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Abstract In many voting systems, voters’ preferences on a set of candidates are rep-
resented by linear orderings. In this context, scoring rules are well-known procedures
to aggregate the preferences of the voters. Under these rules each candidate obtains
a fixed number of points, sk, each time he/she is ranked kth by one voter and the
candidates are ordered according to the total number of points they receive. In or-
der to identify the best scoring rule to use in each situation, we need to know which
properties are met by each of these procedures. Although some properties have been
analyzed extensively, there are other properties that have not been studied for all
scoring rules. In this paper we consider two desirable social choice properties, the
Pareto-optimality and the immunity to the absolute loser paradox, and establish char-
acterizations of the scoring rules that satisfy each of these specific axioms. Moreover,
we also provide a proof of a result given by Saari and Barney (The Mathematical
Intelligencer 25:17–31, 2003), where the scoring rules meeting reversal symmetry
are characterized. From the results of characterization, we establish some relation-
ships among these properties. Finally, we give a characterization of the scoring rules
satisfying the three properties.
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1 Introduction

Scoring rules1 are a class of voting systems where voters rank order the candidates
from best to worst and each candidate obtains a fixed number of points, sk, each time
he/she is ranked kth by one voter. The candidates who accumulate the most points are
the winners.

The best known and studied scoring rules are the Borda rule and the k-approval
voting rules. Nevertheless, there are numerous decisional contexts where other scor-
ing rules are used. Among these contexts we can mention festivals like the Eurovision
Song Contest, the FIFA Ballon d’Or Award or the choice of the Most Valuable Player
of the National Basketball Association (MVP of the NBA). Also different scoring
rules are used in sport competitions like the Formula One World Championship or
the Motorcycle World Championship (in these events a voter is replaced by a race).

Many of the papers published on the topic of scoring rules are devoted to the
study of social choice properties of these rules. Some specific properties have been
studied extensively and we know exactly which scoring rules satisfy those axioms.
For instance, it is well known that all scoring rules are anonymous, neutral, consis-
tent and continuous (Young 1975), and satisfy the monotonicity property (Moulin
1988a), and participation2 (whenever ties are broken according to a fixed ordering of
the candidates, see Moulin 1988b). Also, it has been proven that no scoring rule is
Condorcet consistent (Fishburn 1974; Saari 2000b), that the plurality rule is the only
scoring rule that verifies the absolute winner axiom3 (Lepelley 1992) and that the
Borda rule is the only scoring rule that satisfies the Condorcet loser property (Smith
1973; Fishburn and Gehrlein 1976). A survey of these results can be found in Merlin
(2003).

However there are other properties that have not been studied for all scoring rules
and that are desirable from a social choice point of view. Among these properties we
can cite the Pareto-optimality or the immunity to the absolute loser paradox (see, for
instance, Felsenthal 2012; Plassmann and Tideman 2014). If we want to compare all
scoring rules that are used in practice, in order to be able to make an assessment based
on their respective strengths and weaknesses, we need to know which rules verify
each of these axioms. For this purpose, in this paper we provide characterizations of
the scoring rules that satisfy these specific social choice properties.

In order to obtain the candidates’ score, scoring rules only need the number of
votes obtained by each candidate in each kth place. Instead of using these values, in
this paper we consider, by each candidate, the number of votes obtained by him/her
until the kth place (called his/her cumulative standings). The cumulative standings al-
low us to deal with scoring rules without requiring that the scores are decreasing and,
in this way, to obtain some results in an easier way. It is worth noting that cumulative
standings have been previously used by Fishburn (1974), Stein et al. (1994), Green
et al. (1996), Moulin (1988a, cap. 9), and Llamazares and Peña (2009, 2013), among
others.

1 It is worth noting that the term scoring rules is also used, but with a different meaning, in some fields
of experimental economic and decision theory.

2 Failing to satisfy this property is known as the no show paradox.
3 This axiom is called by the author the strong Condorcet winner property.
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The paper is organized as follows. In Section 2 we introduce scoring rules and
show how the score obtained by each candidate can be expressed by using the cumu-
lative standings obtained by him/her. Section 3 contains the main results of the paper.
In this section we characterize the scoring rules that satisfy the Pareto-optimality
property or that are immune to the absolute loser paradox. We also prove a charac-
terization of the scoring rules satisfying reversal symmetry that appears, without an
explicit proof, in Saari and Barney (2003). To end the section we provide some re-
lationships among the properties studied and a characterization of the scoring rules
meeting the three properties. Finally, Section 4 is devoted to conclusions. All proofs
are in the Appendix.

2 Scoring rules

Throughout the paper, we will use the following notation: Given two vectors x,y ∈
Rk, x ≥ y denotes xi ≥ yi for all i ∈ {1, . . . ,k}; x > y means that x ≥ y and x 6= y;
x� y means that xi > yi for all i ∈ {1, . . . ,k}; given b ∈ R, b stands for the vector
(b, . . . ,b). Moreover, given a∈R, bacwill denote the integer part of a, i.e., the largest
integer smaller than or equal to a.

Let A = {A1, . . . ,Am} be a set of candidates, with m≥ 34. A weak order on A is
a complete and transitive binary relation on A . A linear order on A is a complete,
transitive and antisymmetric binary relation on A . A linear order on A where A1 is
the most preferred candidate, A2 is the second most preferred candidate and so on
will be written in the usual way as A1 A2 · · ·Am−1 Am. Let W and P be, respectively,
the sets of weak and linear orders on A . A profile p is a vector of linear orders on A
where each component represents the preferences of a voter.

A scoring vector s = (s1, . . . ,sm) is a vector s ∈ Rm, such that s1 ≥ s2 ≥ ·· · ≥
sm and s1 > sm. Given the scoring vector s, the scoring rule associated with s is a
mapping from

⋃
n≥2 Pn to W that, for each profile p, assigns sk points to the kth

most preferred candidate of each voter and the candidates are ordered according to
the total number of points they receive. So, the score obtained by candidate Ai is
∑

m
k=1 skvi

k, where vi
k is the number of kth place ranks that candidate Ai occupies.

Note that, given a profile p, scoring rules only use the number of first, second,
. . . , mth ranks obtained by each candidate. Instead of using the number of ranks
vi

k, k = 1, . . . ,m, in this paper we consider for each candidate Ai his/her cumulative
standings

V i
k =

k

∑
l=1

vi
l , k = 1, . . . ,m,

which have been previously used in this context by Fishburn (1974), Stein et al.
(1994), Green et al. (1996), Moulin (1988a, cap. 9) and Llamazares and Peña (2009,
2013), among others. Notice that the number of cumulative standings in the last place
is always the number of voters in the profile p.

4 When m = 2, all the scoring rules coincide with the plurality rule.
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Taking into account that vi
1 = V i

1 and vi
k = V i

k −V i
k−1 for all k ∈ {2, . . . ,m}, we

have
m

∑
k=1

skvi
k = s1V i

1 +
m

∑
k=2

sk(V i
k −V i

k−1) =
m

∑
k=1

skV i
k −

m

∑
k=2

skV i
k−1 =

m

∑
k=1

skV i
k −

m−1

∑
k=1

sk+1V i
k

=
m−1

∑
k=1

(sk− sk+1)V i
k + smV i

m,

that is, the score obtained by candidate Ai can be represented by using cumula-
tive standings through the expression ∑

m
k=1 SkV i

k , where Sk = sk − sk+1 for all k ∈
{1, . . . ,m− 1} and Sm = sm. From these relations it is easy to get that sk = ∑

m
l=k Sl

for all k ∈ {1, . . . ,m}. Moreover, the conditions s1 ≥ s2 ≥ ·· · ≥ sm are equivalent to
Sk ≥ 0 for all k ∈ {1, . . . ,m−1}, and the condition s1 > sm is equivalent to Sk > 0 for
some k ∈ {1, . . . ,m−1}5.

On the other hand, it is well known that two scoring rules associated with the
vectors s and s′ are equivalent (that is, they provide the same weak orders) if and only
if there exist a,b ∈R, a > 0, such that s′ = a · s+b. For this reason, in the literature
of scoring rules (and specially in the case of three candidates) is usual to consider the
following set of scoring vectors (see, for instance, Saari 1999, 2000a,b):

S ∗ =
{

s ∈Rm | s1 = 1, sm = 0, sk ≥ sk+1 (k = 1, . . . ,m−1)
}
.

Given s = (1,s2, . . . ,sm−1,0) ∈ S ∗, the scoring vector S associated with it is
(1− s2,s2− s3, . . . ,sm−1,0); that is, it is a scoring vector with L1-norm equals to 1
and Sm = 0. Since ∑

m
k=1 SkV i

k = ∑
m−1
k=1 SkV i

k , we can take the following set of vectors6:

S =

{
S ∈Rm−1 | S > 0,

m−1

∑
k=1

Sk = 1
}
.

So, given S ∈S and a profile p, if we define the set V as

V =
{
(V1, . . . ,Vm−1) ∈Nm−1 | 0≤V1 ≤ ·· · ≤Vm−1

}
,

and we denote by Vi the vector (V i
1, . . . ,V

i
m−1), that is, the cumulative standings7 of

candidate Ai, then the score obtained by Ai is FS(Vi), where FS : V −→R is defined
by

FS(V1, . . . ,Vm−1) =
m−1

∑
k=1

SkVk.

5 We will say that s and S are scoring vectors associated each other.
6 Reciprocally, given S ∈S , the scoring vector s ∈S ∗ associated with it is

s = (1,S2 + · · ·+Sm−1,S3 + · · ·+Sm−1, . . . ,Sm−1,0).

7 Although the cumulative standings of each candidate depend on the profile p, in order to avoid cum-
bersome notation we shall omit p in the notation of these values when there is no possible confusion. When
it will be necessary, we will use the notation Vi for the profile p, V′i for the profile p′ and so on (the same
remark can be applied to the notation vi

k).
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As in the case of the scoring vectors s, when we use vectors of S we say that
the scoring rule is associated with S. Next, we represent by means of FS some of the
best-known scoring rules:

1. Plurality: A candidate receives one point each time he/she is ranked first by some
voter and zero points for the other ranks. So, the candidates with the largest num-
ber of first ranks win. In the set of scoring vectors S , plurality rule is obtained
when S1 = 1 and Sk = 0 for all k ∈ {2, . . . ,m−1}; that is,

FS(V1, . . . ,Vm−1) =V1.

2. Antiplurality: A candidate receives zero points each time he/she is ranked last
by some voter and one point for the other ranks. So, the candidates with the
minor number of votes in the last position win. In the set of scoring vectors S ,
antiplurality rule is obtained when Sk = 0 for all k ∈ {1, . . . ,m−2} and Sm−1 = 1;
that is,

FS(V1, . . . ,Vm−1) =Vm−1.

3. Borda rule: A candidate receives zero points each time he/she is ranked last by
some voter, one point for being ranked next to last, up to m− 1 points for being
ranked first. In the set of scoring vectors S , Borda rule is obtained when Sk =
1/(m−1) for all k ∈ {1, . . . ,m−1}; that is,

FS(V1, . . . ,Vm−1) =
V1 + · · ·+Vm−1

m−1
,

i.e., the score obtained by each candidate is the arithmetic mean of his/her cumu-
lative standings.

4. k-approval voting: A candidate receives one point each time he/she is ranked
in the k first positions by some voter and zero points for the other ranks. So, the
candidates with the largest number of votes in the k first positions win. Obviously,
plurality and antiplurality are special cases of k-approval voting (with k = 1 and
k = m− 1, respectively). In the set of scoring vectors S , k-approval voting is
obtained when Sk = 1 and Si = 0 for all i 6= k; that is,

FS(V1, . . . ,Vm−1) =Vk.

To finish this section, it is worth pointing out that the cumulative standings allow
us to obtain an easy characterization of the candidates who are winners with all the
scoring rules (see Fishburn 1974, Stein et al. 1994, and also, on this subject, Saari
1992 and Baharad and Nitzan 2006): Given a profile p, the candidate Ai is a winner
with all scoring rules if and only if Vi ≥ V j for all j 6= i.

3 Social choice properties

In this section we characterize the scoring rules that satisfy Pareto-optimality and
that are immune to the absolute loser paradox. Moreover, we also provide a proof
of a result given by Saari and Barney (2003), which characterizes the scoring rules
satisfying reversal symmetry. Finally, in the last subsection we establish some rela-
tionships among the properties studied.
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3.1 Pareto-optimality

Pareto-optimality has been considered a basic property by some authors (see, for
instance, Moulin 1988a, p. 233, or Felsenthal 2012). For this reason, the fulfilment
of this property has been studied in the usual scoring rules. For instance, it is known
that the Borda rule and, in general, all scoring rules with strictly decreasing weights
are Pareto-optimal and that the antiplurality does not meet this property (see Moulin
1988a, p. 234). In the sequel we provide a characterization of all scoring rules that
satisfy this axiom.

Definition 1 Let p be a profile.

1. A candidate Ai dominates A j if all the voters strictly prefer Ai to A j.
2. A candidate Ai is Pareto-optimal if there does not exist another candidate that

dominates Ai.

Definition 2 A scoring rule is Pareto-optimal when, for all profile p, all the winning
candidates are Pareto-optimal.

This definition of Pareto-optimality has been used by Moulin (1988a, p. 233)
and Nurmi (1999, p. 88), among others. Nevertheless, it is worth noting that some
authors such as Fishburn (1974) and Felsenthal (2012) analyze the susceptibility of
some voting systems to the following paradox (that they call the dominated-winner
paradox or Pareto paradox): A no Pareto-optimal candidate may be a winner while
a candidate that dominates him/her may not be. But scoring rules are immune to this
paradox: Given a profile p, if candidate Ai dominates candidate A j, then Vi ≥ V j.
Therefore, for any S ∈S , FS(Vi)≥ FS(V j) and, consequently, if A j is a winner, then
so does Ai.

In the sequel we characterize the scoring rules that verify the Pareto-optimality
property.

Theorem 1 Let S ∈S . The following conditions are equivalent:

1. The scoring rule associated with S is Pareto-optimal.
2. S� 0, or min

k∈{1,...,m−1}
Sk = 0 and

p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk > m,

where p = min
{

k ∈ {1, . . . ,m−1} | Sk = 0
}

.

The previous theorem shows that the scoring rules associated with scoring vec-
tors with non-null weights are Pareto-optimal. Therefore, the Borda rule is Pareto-
optimal. In the following corollary we show that the only Pareto-optimal k-approval
voting is plurality rule.

Corollary 1 k-approval voting is Pareto-optimal if and only if k = 1.
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Next we express the result given in Theorem 1 in the usual set of scoring vectors
S ∗.

Corollary 2 Let s ∈S ∗. The following conditions are equivalent:

1. The scoring rule associated with s is Pareto-optimal.
2. 1 > s2 > · · ·> sm−1 > 0, or min

k∈{1,...,m−1}
sk− sk+1 = 0 and

m−1

∑
k=1

sk > m · sp,

where p = min
{

k ∈ {1, . . . ,m−1} | sk = sk+1
}

.

As we can see from the previous corollary, if the non-null scores of s are a strictly
decreasing sequence then the scoring rule associated with s is Pareto-optimal. Thus,
for instance, the scoring rules used at present in the Eurovision Song Context, the
FIFA Ballon d’Or Award, the MVP of the NBA, the Formula One World Champi-
onship and the Motorcycle World Championship are Pareto-optimal.

3.2 Absolute loser paradox

Felsenthal (2012) reviews the main paradoxes afflicting voting procedures and points
out the absolute loser paradox as an especially intolerable paradox. The performance
of the usual scoring rules with regard to this property is known: Since the Borda rule
satisfies the Condorcet loser property (see, for instance, Smith 1973, and Fishburn and
Gehrlein 1976), it is also immune to the absolute loser paradox. We also know that
the plurality rule is vulnerable to this paradox and that the antiplurality is immune
to it (see, for instance, Plassmann and Tideman 2014). In the sequel we provide a
characterization of the scoring rules that are immune to this paradox.

Definition 3 Let p be a profile. A candidate Ai is the absolute loser if he/she is ranked
last by an absolute majority of voters.

Definition 4 A scoring rule is immune to the absolute loser paradox if, for all profile
p, the absolute loser, whenever he/she exists, is not a winning candidate.

Theorem 2 Let S ∈S . The following conditions are equivalent:

1. The scoring rule associated with S is immune to the absolute loser paradox.

2.
m−1

∑
k=1

kSk ≥
m
2

.

From this result we can see that the Borda rule is immune to the absolute loser
paradox and that, in the case of k-approval voting, the immunity appears when k is
greater than or equal to half the number of candidates.

Corollary 3
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1. The Borda rule is immune to the absolute loser paradox.
2. k-approval voting is immune to the absolute loser paradox if and only if k≥m/2.

The characterization given in Theorem 2 is stated in the usual set of scoring vec-
tors S ∗ as follows.

Corollary 4 Let s ∈S ∗. The following conditions are equivalent:

1. The scoring rule associated with s is immune to the absolute loser paradox.

2.
m−1

∑
k=1

sk ≥
m
2

.

It is easy to check that the scoring rules used at present in the Eurovision Song
Context, the FIFA Ballon d’Or Award, the MVP of the NBA, the Formula One World
Championship and the Motorcycle World Championship are vulnerable to the abso-
lute loser paradox. For instance, in the case of the Formula One World Championship,
we have that ∑

m−1
k=1 sk = 4.04. Therefore, as the number of drivers for the 2013 season

is 22, the scoring rule is vulnerable to this paradox.

3.3 Reversal symmetry

Reversal symmetry was introduced by Saari (1994, p. 157) as a natural extension of
neutrality.

Definition 5 A scoring rule satisfies reversal symmetry if, for all profile p, reversing
the ranking of each voter produces a reversed outcome.

A characterization of the scoring rules satisfying this property can be found in
Saari and Barney (2003). However, these authors do not provide an explicit proof of
this result. In order to give a proof of the characterization established by these authors,
we introduce the notion of dual and self-dual vectors. These last scoring vectors allow
us to get the wanted characterization.

Definition 6
1. Given S = (S1, . . . ,Sm−1) ∈S , the dual vector of S is Sd = (Sm−1, . . . ,S1).
2. A vector S ∈S is self-dual if S = Sd .

Theorem 3 Let S ∈S . The following conditions are equivalent:

1. The scoring rule associated with S satisfies reversal symmetry.
2. S is self-dual.

From this result it is obvious that Borda rule satisfies reversal symmetry and that
k-approval voting satisfies this property if and only if m is even and k = m/2. Next
we formulate Theorem 3 in the usual set of scoring vectors S ∗ (see Saari and Barney
2003).

Corollary 5 Let s ∈S ∗. The following conditions are equivalent:

1. The scoring rule associated with s satisfies reversal symmetry.
2. 1 = sk+1 + sm−k for all k ∈ {1, . . . ,b(m−1)/2c}.
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3.4 Relationships among the properties

Once characterized the scoring rules that satisfy Pareto-optimality, reversal symmetry
or that they are immune to the absolute loser paradox, it is possible to establish some
relationships among these properties. So, it is straightforward to check that there is no
relationship between Pareto-optimality and the absolute loser paradox. For instance,
plurality rule is Pareto-optimal but it is vulnerable to the absolute loser paradox. And
antiplurality rule is not Pareto-optimal but it is immune to the absolute loser paradox.
However, if the scoring rule satisfies reversal symmetry, then it is immune to the ab-
solute loser paradox, and it is Pareto-optimal when all the components of the scoring
vector are non-null.

Theorem 4 Let S ∈S . If the scoring rule associated with S satisfies reversal sym-
metry, then it is Pareto-optimal if and only if S� 0.

Theorem 5 Let S ∈S . If the scoring rule associated with S satisfies reversal sym-
metry, then it is immune to the absolute loser paradox.

Finally, next we give a characterization of the scoring rules meeting the three
properties analyzed in the paper.

Corollary 6 Let S ∈S . The scoring rule associated with S satisfies reversal sym-
metry, Pareto-optimality and it is immune to the absolute loser paradox if and only if
S is self-dual and S� 0.

4 Conclusion

In this paper we have considered two desirable social choice properties, Pareto-
optimality and immunity to the absolute loser paradox, and we have provided charac-
terizations of the scoring rules that satisfy each of these axioms. We have also proven
a characterization of the scoring rules satisfying reversal symmetry, which was given,
without an explicit proof, by Saari and Barney (2003). After showing some relation-
ships among these properties, we establish a characterization of the scoring rules
satisfying the three properties. It is worth noting that our results have been achieved
by using the number of cumulative standings obtained by each candidate. In this way,
we have avoided having to use decreasing scoring vectors.

Acknowledgements The authors are grateful to the coordinating editor and an anonymous referee for
valuable suggestions and comments. This work is partially supported by the Spanish Ministry of Economy
and Competitiveness (Projects ECO2011-24200 and ECO2012-32178) and the Junta de Castilla y León
(Consejería de Educación, Project VA066U13).

A Proofs

A.1 Pareto-optimality

By using contraposition, Theorem 1 is rewritten in an equivalent form in Theorem 6.
Before stating and proving Theorem 6, we give two useful lemmas.
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Lemma 1 Let p be a profile. If the candidate Ai is not Pareto-optimal, then V i
1 = 0

and there exists another candidate A j with V i
k ≤ V j

k−1 for all k ∈ {2, . . . ,m} and 0 =

V i
q < V j

q , where q = min
{

k ∈ {1, . . . ,m− 1} | V j
k 6= 0

}
. Moreover, V i

k ≤ V j
k for all

k ∈ {1, . . . ,m−1}.

Proof. Given a profile p, if Ai is not Pareto-optimal, there exist another candidate
A j that is preferred to Ai by all voters, so V i

1 = 0. On the other hand, when a voter
places candidate Ai in the kth position, that voter will have placed A j in a higher scale
position. Therefore, V i

k ≤V j
k−1 for all k ∈ {2, . . . ,m}. Furthermore, if q ∈ {1, . . . ,m−

1} is the highest scale position achieved by candidate A j, then 0 =V i
q <V j

q . Finally,
given that V j

k−1 ≤ V j
k for all k ∈ {2, . . . ,m− 1} and V i

1 = 0, we have V i
k ≤ V j

k for all
k ∈ {1, . . . ,m−1}.

Lemma 2 Let S ∈ S . If S� 0, then the scoring rule associated with S is Pareto-
optimal.

Proof. Given a profile p, we are going to prove that if a candidate Ai is not Pareto-
optimal, then he/she is not a winning candidate. By Lemma 1, there exist a candidate
A j with V i

k ≤V j
k for all k ∈ {1, . . . ,m−1} and V i

q <V j
q for some q ∈ {1, . . . ,m−1}.

Since S� 0, we have FS(Vi)< FS(V j). Therefore, Ai is not a winning candidate.

Theorem 6 Let S ∈S . The following conditions are equivalent:

1. The scoring rule associated with S is not Pareto-optimal.
2. min

k∈{1,...,m−1}
Sk = 0 and

p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk ≤ m,

where p = min
{

k ∈ {1, . . . ,m−1} | Sk = 0
}

.

Proof.
1 ⇒ 2 : If the scoring rule associated with S is not Pareto-optimal, then, by

Lemma 2, we have min
k∈{1,...,m−1}

Sk = 0. Let p = min
{

k ∈ {1, . . . ,m− 1} | Sk = 0
}

.

Moreover, we can find a profile p of n voters such that one winning candidate, Ai,
is not Pareto-optimal. By Lemma 1, there exists a candidate A j with V i

k ≤ V j
k for all

k ∈ {1, . . . ,m−1}. Therefore, FS(Vi)≤ FS(V j). Since Ai is a winning candidate, we
have FS(Vi) = FS(V j); that is,

m−1

∑
k=1

SkV i
k =

m−1

∑
k=1

SkV
j

k .

Given that Sk ≥ 0 and V i
k ≤ V j

k for all k ∈ {1, . . . ,m− 1}, the previous equality is
satisfied if and only if SkV i

k = SkV
j

k for all k ∈ {1, . . . ,m−1}. As Sk > 0 for all k < p,
we get V i

k =V j
k for all k < p. If q = min

{
k ∈ {1, . . . ,m−1} |V j

k 6= 0
}

, then 0 =V i
q <

V j
q . Therefore, q≥ p and, consequently, V i

k = 0 for all k ∈ {1, . . . , p}.
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On the other hand, since Ai is a winning candidate, we have

m−1

∑
k=1

SkV l
k ≤

m−1

∑
k=1

SkV i
k ,

for all l ∈ {1, . . . ,m}. When we add, member to member, all the inequalities we have

m

∑
l=1

m−1

∑
k=1

SkV l
k =

m−1

∑
k=1

Sk

m

∑
l=1

V l
k =

m−1

∑
k=1

Sknk = n
m−1

∑
k=1

kSk ≤ m
m−1

∑
k=1

SkV i
k .

Since V i
k = 0 for all k ∈ {1, . . . , p}, and V i

k ≤ n for all k ∈ {p+1, . . . ,m−1}, we have

n
m−1

∑
k=1

kSk ≤ mn
m−1

∑
k=p+1

Sk,

that is,
p−1

∑
k=1

kSk +
m−1

∑
k=p+1

kSk ≤ m
m−1

∑
k=p+1

Sk = m

(
1−

p−1

∑
k=1

Sk

)
.

So, we get
p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk ≤ m.

2 ⇒ 1 : Let S ∈S such that min
k∈{1,...,m−1}

Sk = 0 and
p−1
∑

k=1
(m+ k)Sk +

m−1
∑

k=p+1
kSk ≤

m, where p = min
{

k ∈ {1, . . . ,m− 1} | Sk = 0
}

. Consider m− 2 voters and let p
be a profile obtained by considering the forward cyclic list of orders8 generated by
A3 A4 · · ·Am and by placing candidates A1 and A2 in the pth and (p+1)th positions,
respectively; that is,

1 voter: A3 A4 · · ·Ap+1 A1 A2 Ap+2 · · ·Am−1 Am
1 voter: A4 A5 · · ·Ap+2 A1 A2 Ap+3 · · ·Am A3
1 voter: A5 A6 · · ·Ap+3 A1 A2 Ap+4 · · ·A3 A4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 voter: Am A3 · · ·Ap A1 A2 Ap+1 · · ·Am−2 Am−1.

As we can see in Table 1, candidates A3, . . . ,Am have the same cumulative stand-
ings; so they get the same score. The cumulative standings of candidates A1 and A2
differ only in the pth cumulative standing, but Sp = 0. Therefore, A1 and A2 obtain
the same score. We calculate the scores of A2 and A3:

FS(V2) =
m−1

∑
k=p+1

(m−2)Sk = (m−2)
m−1

∑
k=p+1

Sk = (m−2)

(
1−

p−1

∑
k=1

Sk

)
,

FS(V3) =
p−1

∑
k=1

kSk +
m−1

∑
k=p+1

(k−2)Sk.

8 According to Fishburn (1974), the forward cyclic list of orders generated by A1 A2 · · ·Am is the m-tuple
of orders (A1 A2 · · ·Am−1 Am, A2 A3 · · ·Am A1, A3 A4 · · ·A1 A2, . . . , Am A1 · · ·Am−2 Am−1).
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Table 1 Cumulative standings of profile p (Proof of Theorem 6)

Candidate V i
1 V i

2 · · · V i
p−1 V i

p V i
p+1 V i

p+2 · · · V i
m−1

A1 0 0 · · · 0 m−2 m−2 m−2 · · · m−2
A2 0 0 · · · 0 0 m−2 m−2 · · · m−2
A3 1 2 · · · p−1 p−1 p−1 p · · · m−3
A4 1 2 · · · p−1 p−1 p−1 p · · · m−3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Am 1 2 · · · p−1 p−1 p−1 p · · · m−3

We now compare both scores:

FS(V2)≥ FS(V3) ⇔ m−2− (m−2)
p−1

∑
k=1

Sk ≥
p−1

∑
k=1

kSk +
m−1

∑
k=p+1

(k−2)Sk

⇔ m−2≥
p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk−2

(
p−1

∑
k=1

Sk +
m−1

∑
k=p+1

Sk

)

⇔ m≥
p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk,

where the last inequality is satisfied by hypothesis. Therefore, A2 is a winning candi-
date but he/she is not Pareto-optimal because A1 is preferred to A2 by all voters. So,
the scoring rule associated with S is not Pareto-optimal.

Proof of Corollary 1. If S ∈S is the scoring vector corresponding to the k-approval
voting, the expression

p−1

∑
l=1

(m+ l)Sl +
m−1

∑
l=p+1

lSl ,

where p = min
{

l ∈ {1, . . . ,m−1} | Sl = 0
}

, is equal to m+1 when k = 1 and equal
to k when k ≥ 2. From Theorem 1 we get the result.

Proof of Corollary 2. Let s ∈S ∗ and consider the scoring vector S ∈S associated
with it. Given that S� 0 if and only if 1 > s2 > · · ·> sm−1 > 0, Sp = 0 if and only if
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sp = sp+1, and

p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk > m

⇔
p−1

∑
k=1

(m+ k)(sk− sk+1)+
m−1

∑
k=p+1

k(sk− sk+1)> m

⇔
p−1

∑
k=1

(m+ k)sk−
p

∑
k=2

(m+ k−1)sk +
m−1

∑
k=p+1

ksk−
m

∑
k=p+2

(k−1)sk > m

⇔ (m+1)s1 +
p−1

∑
k=2

sk− (m+ p−1)sp +(p+1)sp+1 +
m−1

∑
k=p+2

sk− (m−1)sm > m

⇔ (m+1)+
p−1

∑
k=2

sk− (m−2)sp +
m−1

∑
k=p+2

sk > m

⇔ 1+
p−1

∑
k=2

sk +
m−1

∑
k=p+2

sk > (m−2)sp

⇔
m−1

∑
k=1

sk > m · sp,

the result is obvious from Theorem 1.

A.2 Absolute loser paradox

By using contraposition, Theorem 2 is rewritten in an equivalent form as follows.

Theorem 7 Let S ∈S . The following conditions are equivalent:

1. The scoring rule associated with S is vulnerable to the absolute loser paradox.

2.
m−1

∑
k=1

kSk <
m
2

.

Proof.
1 ⇒ 2 : If the scoring rule associated with S is vulnerable to the absolute loser

paradox, we can find a profile p such that one winning candidate, Ai, is the absolute
loser. Therefore, he/she is ranked last by an absolute majority of voters and, conse-
quently,

V i
k ≤ n−

(
bn/2c+1

)
= b(n−1)/2c ,

for all k ∈ {1, . . . ,m−1}. On the other hand, since Ai is a winning candidate, we have

m−1

∑
k=1

SkV l
k ≤

m−1

∑
k=1

SkV i
k ,
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Table 2 Cumulative standings of profile p (Proof of Theorem 2)

Candidate V i
1 V i

2 V i
3 · · · V i

m−2 V i
m−1

A1 (m−1)r−1 (m−1)r−1 (m−1)r−1 · · · (m−1)r−1 (m−1)r−1
A2 r 3r−1 5r−1 · · · (2m−5)r−1 (2m−3)r−1
A3 r 3r 5r−1 · · · (2m−5)r−1 (2m−3)r−1
· · · · · · · · · · · · · · · · · · · · ·

Am−1 r 3r 5r · · · (2m−5)r (2m−3)r−1
Am r 3r 5r · · · (2m−5)r (2m−3)r

for all l ∈ {1, . . . ,m}. When we add, member to member, all the inequalities we have

m

∑
l=1

m−1

∑
k=1

SkV l
k =

m−1

∑
k=1

Sk

m

∑
l=1

V l
k =

m−1

∑
k=1

Sknk = n
m−1

∑
k=1

kSk ≤ m
m−1

∑
k=1

SkV i
k ≤ mb(n−1)/2c .

Therefore,

m−1

∑
k=1

kSk ≤
m
n
b(n−1)/2c< m

2
.

2 ⇒ 1 : Since
m−1
∑

k=1
kSk < m/2, there exists r ∈N such that

m−1

∑
k=1

kSk <
m
2
− 1

2r
.

Consider twice the forward cyclic list of orders generated by A2 A3 · · ·Am. In the
first forward cyclic list we place candidate A1 in the first position and in the second
forward cyclic list we place A1 in the last position. Now we consider a profile p of
2(m− 1)r− 1 voters where each order is considered r times but the first one, which
is considered r−1 times:

r−1 voters: A1 A2 A3 · · ·Am−1 Am
r voters: A1 A3 A4 · · ·Am A2
r voters: A1 A4 A5 · · ·A2 A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r voters: A1 Am A2 · · ·Am−2 Am−1

r voters: A2 A3 · · ·Am−1 Am A1
r voters: A3 A4 · · ·Am A2 A1
r voters: A4 A5 · · ·A2 A3 A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r voters: Am A2 · · ·Am−2 Am−1 A1

In Table 2 we show the cumulative standings of candidates according to the profile
p. Given that Vm ≥ Vi for all i ∈ {2, . . . ,m− 1}, we have FS(Vm) ≥ FS(Vi) for all
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i ∈ {2, . . . ,m−1}. We now compare the scores of A1 and Am:

FS(V1)> FS(Vm)⇔
m−1

∑
k=1

(
(m−1)r−1

)
Sk >

m−1

∑
k=1

(2k−1)rSk

⇔ (m−1)r−1 > r
m−1

∑
k=1

(2k−1)Sk

⇔ m−1− 1
r
>

m−1

∑
k=1

(2k−1)Sk

⇔ m− 1
r
>

m−1

∑
k=1

(2k−1)Sk +
m−1

∑
k=1

Sk

⇔ m− 1
r
> 2

m−1

∑
k=1

kSk⇔
m
2
− 1

2r
>

m−1

∑
k=1

kSk,

where the last inequality is satisfied by the choice of r. Since A1 is at the same time
the winner and the absolute loser, FS is vulnerable to the absolute loser paradox.

Proof of Corollary 3.

1. If S ∈S is the scoring vector corresponding to the Borda rule, we have

m−1

∑
k=1

kSk =
1

m−1

m−1

∑
k=1

k =
1

m−1
m(m−1)

2
=

m
2
.

So, the result is obvious from Theorem 2.
2. If S ∈S is the scoring vector corresponding to the k-approval voting, we have

m−1

∑
l=1

lSl = k.

Therefore, the result is obvious from Theorem 2.

Proof of Corollary 4. Given s ∈S ∗, consider the scoring vector S ∈S associated
with it. Since

m−1

∑
k=1

kSk =
m−1

∑
k=1

k(sk− sk+1) =
m−1

∑
k=1

ksk−
m

∑
k=2

(k−1)sk =
m−1

∑
k=1

sk− (m−1)sm =
m−1

∑
k=1

sk,

the result is obvious from Theorem 2.

A.3 Reversal symmetry

Before we give the proof of Theorem 3, we previously establish two characterizations
and a technical lemma.
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Proposition 1 The scoring rule associated with S satisfies reversal symmetry if and
only if

FS(V i
1, . . . ,V

i
m−1)> FS(V

j
1 , . . . ,V

j
m−1)

⇔ FS(n−V i
m−1, . . . ,n−V i

1)< FS(n−V j
m−1, . . . ,n−V j

1 )

for all profile p and all pair of candidates Ai and A j.

Proof. Given a profile p, let (V i
1, . . . ,V

i
m−1) and (V j

1 , . . . ,V
j

m−1) be the cumulative
standings of candidates Ai and A j, respectively. It is easy to check that, when the
profile p is reversed, the cumulative standings of Ai and A j for this new profile are
(n−V i

m−1, . . . ,n−V i
1) and (n−V j

m−1, . . . ,n−V j
1 ), respectively. From this, the result

is obvious.

Proposition 2 The scoring rule associated with S satisfies reversal symmetry if and
only if

FS(Vi)> FS(V j) ⇔ FSd (Vi)> FSd (V j)

for all profile p and all pair of candidates Ai and A j.

Proof. The proof is obvious from Proposition 1 and the following equivalence:

FS(n−V i
m−1, . . . ,n−V i

1)< FS(n−V j
m−1, . . . ,n−V j

1 )

⇔
m−1

∑
k=1

Sk(n−V i
m−k)<

m−1

∑
k=1

Sk(n−V j
m−k)

⇔ n−
m−1

∑
k=1

SkV i
m−k < n−

m−1

∑
k=1

SkV
j

m−k

⇔
m−1

∑
k=1

SkV i
m−k >

m−1

∑
k=1

SkV
j

m−k

⇔
m−1

∑
k=1

Sm−kV i
k >

m−1

∑
k=1

Sm−kV
j

k

⇔ FSd (Vi)> FSd (V j).

Lemma 3 Given l ∈
{

1, . . . ,b(m−1)/2c
}

, there exist a profile p and candidates Ai

and A j such that V i
l =V j

l +1, V i
m−l =V j

m−l−1 and V i
k =V j

k for all k 6= l,m− l.

Proof. Consider m voters and the forward cyclic list of orders generated by the order
A1 A2 · · ·Am; that is,

1st voter: A1 A2 · · ·Am−1 Am
2nd voter: A2 A3 · · ·Am A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mth voter: Am A1 · · ·Am−2 Am−1.

Now, in the first voter’s preferences, we first change the candidates of positions l
and l + 1 and, after that, we change the candidates of positions m− l and m− l + 1.
Let p be the resulting profile. We distinguish two cases:
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Table 3 Cumulative standings of profile p (Proof of Lemma 3, case l +1 6= m− l)

Candidate V i
1 · · · V i

l V i
l+1 · · · V i

m−l V i
m−l+1 · · · V i

m−1

A1 1 · · · l l +1 · · · m− l m− l +1 · · · m−1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Al 1 · · · l−1 l +1 · · · m− l m− l +1 · · · m−1

Al+1 1 · · · l +1 l +1 · · · m− l m− l +1 · · · m−1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Am−l 1 · · · l l +1 · · · m− l−1 m− l +1 · · · m−1
Am−l+1 1 · · · l l +1 · · · m− l +1 m− l +1 · · · m−1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Am 1 · · · l l +1 · · · m− l m− l +1 · · · m−1

Table 4 Cumulative standings of profile p (Proof of Lemma 3, case l +1 = m− l)

Candidate V i
1 · · · V i

l V i
l+1 V i

l+2 · · · V i
m−1

A1 1 · · · l l +1 l +2 · · · m−1
· · · · · · · · · · · · · · · · · · · · · · · ·
Al 1 · · · l−1 l l +2 · · · m−1

Al+1 1 · · · l +1 l +1 l +2 · · · m−1
Al+2 1 · · · l l +2 l +2 · · · m−1
· · · · · · · · · · · · · · · · · · · · · · · ·
Am 1 · · · l l +1 l +2 · · · m−1

1. If m− l 6= l +1, then the first voter’s order is
1st voter: A1 · · ·Al−1 Al+1 Al Al+2 · · ·Am−l−1 Am−l+1 Am−l Am−l+2 · · ·Am,

and the cumulative standings of profile p are given in Table 3. As we can see,
candidates Al+1 and Am−l+1 satisfy the thesis of the theorem.

2. If m− l = l +1, then the first voter’s order is
1st voter: A1 · · ·Al−1 Al+1 Al+2 Al · · ·Am,

and the cumulative standings of profile p are given in Table 4.
As we can see, candidates Al+1 and Al+2 satisfy the thesis of the theorem.

Proof of Theorem 3.
1 ⇒ 2 : We are going to prove that if S is not self-dual then the scoring rule

associated with S does not satisfy reversal symmetry. If S is not self-dual, then there
exists l ∈

{
1, . . . ,b(m− 1)/2c

}
such that Sl 6= Sm−l . By Lemma 3, we can find a

profile p and candidates Ai and A j such that V i
l =V j

l +1, V i
m−l =V j

m−l−1 and V i
k =V j

k
for all k 6= l,m− l. For this profile and these candidates, we have

FS(Vi)> FS(V j)⇔
m−1

∑
k=1

SkV i
k >

m−1

∑
k=1

SkV
j

k

⇔ SlV i
l +Sm−lV i

m−l > SlV
j

l +Sm−lV
j

m−l

⇔ Sl > Sm−l ,
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and

FSd (Vi)> FSd (V j)⇔
m−1

∑
k=1

Sm−kV i
k >

m−1

∑
k=1

Sm−kV
j

k

⇔ Sm−lV i
l +SlV i

m−l > Sm−lV
j

l +SlV
j

m−l

⇔ Sm−l > Sl .

Therefore, according to Proposition 2, the scoring rule associated with S does not
satisfy reversal symmetry.

2 ⇒ 1 : Obvious by Proposition 2.

Proof of Corollary 5. Given s ∈S ∗, consider the scoring vector S ∈S associated
with it. Since

S = Sd ⇔ Sk = Sm−k for all k ∈ {1, . . . ,b(m−1)/2c}
⇔ sk− sk+1 = sm−k− sm−k+1 for all k ∈ {1, . . . ,b(m−1)/2c}
⇔ sk + sm−k+1 = sk+1 + sm−k for all k ∈ {1, . . . ,b(m−1)/2c}
⇔ 1 = sk+1 + sm−k for all k ∈ {1, . . . ,b(m−1)/2c},

the result is obvious from Theorem 3.

A.4 Relationships among the properties

Proof of Theorem 4. By Theorem 1, it is sufficient to prove that if min
k∈{1,...,m−1}

Sk = 0,

then
p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk ≤ m,

where p = min
{

k ∈ {1, . . . ,m−1} | Sk = 0
}

. Since the scoring rule associated with S
satisfies reversal symmetry, then, by Theorem 3, Sk = Sm−k for all k ∈ {1, . . . ,m−1}.
Therefore, Sm−p = Sp = 0 and p≤ bm/2c. We distinguish two cases:

1. If m−1 is even, then

p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk

=
p−1

∑
k=1

(m+ k)Sk +

m−1
2

∑
k=p+1

kSk +
m−p−1

∑
k=m+1

2

kSm−k +
m−1

∑
k=m−p+1

kSm−k

=
p−1

∑
k=1

(m+ k)Sk +

m−1
2

∑
k=p+1

kSk +

m−1
2

∑
k=p+1

(m− k)Sk +
p−1

∑
k=1

(m− k)Sk

= 2m
p−1

∑
k=1

Sk +m

m−1
2

∑
k=p+1

Sk ≤ 2m

m−1
2

∑
k=1

Sk = m
m−1

∑
k=1

Sk = m.
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2. If m−1 is odd, we distinguish two cases:
(a) If p = m/2, then

m
2 −1

∑
k=1

(m+ k)Sk +
m−1

∑
k=m

2 +1
kSk =

m
2 −1

∑
k=1

(m+ k)Sk +
m−1

∑
k=m

2 +1
kSm−k

=

m
2 −1

∑
k=1

(m+ k)Sk +

m
2 −1

∑
k=1

(m− k)Sk

= 2m

m
2 −1

∑
k=1

Sk = m
m−1

∑
k=1

Sk = m.

(b) If p < m/2, then

p−1

∑
k=1

(m+ k)Sk +
m−1

∑
k=p+1

kSk

=
p−1

∑
k=1

(m+ k)Sk +

m
2 −1

∑
k=p+1

kSk +
m
2

S m
2
+

m−p−1

∑
k=m

2 +1
kSm−k +

m−1

∑
k=m−p+1

kSm−k

=
p−1

∑
k=1

(m+ k)Sk +

m
2 −1

∑
k=p+1

kSk +
m
2

S m
2
+

m
2 −1

∑
k=p+1

(m− k)Sk +
p−1

∑
k=1

(m− k)Sk

= 2m
p−1

∑
k=1

Sk +m

m
2 −1

∑
k=p+1

Sk +
m
2

S m
2
≤ m

(
2

m
2 −1

∑
k=1

Sk +S m
2

)
= m.

Proof of Theorem 5. If the scoring rule associated with S satisfies reversal symmetry,
then, by Theorem 3, Sk = Sm−k for all k ∈ {1, . . . ,m−1}. We distinguish two cases:

1. If m−1 is even, then

m−1

∑
k=1

kSk =

m−1
2

∑
k=1

kSk +
m−1

∑
k=m+1

2

kSm−k =

m−1
2

∑
k=1

kSk +

m−1
2

∑
k=1

(m− k)Sk = m

m−1
2

∑
k=1

Sk =
m
2
.

2. If m−1 is odd, then

m−1

∑
k=1

kSk =

m
2 −1

∑
k=1

kSk +
m
2

S m
2
+

m−1

∑
k=m

2 +1
kSm−k =

m
2 −1

∑
k=1

kSk +
m
2

S m
2
+

m
2 −1

∑
k=1

(m− k)Sk

= m

m
2 −1

∑
k=1

Sk +
m
2

S m
2
=

m
2

(
2

m
2 −1

∑
k=1

Sk +S m
2

)
=

m
2

m−1

∑
k=1

Sk =
m
2
.

Therefore, in both cases, ∑
m−1
k=1 kSk = m/2 and, by Theorem 2, the scoring rule asso-

ciated with S is immune to the absolute loser paradox.

Proof of Corollary 6. It is obvious from Theorems 1, 3, 4 and 5.
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