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Abstract

Mixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering - at the same time
- dimension reduction and model-based clustering.The high prevalence of spurious solutions and the disturbing effects of outlying
observations in maximum likelihood estimation may cause biased or misleading inferences. Restrictions for the component covari-
ances are considered in order to avoid spurious solutions, and trimming is also adopted, to provide robustness against violations
of the normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented.
Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology.
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1. Introduction and motivation

Factor analysis is an effective method of summarizing the variability between a number of correlated features,
through a much smaller number of unobservable, hence namedlatent, factors. It originated from the consideration
that, in many phenomena, several observed variables could be explained by a few unobserved ones. Under this
approach, each single variable (among thep observed ones) is assumed to be a linear combination ofd underlying
common factors with an accompanying error term to account for that part of the variability which is unique to it (not
in common with other variables). Ideally,d should be substantially smaller thanp, to achieve parsimony.

Clearly, the effectiveness of this method is limited by its global linearity, as happens for principal components
analysis. Hence, Ghahramani and Hilton (1997), Tipping andBishop (1999) and McLachlan and Peel (2000a) solidly
widened the applicability of these approaches by combininglocal models of Gaussian factors in the form of finite
mixtures. The idea is to employ latent variables to perform dimensional reduction in each component, thus providing
a statistical method which concurrently performs clustering and, within each cluster, local dimensionality reduction.

In the literature, error and factors are routinely assumed to have a Gaussian distribution because of their mathemat-
ical and computational tractability: however, statistical methods which ignore departure from normality may cause
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biased or misleading inferences. Moreover, it is well knownthat maximum likelihood estimation for mixtures often
leads to ill-posed problems because of the unboundedness ofthe objective function to be maximized, which favors the
appearance of non-interesting local maximizers and degenerate orspurioussolutions.

The lack of robustness in mixture fitting arises whenever thesample contains a certain proportion of data that
does not follow the underlying population model. Spurious solutions can even appear when ML estimation is applied
to artificial data drawn from a given finite mixture model, i.e. without adding any kind of contamination. Hence,
robust estimation is needed. Many contributions in this sense can be found in the literature: from the Mclust model
with a noise component in Fraley and Raftery (1998), mixtures of t-distributions in McLachlan and Peel (2000),
the trimmed likelihood mixture fitting method in Neykov et al. (2007), the trimmed ML estimation of contaminated
mixtures in Gallegos and Ritter (2009), and the robust improper ML estimator introduced in Coretto and Hennig
(2011), among many others. Some important applications in such fields as computer vision, pattern recognition,
analysis of microarray gene expression data, or tomographysuggest that more attention should be paid to robustness,
because noise in the data sets may be frequent in all these fields of application.

Different types of constraints have been traditionally appliedin Gaussian mixtures of factor analyzers, for instance,
some authors propose taking a common (diagonal) error matrix (as for the Mixtures of Common Factor Analyzers,
denoted by MCFA, in Baek et al., 2010) or imposing an isotropic error matrix (Bishop and Tipping, 1998). This
strategy has proven to be effective in many cases, at the expenses of stronger distributional restrictions on the data. To
avoid singularities and spurious solutions, under milder conditions, Greselin and Ingrassia (2015) recently proposed
maximizing the likelihood by constraining the eigenvaluesof the covariance matrices, following the previous work of
Ingrassia (2004) and going back to Hathaway (1985). Furthermore, mixtures oft-analyzers have been considered (see
McLachlan and Bean, 2005; Lin et al., 2014, and references therein) in an attempt to make the model less sensitive to
outliers, but they, too, are not robust against very extremeoutliers (Hennig, 2004).

The purpose of the present work is to introduce an estimatingprocedure for the mixture of Gaussian factor ana-
lyzers that can resist the effect of outliers and avoid spurious local maximizers. The proposed constraints can also be
used to take into account prior information about the scatter parameters.

Trimming has been shown to be a simple, powerful, flexible andcomputationally feasible way to provide robust-
ness in many different statistical frameworks. The basic idea behind trimming here is the removal of a small proportion
α of observations whose values would be the most unlikely to occur if the fitted model were true. In this way, trimming
avoids the problem of a small fraction of outlying observations exerting a harmful effect on the estimation. Incorpo-
rating constraints into the mixture fitting estimation method moves the mathematical problem to a well-posed setting
and hence minimizes the risk of incurring spurious solutions. Moreover, a correct statement of the problem allows
the desired statistical properties for the estimators to beobtained, such as the existence and consistency results, asin
Garcı́a-Escudero et al. (2008).

The rest of the paper has been organized as follows.In Section 2,the notation is introduced and the main ideas
about Gaussian Mixtures of Factor Analyzers (hereafter denoted by MFA) are summarized.Then, in Section 3, the
trimmed likelihood for MFAis presented, and fairly extensive notes are provided concerning the EM algorithm, with
incorporated trimming and constrained estimation.In Section 4, the performance of the new procedureis discussed,
on the grounds of some numerical results obtained from simulated and real data. In particular, the bias and MSE
of robustly estimated model parameters for different cases of data contamination, are compared, using Monte Carlo
experiments.The application to the Australian Institute of Sports dataset shows how classification and factor analysis
can be developed using the new model. Section 5 contains concluding notes and provides ideas for further research.

2. Gaussian Mixtures of Factor Analyzers

The density of thep-dimensional random variableX of interest is modeled as a mixture ofG multivariate normal
densities in some unknown proportionsπ1, . . . πG, whenever each data point is taken to be a realization of the following
density function:

f (x; θ) =
G

∑

g=1

πgφp(x;µg,Σg) (1)

whereφp(x;µ,Σ) denotes thep-variate normal density function with mean vectorµ and covariance matrixΣ. Here,
the vectorθ = θGM(p,G) of unknown parameters consists of the (G−1) mixing proportionsπg, theGpelements of the
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component meansµg, and the1
2Gp(p+1) distinct elements of the component-covariance matricesΣg. MFA postulates

a finite mixture of linear sub-models for the distribution ofthe full observation vectorX, given the (unobservable)
factorsU. That is, MFA provides local dimensionality reduction by assuming that the distribution of the observation
Xi can be given as

Xi = µg + ΛgUig + eig with probability πg (g = 1, . . . ,G) for i = 1, . . . , n, (2)

whereΛg is a p × d matrix of factor loadings, the factorsU1g, . . . ,Ung areN(0, Id) distributed independently of the
errors eig. The latter are independentlyN(0,Ψg) distributed, andΨg is a p× p diagonal matrix (g = 1, . . . ,G). The
diagonality ofΨg is one of the key assumptions of factor analysis: the observed variables are independent given the
factors. Note that the factor variablesUig model correlations between the elements ofXi , while the errorseig account
for independent noise forXi . We suppose thatd < p, which means thatd unobservable factors are jointly explaining
the p observable features of the statistical units. Under these assumptions, the mixture of factor analyzers model is
given by (1), where theg-th component-covariance matrixΣg has the form

Σg = ΛgΛ
′
g +Ψg (g = 1, . . . ,G). (3)

The parameter vectorθ = θMFA(p, d,G) now consists of the elements of the component meansµg, theΛg, and theΨg,
along with the mixing proportionsπg (g = 1, . . . ,G− 1), on puttingπG = 1−

∑G−1
i=1 πg.

Note that, in the case ofd > 1, there is an infinity of choices forΛg, since model (2) is still satisfied if we replace
Λg byΛgH′, whereH is any orthogonal matrix of orderd. As d(d− 1)/2 constraints are needed forΛg to be uniquely
defined, the number of free parameters for each component of the mixture is given by

pd+ p−
1
2

d(d− 1).

The following condition onp andd assures the desired parsimony:

[(p− d)2 − (p+ d)] > 0.

3. Robust Mixtures of Factor Analyzers

In this section, thetrimmed (Gaussian) mixtures of factor analyzers model(trimmed MFA) is presented and a
feasible algorithm for its implementation is provided.

3.1. Problem statement

Let x = {x1, x2, . . . , xn} be a given data set inRp. With the theoretical underlying model described in Section 3
in mind, a mixture of Gaussian factor components can be robustly fitted to this datasetx by maximizing atrimmed
mixture log-likelihood(see Neykov et al. 2007, Gallegos and Ritter 2009 and Garcı́a-Escudero et al. 2014) defined as:

Ltrim =

n
∑

i=1

ζ(xi) log

















G
∑

g=1

φp(xi ; µg,Σg)πg

















(4)

whereζ(·) is a 0-1 trimming indicator function that tells us whether observationxi is trimmed off: ζ(xi)=0, or not:
ζ(xi)=1 andΣg = ΛgΛ

′

g + Ψg as in (3). A fixed fractionα of observations can be unassigned by setting
∑n

i=1 ζ(xi) =
[n(1− α)] and, hence, the parameterα denotes the trimming level.

Moreover, to avoid the unboundedness ofLtrim, constrained maximizationof (4) is introduced. In more detail,
with reference to the diagonal elements{ψgk}k=1,...,p of the noise matricesΨg for g = 1, . . . ,G, it is required that

ψg1k ≤ cnoise ψg2h for every 1≤ k , h ≤ p and 1≤ g1 , g2 ≤ G (5)
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The constantcnoise is finite and such thatcnoise≥ 1, to avoid the|Σg| → 0 case. This constraint can be seen as an
adaptation to MFA of those introduced in Ingrassia and Rocci(2007), Garcı́a-Escudero et al. (2008), and is similar to
the mild restrictions implemented for MFA in Greselin and Ingrassia (2015). They all go back to the seminal paper of
Hathaway (1985). We will look for the maximization ofLtrim onΨg under the given constraints: this setting leads to
a well-defined maximization problem, and at the same time allows singularities to be discarded and the occurrence of
spurious solutions to be reduced.

Our methodology also includes the possibility of controlling the relative variability of the norms of thep dimen-
sional column vectors of the matricesΛg (for g = 1, . . . ,G). If {ηk g}k=1,...,d denotes the set of these norms, a second
set of constraints applies on their values

ηk g1 ≤ cload ηh g2 for every 1≤ k , h ≤ d and 1≤ g1 , g2 ≤ G. (6)

In fact, these types of constraints are not needed to avoid singularities in the target function, but they could be
useful to achieve more sensible solutions.

Hereafter,Θc will denote the constrained parameter space forθ = {πg, µg,Ψg,Λg; g = 1, . . . ,G} under the require-
ments (5) and (6).

3.2. Algorithm

The maximization ofLtrim in (4) for θ ∈ Θc is not an easy task, obviously. We will give a feasible algorithm
obtained by combining the Alternating Expectation-Conditional Maximization algorithm (AECM) for MFA with that
(with trimming and constraints) introduced in Garcı́a-Escudero et al. (2014) (see, also, Fritz et al., 2013).

As usual in the EM framework, each observationxi is associated with an unobserved statezi = (zi1, . . . , ziG)′ for
i = 1, . . . , n wherezig is one or zero, depending on whetherxi does or does not belong to theg-th component. The
component label vectorsz1, . . . , zn are taken to be the realized values of the random vectorsZ1, . . . ,Zn, where, for
independent feature data, it is appropriate to assume that they are (unconditionally) multinomially distributed. i.e.
Z1, . . . ,Zn ∼

i.i.d. MultG(1;π1, ..., πG). The AECM is an extension of the EM, suggested by the factor structure of
the model, which uses different specifications of missing data at each stage. The idea is to partition the vector of
parametersθ = (θ1, θ2) in such a way thatLtrim is easy to be maximized forθ1 given θ2 and viceversa, replacing
the M-step by a number of computationally simpler conditional maximization (CM) steps. In more detail, in the first
cycle we setθ1 = {πg, µg; g = 1, . . . ,G} and the missing data are the unobserved group labelsz = (z1, . . . , zn)′; while
in the second cycle we setθ2 = {Λg,Ψg; g = 1, . . . ,G} and the missing data are the group labelsz and the unobserved
latent factorsu = (u11, . . . , unG)′. Hence, the application of the AECM algorithm consists of two cycles, and there
is one E-step and one CM-step, alternatively consideringθ1 andθ2 in each cycle. A trimming step, to evaluate the
trimming function, precedes each cycle. The trimming function has the role of discarding theα100% of observations
with lowest contribution to the likelihood. Before describing the algorithm, we remark that the unobserved group
labelsZ are considered missing data in both cycles. Therefore, during thel-th iteration,z(l+1/2)

ig andz(l+1)
ig denote the

conditional expectations at the first and second cycle, respectively.
The algorithm has to be run multiple times on the same dataset, with different starting values, to prevent the

attainment of a local, rather than global, maximum log-likelihood. In each run it executes the following steps:

1 Initialization:
Each iteration begins by selecting initial values forθ(0) whereθ(0) = (π(0)

g , µ
(0)
g ,Λ(0)

g ,Ψ
(0)
g ; g = 1, . . . ,G). Inspired

from results obtained in a series of extensive test experiments about initialization strategies (see Maitra, 2009),
and aiming to allow the algorithm to visit the entire parameter space,p+1 units are randomly selected (without
replacement) for groupg from the observed datax. In this way, a subsamplexg is obtained that may be arranged
in a (p+1)×p matrix, and its sample mean will be the initialµ

(0)
g . Additionally, based on thesep+1 observations,

a newad hocapproach for providing an initialization procedure forΨ(0)
g andΛ(0)

g has been developed, to deal
with the possible existence of gross outlying observationsamong the subsamples, which could inflate some
of their eigenvalues. The rationale underthe proposed procedureis, as usual, to fill in randomly the missing
information in the complete model through random subsamples and, then, to estimate the other parameters. The
missing information here are the factorsuig for i = 1, . . . , n andg = 1, . . . ,G, which, under the assumptions
for the model, are realizations from independentlyN(0, Id) distributedUig random variables. We may consider
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model (2) in groupg as a regression ofXi with interceptµg, regression coefficients given byΛg, where the
explanatory variables are the latent factorsUig, and with regression errorseig. Hence, we drawp + 1 random
independent observations from thed-variate standard Gaussian to fill a (p + 1) × d matrix ug. Then we set
Λ

(0)
g = ((ug)′ug)−1(ug)′xg

c, wherexg
c is obtained by centering the columns of thexg matrix. To provide a

restricted random generation ofΨg, the (p + 1) × p matrix εg = xg
c − Λ

(0)
g ug is computed, and the diagonal

elements ofΨ(0)
g are set equal to the variances of thep columns of theεg matrix. After repeating thisfor

g = 1, . . . ,G, if the obtained matricesΛ(0)
g andΨ(0)

g do not satisfy the required constraints (5) and (6), then the

constrained maximizations described in step 2.4 must be applied. Finally, weightsπ(0)
1 , ..., π

(0)
G in the interval

(0, 1) and summing up to 1 are randomly chosen.

2 Trimmed AECM steps:
The following steps 2.1–2.6. are alternatively executed until a maximum number of iterations,MaxIter, is
reached. The implementation of trimming is related to the “concentration” steps applied in high-breakdown
robust methods (Rousseeuw and Van Driessen, 1999). Trimming is performed before each E-step, while con-
straints are enforced during the second cycle CM step.

2.1 First cycle. Trimming:Evaluate then quantities

D(xi ; θ(l)) =
G

∑

g=1

φp(xi; µg,ΛgΛ
′
g +Ψg)πg for i = 1, . . . , n

and sort them to obtain theirα quantile denoted byD([nα]) . Notice thatD(xi; θ(l)) is the contribution given
from xi to the overall likelihood. Now consider the set of indicesI ⊂ {1, 2, ..., n} defined as

I =
{

i : D(xi ; θ(l)) ≥ D([nα])
}

.

Then set the trimming function asζ(xi) = 1 for i ∈ I , andζ(xi) = 0 otherwise. To update the parameters,
only the observations with indices inI will be taken into account. In other words, the proportionα of
observations with the smallestD(xi; θ(l)) valuesare tentatively discarded.

2.2 First cycle. E-step:
Hereθ1 = {πg, µg; g = 1, . . . ,G} and the missing data are the unobserved group labelsz = (z1, . . . , zn)′.
The E-step on the first cycle on the (l + 1)-th iteration requires the calculation of

Q1

(

θ1; θ(l)
)

= E
θ

(l)

[

n
∑

i=1

ζ(xi)
G

∑

g=1

Zig

(

logπg + logφp

(

xi ;µ(l)
g ,Σ

(l)
g

)) ∣

∣

∣ x
]

,

which is the expected trimmed complete-data log-likelihood, given the datax and using the current esti-
mateθ(l) for θ, whereΣ(l)

g = Λ
(l)
g
[

Λ
(l)
g
]′
+Ψ

(l)
g . In practice, it is necessary to calculateE

θ
(l) [Zig| x] = z(l+1/2)

ig ,
where the latter are the “posterior probabilities” often considered in standard EM algorithms and which
are evaluated as follows. Let us define

Dg(x; θ(l)) = φp

(

x;µ(l)
g ,Σ

(l)
g

)

π(l)
g

then, set

z(l+1/2)
ig =

Dg(xi; θ(l))

D(xi ; θ(l))
.
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2.3 First cycle. CM-step:This first CM step requires the maximization ofQ1(θ1; θ(l)) overθ1, with θ2 held
fixed atθ(l)

2 . We getθ(l+1)
1 by updatingπg andµg as follows

π(l+1)
g =

∑n
i=1 z(l+1/2)

ig ζ(xi)

[n(1− α)]

and

µ(l+1)
g =

∑n
i=1 z(l+1/2)

ig ζ(xi)xi

n(l+1/2)
g

wheren(l+1/2)
g =

∑n
i=1 z(l+1/2)

ig ζ(xi), for g = 1, . . . ,G.

According to notation in McLachlan and Peel (2000b), we setθ(l+1/2) =
(

θ
(l+1)
1 , θ

(l)
2

)

.

2.4 Second cycle. Trimming:Re-evaluate then quantitiesD(xi; θ(l)) and, as done in step [2.1], update the
trimming functionζ(xi).

2.5 Second cycle. E- step:
Hereθ2 = {(Λg,Ψg), g = 1, . . . ,G} has to be considered, where the missing data are the unobserved group
labelsZ and the latent factorsU.
The E-step of the second cycle on thel-th iteration requires the calculation of the conditional expectation
of the trimmed complete-data log-likelihood, given the observed datax and using the current estimate
θ(l+1/2) for θ, i.e.

Q2

(

θ2; θ(l+1/2)
)

= E
θ

(l+1/2)

[

n
∑

i=1

ζ(xi)
G

∑

g=1

Zig

(

logπ(l+1)
g + logφp

(

xi ;µ(l+1)
g − Λ(l)

g Uig,Ψ
(l)
g
)

+ logφd
(

Uig; 0, Id
)

) ∣

∣

∣ x
]

.

In addition to updating the posterior probabilitiesE
θ

(l+1/2)[Zig|x] = z(l+1)
ig (and consequentlyn(l+1)

g =
∑n

i=1 z(l+1)
ig ζ(xi),

for g = 1, . . . ,G, as previously done), this leads to an evaluation of the following conditional expectations:
E
θ

(l+1/2)[ZigUig|x] andE
θ

(l+1/2)[ZigUigU′ig|x]. Recalling that the conditional distribution ofUig, givenxi , is

Uig|xi ∼ N
(

γg(xi − µg), Iq − γgΛg

)

for i = 1, . . . , n andg = 1, . . . ,G with

γg = Λ
′
g(ΛgΛ

′
g +Ψg)−1,

we obtain

E
θ

(l+1/2)[ZigUig|xi] = z(l+1)
ig γ(l)

g

(

xi − µ
(l+1)
g

)

E
θ

(l+1/2)[ZigUigU′ig|xi] = z(l+1)
ig

[

γ(l)
g

(

xi − µ
(l+1)
g

) (

xi − µ
(l+1)
g

)′
γ(l)

g
′
+ Iq − γ

(l)
g Λ

(l)
g

]

where we set

γ(l)
g = Λ

(l)
g
′
(

Λ
(l)
g Λ

(l)
g
′
+Ψ(l)

g

)−1
.
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2.6 Second cycle. CM-step for constrained estimation ofΛg andΨg :
Here our aim is to maximizeQ2

(

θ2; θ(l)
)

overθ, with θ1 held fixed atθ(l+1)
1 . After some matrix algebra,

this yields the updated ML-estimates

Λg = S(l+1)
g γ(l)

g
′
[γ(l)

g S(l+1)
g γ(l)

g
′
+ Iq − γ

(l)
g Λ

(l)
g ]−1

Ψg = diag
{

S(l+1)
g − Λ(l+1)

g γ(l)
g S(l+1)

g

}

whereS(l+1)
g denotes the sample scatter matrix in groupg, for g = 1, . . . ,G

S(l+1)
g = (1/n(l+1)

g )
n

∑

i=1

z(l+1)
ig ζ(xi)

(

xi − µ
(l+1)
g

) (

xi − µ
(l+1)
g

)′
.

During the iterations, due to the updates, it may happen thattheΛg matrices do not belong to the con-
strained parameter spaceΘc. In the case where the additional constraints (6) have to be imposed, and
the norms of the column vectors of the matricesΛg do not satisfy them,Λ(l+1)

g ∈ Θc can be obtainedas
follows. After defining the diagonal matrixEg = diag(ηg1, ηg2, ..., ηgd), the truncated norms are then given
as

[ηgk]m = min
(

cload ·m, max(ηgk,m)
)

, for k = 1, . . . , d andg = 1, . . . ,G,

with m being some threshold value. The loading matrices are finallyupdated asΛ(l+1)
g = ΛgE−1

g E∗g with

E∗g = diag
(

[ηg1]mopt, [ηg2]mopt, ..., [ηgd]mopt

)

andmopt minimizing the real valued function

fload(m) =
G

∑

g=1

π(l+1)
g

d
∑

k=1

(

log
(

[ηgk]m

)

+
ηgk

[ηgk]m

)

. (7)

It may be mentioned here, in passing, that Proposition 3.2 inFritz et al. (2013) shows thatmopt can be
obtained by evaluating 2dG+ 1 times the real valued functionfload(m) in (7).
Given theΛ(l+1)

g , the matrices

Ψg = diag
{

S(l+1)
g − Λ(l+1)

g γ(l)
g S(l+1)

g

}

= diag
(

ψg1, ..., ψgp

)

can be obtained, and may not necessarily satisfy the required constraint (5). In this case, we set

[ψgk]m = min
(

cnoise·m, max(ψgk,m)
)

, for k = 1, . . . , p; g = 1, . . . ,G,

and fix the optimal threshold valuemopt by minimizing the following real valued function

fnoise(m) 7→
G

∑

g=1

π(l+1)
g

p
∑

k=1

(

log
(

[ψgk]m

)

+
ψgk

[ψgk]m

)

. (8)

As before, in Fritz et al. (2013), it is shown thatmopt can be obtained in a straightforward way by evaluating
2pG+ 1 times fnoise(m) in (8). Thus,Ψ(l+1)

g is finally updated as

Ψ
(l+1)
g = diag

(

[ψg1]mopt, ..., [ψgp]mopt

)

. (9)

It is worth remarking that the given constrained estimationprovides, at each step, the parametersΨg and
Λg that maximize the likelihood in the constrained parameter spaceΘc.
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3 Evaluate target function:After applying the trimmed and constrained EM steps, and setting ζ(xi) = 0 if i ∈ I
andζ(xi) = 1 if i < I , the associated value of the target function (4) is evaluated. If convergence has not been
achieved before reaching the maximum number of iterations,MaxIter, the results are discarded.

The set of parameters yielding the highest value of the target function (among the multiple runs) and the associated
trimmed indicator functionζ(·) are returned as the final output of the algorithm. In the framework of model-based
clustering, each unit is assigned to one group, based on the maximum a posteriori probability. Notice, in passing, that
a high number of initializations is not needed, and nor a highvalue forMaxIter, as will be seen in Section 4.

In relation with the initialization strategy, the obtainedinitial values for the parameters in each population are
basedonsmall subsamples, aiming at ideally covering, in many trials, the full parameter space. Our proposal is based
on the following idea: a small subsample has to be drawn for eachgroup and then the information extracted from the
subsample is completed with random data generated under themodel assumptions. The expected consequence of this
exploration of the parameter space is that spurious solutions, even singularities, can arise when running EM iterations,
and the constraints on the scatters play the role of protecting against these undesired solutions. By considering many
random initializations, we are confident that the best point, in terms of the likelihood, can be approached inside the
restricted parameter space. The number of random initializations should increase with the number of groupsG, the
dimensionp and in the case of very different group sizes.

It is worth remarking that the usual monotone convergence ofthe likelihood in the robust AECM algorithm holds
true when incorporating trimming and constrained estimation forΨg. To prove this, notice firstly that,when perform-
ing the trimming step, the optimal observations have been retained, i.e. the ones with the highest contributions to the
objective function. Secondly, the first cycle is the usual one in the AECM algorithm for MFA and, therefore, shares
its optimality properties. Finally, it can be easily provedthat, in the second EM cycle, the evaluation of the optimal
(

Λg,Ψg

)

for g = 1, . . . ,G corresponds to the usual way of obtaining firstly the optimalΛg, which is not affected by
the restrictions onΨg and, then the optimalΨg is obtained as

arg max
G

∑

g=1

ng

2
log(|Ψg|) +

G
∑

g=1

1
2

trace
[

Ψ
−1
g

(

S(l+1)
g − Λ(l+1)

g γ(l)
g S(l+1)

g

)]

, (10)

and this corresponds to (9).
On the other hand, when the algorithm also requires the constrained estimation of Λg, the latter is based on

a heuristic approach. We have empirical evidences about themonotonicity of this second EM cycle for the huge
majority of the steps in which we applied it, producing low decreases in the objective function in extremely rare cases.
In any case, after each entire AECM cycle, an increased likelihood was always observed.

4. Numerical studies

In this section, numerical studies will be presented, basedon simulated and real data, to show the performance of
the constrained and trimmed AECM algorithm with respect to unconstrained and/or untrimmed approaches.

4.1. Artificial data
We consider here the following mixture ofG components ofd-variate normal distributions. To perform each

estimation, 40 different random initializations have been considered to startthe algorithm at each run, as described
in the previous section, and the best solution is retained. The needed routines have been written inR-code (R Team,
2013), and are available from the authors upon request.

Mixture: G = 3, d = 6, q = 2, n = 150.

The sample has been generated with weightsπ = (0.3, 0.4, 0.3)′ according to the following parameters:

µ1 = (0, 0, 0, 0, 0, 0)′ Ψ1 = diag(0.1, 0.1,0.1, 0.1, 0.1,0.1)

µ2 = (5, 5, 0, 0, 0, 0)′ Ψ2 = diag(0.4, 0.4,0.4, 0.4, 0.4,0.4)

µ3 = (10, 10, 0, 0, 0, 0)′ Ψ3 = diag(0.2, 0.2,0.2, 0.2, 0.2,0.2)

8
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Figure 1 shows a specimen of randomly generated data from thegiven mixture.
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Figure 1. A specimen of 150 data points generated from the mixture (the first two coordinates are plotted, groups in black,red and green)

Our analysis begins by running the AECM algorithm on the generated sample, and considering the following six
settings, namely:

S1. a ”virtually” unconstrained approach (i.e.cnoise= cload = 1010) without trimming (α = 0),
S2. an adequate constraint onΨg, no constraint onΛg (cnoise= 5, cload = 1010) and no trimming (α = 0),
S3. adequate constraints onΨg andΛg (cnoise= 5, cload = 3), and still no trimming (α = 0),
S4. a ”virtually” unconstrained approach (i.e.cnoise= cload = 1010) with trimming (α = 0.06),
S5. an adequate constraint onΨg, no constraint onΛg (cnoise= 5, cload = 1010), with trimming (α = 0.06),
S6. adequate constraints onΨg andΛg (cnoise= 5, cload = 3), with trimming (α = 0.06)

It is worth noticing that when settingcnoise = 1010 singularities are surely discarded, and the estimation is allowed
to move in a wide parameter space that contains the global maximum, among several local ones. In this situation,
the estimation could incur spurious solutions. We expect the algorithm to improve its performance when giving the
”right” constraints. The adequate constraints can by evaluated by obtaining the maximum ratio among the eigenvalues
of Ψg and among the singular values ofΛg. As the singular values ofΛ1 are (3.069, 1.528), ofΛ2 are (3.777, 1.873)
and ofΛ3 are (2.091, 1.729), hencecload ≥ 2.471; while the diagonal elements ofΨg are 0.1, 0.4, and 0.2, so
cnoise ≥ 4. When trimming is also applied to the artificially generated data, the effect of an unneeded elimination of
the outermost points in the model estimation and subsequentclassification can be seen. To measure the performance
of the algorithm, the average misclassification errorη is evaluated, over 1000 repetitions of the estimation procedure.
The misclassification error is defined as the relative frequency of points of the sample erroneously labeled, taking into
account that noise and pointwise contamination (when added) should be identified, as they virtually do not belong to
the three groups. We see that the algorithm, applied withouttrimming, gives a superb classification with and without

9
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constraints. While adding trimming, the misclassificationerror, as expected, is pretty close to the trimming level, and
all non-trimmed observations are perfectly classified (with the sole exception of 1 misclassified unit, that happened
only once, whencnoise = cload = 1010, and occurred 4 times whencnoise = 5 andcload = 1010, over 1000 runs). The
results are summarized in the first row of Table 1. Moreover, the other parameters, such as the meansµg, andΨg, Λg

for g = 1, 2, 3, are close to the values from which the data have been generated, aswill be shownin Subsection 4.1.1.

Table 1. Misclassification errorη (percent average values on 1000 repetitions of the estimation procedure) of the AECM algorithm with settings
S1-S6, applied on the artificially generated data, and with contamination

S1 S2 S3 S4 S5 S6
cnoise 1010 5 5 1010 5 5
cload 1010 1010 3 1010 1010 3
α 0 0 0 0.06 0.06 0.06

D 0.003 0.006 0.001 6.001 6.003 6.000
D+N 29.606 29.654 48.324 3.131 3.128 0.004
D+PC 28.098 15.035 17.317 24.966 3.128 0.004
D+N+PC 44.690 45.089 47.044 12.289 5.887 0.003

In Table 1, four scenarios have been considered, i.e.:

D: the artificially generated data,
D+N: 10 points of uniform noise have been added around the data,

D+PC: 10 points of pointwise contamination have been added outside the range of the data,
D+N+PC: both the 10 points of uniform noise and the 10 points of pointwise contamination have been added to the data.

The algorithm has been applied to the different datasets in the six previous settings S1-S6 (i.e. with/without
constraints and trimming), to obtain and compare the misclassification errors. In the case of D+N+PC, the right
trimming level should obviously be raised atα = 0.12. Results in the second row of Table 1 show that trimming is very
effective to identify and discard noise in the data, and constraints contribute getting close to a perfect classification.
The misclassification error (reported in the third row of Table 1) shows that, when concentrated outliers occur in the
data, the constrained estimation is also needed to achieve apretty good behavior of the algorithm. Noise and pointwise
contamination could cause very messy estimations, as can beseen in the first three columns of the table, whenever the
estimation only relies/does not rely on constraints.

In conclusion, to be protected against all types of data corruption, constrained estimationandtrimming are needed.
With the joint effect of these tools, the statistical problem is well posed, spurious solutions can be avoided and the
estimator resists the influence of all classes of contaminating observations. With the application of only one of the
previous instruments, these benefits are lost.

The algorithm for estimating a robust MFA have been written in R language and is available from the authors upon
request, and an R package is currently under development. Interms of computational resources, the algorithm is not
so heavily modified from the usual one, and the time for executing the robust AECM, if compared to the one without
trimming and constraints, remains of the same order of magnitude: it needs about twice the computing time. To have
an idea, 10 robust estimations (based on 40 random initializations and 60 iterations) on the artificial data required 3.96
seconds of system time, while the same experiment with the classical AECM required 1.911 seconds.

4.1.1. Properties of the estimators for the mixture parameters
Now, a second analysis on the same artificial data is performed and the main interest here is in assessing the

effect of trimming and constraints on the properties of the model estimators. Namely, we estimate their bias and
mean square error, when the data is affected by noise and/or pointwise contamination. The same four scenarios of the
previous subsection are again considered, i.e.: the artificially generated data (D), the data with the added 10 points of

10
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uniform noise (D+N), the data with the added 10 points of pointwise contamination (D+PC), and finally the data with
both uniform noise and the pointwise contamination (D+N+PC).

We apply the algorithm for estimating a trimmed MFA model in all the four scenarios, exploring the six settings on
cnoise, cload andα that have been shown in Table 1. The benchmark of all simulations is given by the results obtained on
artificial data drawn from a given MFA without outliers. In each experiment, a sample of sizen = 150 has been drawn
1000 times from the mixture described at the beginning of this Section, and the model parameters for the trimmed
MFA have been estimated using the algorithm presented in theprevious Section 3.2, by settingcnoise = cload = 1010

(a virtually unconstrained solution) orcnoise = 5, cload = 3 for a constrained one, andα = 0 for no trimming, while
α = 0.06 orα = 0.12 when adopting adequate trimming.

Notice that the considered estimators in each component arevectors (apart fromπg which are scalar quantities,
for g = 1, . . . ,G). We are interested in providing synthetic measures of their properties, such as bias and mean square
error (MSE). As usual, let̂T be an estimator for the scalar parametert, then the bias of̂T is given bybias(T̂) = E(T̂)−t,
i.e. it is the signed absolute deviation of the expected valueE(T̂) from t. Therefore, we would have 6 biases for each
component of the meanµg, 6 for diag(Ψg) and 12 forΛg. On the other hand, MSE is defined as a scalar quantity,
namelyE(|T̂ − t|2) = trace(Var(T̂)) + bias(T̂)2, also for vector estimators. Hence, a synthesis of each parameter’s
biases is adopted by considering the mean of their absolute values on each component. Below the bias, in Tables 2
and 3, the MSE is provided in parenthesis.

The results on bias and mean square error for the case of estimating the trimmed MFA with trimming but without
constraints or viceversa, show the harmful effects of distorted inference. The only exception comes from D+N, where
trimming is pretty able to cope with the contamination.On the other hand, when reasonable constraintscnoise = 5,
cload = 3 and a right trimming level are applied to deal with the addedoutliers, the results come back being very close
to the benchmark, shown in the first column of Table 2. Therefore, it has been shown that robust inference reduces
bias and mean square error, in both cases of sparse and concentrated outliers.

11
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Table 2. Bias and MSE (in parentheses) of ˆπi , and bias as the sum of absolute deviations, followed by MSE (in parentheses) of the parameter estimators ˆµi , Ψ̂i , Λ̂i , for i = 1, 2, 3 for the artificial
data “D”, and for the artificial data plus noise “D+N”; labels from S1 to S6 denote the estimation settings

D D+N

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

π1 0 0 0 0.0154 0.0166 0.0167 -0.037 -0.1636 -0.2206 1e-04 0 0
(0) (0) (0) (2e-04) (3e-04) (3e-04) (0.0017) (0.0283) (0.0502) (0) (0) (0)

π2 0 0 0 -0.0227 -0.0229 -0.0238 -0.2835 0.065 0.4077 -1e-04 0 0
(0) (0) (0) (5e-04) (5e-04) (6e-04) (0.0807) (0.0058) (0.1677) (0) (0) (0)

π3 0 0 0 0.0073 0.0064 0.0071 0.3205 0.0985 -0.1871 0 0 0
(0) (0) (0) (1e-04) (0) (1e-04) (0.1031) (0.0113) (0.0365) (0) (0) (0)

µ1 0.001 0.001 0.003 0.003 0.004 0.006 0.215 2.289 5.468 0.002 0.003 0.002
(0.113) (0.117) (0.112) (0.124) (0.114) (0.12) (9.211) (99.165) (122.462) (0.118) (0.116) (0.11)

µ2 0.003 0.003 0.002 0.005 0.002 0.003 4.89 2.191 0.694 0.002 0.004 0.006
(0.132) (0.133) (0.131) (0.173) (0.179) (0.185) (74.119) (69.868) (34.888) (0.143) (0.126) (0.139)

µ3 0.006 0.003 0.001 0.003 0.004 0.003 1.492 1.026 10.338 0.0040.004 0.002
(0.112) (0.11) (0.111) (0.122) (0.125) (0.123) (87.415) (91.361) (471.833) (0.109) (0.108) (0.115)

Ψ1 0.007 0.002 0.002 0.009 0.005 0.005 0.311 1.132 0.795 0.007 0.003 0.002
(0.009) (0.003) (0.003) (0.009) (0.004) (0.004) (58.795) (11.2) (6.278) (0.008) (0.003) (0.003)

Ψ2 0.029 0.045 0.045 0.074 0.1 0.1 9.194 0.445 0.355 0.033 0.0470.047
(0.142) (0.05) (0.053) (0.169) (0.104) (0.106) (1837.338)(2.547) (2.248) (0.136) (0.053) (0.055)

Ψ3 0.168 0.04 0.04 0.174 0.048 0.047 0.422 0.316 0.928 0.166 0.041 0.041
(1.018) (0.053) (0.055) (0.952) (0.048) (0.048) (2.613) (1.375) (7.718) (0.989) (0.055) (0.054)

Λ1 0.526 0.529 0.533 0.523 0.526 0.551 0.558 0.537 0.525 0.523 0.527 0.517
(9.031) (9.127) (9.158) (9.064) (9.07) (9.547) (37.297) (296.817) (52.772) (9.064) (9.11) (8.954)

Λ2 0.585 0.576 0.56 0.573 0.566 0.575 0.668 0.633 0.553 0.573 0.574 0.58
(11.495) (11.369) (11.011) (11.326) (10.335) (10.634) (585.002) (205.661) (49.041) (11.326) (11.319) (11.569)

Λ3 0.333 0.332 0.341 0.34 0.342 0.337 0.346 0.363 0.346 0.34 0.341 0.337
(6.786) (7.448) (7.444) (6.888) (7.284) (7.224) (26.408) (22.941) (119.003) (6.888) (7.408) (7.503)
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Table 3. Bias and MSE (in parentheses) of ˆπi , and bias as the sum of absolute deviations, followed by MSE (in parentheses) of the parameter estimators ˆµi , Ψ̂i , Λ̂i , for i = 1, 2, 3 for the artificial
data plus pointwise contamination “D+PC”, and for the artificial data plus noise and pointwise contamination “D+N+PC”; labels from S1 to S6 denote the estimation settings

D+PC D+N+PC

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

π1 -0.0304 -0.0276 -0.0374 -0.0664 0 0 -0.218 -0.2116 -0.2163 -0.0534 1e-04 0
(0.001) (0.001) (0.0018) (0.0051) (0) (0) (0.0482) (0.0449) (0.0468) (0.003) (0) (0)

π2 -0.3076 -0.0868 -0.1376 -0.1742 0 0 0.4025 0.4418 0.4822 0.0316 -1e-04 0
(0.0947) (0.0077) (0.0193) (0.031) (0) (0) (0.1627) (0.1953) (0.2325) (0.0011) (0) (0)

π3 0.338 0.1144 0.175 0.2406 0 0 -0.1845 -0.2302 -0.2659 0.0218 0 0
(0.1143) (0.0133) (0.031) (0.0586) (0) (0) (0.0347) (0.0531) (0.0707) (6e-04) (0) (0)

µ1 0.346 0.931 1.365 1.918 0.002 0.003 21.143 18.651 20.535 5.233 0.006 0.001
(16.538) (30.237) (47.55) (75.165) (0.116) (0.112) (1416.987) (985.875) (881.201) (735.9) (0.114) (0.117)

µ2 8.59 2.682 4.489 6.005 0.005 0.004 1.146 0.534 0.001 2.208 0.007 0.003
(150.803) (102.543) (152.814) (147.795) (0.129) (0.135) (110.599) (49.885) (0.044) (344.79) (0.13) (0.132)

µ3 0.912 0.818 0.61 0.854 0.003 0.002 6.59 9.178 11.134 0.422 0.002 0.004
(3.31) (7.14) (5.662) (5.55) (0.111) (0.113) (383.624) (640.891) (381.857) (24.125) (0.11) (0.115)

Ψ1 0.012 0.052 0.07 0.032 0.003 0.003 0.069 0.509 0.636 0.028 0.003 0.002
(0.011) (0.072) (0.108) (0.027) (0.003) (0.003) (17.255) (3.089) (4.316) (0.021) (0.004) (0.003)

Ψ2 0.363 0.098 0.132 0.302 0.045 0.046 0.9 0.239 0.246 0.054 0.046 0.044
(0.969) (0.22) (0.285) (0.747) (0.052) (0.052) (101.563) (0.942) (0.788) (0.306) (0.051) (0.05)

Ψ3 0.692 0.12 0.186 0.241 0.041 0.04 8.865 1.006 1.176 0.124 0.042 0.042
(3.528) (0.332) (0.499) (0.747) (0.054) (0.054) (2101.106) (8.218) (10.605) (0.772) (0.053) (0.054)

Λ1 0.539 0.549 0.544 0.566 0.529 0.511 0.433 0.5 0.613 0.47 0.53 0.526
(9.581) (26.694) (18.72) (57.769) (9.111) (8.76) (470.528) (594.275) (257.523) (555.065) (9.126) (9.072)

Λ2 0.559 0.562 0.565 0.596 0.57 0.572 0.568 0.598 0.596 0.599 0.594 0.57
(10.083) (42.216) (27.648) (102.541) (11.248) (11.36) (151.272) (96.445) (38.347) (182.497) (11.736) (11.175)

Λ3 0.334 0.369 0.344 0.348 0.331 0.342 0.335 0.363 0.356 0.342 0.337 0.349
(11.31) (34.879) (15.699) (18.004) (7.337) (7.488) (470.156) (376.344) (193.749) (28.224) (7.468) (7.587)

1
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The distributions of the estimators for the model parameters can be represented by box plots, and some of them
are shown in Figure 2, namely with reference to ˆπ1 (upper panel), ˆµ1[1, 1] (second panel),̂Ψ1[1, 1] (third panel)
andΛ̂1[1, 1] (bottom panel). In a direct comparison, the small efficiency reduction of the estimator when applying
trimming and constraints on the true data (cases D/ S2-S6) can be seen, the effect of using only trimming when
uniform noise has been added to data (case D+N / S4) is apparent; finally, the joint usage of trimming and constraints
onΨg is shown to be effective to protect against all types of contamination.

4.2. Real data: the AIS data set

As an illustration, we apply the proposed technique to the Australian Institute of Sports (AIS) data, which is a
famous benchmark dataset in the multivariate literature, originally reported by Cook and Weisberg (1994) and sub-
sequently analyzed by Azzalini and Dalla Valle (1996), among many other authors. The dataset consists ofp = 11
physical and hematological measurements on 202 athletes (100 females and 102 males) in different sports, and is avail-
able within the R packagesn(Azzalini, A., 2011). The observed variables are: red cell count (RCC), white cell count
(WCC), Hematocrit (Hc), Hemoglobin (Hg), plasma ferritin concentration (Fe), body mass index, weight/height2

(BMI), sum of skin folds (SSF), body fat percentage (Bfat), lean body mass (LBM), height, cm (Ht), weight, kg (Wt),
apart from gender and kind of Sport. A partial scatterplot ofthe AIS dataset is given in Figure 3.

Our purpose is to provide a model for the entire dataset, and since the group labels (athlete’s gender) are provided
in advance, the aim is to classify athletes by this feature.

Let us begin our analysis by fitting a mixture of multivariateGaussian distributions, using theMclustpackage in
R. The routinemclustBIC, after fitting a set of normal mixture models, considering from 1 to 9 components in the
mixture and different patterns for the covariance matrices, selects the best EEV model (ellipsoidal scatters, with equal
volume and shape, different orientation of the component scatters) withG = 2 components, providing the highest BIC
value, i.e.BIC = −10251.6. Now, using this model to classify AIS data, 18 misclassified units are obtained, i.e., a
misclassification error equal to 18/202= 9.4%. The classification results are shown in Figure 4 (left panel).

To improve the classification, we may exploit the conjecturethat a strong correlation exists between the hemato-
logical and physical measurements. Therefore, a mixture offactor analyzers may be estimated, assuming the existence
of some underlying unknown factors (like nutritional status, hematological composition, overweight status indices,
and so on) which jointly explain the observed measurements.Through the factors, the aim is to find a perspective on
data which disentangles the overlapping components. To avoid variables having a greater impact in the model (which
is not affine equivariant) due to different scales, before performing the estimation, the variables have been divided by
their interquartile range. We begin by adopting thepGmmpackage from R, that fits mixtures of factor analyzers with
patterned covariances. Parsimonious Gaussian mixtures are obtained by constraining the loadingsΛg and the errors
Ψg to be equal or not among the components. We employed the routinepGmmEM, considering from 1 to 9 compo-
nents, and number of underlying factorsd ranging from 1 to 6, with 30 different random initializations, to provide the
best iteration (in terms of BIC) for each case. The best modelis a CUU mixture model withd = 4 factors andG = 3
components, withBIC = −3127.424. CUU means “Constrained” loading matricesΛg = Λ and “Unconstrained” error
matricesΨg = ωg∆g, where∆g are normalized diagonal matrices andωg is a real value varying across components.
Using this model to classify athletes, we got 109 misclassified units and we discarded it.

As a second attempt usingpGmm, a UUU model has been estimated by settingG = 2 components, andd = 6.
The acronym UUU means that the estimation of loadingsΛg and errorsΨg is unconstrained. Based on 30 random
starts, the best UUU model hasBIC = −3330.306, and the consequent classification of the AIS dataset produces 72
misclassified units (misclassification error=35.6%, see the right panel in Figure 4).

Finally, we want to show the performance of our trimmed and constrained estimation for MFA on the AIS data. All
the results are generated by the procedure described in Section 3.2, based on 30 random initializations and returning
the best obtained solution of the parameters, in terms of thehighest value of the final likelihood. We see that the best
solution, with only 3 misclassified points, has been obtained by combining trimming (α = 0.05) and the constrained
estimation ofΨg (cnoise= 45) andΛg (cload = 10), withd = 6.

Notice that the choice ofG = 2 andd = 6 could be motivated by estimating all models within a range of values for
G andd, and choosing the pair of values providing the best BIC. A trimmed version of theBIC = 2Ltrim(x; θ̂)−k logn∗

should be considered, where we denote byk the number of free parameters in the model, and byn∗ the number of non
trimmed observations (i.e.n∗ = [n(1− α)]). Results are shown in Table 5.In practice, we stopped our investigation at
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Figure 3. Scatterplot of some pairs of the AIS variables (female data in red, male in green)

Table 4. Trimmed and constrained MFA estimation on the AIS data set (best results over 30 random initializations). Misclassification errorη (in
percentage) under different settings

cnoise 1010 45 1010 45 1010 45 1010 45
cload 1010 1010 10 10 1010 1010 10 10
α 0 0 0 0 0.05 0.05 0.05 0.05

η 0.1040 0.0891 0.1040 0.0891 0.0347 0.0149 0.0347 0.0149

d = 6 because in a factor analyzer, to reach parsimony, we shouldhave (p− d)2 ≥ p+ d (as discussed in detail at the
end of Section 2).We must thank an anonymous Referee for raising a question on this issue, that also confirmed our
previous assessment ofd = 6, obtained by performing a factor analysis on the observations coming from the group of
male athletes, and employing a scree-plot to test the hypothesis that 6 factors are sufficient (chi square statistic equal
to 97.81 on 4 degrees of freedom, andp-value= 2.88 · 10−20).

Moreover, we recall here that Bekker (1997) showed thatd < φ(p) is a necessary and sufficient condition for
global identifiability of the diagonal matrixΨ, where

φ(p) :=
2p+ 1−

√

8p+ 1

2

is the so-called Ledermann bound (Ledermann, 1937). In the present case we have thatd = 6 < φ(p) = 6.78, hence
no identifiability issues arise.

The constraints, and in first place the constraintcnoiseonΨg, play an important role (compare results in columns 2-
4-6 and 8 to the ones displayed in the odd columns), but trimming is needed to reach the best result. This is motivated
by the fact that the data, in both groups, are not following an11-dimensional multivariate Gaussian, as it can be easily
checked by performing a Mardia test. Two results of the fittedmodels and the subsequent classifications are displayed
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Figure 4. The classification of AIS data obtained through thebest model fromMclust (left panel), and through the best UUU model frompGmm
(right panel) withG = 2 andd = 6 (female data in red, male in green, misclassified units as black circlecrosses).

GroupsG 1 2 3 4 5
Factorsd

1 3484.32 2833.18 2744.96 2702.89 2780.27
2 2436.87 2311.24 2283.16 2331.43 2433.88
3 1938.75 1885.03 1967.93 2068.36 2261.20
4 1490.72 1513.43 1662.43 1818.78 2002.08
5 1409.03 1390.86 1559.12 1774.64 1971.56
6 1142.15 1099.89 1371.98 1772.44 1976.96

Table 5.trimmedBIC for different choices of the number of factorsd and the number of groupsG, on AIS data.

in Figure 5, by selecting the 2 variables in the scatterplot that enable us to point out the trimmed and misclassified
units. We have chosen to represent the best solution (left panel), with only 3 misclassified points, colored in black,
and with 10 trimmed points, denoted by “X”. In the right panel, to make a comparison, we report classification results
obtained by the non-robustly fitted model, whose details areshown in the first column of Table 4. In this second case,
we were doing an almost unconstrained estimation ofΨg andΛg and we were not applying trimming, obtaining 21
misclassified observations.

In the robustly estimated model, the misclassified observations are in rows 70, 121 and 153 in the AIS dataset.
Two misclassified units are from male athletes, one is a female athlete. The discriminant function of the mixture
components for the observation in position 153 are close (D1(x; θ) = 0.0115 andD2(x; θ) = 0.0855), while for the
other two observations they are neatly different.

Finally, we recall that trimmed observations have been discarded to provide robustness to the parameter estimation.
After estimating the model, it thus also makes sense to classify these observations. The trimmed observations are in
rows 11, 75, 93, 99, 133, 160, 163, 166, 178, 181 and, if we assign them by the Bayes rule to the componentg having
greater value ofDg(x; θ) = φp

(

x;µg,ΛgΛ
′
g +Ψg

)

πg, we classify the first four in the female group of athletes, and the
second group of six in the male group. This means that all the trimmed observations have been assigned to their true
group. Table 6 shows the details of the classification, and the rightmost panel in Figure 5 plots the final result of the
robust model fitting.

As a last analysis on the AIS dataset, we are interested in factor interpretation. The rotated factor loading matrices
have been obtained by employing a Gradient Projection algorithm, available through the R packageGPArotation
(Bernaards and Jennrich, 2005; Browne, 2001). We opted for an oblimin transformation, which yielded results shown
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Figure 5. Classification of AIS data with fitted trimmed and constrained MFA (left panel), compared to non-robust MFA (central panel), i.e. the
model in the first column of Table 4. Misclassified data are colored in black, trimmed data are denoted by “X”. In the right panel, AIS data after
classifying also the trimmed observations. The three misclassified points (in black) represent only 1.5% of the data

Table 6. Trimmed units in the AIS dataset and their final classification

unit 11 75 93 99 133 160 163 166 178 181
D1(x; θ) 3.4e-16 9.8e-08 2.8e-06 4.8e-11 2.7e-93 6.4e-64 9.1e-89 1.3e-14 1.1e-20 1.2e-08
D2(x; θ) 9.6e-19 1.1e-12 4.3e-11 6.5e-87 6.2e-14 1.9e-06 7.1e-08 2.0e-12 9.5e-13 2.5e-05
Sex F F F F M M M M M M

in Table 7. We observe that the two groups highlight the same factors, while in a slightly different order of importance.
The first factor for the group of observations for female athletes, may be labelled as ahematological factor, with a
very high loading onHc, followed byRCCandHg. The second factor, loading heavily onHt, and in a lesser extent
on Wt andLBM, may be denoted as ageneral nutritional status. The third and fourth factors are related only toFe
andBMI, respectively. The fifth factor can be viewed as anoverweight assessment index, sinceS S FandB f at load
highly on it. The sixth factor is related only toWCC. Noticing thatWCC is not joined to thehematological factor,
we observe that the specific role of lymphocytes, cells of theimmune system that are involved in defending the body
against both infectious disease and foreign invaders, seems to be pointed out. Analogous comments may be done on
the factor loadings for the group of male athletes.

We would like to add a final remark on this data analysis. When approaching the AIS dataset, we run a Mardia test
on both groups and measured asymmetry and kurtosis, finding that both are significantly different from the Gaussian
case. Hence one may argue that a mixture of two skew distributions, as in Lin et al. (2014a), is more suited for
this dataset. Unfortunately, the obtained misclassification error, comparing different skew components, ranges from
4.5% to 5.9%. We want to show here that trimming is a convenient and competitive tool to be adopted, when one
tail (skewness) or both tails (kurtosis) are contaminated in the data. As a general principle, trimming enables robust
estimation of the location and scatter, and may offer an effective alternative to the adoption of more parameterized
skew models. Our results show that we estimated the core of the data through a Gaussian density, obtaining such a
good classification. We therefore argue that the flexibilityobtained by the robust approach may provide a pretty good
fit, even in the presence of some asymmetry in data tails.

5. Concluding remarks

We propose a robust estimation for the mixture of Gaussian factor model by adopting trimming and constrained
estimation.To resist pointwise contamination and sparse outliers thatcould arise in data collection, we incorporate
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Table 7. Factor loadings in the AIS data set

rotatedΛ1 (female athletes)
RCC 0.697 -0.006 -0.009 -0.055 0.001 -0.035
WCC 0.000 0.009 0.000 -0.015 0.012 −0.941
Hc 0.794 -0.015 0.040 -0.004 0.010 0.026
Hg 0.682 0.021 -0.025 0.047 -0.002 0.007
Fe 0.002 -0.005 −0.510 0.003 -0.004 0.000
BMI 0.029 -0.008 0.023 0.644 -0.316 -0.057
S S F -0.040 -0.012 -0.037 0.033 −0.889 -0.017
B f at 0.014 -0.024 0.013 -0.007 −0.826 0.008
LBM 0.022 −0.419 0.020 0.295 0.054 -0.025
Ht 0.020 −0.924 0.023 -0.128 -0.076 -0.002
Wt 0.029 −0.468 0.023 0.330 -0.235 -0.031

rotatedΛ2 (male athletes)
RCC -0.033 0.663 0.077 -0.015 -0.025 -0.053
WCC 0.003 -0.004 0.024 -0.003 1.024 0.013
Hc 0.048 0.622 -0.008 0.005 0.036 -0.048
Hg -0.002 0.604 -0.051 0.009 0.001 0.079
Fe 0.010 -0.006 0.027 1.103 -0.004 0.008
BMI -0.371 0.109 −0.656 0.074 0.070 -0.261
S S F −0.616 0.002 0.009 -0.001 0.015 -0.026
B f at −0.610 -0.009 0.003 0.007 -0.000 0.040
LBM 0.036 0.071 -0.344 0.037 0.053 −0.885
Ht 0.036 0.005 0.170 -0.022 0.009 −1.157
Wt -0.222 0.071 -0.357 0.042 0.056 −0.884

a trimming procedure in the iterations of the EM algorithm. The key idea is that a small portion of observations,
which are highly unlikely to occur under the current fitted model assumption, are discarded from contributing to the
parameter estimates. Furthermore, to reduce spurious solutions and avoid singularities of the likelihood, a constrained
ML estimation for the component covariances has been implemented. Results from the Monte Carlo experiments show
that the bias and MSE of the estimators, in several cases of contaminated data, are comparable to results obtained on
data without noise. Finally, the analysis on a real dataset illustrates that robust estimation leads to better classification
and provides direct interpretation of the factor loadings.

Further investigations are needed to tune the choice of the parameters, such as the portion of trimming data and the
values of the constraints. Though interesting, this issue is beyond the scope of the present paper. Surely, some data-
dependent diagnostic based on trimmed BIC notions (Neykov et al., 2007) may provide a way to select the number
of groups and underlying factors, as has been shown. With reference to the choice ofα, other tools can be adapted to
the present case, such as silhouette plots to assess the strength of cluster assignments and the classification trimmed
likelihood curves (Garcı́a-Escudero et al., 2011). These curves provide helpful exploratory tools by monitoring the
estimation results when movingα in [0,1] andG = 1, 2, . . .. On the other hand, considering anα higher than needed
does not necessarily spoil trimmed-based clustering results. We could have erroneously discarded some non-outlying
data points but the “main” clustering structure may still bedetected, as has been documented by the simulation results.
Clearly, when thinking of tuning parameters, one has also totake into account that they are interrelated. For instance,a
high trimming levelα could lead to smallerG values, since components with fewer observations may be trimmed off.
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Moreover, larger values of the constraints could lead to higher values ofG, since new components with few, almost
collinear observations may arise. With respect to the choice of the specific values for the constraints, our experience
tells us that a moderate interval of values forcload andcnoise produces almost the same estimation and exactly the
same classification. Also, from an interpretative point of view, this corresponds to the fact that, generally, the user has
some intuition (or rough knowledge) about the order of magnitude of these constraints, and this partial information
can be incorporated into the estimation. The encouraging results obtained here suggest that a deeper discussion of
these implementation details could be developed as a futurework.

As a final remark, following the suggestions for further investigation we received from an unknown referee,
the proposed method can also be extended to accommodate missing values, as in Wang (2015); and much faster
convergence to the EM-based algorithm could be improved along the lines of Zhao and Yu (2008).
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