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Departamento de Economı́a Aplicada, Instituto de Matemáticas (IMUVA), Universidad de Valladolid, Avda. Valle de
Esgueva 6, 47011 Valladolid, Spain.

Abstract

In this paper we introduce the semi-uninorm based ordered weighted averaging (SUOWA) op-
erators, a new class of aggregation functions that, as WOWA operators, simultaneously general-
ize weighted means and OWA operators. To do this we take into account that weighted means
and OWA operators are particular cases of Choquet integral. So, SUOWA operators are Choquet
integral-based operators where their capacities are constructed by using semi-uninorms and the
values of the capacities associated to the weighted means and the OWA operators. We also show
some interesting properties of these new operators and provide examples showing that SUOWA
and WOWA operators are different classes of aggregation operators.

Keywords: Choquet integral, weighted means, OWA operators, SUOWA operators, WOWA
operators, semi-uninorms.

1. Introduction

Aggregation information is a usual activity in many research fields. Weighted means and
ordered weighted averaging (OWA) operators (introduced by Yager [1]) are well-known functions
widely used for this task. Both classes of functions are defined by means of weighting vectors,
but their behavior is quite different: Weighted means allow to weight each information source
in relation to their reliability while OWA operators allow to weight the values according to their
ordering.

Some authors (see, among others, Torra [2], Torra and Godo [3, pp. 160-161], Torra and
Narukawa [4, pp. 150-151] and Yager and Alajlan [5]) have reported the need for both weightings
in several fields such as robotics, vision, fuzzy logic controllers, constraint satisfaction problems,
scheduling and decision making. For instance, suppose we have several sensors to measure a phys-
ical property. On the one hand, sensors may be of different quality and precision, so a weighted
mean type aggregation is necessary. On the other hand, to prevent a faulty sensor alters the mea-
surement, we might consider an OWA type aggregation where the maximum and minimum values
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are not taking into account. A similar situation occurs when a committee of experts has to assess
several candidates or proposals. On the one hand, a weighted mean type aggregation is suitable
for reflecting the expertness or the confidence in the judgment of each expert. On the other hand,
an OWA type aggregation allows us to deal with situations where an expert feels an excessive
acceptance or rejection towards some of the candidates or proposals.

Different types of models have appeared in the literature to deal with this kind of situations
(see, for instance, Yager [6, 7], Calvo and Mesiar [8] and Yager and Alajlan [5]). Some fami-
lies of functions suggested in the literature generalize weighted means and OWA operators in the
sense that one of these functions is obtained when the other one has a “neutral” behavior; that
is, its weighting vector is that of the arithmetic mean. This is the case of the operator proposed
by Engemann et al. [9], the weighted OWA (WOWA) operator (Torra [2]), the hybrid weighted
averaging (HWA) operator (Xu and Da [10]), the IP-OWA operator (Merigó [11]) and the hybrid
weighted arithmetical averaging (HWAA) operator (Lin and Jiang [12]). Notice that, as pointed
out by Wang [13], the IP-OWA operator and the HWAA operator are the same type of aggregation
functions, although the interpretation of their weighting vectors are different. In fact, these func-
tions coincide with the operator proposed by Engemann et al. [9], which has been analyzed by
Llamazares [14] (on the monotonicity of this operator, see also Liu [15], Wang [13] and Lin [16]).

The aim of this work is to introduce new aggregation operators that generalize the weighted
means and the OWA operators in the above sense. To do this we take into account that weighted
means and OWA operators are particular cases of Choquet integral. So, SUOWA operators are
Choquet integral-based operators where their capacities are constructed by using semi-uninorms
and the values of the capacities associated to the weighted means and the OWA operators. We also
establish some interesting properties of these new operators and show that, in the case of using
idempotent semi-uninorms, the smallest and the largest one are obtained by using two well-known
uninorms given by Yager and Rybalov [17].

The paper is organized as follows. In Section 2 we recall some properties of aggregation func-
tions and some basic concepts on weighted means, OWA operators, Choquet integral, uninorms
and semi-uninorms. Section 3 is devoted to the construction of capacities by means of which we
can generalize weighted means and OWA operators. In Section 4 we formally define SUOWA
operators and show some properties of this class of functions. Some examples are given in Sec-
tion 5 to illustrate the construction of games and capacities by using semi-uninorms and the fact
that WOWA and SUOWA operators are different classes of aggregation operators. Finally, some
concluding remarks are provided in Section 6.

2. Aggregation functions

Throughout the paper we will use the following notation: N = {1, . . . , n}; given A ⊆ N, |A| will
denote the cardinality of A; vectors will be denoted in bold; ηwill denote the vector (1/n, . . . , 1/n);
x ≥ y will mean xi ≥ yi for all i ∈ N; given x ∈ Rn, let x[1] ≥ · · · ≥ x[n] will denote the components
of x in decreasing order, and let x(1) ≤ · · · ≤ x(n) will denote the components of x in increasing
order.

In the following definition we present some well-known properties usually demanded to the
functions used in the aggregation processes.
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Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if F(xσ(1), . . . , xσ(n)) = F(x1, . . . , xn) for all x ∈ Rn and for all permutation σ
of N.

2. F is monotonic if x ≥ y implies F(x) ≥ F(y) for all x, y ∈ Rn.
3. F is idempotent if F(x, . . . , x) = x for all x ∈ R.
4. F is compensative (or internal) if min(x) ≤ F(x) ≤ max(x) for all x ∈ Rn.
5. F is homogeneous of degree 1 (or ratio scale invariant) if F(λx) = λF(x) for all x ∈ Rn and

for all λ > 0.

2.1. Weighted means and OWA operators
Weighted means and OWA operators are defined by vectors with non-negative components

whose sum is 1.

Definition 2. A vector q ∈ Rn is a weighting vector if q ∈ [0, 1]n and
∑n

i=1 qi = 1.

Definition 3. Let p be a weighting vector. The weighted mean associated to p is the function
Mp : Rn −→ R given by

Mp(x) =

n∑
i=1

pixi.

Weighted means are monotonic, idempotent, compensative and homogeneous of degree 1 func-
tions. For its part, OWA operators, introduced by Yager [1], are defined in a similar way to the
weighted means, but with the values of the variables previously ordered in a decreasing way.
Therefore they are symmetric, and also satisfy other interesting properties such as monotonicity,
idempotence, compensativeness and homogeneity of degree 1.

Definition 4. Let w be a weighting vector. The OWA operator associated to w is the function
Ow : Rn −→ R given by

Ow(x) =

n∑
i=1

wix[i].

2.2. Choquet integral
Choquet integral-based operators are a very important class of aggregation operators which

have had a wide variety of applications in the last years (see, for instance, Grabisch et al. [18] and
Grabisch and Labreuche [19]). Before introducing the Choquet integral we recall the notions of
game and capacity (see also fuzzy measures in Sugeno [20]).

Definition 5.

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.
2. A capacity (or fuzzy measure) µ on N is a game on N satisfying µ(A) ≤ µ(B) whenever

A ⊆ B. In particular, it follows that µ : 2N −→ [0,∞). A capacity µ is said to be normalized
if µ(N) = 1.
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The Choquet integral can be defined in a general context (see Choquet [21], Murofushi and
Sugeno [22] and Denneberg [23]). However, we only consider the Choquet integral in the frame-
work that we are dealing with here (see Grabisch et al. [24, p. 181]).

Definition 6. Let µ be a capacity on N. The Choquet integral with respect to µ is the function
Cµ : Rn −→ R given by

Cµ(x) =

n∑
i=1

µ(B(i))
(
x(i) − x(i−1)

)
,

where B(i) = {(i), . . . , (n)} and, by convention, x(0) = 0.

Notice that the Choquet integral can be defined with respect to games instead of capacities
(see again Grabisch et al. [24, p. 181]). In this case, the Choquet integral satisfies the following
properties (Grabisch et al. [24, p. 193 and p. 196]):

Remark 1. If υ is a game on N and Cυ is the Choquet integral with respect to υ, then

1. Cυ is continuous.
2. Cυ is homogeneous of degree 1.
3. Cυ is monotonic if and only if υ is a capacity.
4. Cυ is idempotent when υ(N) = 1.
5. Cυ is compensative when υ is a normalized capacity.

In analogy with OWA operators, in the sequel we show an equivalent representation of Choquet
integral by means of decreasing sequences of values (see also Torra [25]). Given x ∈ Rn, we can
consider (·) and [·] so that (i) = [n + 1 − i] for all i ∈ N. In this case,

B(i) =
{
(i), . . . , (n)

}
=

{
[1], . . . , [n + 1 − i]

}
,

and this set will be denoted by A[n+1−i]. Consequently,

Cµ(x) = µ(B(1))x(1) +

n∑
j=2

µ(B( j))
(
x( j) − x( j−1)

)
= µ(A[n])x[n] +

n∑
j=2

µ(A[n+1− j])
(
x[n+1− j] − x[n+2− j]

)
= µ(A[n])x[n] +

n−1∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
=

n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
,

where A[i] = {[1], . . . , [i]} and, by convention, x[n+1] = 0.
From the previous expression, it is straightforward to check that the Choquet integral can be

written as

Cµ(x) =

n∑
i=1

(
µ(A[i]) − µ(A[i−1])

)
x[i], (1)
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with the convention A[0] = ∅. From this formula we can easily see that weighted means and OWA
operators are a special type of Choquet integral (see also Fodor et al. [26] and Grabisch [27, 28]).
Remark 2. Let µ be a capacity on N.

1. Cµ is the weighted mean Mp if µ(A[i]) − µ(A[i−1]) = p[i] for all i ∈ N, or, equivalently,
µ(A[i]) =

∑i
j=1 p[ j] for all i ∈ N. Therefore µ(A) =

∑
i∈A pi for any nonempty subset A of N.

2. Cµ is the OWA operator Ow if µ(A[i]) − µ(A[i−1]) = wi for all i ∈ N, or, equivalently, µ(A[i]) =∑i
j=1 w j for all i ∈ N. Therefore µ(A) =

∑|A|
i=1 wi for any nonempty subset A of N.

2.3. Uninorms and semi-uninorms
Uninorms were introduced by Yager and Rybalov [17] as a generalization of t-norms and t-

conorms (see also Fodor et al. [29], and Fodor and De Baets [30]).

Definition 7. A function U : [0, 1]2 −→ [0, 1] is a uninorm if it is symmetric, associative
(U(x,U(y, z)) = U(U(x, y), z) for all x, y, z ∈ [0, 1]), monotonic and possesses a neutral element
e ∈ [0, 1] (U(e, x) = U(x, e) = x for all x ∈ [0, 1]).

For its part, semi-uninorms were proposed by Liu [31] as a generalization of uninorms by
dispensing with the symmetry and associativity properties.

Definition 8. A function U : [0, 1]2 −→ [0, 1] is a semi-uninorm if it is monotonic and possesses
a neutral element e ∈ [0, 1].

The set of semi-uninorms with neutral element e ∈ [0, 1] will be denoted by Ue. Semi-
uninorms satisfy the following boundary conditions: U(0, 0) = 0 and U(1, 1) = 1. Moreover,
the structure of semi-uninorms has been studied by Liu [31, Proposition 2.1], and it is showed in
Figure 1.

Proposition 1. Let U ∈ Ue. Then:

1. U(x, y) = min(x, y) if (x, y) ∈ {e} × [0, e] ∪ [0, e) × {e}.
2. U(x, y) = max(x, y) if (x, y) ∈ {e} × (e, 1] ∪ (e, 1] × {e}.
3. 0 ≤ U(x, y) ≤ min(x, y) if (x, y) ∈ [0, e)2.
4. max(x, y) ≤ U(x, y) ≤ 1 if (x, y) ∈ (e, 1]2.
5. min(x, y) ≤ U(x, y) ≤ max(x, y) if (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e).

Idempotent semi-uninorms play an important role in our generalization of weighted means
and OWA operators. A characterization of idempotent semi-uninorms can be straightforward ob-
tained from Liu [31, Proposition 2.2] (see also De Baets [32] for a characterization of idempotent
uninorms), and their structure is shown in Figure 2.

Proposition 2. Let U ∈ Ue. U is idempotent if and only if

U(x, y) =


min(x, y) if (x, y) ∈ [0, e]2,

max(x, y) if (x, y) ∈ [e, 1]2 \ {(e, e)},
P(x, y) otherwise,

where P : [0, e)× (e, 1]∪ (e, 1]× [0, e) −→ [0, 1] is monotonic and min(x, y) ≤ P(x, y) ≤ max(x, y)
for all (x, y) ∈ [0, e) × (e, 1] ∪ (e, 1] × [0, e).
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Figure 1: The structure of semi-uninorms.
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Figure 2: The structure of idempotent semi-uninorms.
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The set of idempotent semi-uninorms with neutral element e ∈ [0, 1] will be denoted by Ue
i .

Notice that the smallest and the largest idempotent semi-uninorm are, respectively, the following
uninorms (which were given by Yager and Rybalov [17]):

Umin(x, y) =

max(x, y) if (x, y) ∈ [e, 1]2,

min(x, y) otherwise,

and

Umax(x, y) =

min(x, y) if (x, y) ∈ [0, e]2,

max(x, y) otherwise.

3. Capacities

Given two weighting vectors p and w, our aim is to find new functions based on the Choquet
integral, Fp,w, that, as WOWA operators (see Torra [2]), simultaneously generalize weighted means
and OWA operators in the following sense: Fp,η = Mp and Fη,w = Ow.

According to (1), if we represent the function we are looking for as

Fp,w(x) =

n∑
i=1

(
µp,w(A[i]) − µp,w(A[i−1])

)
x[i],

with A[0] = ∅, then, by Remark 2, Fp,w simultaneously generalize weighted means and OWA
operators when for any nonempty subset A of N the capacity µp,w satisfies

µp,η(A) =
∑
i∈A

pi, µη,w(A) =

|A|∑
i=1

wi. (2)

By Remark 1, we are interested in using normalized capacities so that the function Fp,w has
desirable properties. However, it is not straightforward to get normalized capacities satisfying the
conditions given by (2). To solve this problem, in the next subsection we introduce the notion of
monotonic cover of a game (see Maschler and Peleg [33] and Maschler et al. [34]).

3.1. Monotonic cover of a game
An easy way to obtain a capacity υ̂ from a game υ is to consider the monotonic cover of the

game: For each nonempty subset A of N, we take the maximum value of the set function over the
subsets contained in A.

Definition 9. Let υ be a game on N. The monotonic cover of υ is the set function υ̂ : 2N −→ [0,∞)
given by υ̂(∅) = 0 and

υ̂(A) = max
B⊆A

υ(B)

for any nonempty subset A of N.
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It is worth noting that the monotonic cover of a game υ is the least capacity satisfying υ(A) ≤
υ̂(A) for all A ⊆ N. Moreover, to determine υ̂ from a practical point of view, it is possible to
recursively define υ̂ taking into account the subsets contained in A with one less element; that is,
for each nonempty subset A of N,

υ̂(A) = max
B⊆A

υ(B) = max
(
υ(A), max

B(A
υ(B)

)
= max

(
υ(A), max

i∈A
υ̂
(
A \ {i}

))
.

Some basic properties of υ̂ are given in the sequel.

Remark 3. Let υ be a game on N. Then:

1. If υ is a capacity, then υ̂ = υ.
2. If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1, then υ̂ is a normalized capacity.

The usual order relation between games is preserved in the corresponding monotonic covers.

Proposition 3. Let υ1 and υ2 be two games on N. If υ1(A) ≤ υ2(A) for all A ⊆ N, then υ̂1(A) ≤
υ̂2(A) for all A ⊆ N.

Proof. Given a nonempty subset A of N,

υ̂1(A) = max
B⊆A

υ1(B) ≤ max
B⊆A

υ2(B) = υ̂2(A).

In addition to the previous properties, it is worth noting that if a game on N fulfils the conditions
given by (2), then the monotonic cover of the game also satisfies these conditions.

Proposition 4. Let p and w be two weighting vectors and let υp,w be a game on N such that

υp,η(A) =
∑
i∈A

pi and υη,w(A) =

|A|∑
i=1

wi

for any nonempty subset A of N. Then,

υ̂p,η(A) =
∑
i∈A

pi and υ̂η,w(A) =

|A|∑
i=1

wi

for any nonempty subset A of N.

Proof. Given a nonempty subset A of N,

υ̂p,η(A) = max
B⊆A

υp,η(B) = max
B⊆A

∑
i∈B

pi =
∑
i∈A

pi,

υ̂η,w(A) = max
B⊆A

υη,w(B) = max
B⊆A

|B|∑
i=1

wi =

|A|∑
i=1

wi.
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3.2. Constructing capacities by using semi-uninorms
Given a nonempty subset A of N, weighted means and OWA operators are generated through

normalized capacities defined by the values
∑

i∈A pi and
∑|A|

i=1 wi, respectively. Therefore, our first
intention is to consider a game on N given as a function of these values; that is,

ν
f
p,w(A) = f

∑
i∈A

pi,

|A|∑
i=1

wi

.
However, conditions given by (2) imply that, if |A| = j, then

ν
f
η,w(A) = f

 j
n
,

|A|∑
i=1

wi

 =

|A|∑
i=1

wi,

and

ν
f
p,η(A) = f

∑
i∈A

pi,
j
n

 =
∑
i∈A

pi,

that is, j/n should be a neutral element of the function f . Since the neutral element of a function
is unique, we should use different functions according to the cardinality of the set A. To avoid this,
we make a transformation of the values

∑
i∈A pi and

∑|A|
i=1 wi taking into account the cardinality of

the set A. So, when the set A is nonempty, we consider the set function

υ
f
p,w(A) = |A| · f


∑
i∈A

pi

|A|
,

|A|∑
i=1

wi

|A|

.
In this way, conditions given by (2) are satisfied when f is a function with neutral element

1/n. When we look for functions with neutral elements, uninorms appear in a natural way. Nev-
ertheless, for our purposes we can consider semi-uninorms by dispensing with the symmetry and
associativity properties (although symmetry is very interesting if we want a treatment egalitarian
between the weighting vectors p and w). Taking into account the above considerations, we can
now define the game associated to two weighting vectors and a semi-uninorm.

Definition 10. Let p and w be two weighting vectors and let U ∈ U1/n. The game associated to p,
w and U is the set function υU

p,w : 2N −→ R defined by υU
p,w(∅) = 0 and

υU
p,w(A) = |A| · U


∑
i∈A

pi

|A|
,

|A|∑
i=1

wi

|A|


for any nonempty subset A of N.
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It is easy to check that υU
p,w satisfies the conditions given by (2) and that υU

p,w(N) = 1. However,
the game υU

p,w may not be a capacity; that is, it may not be monotonic as we show in the following
example.

Example 1. Let p = (0.5, 0.2, 0.1, 0.1, 0.1) and w = (0.6, 0.2, 0, 0, 0.2). Given U ∈ U0.2, when
A = {2} we have

υU
p,w(A) = U(0.2, 0.6) = 0.6.

However, if B = {2, 3, 4, 5}, we get

υU
p,w(B) = 4 U(0.5/4, 0.2) = 0.5.

Therefore, A ⊆ B but υU
p,w(A) > υU

p,w(B); that is, υU
p,w is not monotonic.

This shortcoming can be solved by using the monotonic cover of a game.

Definition 11. Let p and w be two weighting vectors, let U ∈ U1/n, and let υU
p,w be the game

associated to p, w and U. The monotonic cover of the game υU
p,w, υ̂U

p,w, will be called the capacity
associated to p, w and U.

Notice that, by definition, υU
p,w(A) ≥ 0 for all A ⊆ N. Therefore, when |A| = 1 we have

υ̂U
p,w(A) = υU

p,w(A).
Once we know how to obtain capacities, our next goal is to get normalized capacities. Accord-

ing to (2) of Remark 3 and Proposition 4, in order to obtain a normalized capacity on N satisfying
the conditions given by (2) it is sufficient to find a game υp,w on N satisfying these conditions and
such that υp,w(A) ≤ 1 for all A ⊆ N and υp,w(N) = 1. However, the game υU

p,w may not satisfy the
condition υU

p,w(A) ≤ 1 for all A ⊆ N, as we show in the following example.

Example 2. Let p = (0.5, 0.2, 0.1, 0.1, 0.1) and w = (0.6, 0.2, 0, 0, 0.2). Consider the semi-
uninorm (see Calvo et al. [35, p. 11]) given by

U(x, y) = max
(
0,min(1, x + y − 0.2)

)
.

It is easy to check that U ∈ U0.2 and that it can be written as

U(x, y) =


0 if x + y ≤ 0.2,
1 if x + y ≥ 1.2,
x + y − 0.2 otherwise.

If A = {1, 2} we have
υU

p,w(A) = 2 U(0.35, 0.4) = 2 · 0.55 = 1.1 > 1.

In the following proposition we characterize the semi-uninorms U with neutral element 1/n
for which υU

p,w(A) ≤ 1 for all weighting vectors p and w, and for all A ⊆ N.

Proposition 5. Let U ∈ U1/n. The following conditions are equivalent:
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1. υU
p,w(A) ≤ 1 for all weighting vectors p and w, and for all A ⊆ N.

2. U(1/k, 1/k) ≤ 1/k for all k ∈ N.

Proof.
(1) ⇒ (2) : Given k ∈ N, consider the weighting vectors p = w = (1, 0, . . . , 0). When

A = {1, 2, . . . , k}, we get υU
p,w(A) = k U(1/k, 1/k). Since, by hypothesis, υU

p,w(A) ≤ 1, we have
U(1/k, 1/k) ≤ 1/k.

(2) ⇒ (1) : Given p and w two weighting vectors and a nonempty subset A of N, we have

υU
p,w(A) = |A|U


∑
i∈A

pi

|A|
,

|A|∑
i=1

wi

|A|

 ≤ |A|U
(

1
|A|
,

1
|A|

)
≤ |A|

1
|A|

= 1.

The set of semi-uninorms with neutral element 1/n satisfying the second condition given in
the previous proposition will be denoted by Ũ1/n; that is,

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.

It is worth mentioning that the smallest and the largest elements of Ũ1/n are, respectively, the
following semi-uninorms:

U⊥(x, y) =


0 if (x, y) ∈ [0, 1/n)2,

max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

and

U>(x, y) =


min(x, y) if (x, y) ∈ [0, 1/n]2,

1/k if (x, y) ∈
(
1/n, 1/k

]2
\
(
1/n, 1/(k + 1)

]2
, (k = 1, . . . , n − 1),

max(x, y) otherwise.

Notice that any idempotent semi-uninorm belongs to Ũ1/n. Moreover, as we are going to
see in the following, the use of idempotent semi-uninorms allows us to obtain some interesting
properties (see also Proposition 7). So, for any nonempty subset A of N, both υU

p,w(A) and υ̂U
p,w(A)

range between the minimum and the maximum of the values
∑

i∈A pi and
∑|A|

i=1 wi when we consider
idempotent semi-uninorms. Therefore, when both values are equal, the values of the game and the
capacity coincide with them.

Proposition 6. Let p and w be two weighting vectors, U ∈ U1/n
i and let υU

p,w be the game on N
associated to p, w and U. Then, for any nonempty subset A of N, we have

min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
≤ υU

p,w(A) ≤ max
(∑

i∈A

pi,

|A|∑
i=1

wi

)
.
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Proof. Given a nonempty subset A of N,

υU
p,w(A) = |A|U


∑
i∈A

pi

|A|
,

|A|∑
i=1

wi

|A|

 ≥ |A| min


∑
i∈A

pi

|A|
,

|A|∑
i=1

wi

|A|

 = min

∑
i∈A

pi,

|A|∑
i=1

wi

 .
The second inequality is obtained in a similar way.

Corollary 1. Let p and w be two weighting vectors, U ∈ U1/n
i and let υ̂U

p,w be the capacity on N
associated to p, w and U. Then, for any nonempty subset A of N, we get

min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
≤ υ̂U

p,w(A) ≤ max
(∑

i∈A

pi,

|A|∑
i=1

wi

)
.

Proof. Given a nonempty subset A of N, by Proposition 6 we have

υ̂U
p,w(A) ≥ υU

p,w(A) ≥ min
(∑

i∈A

pi,

|A|∑
i=1

wi

)
.

The second inequality is obtained as follows:

υ̂U
p,w(A) = max

B⊆A
υU

p,w(B) ≤ max
B⊆A

max
(∑

i∈B

pi,

|B|∑
i=1

wi

)

≤ max
(∑

i∈A

pi,

|A|∑
i=1

wi

)
.

Corollary 2. Let p and w be two weighting vectors, U ∈ U1/n
i and let υU

p,w and υ̂U
p,w be the game

and the capacity on N associated to p, w and U, respectively. Then, for any nonempty subset A of
N, we have ∑

i∈A

pi =

|A|∑
i=1

wi ⇒ υ̂U
p,w(A) = υU

p,w(A) =
∑
i∈A

pi.

Proof. It is obvious from Proposition 6 and Corollary 1.

4. SUOWA operators

We now introduce SUOWA operators as Choquet integral-based operators with respect to the
capacities υ̂U

p,w.

Definition 12. Let p and w be two weighting vectors and let U ∈ Ũ1/n. The semi-uninorm
based ordered weighted averaging (SUOWA) operator associated to p,w and U is the function
S U

p,w : Rn −→ R given by

S U
p,w(x) =

n∑
i=1

six[i],

where si = υ̂U
p,w(A[i]) − υ̂U

p,w(A[i−1]) for all i ∈ N, υ̂U
p,w is the capacity associated to p,w and U,

A[i] =
{
[1], . . . , [i]

}
and, by convention, A[0] = ∅.

12



According to Remark 1, and since υ̂U
p,w are normalized capacities, SUOWA operators are con-

tinuous, monotonic, idempotent, compensative and homogeneous of degree 1 functions. In addi-
tion to this, SUOWA operators satisfy a very interesting property when we consider idempotent
semi-uninorms. Given x ∈ Rn, each value x[i] is associated to the weights p[i] and wi. If both
weights are equal for all i ∈ N, then the corresponding weights of the SUOWA operator coin-
cide with them and, consequently, the value provided by the SUOWA operator is the same as
the value returned by the weighted mean and the OWA operator (in fact, as we can see from the
proof of Proposition 7, given i ∈ N, the value s[i] coincides with p[i] and wi when p[i] = wi and∑i−1

j=1 p[ j] =
∑i−1

j=1 w j). Notice that, in general, WOWA operators do not satisfy this property.

Proposition 7. Let p and w be two weighting vectors, U ∈ U1/n
i and let x ∈ Rn such that p[i] = wi

for all i ∈ N. Then,
S U

p,w(x) = Mp(x) = Ow(x).

Proof. Let x ∈ Rn such that p[i] = wi for all i ∈ N. Then, for all i ∈ N, we have

∑
j∈A[i]

p j =

i∑
j=1

p[ j] =

i∑
j=1

w j =

|A[i] |∑
j=1

w j,

and, by Corollary 2, we get

υ̂U
p,w(A[i]) =

i∑
j=1

p[ j].

Therefore, for all i ∈ N,

si = υ̂U
p,w(A[i]) − υ̂U

p,w(A[i−1]) =

i∑
j=1

p[ j] −

i−1∑
j=1

p[ j] = p[i],

and, consequently,

S U
p,w(x) =

n∑
i=1

p[i]x[i] = Mp(x) = Ow(x).

It is also worth noting that SUOWA operators preserve the order of the corresponding semi-
uninorms.

Proposition 8. Let p and w be two weighting vectors, and U1,U2 ∈ Ũ
1/n. If U1(x, y) ≤ U2(x, y)

for all (x, y) ∈ [0, 1]2, then
S U1

p,w(x) ≤ S U2
p,w(x)

for all x ∈ Rn.

Proof. Given U ∈ Ũ1/n and x ∈ Rn, since S U
p,w(x) can be written as

S U
p,w(x) =

n∑
i=1

υ̂U
p,w(A[i])

(
x[i] − x[i+1]

)
,

13



it is sufficient to prove that υ̂U1
p,w(A) ≤ υ̂U2

p,w(A) for all A ⊆ N. As U1(x, y) ≤ U2(x, y) for all
(x, y) ∈ [0, 1]2, we have υU1

p,w(A) ≤ υU2
p,w(A) for all A ⊆ N and, by Proposition 3, the monotonic

cover of the games also satisfy the corresponding inequalities.

Taking into account the smallest and the largest (idempotent) semi-uninorms, we have imme-
diately the following result.

Corollary 3. Let p and w be two weighting vectors. Then the following holds:

1. If U ∈ Ũ1/n, then S U⊥
p,w(x) ≤ S U

p,w(x) ≤ S U>
p,w(x) for all x ∈ Rn.

2. If U ∈ U1/n
i , then S Umin

p,w (x) ≤ S U
p,w(x) ≤ S Umax

p,w (x) for all x ∈ Rn.

Proof. Obvious from Proposition 8.

5. Examples

Two examples are provided in this section. The first one illustrates the construction of games
and capacities associated to three different idempotent semi-uninorms. In the second one we show
that, although WOWA operators are also a particular case of Choquet integral (see Torra [25]),
SUOWA and WOWA operators are different classes of aggregation operators. To do this, we will
use an example given by Llamazares [14].

Example 3. Consider the weighting vectors p = (0.6, 0.2, 0.1, 0.1) and w = (0.4, 0, 0, 0.6). Besides
Umin and Umax, we are also going to use Uam, the idempotent semi-uninorm obtained by means of
the arithmetic mean:

Uam(x, y)=


min(x, y) if (x, y)∈ [0, 0.25]2,

max(x, y) if (x, y)∈ [0.25,1]2 \
{
(0.25, 0.25)

}
,

(x + y)/2 otherwise.

In Table 1 we show the games and the capacities associated to these idempotent semi-uninorms.
It is worth noting that the values of the capacities can be obtained by using the recursive expression

υ̂(A) = max
(
υ(A), max

i∈A
υ̂
(
A \ {i}

))
.

For instance, the value υ̂Umin
p,w

(
{1, 2, 3}

)
can be obtained as

υ̂Umin
p,w

(
{1, 2, 3}

)
= max

(
υUmin

p,w
(
{1, 2, 3}

)
, υ̂Umin

p,w
(
{1, 2}

)
, υ̂Umin

p,w
(
{1, 3}

)
, υ̂Umin

p,w
(
{2, 3}

))
= max

(
0.4, 0.6, 0.6, 0.3

)
= 0.6.
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Table 1: Games and capacities associated to Umin, Uam and Umax

Umin Uam Umax

Set υUmin
p,w υ̂Umin

p,w υUam
p,w υ̂Uam

p,w υUmax
p,w υ̂Umax

p,w

{1} 0.6 0.6 0.6 0.6 0.6 0.6

{2} 0.2 0.2 0.3 0.3 0.4 0.4

{3} 0.1 0.1 0.25 0.25 0.4 0.4

{4} 0.1 0.1 0.25 0.25 0.4 0.4

{1, 2} 0.4 0.6 0.6 0.6 0.8 0.8

{1, 3} 0.4 0.6 0.55 0.6 0.7 0.7

{1, 4} 0.4 0.6 0.55 0.6 0.7 0.7

{2, 3} 0.3 0.3 0.3 0.3 0.3 0.4

{2, 4} 0.3 0.3 0.3 0.3 0.3 0.4

{3, 4} 0.2 0.2 0.2 0.25 0.2 0.4

{1, 2, 3} 0.4 0.6 0.65 0.65 0.9 0.9

{1, 2, 4} 0.4 0.6 0.65 0.65 0.9 0.9

{1, 3, 4} 0.4 0.6 0.6 0.6 0.8 0.8

{2, 3, 4} 0.4 0.4 0.4 0.4 0.4 0.4

N 1 1 1 1 1 1

Example 4. Let us consider the weighting vectors p = (0.5, 0.25, 0.2, 0.05) and w = (0, 0.5, 0.5, 0),
and x = (9, 10, 5, 4) (see Llamazares [14]). In the case of WOWA operators, it is easy to check
that, whatever the quantifier used, the value of the WOWA operator associated to p and w is

Wp,w(9, 10, 5, 4) = 0 · 10 + 1 · 9 + 0 · 5 + 0 · 4 = 9.

Now we calculate the capacities associated to the semi-uninorms U⊥ and U> (both functions
are showed in Figure 3). Notice that in this case, the capacities coincide with the games (that is,
the games are monotonic), and they are given in Table 2.

In both cases, the weights of the SUOWA operator are

s1 = υ̂U
p,w

(
{2}

)
= 0,

s2 = υ̂U
p,w

(
{2, 1}

)
− υ̂U

p,w
(
{2}

)
= 0.75,

s3 = υ̂U
p,w

(
{2, 1, 3}

)
− υ̂U

p,w
(
{2, 1}

)
= 0.25,

s4 = υ̂U
p,w

(
N
)
− υ̂U

p,w
(
{2, 1, 3}

)
= 0,

15



0 1/4 1

1/4

1

0

min max

min

0 1/4 1/3 1/2 1

1/4
1/3

1/2

1

min

max 1

1/2
1/3

max

Figure 3: Representation of U⊥ and U> when n = 4.

Table 2: Capacities associated to U⊥ and U>

Set υ̂U⊥
p,w υ̂U>

p,w

{1} 0 0.5

{2} 0 0

{3} 0 0

{4} 0 0

{1, 2} 0.75 0.75

{1, 3} 0.7 0.7

{1, 4} 0.55 0.55

{2, 3} 0.45 0.45

{2, 4} 0.3 0.3

{3, 4} 0.25 0.25

{1, 2, 3} 1 1

{1, 2, 4} 1 1

{1, 3, 4} 1 1

{2, 3, 4} 0.5 1

N 1 1
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where U ∈ {U⊥,U>}. Therefore,

S U⊥
p,w(9, 10, 5, 4) = S U>

p,w(9, 10, 5, 4)

= 0 · 10 + 0.75 · 9 + 0.25 · 5 + 0 · 4 = 8.

According to (1) of Corollary 3, given any U ∈ Ũ1/n, we have

S U
p,w(9, 10, 5, 4) = 8.

Consequently, SUOWA and WOWA operators are different classes of aggregation operators.

It is worth noting that WOWA operators are defined by considering quantifiers generating the
weighting vector w (see Torra and Godo [36]), where the quantifier is the identity when w = η;
that is, in order to get the weighted mean we need to use a specific quantifier. But in the case of
SUOWA operators, any semi-uninorm belonging to the set Ũ1/n allows us to obtain the weighted
mean.

Notice also that in Example 4, it seems that SUOWA operators have a better performance than
WOWA operators. On the one hand, it is easy to check that the values returned by the weighted
mean and the OWA operator are Mp(9, 10, 5, 4) = 8.2 and Ow(9, 10, 5, 4) = 7. Therefore, the
value returned by SUOWA operators, 8, seems more consistent than the value given by WOWA
operators, 9. On the other hand, WOWA operators only take into account the value provided by the
first information source and assign a weight of zero to the value provided by the third information
source, x3 = 5, even if this value is associated with the weights p3 = 0.2 and w3 = 0.5. In
the case of SUOWA operators, the weight assigned to x3 = 5 is 0.25. Obviously, this behavior
happens in this numerical example and no conclusions can be deduced for the general case. So,
the comparison between the behavior of WOWA and SUOWA operators deserves a more in-depth
study.

6. Conclusion

In some practical cases it is necessary to aggregate values by using two weighting vectors. The
first one provides information about the reliability of each information source while the second one
allows to weight the values according to their ordering. Although there exist in the literature a large
number of aggregation operators, WOWA operators seem to be the most suitable for dealing with
this kind of situations (see Llamazares [14]). As WOWA operators, the functions introduced in
this paper are Choquet integral-based operators with respect to normalized capacities. Therefore,
SUOWA operators are continuous, monotonic, idempotent, compensative and homogeneous of
degree 1 functions, and, consequently, they constitute an alternative to WOWA operators to deal
with this kind of aggregation problems.
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