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We deeply researched into the asymptotic behaviour of a numerical method adapted for the
solution of mathematical model of hematopoiesis which describes the dynamics of a stem cell
population. We investigated the stationary solutions of the original model by their numerical
approximation: we proved the existence of a numerical stationary solution that provides a
good approximation to the nontrivial equilibrium solution of the problem. Also, we presented
a numerical simulation which confirms this behaviour.
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Asymptotic analysis; Numerical integration

AMS Subject Classification: 35Q80; 35l50; 65M25; 92C37

1. Introduction

All blood cells arise from a common origin in the bone marrow, the hematopoietic
stem cells (HSC). These stem cells are undifferentiated and have a high proliferative
potential. They can proliferate and mature to form all types of blood cells: the red
blood cells, white cells and platelets. Hematopoiesis is the term used to describe
this process of production and regulation of blood cells. The HSC compartment
is separated in two sub-compartments: proliferating and non-proliferating [16, 18]
(also known as resting, quiescent or G0 phase). Resting cells represent the main
part of the HSC population (90% of HSC are in a resting compartment [18]). Pro-
liferating cells are actually in the cell cycle (G1-S-G2-M) where they are committed
to divide during mitosis at the end of this phase. After division, the two newborn
daughter cells enter immediately in G0-phase. A part of them remains in the HSC
compartment (self-renewal) [17]. The other part can enter by differentiation into
the mature cells compartment [20].

Mathematical modeling of hematopoietic stem cell dynamics has been investi-
gated intensively since the 1970s (see, for example, Mackey [16]) and still interests a
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lot of researchers. This interest is greatly motivated, on one hand, by medical appli-
cations and, on the other hand, by the biological phenomena (such as oscillations,
bifurcations, traveling waves, or chaos) observed in these models (Mackey [16],
Adimy et al. [4–6]).

Blood cells die and must be replaced continuously. In the normal conditions,
the body must maintain a constant blood volume to function properly. Then, the
hematopoiesis regulates its internal environment to maintain a stable population
of blood cells (homeostasis). It is believed that several hematological diseases are
due to some abnormalities in the feedback loops between different compartments
of hematopoietic populations [5, 6, 13, 16]. These disorders are considered as major
suspects in causing destabilization of the homeostasis.

In this work, we consider a model of HSC dynamics with age-dependent coeffi-
cients which was proposed in [4]. It is comprised by a nonlinear partial differential
system of equations that represents a balance law,

{
rt + ra = −(δ(a) + β(a,R(t))) r, 0 < a, t > 0,
pt + pa = −(γ(a) + g(a)) p, 0 < a < τ, t > 0,

(1)

a non local boundary condition, that means the way in which cells regenerate,

{
r(0, t) = 2

∫ τ

0 g(a) p(a, t) da, t > 0,

p(0, t) =
∫
∞

0 β(a,R(t)) r(a, t) da, t > 0,
(2)

and a set of initial conditions

{
r(a, 0) = r0(a), 0 ≤ a,
p(a, 0) = p0(a), 0 ≤ a < τ.

(3)

The independent variables a and t are, respectively, spent age in each phase and
time. The dependent variables r(a, t) and p(a, t) are densities of resting and prolif-
erating HSC, respectively. The age has no limit for resting cell, whereas a maximal
division age τ is used for proliferating ones. Since we assume here that τ is finite,
all proliferating cells that did not die must divide before they reach it (see [14]). All
the vital functions depend on age, which is the internal variable: δ(a) is the differ-
entiation rate of resting cells (also, it could count some necrosis) and γ(a) and g(a)
are the apoptosis and division rate of proliferating cells, respectively. The transi-
tion rate from resting phase to proliferating compartment, β, depends on the age
and the total number of resting cells R(t) =

∫
∞

0 r(a, t)da, t > 0. In our model the
positive equilibrium is the homeostasis of the hematopoietic stem cell population.
This age-structured model (1)–(3) was previously studied by Adimy et al. [4]. The
authors proved the existence and uniqueness of solutions to this problem. They
also investigated the existence of stationary solutions with the contribution of the
conditions that a nontrivial stationary solution must satisfy. However, the stability
of such equilibrium was not theoretically investigated. The authors introduced a
numerical method adapted to (1)–(3) to show such stability.

Models such as the one considered above cannot be solved analytically and re-
quire numerical integration to obtain an approximation of the solutions. In [1, 2],
we can find a review of the numerical schemes proposed to solve models of phys-
iologically structured populations, which are compared with regards to accuracy,
efficiency, generality, mathematical methodology and qualitative behavior depend-
ing on the compatibility conditions between initial and boundary data of the prob-
lems. On the other hand, modern numerical methods have been successfully applied
to physiologically structured models to replicate available field and/or laboratory
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data, for a variety of different systems [3, 7–11, 15]. All these works indicate that
structured population models and numerical simulations are valid tools to investi-
gate systems such as the one under consideration here. Besides, new techniques for
the numerical solution of more general nonlocal boundary problems than (1)-(3)
has been recently introduced in [12].

The numerical method used in [4] was very helpful to investigate the dynamics of
the solutions of problem (1)-(3). In different numerical tests, the authors observed
the existence of an asymptotically stable steady state. This represents, from a
medical point of view, the situation of normal hematopoiesis (homeostasis). The
unstable nontrivial steady state produces long-period oscillations which can be
related to observations of some periodical hematological diseases. However, the
theoretical study of this numerical procedure was not performed in our previous
work [4]. This is the aim of this work.

In section 2, we introduce the theoretical results developed in [4] about sys-
tem (1)–(3). In section 3, we present the numerical method. We show the existence
of the nontrivial numerical steady state provided by the method, and we analyze
the convergence of the numerical steady state to the theoretical one in section 4.
Finally, in section 5, we numerically illustrate our results.

2. Theoretical Properties of the Model

In this section, we describe some properties of the solutions of (1)–(3). In this way,
we introduce the following assumptions related to the vital rates (see [4] for more
details).

(A1) For R ∈ R
+, the function β satisfies 0 ≤ β (·, R) ≤ β+ a.e., decreasing

with respect to R on [0,+∞) and limR→+∞ β (·, R) = 0, a.e. in [0,+∞).
(A2) There is an increasing function C : [0,+∞) → [0,+∞) such that, if 0 ≤
R1 ≤M and 0 ≤ R2 ≤M then: ‖β (·, R1) − β (·, R2)‖∞ ≤ C(M) |R1 −R2| .
(A3) Function δ satisfies 0 ≤ δ ≤ δ+ a.e. in [0,+∞) .
(A4) Function γ satisfies 0 ≤ γ ≤ γ+ a.e. in [0, τ).
(A5) Function g is nonnegative, belongs to L1

loc [0, τ) and
∫ τ

0 g (a) da = +∞.

Under (A1)-(A5), the existence of a unique local solution of system (1)–(3) can
be proved via a fixed point argument (see [19]). On the other hand, regularity,
positivity and global existence of this solution depend on the initial conditions and
some criteria on the parameters of the model. With respect to stationary solutions,
r(a, t) = ϕ(a), a > 0, and p(a, t) = ψ(a), 0 < a < τ , we observe that the trivial
equilibrium (i.e. (ϕ,ψ) ≡ (0, 0)) always exists. On the other hand (see [4] for a
more detailed discussion), we can characterize another stationary solution in the
following way. We denote by Φ the total number of resting cells at the steady state,
Φ =

∫
∞

0 ϕ(a) da. Then a nontrivial steady state can be written as

ϕ(a) =
ΦΛ (a,Φ)∫ +∞

0 Λ (σ,Φ) dσ
, 0 ≤ a; ψ(a) =

ΦL(a)

2K
∫ +∞

0 Λ (σ,Φ) dσ
, 0 ≤ a < τ ; (4)

with L(a) = exp
[
−

∫ a

0 (γ(s) + g(s))ds
]
, Λ (a,Φ) = exp

[
−

∫ a

0 (δ(σ) + β (σ,Φ)) dσ
]
,

K =
∫ τ

0 g (a) exp
[
−

∫ a

0 (γ(σ) + g (σ))dσ
]
da, and Φ is just a solution of the equation

2K

∫ +∞

0
β (a,Φ) Λ (a,Φ) da = 1. (5)
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Therefore, if we define the net growth rate of the population at the constant size
as H(Φ) := 2K

∫ +∞

0 β (a,Φ)Λ (a,Φ) da, from (5), the existence of such nontrivial
equilibrium, is just associated to the existence of solutions of equation H(Φ) = 1.
So, under (A1)-(A5) we have the following result

Proposition 2.1 System (1)–(2) has exactly one nontrivial stationary solution if
H(0) > 1. Otherwise, no nontrivial stationary solution exists.

3. Numerical method

In this section, we describe a method which integrates numerically the nonlin-
ear system (1)–(3) along the characteristic curves. Taking into account that the
problem is defined over an unbounded age interval, for numerical purposes we in-
troduce a maximum individual age Amax for resting cells (Amax will be considered
enough large to assure that after this maximum age, the density r vanishes, and
so τ < Amax).

The numerical method that we propose integrates the model along the char-
acteristic curves by means of a discretization of an integral representation of the
solutions of the model. We introduce an age grid in which we state τ as a node. To
this end, given a positive integer J , we define the step size k = τ/J and denoting
by J∗ = [Amax/k], we introduce a uniform partition on the interval [0, Amax], given
by aj = j k, 0 ≤ j ≤ J∗ (note that aJ = τ). We will integrate the problem in a
fixed time interval [0, T ], so we define the discrete time levels, tn = nk, 0 ≤ n ≤ N ,
where N = [T/k].

The values Un
j , 0 ≤ j ≤ J∗, and V n

j , 0 ≤ j ≤ J , for each 0 ≤ n ≤ N , represent
numerical approximations to r(aj , tn) and p(aj , tn), respectively (the subscript j
refers to the grid point aj and the superscript n to the time level tn); we also denote
the discrete approximations as vectors Un, Vn, 0 ≤ n ≤ N , with components
Un

j , 0 ≤ j ≤ J∗, and V n
j , 0 ≤ j ≤ J , respectively. The notations Ik(W) and

I∗k(W) represent the open second order quadrature rules Ik(W) =
∑J−1

j=1
′′′kWj ,

for W = (W0, . . . ,WJ), and I∗k(W) =
∑J∗

−1
j=1

′′′kWj , for W = (W0, . . . ,WJ∗), that

will be used to approach the nonlocal terms (the notation
∑

′′′ indicates that the
first and last term are multiplied by 3

2).

Given approximations U0 ∈ R
J∗+1, V0 ∈ R

J+1 of the initial conditions in (3),
the numerical method is defined from the following general recursion that pro-
vides the numerical approximation at the time level n+1, (Un+1,Vn+1), from the
approximations at the time level n, (Un,Vn):

Un+1
j+1 = Un

j exp

(
−
k

2

(
βn

j + βn+1
j+1

)
−

∫ k

0
δ (aj + σ) dσ

)
, 0 ≤ j ≤ J∗ − 1, (6)

V n+1
j+1 = V n

j exp

(
−

∫ k

0
(γ (aj + σ) + g (aj + σ)) dσ

)
, 0 ≤ j ≤ J − 1. (7)

The discretization of the boundary conditions provides the numerical boundary
values that complete the description of this time step,

Un+1
0 = 2 Ik(g · Vn+1), (8)

V n+1
0 = I∗k(βn+1 · Un+1), (9)

0 ≤ n ≤ N − 1. We denote as g and βn, 1 ≤ n ≤ N , vectors with components
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g(aj), 0 ≤ j ≤ J , and β(aj , I
∗

k(Un)), 0 ≤ j ≤ J∗, respectively. The products g · Vn

and βn · Un, in (8)-(9), represent the componentwise product of the vectors g,
Vn, and βn, Un, respectively. Note, that for sake of simplicity only the nonlocal
dependent function β has been discretized. Depending on the expressions of the
other age-dependent functions, the required integrals may be exactly obtained or
numerically computed. In any case, taking into account that these values do not
change with time, they can be obtained before the numerical method starts. An
analysis of convergence as in [11] can be applicable for this numerical procedure.

4. Asymptotic Behavior of the Numerical Scheme

As in the model, the trivial solution is a steady state of the numerical method.
Now, if we look for a nontrivial equilibrium solution of (6)-(9), it is easy to see that
such solution (U,V) satisfies

Uj+1 = Uj exp

(
−
k

2

(
βj + βj+1

)
−

∫ k

0
δ (aj + σ) dσ

)
, 0 ≤ j ≤ J∗ − 1,

Vj+1 = Vj exp

(
−

∫ k

0
(γ (aj + σ) + g (aj + σ)) dσ

)
, 0 ≤ j ≤ J − 1,

U0 = 2 Ik(g · V),

V0 = I∗k(β · U).

Now β represents the vector with components βj = β (aj , I
∗

k (U)), 0 ≤ j ≤ J∗ − 1.
Next, we can describe the equilibrium solution of the numerical method in terms
of the numerical total population of resting cells, and such total population as a
solution of a transcendental equation only involving the parameters of the problem.
So, denoting by Sk = I∗k (U), then a nontrivial numerical steady state can be
written as

Uj =
Sk Λk(aj , Sk)

Θ∗

k(Sk)
, 0 ≤ j ≤ J∗; Vj =

Sk L(aj)

2Kk Θ∗

k(Sk)
, 0 ≤ j ≤ J, (10)

with Λk(aj , Sk) = exp
(
−

∑j
i=0

′′kβi −
∫ aj

0 δ (σ) dσ
)
, Kk =

∑J−1
j=1

′′′k g(aj) exp
(
−

∫ aj

0 (γ (σ) + g (σ)) dσ
)
, Θk(Sk) =

∑J∗
−1

j=1
′′′kβj Λk(aj , Sk),

Θ∗

k(Sk) =
∑J∗

−1
j=1

′′′kΛk(aj , Sk), (where the notation
∑

′′ indicates that the first

and the last term are multiplied by 1
2). Now Sk is just a solution of the equation

2Kk Θk(Sk) = 1, (11)

discrete counterpart of (5). Associated to this equation we define the numerical
growth rate of the population at the constant size as Hk(Sk) := 2Kk Θk(Sk).

Now, we want to show that the equilibrium solution of (6)-(9) is just an ap-
propriate approximation of the equilibrium solution of (1)-(2) as the step size k
tends to zero. In order to obtain this convergence result, we consider the following
steps. First, note that the inclusion of Amax for the numerical method could be
interpreted as a modification of the original model by truncation of the age inter-
val. Therefore, we will show the convergence of the steady state solution of this
truncated model to the steady state of (1)-(2) as Amax goes to infinity. Then we
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conclude the convergence of the numerical equilibrium solution to the equilibrium
of the truncated system as k goes to zero.

Therefore, we consider the introduction of Amax for resting cells as a change of
the original model by means of a truncation version of the system over [0, Amax].
So we introduce

{
rt + ra = −(δ(a) + β(a,R(t))) r, 0 < a < Amax, t > 0,
pt + pa = −(γ(a) + g(a)) p, 0 < a < τ, t > 0,

(12)

{
r(0, t) = 2

∫ τ

0 g(a) p(a, t) da, t > 0,

p(0, t) =
∫ Amax

0 β(a,R(t)) r(a, t) da, t > 0,
(13)

{
r(a, t) = r0(a), 0 ≤ a ≤ Amax,
p(a, t) = p0(a), 0 ≤ a ≤ τ.

(14)

Now, the total number of resting cells is defined by R(t) =
∫ Amax

0 r(a, t) da, t > 0.
By means of the same procedure than the one used to obtain the equilibrium

solution of (1)-(2), we can characterize the equilibrium solution of (12)-(13) in terms
of the total number of resting cells at the steady state. So, denoting by (ϕ̄(a), ψ̄(a))

a nontrivial steady state of the truncated model, and Φ̄ =
∫ Amax

0 ϕ̄(a) da, its total
number of resting cells, we can write

ϕ̄(a) =
Φ̄ Λ

(
a, Φ̄

)
∫ Amax

0 Λ
(
σ, Φ̄

)
dσ
, 0 ≤ a < Amax; ψ̄(a) =

Φ̄L(a)

2K
∫ Amax

0 Λ
(
σ, Φ̄

)
dσ
, 0 ≤ a < τ,

(15)
where Φ̄ is just a solution of the equation

2K

∫ Amax

0
β

(
a, Φ̄

)
Λ

(
a, Φ̄

)
da = 1, (16)

truncated version of (5). Again, we define the net growth rate of the population

at the constant size Φ̄ as Hmax

(
Φ̄

)
:= 2K

∫ Amax

0 β
(
a, Φ̄

)
Λ

(
a, Φ̄

)
da. The following

result states that the equilibrium solution of (12)-(13) converges to the nontrivial
stationary solution of (1)-(2) exponentially with Amax, by assuming the following
regularity condition

(A6) The function x → β(a, x) is continously differentiable on [0,∞), for
a ≥ 0, and βx(·, x) belongs to L1 for x ≥ 0. Where βx describes the derivative
with respect to the second argument,

Theorem 4.1 Let (A1)-(A6) be satisfied. If H(0) > 1, there exists A∗

max such that
if Amax > A∗

max, (12)-(13) has exactly one nontrivial stationary solution. In such
case, let Φ and Φ̄ denote the unique positive solutions of (5) and (16), respectively,
and let be defined ϕ and ψ by (4) and ϕ̄ and ψ̄ by (15).Then, there exist positive
constants αi, i = 1, 2, 3, such that,

|Φ − Φ̄| = O(e−α1Amax), (17)

|ϕ(a) − ϕ̄(a)| = O(e−α2Amax), a ∈ [0, Amax], (18)

|ψ(a) − ψ̄(a)| = O(e−α3Amax), a ∈ [0, Amax]. (19)

Otherwise, no nontrivial stationary solution of (12)-(13) exists.

Proof : First we prove the existence and uniqueness of solutions of the equa-
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tion (16). As H(0) > 1 and limAmax→∞Hmax(0) = H(0), we can find A∗

max

such that if Amax > A∗

max then Hmax(0) > 1. Now, we consider the function
ξ(x) = 1 − Hmax(x), related to the transcendental equation (16) that defines Φ̄
(i.e., ξ(Φ̄) = 0). Note that for Amax > A∗

max, ξ(0) < 0 and ξ′(x) > 0 (because func-
tion Hmax(x) is decreasing in (0,+∞)). Now, from the assumptions imposed to the
vital functions, and using similar arguments used in the proof of Proposition 2.1
(see [4]) for the original model, we can conclude that, limx→+∞ ξ(x) = 1. So, Φ̄ is
the unique positive root of ξ, and Φ̄ < Φ because ξ(Φ) > 0.

By means of the mean value theorem, (A1) and (A6) and the smoothness prop-

erties of vital functions, there exists Φ̃ ∈ (Φ̄,Φ) such that

|Φ̄ − Φ| ≤ C

∫ +∞

Amax

β (a,Φ) Λ (a,Φ) da

Λ
(
Amax, Φ̃

) ∫ Amax

0

(
−βx

(
a, Φ̃

))
da

≤ C e−
∫

Amax

0
β(a,Φ)da ≤ C e−α1Amax ,

so (17) holds. On the other hand, if a ∈ [0, Amax], then, (4) and (15), the mean
value theorem, (A3), (A1) and (A6), allow us to arrive at

|ϕ(a) − ϕ̄(a)| ≤ |ϕ(0) − ϕ̄(0)| + C

∣∣∣∣
∫ a

0
β (s,Φ) ds−

∫ a

0
β

(
s, Φ̄

)
ds

∣∣∣∣

≤ |ϕ(0) − ϕ̄(0)| + C
∣∣Φ − Φ̄

∣∣ . (20)

Now, after some computations we arrive at

|ϕ(0)−ϕ̄(0)| ≤ C |Φ̄−Φ|+C

∫ +∞

Amax

Λ (a,Φ) da+C

∣∣∣∣
∫ Amax

0
Λ

(
a, Φ̄

)
da−

∫ +∞

0
Λ (a,Φ) da

∣∣∣∣ ,

(21)
Therefore, by means of (A3), (A1) and (A6), and using (21) in (20) we can con-
clude (18). Finally, if a ∈ [0, Amax], (4) and (15) and properties (A4)-(A5) produce

|ψ(a) − ψ̄(a)| ≤ |ψ(0) − ψ̄(0)| =
1

2K
|ϕ(0) − ψ̄(0)|

that, by means of (18) and properties (A3), (A1) allows us to obtain (19).
By means of similar arguments than in Theorem 4.1, and using the convergence

properties of the quadrature rules that are included in the description of the numer-
ical scheme, we can arrive to the following result which shows that the equilibrium
solution of the numerical method (6)-(9) converges to the equilibrium solution of
the truncated problem as k tends to zero. More precisely, the convergence is of
second order.

Theorem 4.2 Let be the vital functions δ, β, g and γ sufficiently smooth. If
Hmax(0) > 1 then, for k > 0 enough small, (11) has a unique solution. In such case,
let Φ̄ and Sk denote the unique positive solutions of (16) and (11), respectively, and
let be defined ϕ̄ and ψ̄ by (15) and U and V by (10). Then, as k → 0

|Φ̄ − Sk| = O(k2), (22)

|ϕ̄(aj) − Uj | = O(k2), 0 ≤ j ≤ J∗, (23)

|ψ̄(aj) − Vj | = O(k2), 0 ≤ j ≤ J. (24)

Proof : Consider the function ξk(x) = 1 −Hk(x), related to the transcendental
equation (11) that defines Sk (i.e. ξk(Sk) = 0). Note that, for k sufficiently small,
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due to the regularity properties of function β and the error bound of the quadrature
rule, (ξk)

′(x) = −2Kk Θ′

k(x) > 0 on (0,+∞); limx→∞ ξk(x) = 0 and Hk(0) =
Hmax(0) +O(k2), so Sk is the unique positive root of ξk.

By means of the mean value theorem applied to the function ξ−1
k on the interval

defined by ξk(Φ̄) and ξk(Sk), there exists Φ̃ in this interval such that

|Φ̄ − Sk| =
∣∣∣
(
ξ−1
k

)
′

(ξk(Φ̃))
∣∣∣

∣∣ξk(Φ̄) − ξk(Sk)
∣∣

=

∣∣∣∣∣∣∣∣∣

2 (K −Kk)

∫ Amax

0
β(a, Φ̄)Λ

(
a, Φ̄

)
da− 2Kk

(∫ Amax

0
β(a, Φ̄)Λ

(
a, Φ̄

)
da− Θk(Φ̄)

)

2Kk Θ′

k(Φ̃)

∣∣∣∣∣∣∣∣∣

.

The regularity properties of the vital functions, and the error bounds of the quadra-
ture rule allow us to obtain that

|K −Kk| ≤ C k2,
∣∣∣∣
∫ Amax

0
β(a, Φ̄)Λ

(
a, Φ̄

)
da− Θk(Φ̄)

∣∣∣∣ ≤ C k2.

By means of these inequalities, and that K > 0 and bounded, we conclude (22).
Next, if 0 ≤ j ≤ J∗, (15) and (10) allows us to have

|ϕ̄(aj) − Uj | ≤ |ϕ̄(a0) − U0|Λ
(
aj , Φ̄

)
+ U0

∣∣Λ
(
aj , Φ̄

)
− Λk (aj , Sk)

∣∣ , (25)

the smoothness properties of the vital functions and the error bounds of the quadra-
ture rules allow us to get

∣∣Λ
(
aj , Φ̄

)
− Λk (aj , Sk)

∣∣ ≤ C k2. (26)

On the other hand, due to the boundedness and regularity properties of the vital
functions, (22) and the error bounds of the quadrature rules, we arrive at

|ϕ̄(a0) − U0| ≤ C
∣∣Φ̄ − Sk

∣∣ + C

∣∣∣∣
∫ Amax

0
Λ

(
a, Φ̄

)
da− Θ∗

k(Sk)

∣∣∣∣ ≤ C k2. (27)

Then, we obtain (23) by using (26)-(27) in (25). Finally, using (15) and (10), and
the positivity of the vital functions, we have

|ψ̄(aj) − Vj | ≤ |ψ̄(a0) − V0|. (28)

And, with the boundedness of data functions, we get

|ψ̄(a0) − V0| ≤ C
∣∣Φ̄ − Sk

∣∣ + C

∣∣∣∣
∫ Amax

0
Λ

(
a, Φ̄

)
da− Θ∗

k(Sk)

∣∣∣∣

+

∣∣∣∣
∫ Amax

0
β

(
a, Φ̄

)
Λ

(
a, Φ̄

)
da− Θk(Sk)

∣∣∣∣ (29)

and by means of the same smoothness arguments applied to (29) we arrive at

|ψ̄(a0) − V0| ≤ C k2,
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which substituted in (28) allow us to have (24).
From Theorem 4.1 and Theorem 4.2, we can conclude that the equilibrium solu-

tion of the numerical method, given by (10), is close to the theoretical equilibrium
solution, given by (4), by taking Amax large enough and k sufficiently small. On the
other hand, we can conclude the same convergence result for the total populations.

5. Numerical experiments

In this section, we will integrate numerically (1)–(3) by means of the numerical
method introduced in Section 3. We are going to show how much the numerical
stationary state approaches the theoretical one. The initial conditions are given
by functions r0(a) = ν (Amax − a) and p0(a) = Γ(τ − a), where ν and Γ are fixed
constants, chosen in a suitable form in order to satisfy the compatibility condition
between the initial and boundary conditions. We also use the following values (see
Adimy et al. [4]) τ = 7, δ(a) = 0.05, γ(a) = 0.2, g(a) = 1

τ−a
. The transition rate

function β is taken as

β(a,R) = β̃0(a)
θn

θn +Rn
,

with θ = 1.62 × 108. We have considered two kinds of functions β̃0(a) but, in

all the cases, the maximum of β̃0(a) is β0 = 1.77. In the first test problem, we

use β̃0(a) = β0 (1 − e−α a), with α = 1 and n = 6, which satisfies H(0) > 1. In
this case, the theoretical study of the model (1)–(3) (see [4]) predicts a positive
steady state. It describes, from a medical point of view, a normal hematopoiesis
(homeostasis). We show in Fig. 1 the results obtained with our numerical method.
We present the evolution with time of total populations of resting and proliferating
cells. We observe that the numerical solution is attracted towards a positive stable
equilibrium. Due to the convergence results (Theorem 4.1 and Theorem 4.2), such
asymptotically stable equilibrium provides an accurate numerical approximation of
the theoretical steady state predicted in the analysis of the model. So, the numerical
observations carried out provide relevant information about the dynamics of the
solutions of the model.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

x(t)
y(t)

Figure 1. Evolution with time of resting population (straight line) and proliferating population (dashed
line), for α = 1 and n = 6.

In the second test problem we have taken n = 2 and β̃0(a) = β0, because we are
able to obtain the exact value of the theoretical steady state Φ. So we compare
this value with the numerical results in order to show its convergence. We have
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used Amax = 400, and we have computed the difference between the theoretical
and numerical steady states for different values of the step size. Then, the quantity

rk = log
(
|Φ − Sk|/|Φ − S k

2

|
)
/ log 2, provides numerically the order of convergence

to the theoretical steady state. The results in table 1 shows the predicted second
order of convergence.

k rk
1e-2 2.045
5e-3 2.003

2.5e-3 1.997
1.25e-3 1.997

Table 1. Numerical order of convergence of the numerical steady state to the theoretical one.

6. Conclusions

We considered a problem that describes the evolution of an hematopoietic stem
cell population. We took into account cell age dependence of coefficients. We an-
alyzed the asymptotic behaviour of a new numerical method proposed ad hoc to
solve the model. We obtained that when the model presents a nontrivial stationary
solution, the numerical method also does, and the numerical stationary solution
converges to the original one. We presented numerical experiments which corrobo-
rate the theoretical results. First, the numerical method was able to approach the
nontrivial steady state in a case in which it is not possible to obtain theoretically
such equilibrium. On the other hand, we showed that this convergence is of second
order.
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