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Ranking candidates through convex sequences of variable
weights

Bonifacio Llamazares

Abstract Scoring rules are a well-known class of positional voting systems where
fixed scores are assigned to the different ranks. Nevertheless, since the winners may
change according to the scores used, the choice of the scoring vector is not obvious.
For this reason several methods have been suggested so that each candidate may be
evaluated with the most favorable scoring vector for him/her. In this paper we propose
a new model that allows to use different scoring vector for each candidate and avoid
some shortcomings of other methods suggested in the literature. Moreover we give
a closed expression for the score obtained by each candidate and, in this way, it is
possible to rank the candidates without solving the proposed model.

Keywords Scoring rules · Data envelopment analysis · Convex sequences of
weights · Variable weights.

1 Introduction

A classical problem in the decision-making field is how to get a collective ranking or
a winning candidate from individual rankings of a set of candidates or alternatives.
One usual way to tackle this problem is to consider scoring rules for aggregating
the individual rankings. In scoring rules, fixed scores are assigned to the different
ranks obtained by the candidates and these ones are ordered according to the total
number of points they receive. Notice that scoring rules are the best-known examples
of positional voting systems (see Llamazares and Peña (2015a)), where voters rank
order the candidates from best to worst and a set of winners is selected using the
positions of the candidates in the voters’ preference orders.
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Due to their simplicity and good properties, scoring rules have received consid-
erable attention in the literature (see, for instance, Llamazares and Peña (2015b) and
references therein). Nowadays, scoring rules are used in sport competitions like the
Formula One World Championship, the IndyCar Series Championship or the Mo-
torcycle World Championship. Likewise, they are also used for awarding the FIFA
Ballon d’Or Award, the Baseball Writers Most Valuable Player Award or the Most
Valuable Player of the National Basketball Association (MVP of the NBA).

However, one of the most important issues in the field of scoring rules is the
choice of the scoring vector to use, because a candidate that is not the winner with
the scoring vector imposed initially could be it if another one is used. For instance,
the scoring vector used in the Formula One World Championship has changed several
times. Thus, from 2003 to 2009, the scoring vector used for selecting the winner of
the championship was (10,8,6,5,4,3,2,1). In 2008, the winner was Lewis Hamil-
ton, followed by Felipe Massa. However, from 1991 to 2002, only the six first posi-
tions were considered and the scoring vector used was (10,6,4,3,2,1). If this scoring
vector had been used in 2008, then the winner would have been Felipe Massa (see
Llamazares and Peña (2013) for another example of this).

To avoid the previous problem, Cook and Kress (1990) introduced Data Envelop-
ment Analysis (DEA) in this context in order to evaluate each candidate with the most
favorable scoring vector for him/her. However, one important shortcoming of their
model is that several candidates are often efficient, i.e., they achieve the maximum
attainable score. For this reason, some procedures to discriminate efficient candi-
dates have appeared in the literature (see, for instance, Green et al (1996), Hashimoto
(1997), Noguchi et al (2002) and Obata and Ishii (2003)). Nevertheless, as it has been
noticed by Llamazares and Peña (2009), some of the previous models have a serious
drawback from the point of view of Social Choice Theory: the relative order between
two candidates may be altered when the number of first, second, . . . , kth ranks ob-
tained by other candidates changes, although there is not any variation in the number
of first, second, . . . , kth ranks obtained by both candidates.

On the basis of the pioneering work of Cook and Kress (1990), several models
have appeared in the literature to deal with this kind of problems (see, for instance,
Hashimoto and Wu (2004), Contreras et al (2005), Foroughi et al (2005), Foroughi
and Tamiz (2005), Wang and Chin (2007), Wang et al (2007a), Wang et al (2007b),
Wang et al (2008), Wu et al (2009), Amin and Sadeghi (2010), Soltanifar et al (2010),
Contreras (2011), Hosseinzadeh Lotfi and Fallahnejad (2011), Ebrahimnejad (2012),
Foroughi and Aouni (2012), Hosseinzadeh Lotfi et al (2013), Llamazares and Peña
(2013) and Hadi-Vencheh (2014)).

Among this great variety of models, we would like to point out those of
Hashimoto (1997) and Llamazares and Peña (2013). Although Hashimoto’s model
has the above-described shortcoming (see Llamazares and Peña (2009)), it is very in-
teresting because it uses the DEA super-efficiency model (see Andersen and Petersen
(1993)) for breaking ties for first place. Moreover, this model also considers convex
sequences of weights, which is a very natural condition in this context (see Stein et al
(1994)). For their part, Llamazares and Peña (2013) avoid the above-described short-
coming by putting together in a single restriction the constraints of the candidates
that are not being evaluated.
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In this paper we take into account both methodologies. So, we propose and an-
alyze a model with convex sequences of weights where we put together in a single
restriction the constraints of the candidates that are not being evaluated. In this way, in
our model, the relative order between two candidates cannot be altered by variations
in the number of first, second, . . . , kth ranks obtained by the remaining candidates.
Moreover, we also give a closed expression for the scores assigned to the candidates,
and thus we can obtain the winning candidates without solving the proposed model.

The rest of the paper is organized as follows. In Section 2 we recall Cook and
Kress’ model and Hashimoto’s model. In Section 3 we present our model and give
a closed expression for the scores obtained by the candidates. Finally, Section 4 is
devoted to conclusions. All proofs are in the Appendix.

2 Models of Cook and Kress (1990) and Hashimoto (1997)

Let A = {A1, . . . ,Am} be a set of candidates and suppose that each voter selects k
candidates and ranks them from top to kth place. Under the scoring rule associated
with the scoring vector (w1, . . . ,wk), the candidate Ai receives Zi = ∑

k
j=1 vi jw j points,

where vi j is the number of jth place ranks that candidate Ai occupies, and the can-
didates are ordered according to the score obtained. Two of the best known scoring
rules are the plurality rule, where w1 = 1 and w j = 0 for all j ∈ {2, . . . ,k}, and the
Borda rule, where k = m and w j = m− j for all j ∈ {1, . . . ,m}.

One of the most important questions in this topic is the choice of the scoring
vector to use, given that this choice could determine the winning candidate. To avoid
this problem, Cook and Kress (1990) suggested to evaluate each candidate with the
most favorable scoring vector for him/her. The model DEA/AR (Data Envelopment
Analysis/Assurance Region) suggested by these authors was

Z∗o(ε) = max
k

∑
j=1

vo jw j,

s.t.
k

∑
j=1

vi jw j ≤ 1, i = 1, . . . ,m,

w j−w j+1 ≥ d( j,ε), j = 1, . . . ,k−1,
wk ≥ d(k,ε),

(1)

where ε ≥ 0 and the functions d( j,ε), called the discrimination intensity functions,
are nonnegative and nondecreasing in ε . Moreover, d( j,0) = 0 for all j ∈ {1, . . . ,k}.

One important shortcoming of the previous model is that several candidates are
often efficient, i.e., they achieve the maximum attainable score (Z∗o(ε) = 1). For
this reason, Hashimoto (1997) proposed to apply the DEA super-efficiency model
(see Andersen and Petersen (1993)) to Cook and Kress’s model: By removing in
Model (1) the constraint relative to the candidate that is been evaluated, efficient can-
didates can achieve scores greater than one and, in this way, ties for first place can be
broken. Moreover, Hashimoto (1997) considered d( j,ε) = ε for all j ∈ {1, . . . ,k},
with ε small enough to guarantee a decreasing sequence of weights and to avoid the



4 Bonifacio Llamazares

solution of the model depending on the discrimination intensity functions. On the
other hand, he added new constraints to the model to assure a convex sequence of
weights (for more on this, see Stein et al (1994)); that is, w j−w j+1 ≥ w j+1−w j+2
for j = 1, . . . ,k−2 (or equivalently, w j−2w j+1 +w j+2 ≥ 0 for j = 1, . . . ,k−2). So,
the model proposed by this author was

Z̃∗o(ε) = max
k

∑
j=1

vo jw j,

s.t.
k

∑
j=1

vi jw j ≤ 1, i = 1, . . . ,m, i 6= o (2.1)

w j−w j+1 ≥ ε, j = 1, . . . ,k−1, (2.2)
wk ≥ ε, (2.3)
w j−2w j+1 +w j+2 ≥ 0, j = 1, . . . ,k−2, (2.4)

where ε is a positive non-archimedian infinitesimal.
Although Hashimoto’s model allows to discriminate efficient candidates, it has

an important drawback: the number of first, second, . . . , kth ranks obtained by ineffi-
cient candidates may change the order of efficient candidates (see an example of this
shortcoming in Llamazares and Peña (2009)). For this reason in the next section we
propose a model that avoids the above drawback. This model is based on Hashimoto’s
model and in the methodology suggested by Llamazares and Peña (2013).

3 Our model

Consider Hashimoto’s model. Notice that constraints (2.2) are equivalent to wk−1−
wk ≥ ε due to the convex sequence of weights. Moreover, in this restriction, instead
of using the parameter ε , we consider the weight wk, which has been considered by
authors such as Stein et al (1994) and Contreras et al (2005).

Now, to avoid that the positions obtained by inefficient candidates may change
the order of efficient candidates, we put together in a single restriction the constraints
of the candidates that are not being evaluated (see Llamazares and Peña (2013)). So,
we replace the constraints (2.1) by their sum. Since

m

∑
i=1
i 6=o

k

∑
j=1

vi jw j =
k

∑
j=1

w j

m

∑
i=1
i6=o

vi j =
k

∑
j=1

w j(n− vo j),

where n is the number of voters, we get the constraint

k

∑
j=1

(n− vo j)w j ≤ m−1.
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Therefore, our model can be expressed as follows:

Ẑ∗o(ε) = max
k

∑
j=1

vo jw j,

s.t.
k

∑
j=1

(n− vo j)w j ≤ m−1,

wk−1−wk ≥ wk,

wk ≥ ε,

w j−2w j+1 +w j+2 ≥ 0, j = 1, . . . ,k−2,

(3)

where we maximize the score of each candidate under the assumption that the total
score of the remaining candidates is less than or equal to the number of candidates
minus 1. Moreover, we also suppose convex sequences of weights.

In order to make easier the analysis of this model, in the following lemma we give
an alternative representation of it. In this way, we get an equivalent model where we
have replaced the convexity restriction on the variables by nonnegativity.

Lemma 1 Model (3) can be expressed as

Ẑ∗o(ε) = max
k

∑
j=1

Vo jWj + εVok,

s.t.
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . ,k,

(4)

where
Wj = w j−2w j+1 +w j+2, for all j ∈ {1, . . . ,k−2},

Wk−1 = wk−1−2wk,

Wk = wk− ε,

Vo j =
j

∑
l=1

( j+1− l)vol , for all j ∈ {1, . . . ,k},

δo(ε) = (m−1)−
(

nk(k+1)
2

−Vok

)
ε.

Notice that

Vok = kvo1 +(k−1)vo2 + · · ·+ vok ≤ kn≤ nk(k+1)
2

.

Therefore, the function δo(ε) is nonincreasing in ε and, consequently, the feasible
set of Model (4) does not increase when the value of ε increases. Hence Ẑ∗o(ε) is a
nonincreasing function; that is, if ε1 > ε2, then Ẑ∗o(ε1)≤ Ẑ∗o(ε2).

In order to ensure that Model (4) is feasible, we need to impose the condition
δo(ε)≥ 0. Given that the feasible set of the previous model depends on the evaluated
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candidate, the condition mino=1,...,m δo(ε) ≥ 0 is necessary to guarantee that all the
feasible sets are non-empty.

On the other hand, it is worth noting that if a candidate Ao gets all the first ranks,
then he/she is the winner. Given that Vo j = jvo1+( j−1)vo2+ · · ·+vo j, when vo1 = n
(and, consequently, vo2 = · · · = vok = 0), we have Vo j = jn for all j ∈ {1, . . . ,k}.
Therefore, for this candidate, the feasible set of Model (4) is

S =

{
(W1, . . . ,Wk) ∈Rk

+ |
k

∑
j=2

n j( j−1)
2

Wj ≤ δo(ε)

}
,

and Model (4) is unbounded. Consequently, candidate Ao is the winner.
In the following theorem we give the optimal value of this program for the re-

maining cases.

Theorem 1 Consider Model (4) and let Vo1 < n. Then Ẑ∗o(ε) = δo(ε)V ∗o + εVok,
where

V ∗o = max
j=1,...,k

V j
o and V j

o =
Vo j

n j( j+1)
2

−Vo j

.

In the following subsections we analyze the behavior of our model according to
whether the parameter ε is null or not.

3.1 The case ε = 0

When ε = 0, Model (4) can be written as

Ẑ∗o = max
k

∑
j=1

Vo jWj,

s.t.
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj ≤ m−1,

Wj ≥ 0, j = 1, . . . ,k.

(5)

By Theorem 1, the score obtained by the candidate Ao when Vo1 < n is

Ẑ∗o = (m−1)V ∗o = (m−1) max
j=1,...,k

Vo j

n j( j+1)
2

−Vo j

.

For instance, consider the example given in Table 1, taken from Cook and Kress
(1990, p. 1309). There is a tie for the first place between candidates C and D, and the
order of the remaining candidates is B, A, F and E. A way to break the tie between C
and D will be explained in the next subsection.

It is worth noting that the order obtained through the scores Ẑ∗o is the same as
obtained by using a model proposed by Contreras et al (2005, Prop. 3.4).
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Table 1 Ranks obtained by each candidate and values of Ẑ∗o .

Candidate vi1 vi2 vi3 vi4 Ẑ∗o

A 3 3 4 3 0.9524
B 4 5 5 2 1.4516
C 6 2 3 2 2.1429
D 6 2 2 6 2.1429
E 0 4 3 4 0.6180
F 1 4 3 3 0.7143

Proposition 1 The rank given by Model (5) is the same as the obtained by using the
expression

Zo = max
j=1,...,k

Vo j

j( j+1)
2

.

As Contreras et al (2005) have pointed out, the score Zo can be interpreted as the
result of evaluating the candidates by using the normalized truncated Borda rules
(on this, see, Fishburn (1974)) and choosing the maximum value. Moreover, the
model proposed by these authors has some interesting properties such as monotonic-
ity, Pareto-optimality and immunity to the absolute winner paradox (see Contreras
et al (2005) and Llamazares and Peña (2015a)). Therefore, Model (5) also satisfies
these properties.

3.2 The case ε > 0

By Theorem 1, when Vo1 < n we can express the score obtained by the candidate Ao
as

Ẑ∗o(ε) = (m−1)V ∗o + ε

(
Vok−V ∗o

(
nk(k+1)

2
−Vok

))
= (m−1)V ∗o + ε

(
Vok(1+V ∗o )−V ∗o

nk(k+1)
2

)
. (6)

As we can see, the graph of Ẑ∗o(ε) is a straight line. Moreover, given that Ẑ∗o(ε) is a
nonincreasing function, the slope of this straight line is negative or null.

Notice that since
V k

o =
Vok

nk(k+1)
2

−Vok

,

we get

V k
o

nk(k+1)
2

=Vok(1+V k
o ).

Therefore, when V ∗o =V k
o then

Vok(1+V ∗o )−V ∗o
nk(k+1)

2
= 0
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and, consequently,
Ẑ∗o(ε) = (m−1)V k

o ,

that is, the value Ẑ∗o(ε) does not depend on the choice of ε .
Consider now the following example, taken from Obata and Ishii (2003) (see

Table 2).

Table 2 First and second ranks obtained by each candidate.

Candidate vi1 vi2

A 32 10
B 28 20
C 13 36
D 20 27
E 27 19
F 30 8
G 0 30

In this case m = 7, n = 150 and k = 2. Therefore

Ẑ∗o(ε) = 6V ∗o + ε

(
Vok(1+V ∗o )−450V ∗o

)
.

When we focus on candidates A and B we have

Ẑ∗A(ε) =
96
59
− 1650

59
ε, Ẑ∗B(ε) =

84
61
− 600

61
ε.

Both functions appear drawn in Figure 1 (note that we have considered different
scales on both axes; a hundredth on the x-axis is equal to one unit on the y-axis).

1
70

2
145

ε

Ẑ∗o(ε)

84
61

96
59

A

B

Fig. 1 Graphs of the functions Ẑ∗A(ε) and Ẑ∗B(ε).

As we can see in Figure 1, when we take values of ε less than 2/145 we have
A � B. However, if the values of ε are greater than 2/145, then B � A. In Table 3
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we show this behavior for two specific values of ε , ε = 0.01 and ε = 1/70. This last
value is the maximum possible value for ε , that is, the maximum value for which
mino=1,...,m δo(ε)≥ 0.

Table 3 Values of δo(ε) and Ẑ∗o(ε) for the candidates of Table 2.

ε = 0.01 ε = 1/70

Candidate δo(ε) Ẑ∗o(ε) δo(ε) Ẑ∗o(ε)

A 2.24 1.3475 0.6286 1.2276
B 2.26 1.2787 0.6571 1.2365
C 2.12 0.9588 0.4571 0.9588
D 2.17 1.0496 0.5286 1.0496
E 2.23 1.2195 0.6143 1.1777
F 2.18 1.2250 0.5429 1.1071
G 1.8 0.7143 0.0000 0.4286

In the light of the previous example, it does not seem obvious how to choose a
specific value of ε . One possibility would be to consider a value of ε small enough
to avoid that the winner depends on the choice of ε (this is the solution proposed by
some authors in their models; see, for instance, Hashimoto (1997) and Foroughi and
Tamiz (2005)). If we consider in our model an infinitesimal positive value of ε , then,
by expression (6), the candidates are ordered according to the score (m− 1)V ∗o ; that
is, the score obtained by the candidates when ε = 0. If for ε = 0 there is a tie between
two candidates, Ai and Ap, then this means that V ∗i is equal to V ∗p . Therefore,

1+V ∗i = 1+V ∗p and V ∗i
nk(k+1)

2
=V ∗p

nk(k+1)
2

,

and, consequently,
Ẑ∗i (ε)> Ẑ∗p(ε) ⇔ Vik >Vpk.

Therefore, the use of an infinitesimal positive value of ε in our model is equivalent
to ranking the candidates according to the score Ẑ∗o (that is, to consider ε = 0) and
breaking the ties between the candidates according to the value of Vok. For instance,
if we consider again Table 1, the tie between C and D can be broken by taken into
account the values VC4 = 38 and VD4 = 40. So, in this case, D� C.

Another possibility would be to take the maximum possible value for ε (in the
same spirit that in Cook and Kress’ model), although in the previous example (see
Figure 1), it does seem the best choice. On the other hand, this solution has a serious
shortcoming: the order between two candidates may depend on the ranks obtained
by other candidates. For instance, suppose that candidates C, D and G obtain the
ranks shown in Table 4, which are different from those shown in Table 2. Now, the
maximum possible value for ε is 1/73, and, with this value, A� B (Ẑ∗A(ε) and Ẑ∗B(ε)
are still the functions of Figure 1 and 1/73 < 2/145; see also Table 4).

To avoid taking a fixed value of ε , Llamazares and Peña (2013) propose a model
where the average value of the objective functions is considered (in our case, the av-
erage of the functions Ẑ∗o(ε)). In the sequel we follow this methodology. Moreover,



10 Bonifacio Llamazares

Table 4 New ranks and values of δo(ε) and Ẑ∗o(ε) for ε = 1/73.

Candidate vi1 vi2 δo Ẑ∗o(ε)

A 32 10 0.8493 1.2440
B 28 20 0.8767 1.2423
C 13 46 0.8219 1.1176
D 20 35 0.8630 1.1784
E 27 19 0.8356 1.1834
F 30 8 0.7671 1.1233
G 0 12 0.0000 0.1644

for each candidate Ao we only consider the constraint δo(ε)≥ 0 instead of the restric-
tion mino=1,...,m δo(ε) ≥ 0. This prevents that the average of the function Ẑ∗o(ε) may
depend on the results obtained for the remaining candidates.

The maximum value for which the feasible set of Model (4) is not-empty is

ε
∗
o = sup{ε ≥ 0 | δo(ε)≥ 0} .

Since

δo(ε) = (m−1)−
(

nk(k+1)
2

−Vok

)
ε,

we have
ε
∗
o =

m−1
nk(k+1)

2
−Vok

.

Once known the value of ε∗o , the score assigned to the candidate Ao is

Zo =
1
ε∗o

∫
ε∗o

0
Ẑ∗o(ε)dε,

that is, the average of the function Ẑ∗o(ε). In the following theorem we show explicitly
the value of Zo.

Theorem 2 Consider Model (4). Then

Zo = (m−1)
V ∗o +V k

o

2
.

Notice that Zo is the average of Ẑ∗o and (m−1)V k
o , and that, given two candidates

Ai and Ap,

V k
i >V k

p ⇔
Vik

nk(k+1)
2

−Vik

>
Vpk

nk(k+1)
2

−Vpk

⇔ Vik

nk(k+1)−2Vik
>

Vpk

nk(k+1)−2Vpk

⇔ Vik

(
nk(k+1)−2Vpk

)
>Vpk

(
nk(k+1)−2Vik

)
⇔ Vik >Vpk.
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Therefore, if several candidates have the same score Ẑ∗o , then ranking these can-
didates according to the values Zo gives the same result as breaking the ties with the
values Vok.

It is also worth noting that, in general, Zo and Ẑ∗o provide different ranks. For
instance, consider Table 5. The rank obtained with Ẑ∗o is

A� F� B� E� D� C� G.

while the rank obtained with Zo is

A� B� F� E� D� C� G.

Table 5 Values of Ẑ∗o and Zo for the candidates of Table 2.

Candidate Ẑ∗o Zo

A 1.6271 1.4040
B 1.3770 1.2982
C 0.9588 0.9588
D 1.0496 1.0496
E 1.3171 1.2394
F 1.5000 1.2840
G 0.4286 0.4286

4 Concluding remarks

In the last years, increasing attention has been devoted to the study of ranked voting
systems where each candidate is evaluated with the most favorable scoring vector for
him/her. However, some of them have an important shortcoming: the relative order
between two candidates may be altered when the number of first, second, . . . , kth
ranks obtained by other candidates changes, although there is not any variation in the
number of first, second, . . . , kth ranks obtained by both candidates. Likewise, some
models are formulated using functions depending on a parameter ε , and the order
between two candidates may change according to the value of ε .

In this paper we have proposed a model that avoids the above problems and that
considers convex sequences of weights. Moreover, an important advantage of our
model against other methods suggested in the literature is that we give a closed ex-
pression for the scores assigned to the candidates. Thus, we can obtain the order of
the candidates without solving the proposed model and, in this way, it could be easy
to implement in some contexts (for instance, in academic environments).
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A Appendix

Proof of Lemma 1. Given Model (3), we consider the following change of variables:{
s j = w j−w j+1, for all j ∈ {1, . . . ,k−1},
sk = wk.

It is easy to check that w j = ∑
k
p= j sp for all j ∈ {1, . . . ,k} and that the set of

constraints 
w j−w j+1 ≥ w j+1−w j+2, j = 1, . . . ,k−2,
wk−1−wk ≥ wk,

wk ≥ ε.

is equivalent to the set {
s j ≥ s j+1, j = 1, . . . ,k−1,
sk ≥ ε.

Let us make yet another change of variables:{
Wj = s j− s j+1, for all j ∈ {1, . . . ,k−1},
Wk = sk− ε.

From the previous relationships, variables Wj can be expressed as functions of
variables w j in the following way:

Wj = s j− s j+1 = w j−2w j+1 +w j+2, for all j ∈ {1, . . . ,k−2},
Wk−1 = sk−1− sk = wk−1−2wk,

Wk = wk− ε.

Furthermore, it is easy to see that s j = ∑
k
l= j Wl + ε for all j ∈ {1, . . . ,k}. There-

fore,

w j =
k

∑
p= j

sp =
k

∑
p= j

(
k

∑
l=p

Wl + ε

)
= ∑

j≤p≤k
p≤l≤k

Wl +
k

∑
p= j

ε = ∑
j≤p≤l≤k

Wl +(k+1− j)ε

=
k

∑
l= j

l

∑
p= j

Wl +(k+1− j)ε =
k

∑
l= j

(l +1− j)Wl +(k+1− j)ε.



Ranking candidates through convex sequences of variable weights 13

Next we write the remaining expressions of Model (3) as functions of the vari-
ables Wj:

k

∑
j=1

vo jw j =
k

∑
j=1

vo j

(
k

∑
l= j

(l +1− j)Wl +(k+1− j)ε

)

= ∑
1≤ j≤k
j≤l≤k

(l +1− j)vo jWl + ε

k

∑
j=1

(k+1− j)vo j

= ∑
1≤ j≤l≤k

(l +1− j)vo jWl + ε

k

∑
j=1

(k+1− j)vo j

= ∑
1≤l≤k
1≤ j≤l

(l +1− j)vo jWl + ε

k

∑
j=1

(k+1− j)vo j

=
k

∑
l=1

Wl

(
l

∑
j=1

(l +1− j)vo j

)
+ ε

k

∑
j=1

(k+1− j)vo j

=
k

∑
j=1

Wj

(
j

∑
l=1

( j+1− l)vol

)
+ ε

k

∑
l=1

(k+1− l)vol ,

where the last equality is obtained by changing the role of j and l. If we denote
∑

j
l=1( j+1− l)vol by Vo j for all j ∈ {1, . . . ,k}, then we have

k

∑
j=1

vo jw j =
k

∑
j=1

Vo jWj + εVok.

Analogously,

k

∑
j=1

(n− vo j)w j = n
k

∑
j=1

w j−
k

∑
j=1

vo jw j = n
k

∑
j=1

w j−
k

∑
j=1

Vo jWj− εVok.

Given that

k

∑
j=1

w j =
k

∑
j=1

(
k

∑
l= j

(l +1− j)Wl +(k+1− j)ε

)

= ∑
1≤ j≤k
j≤l≤k

(l +1− j)Wl + ε

k

∑
j=1

(k+1− j) = ∑
1≤ j≤l≤k

(l +1− j)Wl + ε
k(k+1)

2

= ∑
1≤l≤k
1≤ j≤l

(l +1− j)Wl + ε
k(k+1)

2
=

k

∑
l=1

Wl

(
l

∑
j=1

(l +1− j)

)
+ ε

k(k+1)
2

=
k

∑
l=1

l(l +1)
2

Wl + ε
k(k+1)

2
,
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we have
k

∑
j=1

(n− vo j)w j =
k

∑
j=1

n j( j+1)
2

Wj + ε
nk(k+1)

2
−

k

∑
j=1

Vo jWj− εVok

=
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj +

(
nk(k+1)

2
−Vok

)
ε.

Therefore, the constraint
k

∑
j=1

(n− vo j)w j ≤ m−1

can be written as
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj +

(
nk(k+1)

2
−Vok

)
ε ≤ m−1.

If we consider

δo(ε) = (m−1)−
(

nk(k+1)
2

−Vok

)
ε,

then Model (3) can be expressed as

Ẑ∗o(ε) = max
k

∑
j=1

Vo jWj + εVok,

s.t.
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . ,k.

Proof of Theorem 1. Model (4) is equivalent to the following one:

Ẑ′o(ε) = max
k

∑
j=1

Vo jWj,

s.t.
k

∑
j=1

(
n j( j+1)

2
−Vo j

)
Wj ≤ δo(ε),

Wj ≥ 0, j = 1, . . . ,k.

Moreover Ẑ∗o(ε) = Ẑ′o(ε) + εVok. It is well known that if a linear program has an
optimal solution, then its dual also has an optimal solution and the optimal values for
both problems are equal. Therefore, it is sufficient to solve the dual of the previous
problem, that is,

min δo(ε)X ,

s.t.
(

n j( j+1)
2

−Vo j

)
X ≥Vo j, j = 1, . . . ,k,

X ≥ 0.
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It is easy to check that the optimal solution is

X∗ =V ∗o = max
j=1,...,k

Vo j

n j( j+1)
2

−Vo j

.

Therefore, Ẑ′o(ε) = δo(ε)V ∗o and Ẑ∗o(ε) = δo(ε)V ∗o + εVok.

Proof of Proposition 1. We distinguish two cases:

1. If a candidate Ao gets all the first ranks, then he/she is the winner according with
Model (5). On the other hand, since vo1 = n, we have Vo j = jvo1 +( j− 1)vo2 +
· · ·+ vo j = jn. Therefore,

Zo = max
j=1,...,k

Vo j

j( j+1)
2

= max
j=1,...,k

2n
j+1

= n.

Let Ai be a different candidate. Then vi1 = 0, Vi j = ( j−1)vi2+ · · ·+vi j ≤ ( j−1)n,
and

Zi = max
j=1,...,k

Vi j

j( j+1)
2

≤ max
j=1,...,k

2( j−1)n
j( j+1)

< n.

Therefore Zo > Zi.
2. If no candidate obtains all the first ranks, let Ao and Ai be two candidates such

that Vo1 < n and Vi1 < n. Given that

Vo j

n j( j+1)
2

−Vo j

>
Vil

nl(l +1)
2

−Vil

⇔ nl(l +1)
2

Vo j−VilVo j >
n j( j+1)

2
Vil−Vo jVil

⇔ l(l +1)
2

Vo j >
j( j+1)

2
Vil ⇔

Vo j

j( j+1)
2

>
Vil

l(l +1)
2

for all j, l ∈ {1, . . . ,k}, we have

max
j=1,...,k

Vo j

n j( j+1)
2

−Vo j

> max
j=1,...,k

Vi j

n j( j+1)
2

−Vi j

⇔ max
j=1,...,k

Vo j

j( j+1)
2

> max
j=1,...,k

Vil

l(l +1)
2

;

that is,
Ẑ∗o > Ẑ∗i ⇔ Zo > Zi.
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Proof of Theorem 2.

Zo =
1
ε∗o

∫
ε∗o

0
Ẑ∗o(ε)dε

=
1
ε∗o

∫
ε∗o

0

(
(m−1)V ∗o + ε

(
Vok−V ∗o

(
nk(k+1)

2
−Vok

)))
dε

= (m−1)V ∗o +

(
Vok−V ∗o

(
nk(k+1)

2
−Vok

))
1
ε∗o

∫
ε∗o

0
ε dε

= (m−1)V ∗o +

(
Vok−V ∗o

(
nk(k+1)

2
−Vok

))
ε∗o
2

= (m−1)V ∗o +

(
Vok−V ∗o

(
nk(k+1)

2
−Vok

))
m−1

2
(

nk(k+1)
2

−Vok

)
= (m−1)V ∗o +

m−1
2

Vok

2
(

nk(k+1)
2

−Vok

) − m−1
2

V ∗o

=
m−1

2

V ∗o +
Vok

nk(k+1)
2

−Vok

= (m−1)
V ∗o +V k

o

2
.
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