertheless, we study now the regularity of the initial
condition.

Note that u(0) = u0 is explicitly given. This is relevant in Proposition 4.3.3 (Threshold
condition)

‖(uN)x(0)‖∞ = ‖(IN(u0))x‖∞ ≤M1

where M1 is independent of N . We have also to check in Theorem 4.3.2 (Convergence)

max
0≤τ≤T

{
‖u(τ)− uN(τ)‖

}
≤MN−s.

which implies that we have to study ‖u(0)− uN(0)‖ = ‖u0 − IN(u0)‖.

In our problem, we invoke the pseudospectral method in different time steps (see Subsec-
tion 4.3.4). We solve equation (4.77) with different initial conditions which correspond to a
certain function

u0 = uj(tm, yk, x), j ∈ {1, w},

where tm and ym are values from the time and number of shares meshes respectively and
functions uj(t, y, x), j ∈ {1, w} were defined in (4.54).

We recall that functions uj(t, y, x), j ∈ {1, w} were constructed fromHj(t, y, x̂), j ∈ {1, w}
after performing the odd-even extension, imposing periodic boundary conditions and a change
of variable to [0, 2π].

For tm = T , we know that Hw(T, yk, x) is a continuous but not differentiable function and,
in general, the odd-even extension procedure does not give differentiable functions, even when
applied to differentiable functions.

1. Cases u0 = uj(tm, yk, x), j ∈ {1, w}, tm 6= T and u0 = u1(T, yk, x):

For tm ∈ [0, T ), j ∈ {1, w}, the conditions

‖u0 − IN(u0)‖ ≤MN−2, ‖(IN(u0))x‖∞ ≤M1 (4.91)

have a justification based in the following result.

Proposition 4.3.4. Let f(x), x ∈
(
0, π

2

)
be a twice derivable function such that f ′(0+) = 0

and f ′
(
π−

2

)
, f ′′ (0+) , f ′′

(
π−

2

)
exist.
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We define the function:

f e(x) =



f(x), x ∈
(

0,
π

2

]
,

2f
(π

2

)
− f (π − x) , x ∈

(π
2
, π
]
,

2f
(π

2

)
− f (x− π) , x ∈

(
π,

3π

2

]
,

f (2π − x) , x ∈
(

3π

2
, 2π

)
.

It holds that:
‖f e − IN(f e)‖ ≤ K1N

−s, s = 2.

Proof. Function f e admits a classical derivative in (0, 2π)

(f e(x))′ =



f ′(x), x ∈
(

0,
π

2

]
,

f ′ (π − x) , x ∈
(π

2
, π
]
,

− f ′ (x− π) , x ∈
(
π,

3π

2

]
,

− f ′ (2π − x) , x ∈
(

3π

2
, 2π

)
,

because f ′(0−) = 0⇒ (f e)′(π−π−) = −(f e)′(π+−π) = 0. It also admits a second derivative
(in distributional sense)

(f e(x))′′ =



f ′′(x), x ∈
(

0,
π

2

)
,

− f ′′ (π − x) , x ∈
(π

2
, π
)
,

− f ′′ (x− π) , x ∈
(
π,

3π

2

)
,

f ′′ (2π − x) , x ∈
(

3π

2
, 2π

)
,

defined everywhere but for x =
{
π
2
, π, 3π

2

}
.

Therefore, f e ∈ H2
p and the standard approximation result for interpolation and Proposi-

tion 4.3.1 can be applied.

Up to the change of variable

x = x̂min +
4x̂max − 4x̂min

2π
x,
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note that for tm 6= T , function Hj(tm, yk, x̂), j ∈ {1, w} defined in x̂ ∈ [x̂min, x̂max] plays the
role of f(x) and uj(tm, yk, x) = He

j (tm, yk, x̂) plays the role of f e(x) of the previous Proposition.

The result has to be applied in the limit x̂min → −∞ and for Hj regular enough.

For the case when there are no transaction costs, the regularity and that

lim
x̂→−∞

∂Hj

∂x̂
(tm, yk, x̂) = 0

can be explicitly checked. We conjecture that the conditions hold when transaction costs
appear.

For function u0 = u1(T, yk, x) the same argument can be applied.

2. Case u0 = uw(T, yk, x):

This initial condition has to be studied independently. It is easy to check that in this case,
u0 ∈ H1

p , that we will denote by u0,x. Function u0,x is of finite variation, derivable everywhere
except at two points where it presents two jump discontinuities and which correspond to the
strike value up to the odd-even extension and the change of variable.

In this case, we know that the truncated Fourier series PN(u0,x) converges pointwise to
u0,x(x−)+u0,x(x+)

2
. Therefore, it exists C, independent of N , such that ‖PN(u0,x)‖∞ ≤ C (see

analysis of the Gibbs effect in [10]).

We perform the decomposition

‖(IN(u0))x‖∞ ≤ ‖(IN(u0))x − (PN(u0))x‖∞ + ‖(PN(u0))x‖∞
≤ K1N

3
2‖IN(u0)− PN(u0)‖+ ‖PN(u0,x)‖∞,

where we have used Bernstein and Nicholsky inequalities and the fact that truncation does
permute with differentiation.

Now, since u0 ∈ H1
p it holds that ‖IN(u0) − PN(u0)‖ ≤ K2‖IN(u0) − u0‖. Therefore, we

can bound
‖(IN(u0))x‖∞ ≤ KN

3
2‖IN(u0)− u0‖+ C.

The only thing that remains to check is the behaviour of ‖IN(u0) − u0‖. We empirically
study the L2 interpolation error. We compute, for N = {128, 256, 512, 1024, 2048},

‖u1(T, yk, x)− IN(u1(T, yk, x))‖, ‖uw(T, yk, x)− IN(uw(T, yk, x))‖

with the Matlab routine quad and plot the results in the following Figure.
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Figure 4.3: Graph (logarithmic scale) of ‖u1(T, yk, x) − IN(u1(T, yk, x))‖ (blue) and
‖uw(T, yk, x)− IN(uw(T, yk, x))‖ (red) for N = {128, 256, 512, 1024, 2048} (horizontal axis).

The slopes of the regression lines are -2.95 for u1 and −1.85 for uw. The convergence rate
seems to be independent of the value of yk, the Strike or γ. This implies that the regularity
condition for u0 in Proposition 4.3.3 is fulfilled for j ∈ {1, w} and suggest that the expected
convergence rate of the numerical solution HN

j , j ∈ {1, w} of our problem is

‖Hw −HN
w ‖ ≤ CN−2, ‖H1 −HN

1 ‖ ≤ CN−s, s ≥ 2

in the spatial variable.

Localization error

When we extend the function twice and we impose periodic boundary conditions, we are
modifying the real terminal conditions of the partial differential equation associated with the
No Transaction region and we are inducing a numerical error, called the localization error.

If the spatial variable is not bounded, a way of studying the effect of the localization error
in a fixed domain D (approximation domain) is given in [9]. The procedure would be to check
that the difference of the exact solution of the periodic problem and the exact solution of
the real problem on D converges to 0 as we increase the limits of the spatial variable before
proceeding to the periodic extension.

Remark 4.3.1. Note that the convergence and the localization error analysis are totally in-
dependent. In the convergence analysis we have proved that the numerical solution converges
to the exact solution of the periodic problem.

In the localization error analysis we will prove that the exact solution of the periodic
problem converges to the exact solution of the original problem on the approximation domain
for increasing size of the computational domain.
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The analysis will be performed over the partial differential equation (4.45):

∂Qj

∂t
+

(
α− σ2

2

)
∂Qj

∂x̂
+

1

2
σ2∂

2Qj

∂x̂2
= 0, j ∈ {1, w},

where x̂ = log(S).

We recall the bankruptcy function introduced in Subsection 4.2.4. For a fixed E = E0,
X = X0, we are going to work with functions QBE0,X0

j , j ∈ {1, w}.
We also recall Proposition 4.2.7 which stated that it exists M = M(X0, E0) > 0 such that

0 ≤ Q
BE0,X0
j ≤M, j ∈ {1, w}.

Equation (4.45) has to be solved for each value of y, so let y = y0 and t = t0 ∈ [0, T ]. We
define φ(x̂) = Q

BE0,X0
j (t0, y0, x̂), where j = 1 or j = w.

Definition 4.3.4. For a fixed L > 0, we define the approximation domain [−L,L]. Let x̂∗ > 0
be such that [−L,L] ⊂ [−x̂∗, x̂∗]. We define the function

φx̂
∗

p (x̂) =


φ(x) if x̂ ∈ [−x̂∗, x̂∗],
2φx̂

∗

p (x̂0)− φx̂∗p (2x̂∗ − x̂) if x̂ ∈ [x̂∗, 3x̂∗],

φx̂
∗

p (6x̂∗ − x̂) if x̂ ∈ [3x̂∗, 7x̂∗],

φx̂
∗

p (x̂ mod ([−x̂∗, 7x̂∗])) if x̂ /∈ [3x̂∗, 7x̂∗].

Theorem 4.3.3. Let Rx̂∗
p (x̂, t) and R(x̂, t) be the solutions of

∂Q

∂t
+

(
α− σ2

2

)
∂Q

∂x
+

1

2
σ2∂

2Q

∂x2
= 0,

subject to Rx̂∗
p (x̂, t0) = φx̂

∗
p (x̂) and R(x̂, t0) = φ(x̂).

Let L > 0 and t ≤ t0. Then, for any ε > 0 it exists x̂ε > 0 such that ∀x̂∗ ≥ x̂ε it holds that∣∣Rx̂∗

p (x̂, t)−R(x̂, t)
∣∣ ≤ ε, x̂ ∈ [−L,L].

Proof. Note that it holds ∀x̂ ∈ [−L,L]

Rx̂∗

p (x̂, t)−R(x̂, t) =

∫ ∞
−∞

(
φx̂
∗

p (x̂′)− φ(x̂′)
)

Θ(x̂′, x̂, t, t0)dx̂′,

where Θ(x̂′, x̂, t, t0) = 1

σ
√

2π(t0−t)
exp

(
−
[
x̂′−(x̂+

(
α−σ

2

2

)
(t0−t))

]2
2σ2(t0−t)

)
.
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This function can be split in :

Rx̂∗

p (x̂, t)−R(x̂, t) =

∫ −x̂∗
−∞

(
φx̂
∗

p (x̂′)− φ(x̂′)
)

Θdx̂′ +

∫ ∞
x̂∗

(
φx̂
∗

p (x̂′)− φ(x̂′)
)

Θdx̂′,

because, by construction, φx̂∗p (x̂′) = φ(x̂′), x̂′ ∈ [−x̂∗, x̂∗].

By Lemma 4.2.7, 0 ≤ φ(x̂′) ≤ M , and this implies, by construction, 0 ≤ φx̂
∗
p (x̂′) ≤ 2M .

Therefore, we can bound

∣∣Rx̂∗

p (x̂, t)−R(x̂, t)
∣∣ = 3M

∫ −x̂∗
−∞

Θdx̂′ + 3M

∫ ∞
x̂∗

Θdx̂′.

The result of the theorem is now straightforward since it is well known (see [9]) that∫ −x̂∗
−∞

Θdx̂′ −→
−x̂∗→−∞

0,∫ ∞
x̂∗

Θdx̂′ −→
x̂∗→∞

0.

A numerical example of this result is presented in Subsection 4.4.2.

4.4 Numerical results

4.4.1 Implementation of the method. Remarks

Several temporal implementations for the Fourier method have been tested: explicit Euler, the
implicit midpoint rule with Newton method to solve the nonlinear equation and the linearly
implicit midpoint rule.

We have chosen the last one because it gave the best results when we compared the error
convergence and computational cost. This implementation is given by:

Ûn+1 − Ûn

∆t
= L

(
Ûn+1 + Ûn

2

)
+ NL

(
3

2
Ûn − 1

2
Ûn−1

)
Prior to the analysis of the error convergence, we are going to make a remark about

several properties of the model that affect the behaviour of the numerical method that has
been designed.

The number of shares.

When there are no transaction costs (λ = µ = 0), the problem has a solution which
is explicitly computable. In this case, we have already mentioned that the optimal trading
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strategies of both processes satisfy yB
j = yS

j , j ∈ {1, w} and that they were given in the
original variables by the formulas:

yB
1 (t, S) = yS

1 (t, S) =
δ(T, t)

γS

α− r
σ2

,

yB
w (t, S) = yS

w (t, S) =
δ(T, t)

γS

α− r
σ2

+
∂C (t, T )

∂S
,

where ∂C (t,T )
∂S

denotes the delta of the European Option price.

For simplicity reasons, we are going to restrict ourselves to the case when α > r. Thus,
the number of shares in the optimal strategy is always y ≥ 0 and numerical experiments show
that this also holds when transaction costs appear.

It is easy to check that as S → 0 it holds that yS
j →∞.

In the numerical method that we have designed, we need to employ quite small values for
the logarithmic stock price. Therefore, up to a certain level, the numerical approximation of
the Buying/Selling frontiers may reach the limit of the computational domain of the number
of shares and we will have to truncate.

On Figure 4.4 we plot the optimal trading strategies which correspond to H1 (left) and
Hw (right). As the logarithmic stock price tends to −∞ (S tends to 0), we can observe
that the optimal trading strategy increases. The numerical solution is computed in a finite
domain, so up to a certain level we have truncated the solution. In this numerical example,
the truncation occurs at y = 2.
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Figure 4.4: Optimal trading strategies, in function of the stock price, when there are no
transaction costs.
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A numerical error is generated in steps 2-4 of the algorithm of Section 4.3.4, where we have
to find the optimal trading strategy and recompute HN

j , j ∈ {1, w} in the Buying/Selling
regions.

On Figure 4.5 we can observe the effect of this error in the computation of functions HN
1

(left) and HN
w (right). The blue lines represent the numerical value obtained and the red

dashed line the exact value of the function. The zone marked as “share truncation error” is
due to the truncation of the number of shares because in that zone we cannot compute a
numerical approximation to the frontiers. The regularizing effect is explained below, jointly
with the Gibbs effect.
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Figure 4.5: Error generated in functions HN
1 and HN

w due to the finite computational domain
of the number of shares.

We note that we can control (or even remove) the truncation error for functions HN
j , j ∈

{1, w} just increasing the domain of the number of shares, something that progressively moves
this error to the left until it disappears. Besides, since

pw(tm, x̂) =
δ(T, tm)

γ
(Hw(tm, 0, x̂)−H1(tm, 0, x̂)) ,

some cancellation effect of the error has also been observed. Numerical experiments show that
for ymax big enough (covering all the values which correspond to the approximation domain),
this error has no perceptible effects in the option price.

The Gibbs effect.

At time t = T , function Hw(T, y, x) is continuous but not differentiable. In Figure 4.6 we
plot function Hw(T, 0, x) and zoom around x̂K , the point where the function is not differen-
tiable.
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Figure 4.6: Value of Hw(T, 0, x) (left) and zoom around x̂K (right).

When approximating the function by trigonometric polynomials, this causes some oscilla-
tions, known that the Gibbs phenomena. These oscillations will be reflected for a very brief
period of time in the computation of the optimal trading strategies.

The regularization effect of the partial differential equation quickly smoothes out the pos-
sible singularities, so the true value of function Hw (and therefore the corresponding optimal
trading strategies) can be rapidly approximated by its truncated Fourier series. This could be
expected from the results of [10]. Numerical experiments suggest that the smoothing velocity
depends on ∆t and ∆x̂.

The following picture shows a zoom of the encircled zone of Figure 4.5, where the smooth-
ing effect of the partial differential equation around the strike can be observed for t < T .
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Figure 4.7: Graph of HN
w (t, 0, x̂), t<T (zoom around x̂K)

The computational cost of the method depends on the values of ∆t and ∆x, but also on
the value of the strike x̂K = log(K).

The objective of this work was to reduce the impact of the exponential growth of the
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objective function. Although we can work now with very big values for the stock or the
strike, the exponential growth affects the computational cost.

If we compute options for higher and higher strikes xK , we can observe that the growth
of function Hw becomes more and more steep at x = xK , something that worsens the Gibbs
phenomena. This will force us to use smaller values for ∆x and ∆t in order to reduce the
impact of the Gibbs effect and wipe it out soon. A reduction of the computational time cost
for long maturity options could be achieved through a variable time-step method.

Discontinuity of the Buying frontier of function Hw

When we have sold an option (j = w), the explicit formula of the Buying frontier (when
there are no transaction costs), shows that there is a discontinuity at S = K when t→ T , so
that

lim
t→T

∂C (t, T )

∂S
= IS≥K .

Numerical experiments show that this behaviour remains when there are transaction costs.
Therefore, the regions in which the state space is divided by the frontiers (Selling/Buying/No
Transactions Regions) have a jump discontinuity at t = T

When we study the convergence of the numerical method for function H1, where there is
not such discontinuity, we obtain a better error convergence in the spatial variable.

As we will see, for function Hw we will not obtain the same rate of error convergence.
The reason for this probably lies in the jump discontinuity of the regions or in the fact that
function Hw is continuous but not differentiable at t = T .

4.4.2 Error convergence, localization error and computational cost

We now proceed to numerically check the rates of convergence of the error, the effect of the
localization error and the computational cost of the method. When no transaction costs are
present (λ = µ = 0), the problem can be explicitly solved. Therefore, we employ the exact
function values to check the error behaviour.

For studying the error convergence, we have to choose an approximation domain [Lmin, Lmax]
and a computational domain [x̂min, x̂max]. We define a set of test points {x̂p}Npp=0 (of the ap-
proximation domain):

x̂p = Lmin + p
Lmax − Lmin

Np

, p = 0, 1, 2, ..., Np.

It is in this set of points where we will study the time, spatial and number of shares error
convergence.

Definition 4.4.1. Let f(t, y, x̂) denote the exact value of a function which can either be
Hj, j ∈ {1, w}, the option price pw or the optimal trading strategies yB

j , y
S
j , j ∈ {1, w}. We

recall that S = exp(x̂).
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Let fN denote the numerical approximation subject to N = (Nt, Ny, Nx̂), which were given
in Definition 4.3.2.

We globally define the mean square error of the numerical approximation of function fN

as

RMSE
(
fN) =

√√√√ 1

Np + 1

Np∑
p=0

(f(x̂p)− fN(x̂p))
2. (4.92)

Spatial Error convergence

We fix the parameter values σ=0.1, α = 0.1, r=0.085, the strike and maturity (t = 0 today){
x̂K = 2 (K=7.389),
T = 0.5 (years).

For this numerical example, we take [Lmin, Lmax] = [1, 3] and [x̂min, x̂max] = [−5, 5]. The
limits of the computational domain have been taken big enough in order to minimize the
effect of the localization error.

For clarifying purposes, we point that this corresponds to an option with strike K = 7.389
and that we compute several functions for stock prices Sp = ex̂p which vary from 2.718 to
20.085 (i.e. for options At and (very) In/Out the money). For the number of shares, we set
y ∈ [0, 2]. We also set Np = 10 (all the nodes of the approximation domain for Nx̂ = 50).

For the spatial convergence analysis, we take ∆y = 2. 5 ·10−3, ∆t = 5 ·10−5 and compute
the RMSE for Nx = {50, 100, 200, 400, 800, 1600}.

The first two functions that we are going to study are HN
j , j ∈ {1, w}. We restrict

ourselves to t = y = 0, i.e., the functions that are employed to compute the option price for
a maturity of 0.5 years.

The following picture shows the logarithmic (left) and the semilogarithmic (right) values
of RMSE(HN

1 ) (solid-red) and RMSE(HN
w ) (blue).
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Figure 4.8: Spatial error convergence of functionsHN
1 (red) andHN

w (blue) in both logarithmic
(left) and semilogarithmic (right) scales.
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The slope of the regression lines are −2. 004 for Hw and −4. 397 for H1 (3 first points)
in the logarithmic scale (left). In the semilogarithmic scale (right), we see that we might be
obtaining the so called “spectral convergence” for function H1. We realize another experiment
with ∆y = 1. 25 · 10−3 (dashed-red) to check that the lowest value of the error reached by H1

(solid-red) was given by the value of ∆y.

H1 and Hw seem to present different error behaviour. Since we are employing the same
numerical method for both, the reason of this must lie in the function properties. Function
H1 and its optimal trading strategy are both smooth functions at any time and for any point.
On the other hand, Hw is continuous but not differentiable and its optimal trading strategy
presents a jump discontinuity, both at maturity and for x = xK .

In order to check numerically that one of this two properties is worsening the error be-
haviour, we are going to carry out the following experiment with Hw. Time interval is
t ∈ [0, 0. 5]. Since we have the explicit formula when there are no transaction costs, we
are going to compute the exact function value at t = 0. 49 and apply the numerical method
in [0, 0. 49] with the same discretizations for ∆t and ∆y.
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Figure 4.9: Graph of the spatial error convergence of HN
w , for t ∈ [0, 0.5] (red) and t ∈ [0, 0.49]

(blue).

Function Hw and its optimal trading strategy are smooth functions at any moment/point
prior to maturity, so we should obtain a better error convergence for the spatial error. On
Figure 4.9 we can observe that the error rate if we include the maturity (blue) is worse that
if we do not include it (red). This results are consistent with the upper bounds of the error
convergence rate mentioned just after Theorem 4.3.2 (Comments about threshold condition).

Returning to the original experiment, when we have to compute the option price, the
function values of Hw are much bigger than those of H1 so it is the error of Hw the dominant
one. The following picture shows the value of RMSE(pNw ) in logarithmic scale. We recover
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the same error convergence of function value Hw, since it is the dominant error in pw.
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Figure 4.10: Spatial Error convergence of the option price.

We point out that for this numerical method, a relative big number of spatial nodes is
needed. We have to remove soon the Gibbs effect for obtaining a good approximation to the
optimal trading strategies, specially around the strike (x̂K) zone for function Hw, where the
highest errors occur. The number of spatial nodes also depends of the size of the computational
domain, which has been taken quite big in this example.

Figure 4.11 shows the absolute value of the difference between the numerical approximation
of the option price and the exact option price in the whole computational domain for Nx̂ =
{100, 200, 1600}. The highest errors occur around the strike zone. The localization error is
perceptible, specially at the right limit of the interval.
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As we can check, the size of the error at point x̂ depends mostly in the relative position of x̂
with respect to x̂K . The localization error is perceptible at the right side of the picture which
corresponds to the zone where we extend the functions in the proposed numerical method.

Although the localization error will be studied later on, we mention now that the fact of
employing big values for nx reduces the impact of such error, allowing us to obtain reliable
option prices, not only in the approximation domain, but almost in the whole computational
domain.

In this model, a priori, there is no linearity in the relation S/K. Although the rate of
error convergence is independent of the values of S or K, for clarifying purposes, we are going
to study the relative error.

The option prices vary from 0 (x̂min) to 141.36 (x̂max) dollars in the computational domain.
Since the error analysis has been done for the specific value of the strike (K = 7.389 dollars),
we present the following table in order to get an idea of the size of the absolute/relative errors
in monetary terms for Nx = 1600:

Stock Price (S) Contract value (dollars) Absolute Error (dollars) Relative Error (%)
5.439 10−5 1.07· 10−7 1.0679 %
5.974 0.0012 6.57· 10−6 0.5235 %
6.520 0.0288 6.24· 10−5 0.2167 %
7.028 0.1736 1.27· 10−4 0.0733 %
7.389 0.3936 1.09· 10−4 0.0278 %
8.014 0.9415 2.96· 10−5 0.0031 %
8.584 1.5038 3.48· 10−6 0.0002 %
9.025 1.9435 4.05· 10−7 2.08· 10−5 %
10.037 2.9551 8.70· 10−10 2.94· 10−8 %

Table 4.1: Absolute and relative errors of the price of the option. For a fixed strike of
K = 7.389 and different stock prices, we have computed the exact Black-Scholes price of
the option. We also compute the absolute and relative errors with respect to the numerical
approximation.

The relative errors are quite small. The zone where they are bigger corresponds to option
prices which are almost 0. We also mention that for S ∈ [0.0067, 4.08], the real option prices
are 0 ∼ 10−16 (dollars) and the numerical method gives ∼ 10−11.

Finally, let us study the optimal trading strategies. In Figure 4.12 we can check that
numerical approximation of the buying/selling frontiers (yB

j = yS
j , j ∈ {1, w}). As it was

expected when there are no transaction costs, the buying and selling frontiers collapse and
approximate the exact optimal trading strategy, which is explicitly computable.
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Figure 4.12: Numerical approximation of the Buying / Selling frontiers with no costs.

We compute the RMSE(yB
j ) for Nx̂ = {50, 100, 200, 400, 800, 1600} and plot the results in

logarithmic scale in the following picture.
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Figure 4.13: Spatial Error convergence of the numerical trading strategies yB
1 (red) and yB

w

(blue) in logarithmic scale.

The slope of the regression line of yB
w (solid-blue) is −1.87. We recall that for t = T , there

is a jump discontinuity at x = xK . We carry out a second experiment with ∆y = 1. 25 · 10−3

(dashed-blue, dashed-red) to check that the lowest value reached by the error is marked by
the size of the mesh of variable y.

Temporal Error convergence

In this experiment, we take the same values as the previous one for the model parameters,
the strike and the computational/approximation domains.

We fix ∆x̂ = 6. 25· 10−3 (Nx̂ = 1600) and ∆y = 2. 5· 10−3. For the set of test points, we
fix Np = 320 (all the nodes of the approximation domain for Nx̂ = 1600)
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We take Nt = {1, 2, 4, 8, 16, 25, 50, 100, 200, 400, 800, 1600, 3200, 10000} (big values for ∆t)
because the size of the temporal error in this model is very small compared with other errors.

The following picture shows in logarithmic scale the number of temporal nodes versus the
RMSE for functions HN

j , j ∈ 1, w.
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Figure 4.14: Temporal Error convergence of HN
1 (blue) and HN

w (red) in logarithmic scale.

The slopes of the regression lines are −2.27 for H1 (4 first points, solid-red) and −1.26 for
Hw (7 first points, solid-blue). For function Hw and Nt small, we may not wipe out completely
the Gibbs effect and, for bigger values of Nt, we reach very soon the error limit marked by
∆x̂. Perhaps this is the reason why we do not observe an order 2 in time for function H1.

We carry out a second experiment halving the value of ∆y for H1 (dashed-red) and the
value of ∆x̂ for Hw (dashed-blue) to check that the lowest value reached by the errors was
respectively given by the size of the meshes of the other two variables.

Concerning the optimal trading strategies, temporal error is also very small.
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Figure 4.15: Temporal Error convergence of the numerical trading strategies yB
1 (red) and yB

w

(blue) in logarithmic scale.

The slope of the regression line of the optimal trading strategy of Hw is −1.23 (5 first
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points, solid-blue). For both functions the lowest value reached by the error is given by the
size of ∆y in both cases as it can be checked in the experiment where we halve the value of
∆y (dashed-blue/red).

Number of shares Error convergence

In this experiment, we take the same values as the previous one for the model parameters
and the approximation/computational domains. We fix ∆x̂ = 6. 25· 10−3 (Nx̂ = 1600), ∆t =
5 · 10−5 and set Np = 320.

We are going to compute RMSE for Ny = {8, 16, 32, 64, 128, 256, 512}. The following
picture shows the log-log of functionsHj, j ∈ 1, w (left side) and the optimal trading strategies
(right side).
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Figure 4.16: Number of shares error convergence of the value functions (left) and the optimal
trading strategies (right) with j = 1 (red) and j = w (blue) in logarithmic scale.

The slope of the regression lines is −2.11 in the case of functions Hj (red(j = 1), solid-
blue(j = w)) and −1.01 in the case of the optimal trading strategies. We carry out another
experiment (dashed-blue) where Nx̂ = 3200. This experiments shows that the lowest value of
the error reached by function Hw (solid-blue) was given by the size of ∆x̂.

Localization Error

We fix the same model parameters of the previous analysis and the same approximation
domain [Lmin, Lmax] = [1, 3]. For studying the convergence of the localization error, we propose
the following experiment.

The computational domain is defined by [x̂min, x̂max] = [Lmin −M,Lmax + M ] for M > 0
and we define the proportion

P (M) =
Lmax +M − (Lmin −M)

Lmax − Lmin

.
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For the same values of ∆x̂, ∆y, ∆t, we compute the RMSE for different values of P (M).
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Figure 4.17: Localization Error convergence. Value of RMSE of the function values (left)
and optimal trading strategies (right) for j = 1 (red) and j = w (blue) for different values of
P (M) in logarithmic scale.

The previous picture shows the logarithm of P (M) versus the logarithm of RMSE for the
function values and the optimal trading strategies. As it can be checked, asM grows, the size
of the localization error decreases as it could be expected from results of Subsection 4.3.5.
The limit error is marked by the size of ∆x̂, ∆y and ∆t.

Computational cost and scaling problem.

The computational cost of the method will be checked, for example, with the same parameter
values for σ, α and r of the previous example and for x̂ = x̂K = 2 (S=K=7.389)

T =
1

12
(years)

The real price of this contract is 0.113409 $. We set: x̂ ∈ [−5, 3], y ∈ [0, 2], ∆y = 0. 02

aaaaaaaaaaa
∆t

∆x̂

2· 10−2 10−2 5· 10−3

2. 77 · 10−3 0. 11013 0. 11267 0. 11331
(1. 86× 2 sg) (3. 5× 2 sg) (6. 86× 2 sg)

1. 38 · 10−3 0. 11008 0. 11262 0. 11325
(3. 40× 2 sg) (6. 62× 2 sg) (13. 38× 2 sg)

6. 9 · 10−4 0. 11006 0. 11261 0. 11326
(6. 60× 2 sg) (12. 82× 2 sg) (26. 32× 2 sg)

Table 4.2: We represent for different values of ∆t (vertical) and different values of ∆x̂ the
numerical approximation to the option price and the computational costs (seconds).
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For ∆x̂ = 2· 10−3, ∆t = 6. 9 · 10−4 the price is 0.113401 (68. 30× 2 sg).

Along the development it was also mentioned that there was a scaling problem if we worked
with the original variables. This problem has been greatly reduced with our numerical method.

With the new variables, we can work with very big values for the stock and the strike and
also compute options very deep in the money. For example, we can employ the approximated
S&P values from year 1992 (examples of Chapter 1) and the same parameter values for σ, α
and r. Let {

x̂K = 6. 04 (K=419.89)
T = 0.2 (years)

Retaining the previous discretization for the number of shares and setting the spatial
domain x̂ ∈ [−5, 7] and ∆x̂ = 6 · 10−3, we obtain

Real Price Numerical Solution
with ∆t = 3. 4 · 10−5

S = 402. 62 3. 28 3. 30
S = 419. 89 11. 49 11. 52
S = 473. 42 60. 61 60. 61

Table 4.3: Example of numerical option prices vs exact option prices with a higher strike
(K = 419.89) and higher stock prices.

Note that as we increase the value of the strike, we need to reduce the time/spatial
partitions in order to obtain the same relative error. This is due to the fact that at x̂ =
x̂K , t = T , the function value Hw is continuous but not differentiable and becomes steeper
as we increase the value of xK , something that worsens the Gibbs effect.

Although we need to refine the partitions it order to wipe it out soon, once done, we do not
need to employ such small time partitions. It could be worthy to employ a variable time-step
method.

Empirically, the behaviour of the computational cost has been checked to be linear in the
number of time steps (Nt) and in the number of shares (Ny) and almost linear in the number
of spatial nodes (theoretically O(Nx̂ log(Nx̂))).

4.4.3 Numerical examples with transaction costs

Now we are going to check the effects of incorporating transaction costs to the pricing model.
First, we repeat one of the experiments realized in [22]. The model parameters are:

λ = µ = 0.002, γ = 1

S = 19, K = 20

σ = 0. 05, r = 0. 085, α = 0. 1.

The following figure shows the price difference for all maturities between T ∈ [0, 3], i.e.

Price difference = pw − BS,
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where pw denotes the option price with transaction costs and BS the Black-Scholes price.
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Figure 4.18: Price difference obtained with the Pseudospectral method. The results coincide
with the numerical experiment in [22].

We can observe that as T → ∞, the price difference at t = 0 approximates to λS, the
additional amount of money that is needed to purchase one share. This is empirically justified
in [22] with a very natural interpretation: if maturity is big enough, it will be more likely that
the option finishes In The money and it is exercised, so the seller will need to have one share.

This behaviour should repeat if we fix a maturity and compute option prices for the same
strike but bigger stock prices:

S →∞⇒ pw − BS→ λS,

As we can compute now options as In The money as we want, this can be numerically
checked. The following example parameters are{

λ = µ = 0. 002, xK = 2. 8, T = 0. 5,

σ = 0. 1, r = 0. 085, α = 0. 1.

and option prices have been computed for several γ and stock prices.
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On the previous Figure we see that pw −BS approximates to λS as S →∞. We can also
check the influence of parameter γ, the index of risk aversion. As γ grows, the seller of the
option is more and more risk averse which means that he will demand more money to cover
him from the possible transaction costs.

Concerning optimal trading strategies, it was conjectured in [22] that there exist two
surfaces, which depend on t and S, that lay up and below the optimal trading strategy
when there were no transaction costs present. Numerical experiments seem to support this
conjecture.

We fix a date t. For H1 (just optimal investment and no option), we plot in Figure 4.20
for each stock price, the Selling Frontier (red) and the Buying frontier (blue) which lie up
and below the optimal trading strategy when there are no transaction costs (green). The left
Figure represents the logarithmic scale for the stock price and the right Figure the natural
scale.
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Figure 4.20: Optimal trading strategies of functionHN
1 in logarithmic (left) and natural (right)

scales with costs (the Selling Frontier (red) and the Buying frontier (blue)) and without costs
(green).

For Hw (optimal investment + sold option), we plot in Figure 4.21 the results.
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On Figure 4.21, for each stock price,we plot the Selling Frontier (red) and the Buying
frontier (blue) which lie up and below the optimal trading strategy when there are no trans-
action costs (green). The left Figure represents the logarithmic scale for the stock price and
the right Figure the natural scale.

Other experiments were realized in [22] related with the “overshoot” ratio (OR), which is
given by

OR =
(pw −BS)− λS

λS
. (4.93)

The evolution of OR in function of different parameter values was studied and several
statements were made in [22]. The numerical method employed in [22] was the binomial
approximation working with variable S. In order to avoid the problems related with the
growth of the Exponential Utility, the domain of the stock price was much smaller than the
one we employ. Now, we have more information about the OR.

We are going to repeat the experiments, but with different parameter values. Since we
can compute prices for many stock prices at once, the Figures will include, when possible, the
evolution of the OR with respect to the stock price and to the corresponding parameter.

The common parameters through all the analysis will be:{
λ = µ = 0. 002, x̂K = 2. 8 (K = 16. 44), T = 0. 5,

σ = 0. 1, r = 0. 085, α = 0. 1,

and for each statement just the corresponding parameters will be altered.
The (empirical) properties of the overshoot ratio are:

1. The OR is linear increasing in function of log(γ).

2. lim
S→0

= −1 and lim
S→∞

= 0.
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Figure 4.22: Overshoot ratio dependance of log(γ) (left) and S (right).

The first limit comes from (4.93) and the fact that

(pw −BS) << λS if S << K
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and the second one from (pw −BS) −→
S→∞

λS (see Figure 4.19).

3. The OR is an increasing function of the volatility σ.

4. The OR is a convex decreasing function of the proportional transaction costs λ = µ.

Figure 4.23: Overshoot ratio dependance of σ and λ = µ

5. The OR is a convex function of the interest rate r.

6. The OR is a linear decreasing function of the stock’s mean growth α.

Figure 4.24: Overshoot ratio dependance of r and α.

In Statement 6, the value of interest rate was r = 0. 05 (α > r).
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