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Abstract—Goal: The purpose of this study is to evaluate the 

usefulness of the boosting algorithm AdaBoost (AB) in the context 

of the sleep apnea-hypopnea syndrome (SAHS) diagnosis. 

Methods: We characterize SAHS in single-channel airflow (AF) 

signals from 317 subjects by the extraction of spectral and non-

linear features. Relevancy and redundancy analyses are 

conducted through the fast correlation-based filter (FCBF) to 

derive the optimum set of features among them. These are used 

to feed classifiers based on linear discriminant analysis (LDA) 

and classification and regression trees (CART). LDA and CART 

models are sequentially obtained through AB, which combines 

their performances to reach higher diagnostic ability than each of 

them separately. Results: Our AB-LDA and AB-CART 

approaches showed high diagnostic performance when 

determining SAHS and its severity. The assessment of different 

apnea-hypopnea index cutoffs using an independent test set 

derived into high accuracy: 86.5% (5 events/h), 86.5% (10 

events/h), 81.0% (15 events/h), and 83.3% (30 events/h). These 

results widely outperformed those from logistic regression and a 

conventional event-detection algorithm applied to the same 

database. Conclusion: Our results suggest that AB applied to 

data from single-channel AF can be useful to determine SAHS 

and its severity. Significance: SAHS detection might be simplified 

through the only use of single-channel AF data. 

 

Index Terms—AdaBoost, airflow, sleep apnea-hypopnea 

syndrome, spectral analysis, nonlinear analysis  

I. INTRODUCTION 

n recent years, the Sleep Apnea-Hypopnea Syndrome 

(SAHS) has become a major concern due to the high 

prevalence and severe consequences for the patients’ health 

and quality of life [1], [2]. People suffering from SAHS 

experiment recurrent episodes of complete (apnea) or partial 

(hypopnea) collapse of the upper airway during sleep, which 
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lead to cessation or significant reduction of airflow (AF) [3]. 

These apneic events cause oxygen desaturations and arousals 

[3], preventing patients from resting while sleeping [2]. 

Unsuccessful rest derives in daytime symptoms such as 

hypersomnolence, cognitive impairment, and depression [1], 

some of which have been related to motor-vehicle collisions 

and occupational accidents [4], [5]. Moreover, SAHS has been 

associated with cardiac and vascular illnesses [2], as well as 

with an increase in the cancer incidence [6]. 

The standard test to diagnose SAHS is overnight in-lab 

polysomnography (PSG) [3]. Although its effectiveness is 

well-known, PSG implies monitoring and recording multiple 

physiological signals, including electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG), 

oxygen saturation of blood (SpO2), and AF [3]. This makes 

PSG a complex test which requires expensive equipment and 

technical expertise [7], [8]. Moreover, the specialists need an 

offline inspection of the recordings to derive the apnea-

hypopnea index (AHI), which is the parameter used to 

establish SAHS and its severity [9]. Thus PSG is also time-

consuming, leading to a delayed diagnostic process and 

increased waiting lists [8], [10]. 

One widespread approach to reduce complexity, cost, and 

time delay is the study of a limited set of signals among those 

involved in PSG [8]. The analysis of a single one has been 

often adopted. Thus, the oxygen desaturation index (ODI) 

from SpO2, the apneic-related events from ECG, and the 

respiratory disturbance index (RDI) from AF have been 

already assessed to help in SAHS diagnosis [10]-[13]. These 

works followed a common methodology: detecting the effects 

caused by each apnea and hypopnea in the signals under study, 

scoring them as apneic-related events, and deriving the 

corresponding diagnostic index. However, our research group 

has lately adopted a different approach based on an exhaustive 

analysis of a signal through the extraction of global features 

[14]-[18].  

In this paper, we propose such a global analysis in single-

channel AF. AF is a straightforward choice to look for simpler 

alternatives to PSG, since apneas and hypopneas are defined 

on the basis of its amplitude oscillations [9]. The American 

Academy of Sleep Medicine (AASM) recommends the use of 

two AF channels: one acquired through an oronasal thermal 

sensor and the second one acquired by means of a nasal prong 
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pressure sensor (NPP) [9]. The former is suitable for a proper 

scoring of apneas whereas the latter is used to score 

hypopneas [9]. However, previous studies have shown that it 

is possible to reach high diagnostic ability following an 

automatic global analysis of the single-channel AF from a 

thermal sensor [17], [18]. In this paper, one major goal is to 

assess whether it is also possible to reach a high performance 

when using data from single-channel AF obtained by NPP. 

Our proposal starts with the extraction of spectral (frequency 

domain) and non-linear (time domain) features from NPP AF. 

The analysis in frequency domain is justified due to the 

overnight recurrence of these events. Thereby, common 

spectral features have already shown their utility to 

characterize SAHS as well as other disorders [15]-[19]. On the 

other hand, non-linear measures of variability, complexity, 

and irregularity in time series have been also used to extract 

useful information from biomedical signals [14], [17]-[19]. 

This exhaustive characterization of AF, however, may lead to 

obtain features with a high degree of shared information, i.e., 

redundant features. In order to avoid this issue, a second step 

is included in our methodology: an automatic feature selection 

stage based on the fast correlation-based filter (FCBF) [20]. 

The FCBF algorithm selects optimum sets of features on the 

basis of their relevancy and redundancy. It has been also 

assessed in biomedical applications [17], [21]. Finally, a 

classification approach is used to distinguish SAHS and its 

severity. Thus, we evaluate two different cases: a binary 

classification task, in which the objective is to determine the 

presence (SAHS-positive) or absence (SAHS-negative) of 

SAHS, and a multiclass task, in which the aim is to assess the 

AHI cutoffs which establish the four severity levels of SAHS 

(no-SAHS, mild-SAHS, moderate-SAHS, and severe-SAHS). 

We propose the AdaBoost (AB) algorithm for both 

classification tasks. AB is a boosting algorithm commonly 

used to take advantage of the performance of several weak 

classifiers of the same type [22]. It is known to be able to 

reach high yields when it is applied to new data [22], i.e., the 

AB algorithm produces generalized models. Moreover, it 

relies on a simple sequential procedure [22], which barely 

increases the complexity of the methodology. These 

characteristics make it a suitable algorithm to be used in 

diagnostic aid contexts. Actually, it has been already assessed 

in the context of SAHS under a classic event-detection 

approach [23], [24]. As weak classifiers we propose two well-

known machine learning algorithms based on i) linear 

discriminant analysis (LDA) and ii) classification and 

regression trees (CART). Both of them have been already 

assessed in the context of SAHS [16], [23]. Since classifiers 

favor the right sorting of classes with more subjects, one major 

issue in the present work is how to deal with imbalanced 

classes. The high prevalence of SAHS leads to prioritize 

diagnosis in at-risk population [25]. Consequently, data from 

SAHS patients is more available than from no SAHS subjects. 

Thus, to compensate for this imbalance, we use the synthetic 

minority oversampling technique (SMOTE) [26], which 

creates new synthetic data from the minority classes on the 

basis of the real data. 

Our hypothesis is that the information obtained from AF and 

the generalization ability of AB can be useful to automatically 

detect SAHS and establish its severity. Thus, the main 

objective of the present work is to evaluate the diagnostic 

usefulness of AB when the only source of SAHS-related 

information is single-channel AF from NPP. In order to 

achieve this goal, we evaluate whether our proposal 

outperforms the diagnostic ability of a typical classification 

algorithms such as logistic regression (LR), which is based on 

one single classifier. We also apply to our AF recordings an 

algorithm focused on the classical event-detection approach, 

which has been previously assessed in other databases [17], 

[27]. Finally, our results are also compared with other recent 

studies focused on SAHS detection from single-channel AF. 

II. POPULATION AND SIGNAL UNDER STUDY 

In this study, AF recordings from 317 adults were involved. 

Before undergoing PSG, all of the subjects suffered from 

common symptoms such as daytime sleepiness, loud snoring, 

nocturnal choking and awakenings, and/or referred apneic 

events. PSG was conducted in the sleep unit of the Hospital 

Universitario Río Hortega in Valladolid, Spain. Physicians 

scored apneas and hypopneas according to the American 

Academy of Sleep Medicine (AASM) rules [9]. Consequently, 

an apnea was defined as a 90% or more reduction in the pre-

event baseline of the AF amplitude, measured through an 

oronasal thermal sensor. In contrast, a hypopnea was scored 

after 30% or more reduction in the pre-event baseline of the 

AF amplitude, measured through a nasal pressure sensor, and 

accompanied by a drop of 3% in SpO2 and/or an EEG arousal. 

In both cases, duration of 10 seconds or more was required to 

annotate the event [9]. All the subjects gave their informed 

consent and the Ethics Committee of the Hospital 

Universitario Rio Hortega (Spain) accepted the protocol. 

Common AHI cutoffs to determine SAHS and its severity 

are 5, 10, 15, and 30 e/h [9], [10], [13], [17]. Particularly, 

SAHS severity levels are: no-SAHS (5AHI), mild-SAHS 

(5≤AHI15), moderate-SAHS (15≤AHI30), and severe-

SAHS (AHI30) [28]. Alternatively, AHI=10 e/h has been 

widely used as cutoff to determine the presence or absence of 

SAHS [10], [13], [17], [18], [29]. Consequently, for the binary 

classification task, we chose AHI=10 e/h to distinguish SAHS-

negative and SAHS-positive subjects, whereas for the multi-

classification task we divided our database according to the 

four SAHS severity levels. Tables I and II show clinical and 

demographical data of the subjects under study when they are 

divided for the binary or the multiclass tasks, respectively. No 

statistically significant differences were found (p-value0.01) 

between SAHS-positive and SAHS-negative (Mann-Whitney 

U test), or among the four severity levels (Kruskal-Wallis 

test), in body mass index (BMI) and age. 

The AF recordings were obtained during overnight PSG, 

which was performed through a polysomnograph (E-series, 

Compumedics). A NPP sensor was used to acquire AF 

(sample rate=128 Hz). The recording length was 7.4  0.3 

hours (mean  standard deviation). An anti-aliasing filter was 
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applied to the AF recordings to satisfy the Nyquist-Shannon 

theorem. We also applied an infinite impulse response 

Butterworth low-pass filter (cutoff = 1.2 Hz) to reduce noise 

for a prospective non-linear analysis in time domain. 

We divided our recordings into a training set (60%) and a 

test set (40%). A uniformly random selection was conducted 

to assign the AF recordings to each one. However, for the sake 

of the balance of the classes in the training set, we fixed the 

size of each class as follows: 29 no-SAHS subjects, 54 mild-

SAHS, 54 moderate-SAHS, and 54 severe-SAHS. This 

distribution in the multiclass problem leads to 75 SAHS-

negative and 116 SAHS-positive for the binary classification 

task. The SMOTE algorithm was used to compensate the 

remaining imbalance in classes of the training set (section F). 

The recordings not selected for the training set were assigned 

to the test set. 

III. METHODS 

Our methodology consists of three steps. First, a feature 

extraction stage is implemented, in which spectral and 

nonlinear analyses are conducted over the AF recordings. 

Then, an automatic feature selection is performed to obtain an 

optimum set of the extracted features. Finally, a boosting 

classification approach is adopted to determine SAHS (binary 

classification) and its severity (multiclass task). Fig. 1 depicts 

a block diagram with the entire methodology followed during 

the study, which is widely explained in next sections. 

A. Feature extraction  

1) Spectral analysis 

Apneas and hypopneas recurrently modify AF throughout 

the night. This behavior supports its study in the frequency 

domain. Hence, the power spectral density (PSD) of each AF 

recording was estimated. Welch’s method was applied for this 

purpose since it is suitable for non-stationary signals [30]. A 

Hamming window of 215 points (50% overlap), along with a 

discrete Fourier transform of 216 points, were used to compute 

PSD. To avoid the influence of factors not related to the 

pathophysiology of SAHS, each PSD was normalized (PSDn) 

dividing the amplitude value at each frequency by their 

corresponding total power [31]. Fig. 2a shows the averaged 

PSDn for the four SAHS severity groups in the training set. 

A spectral band of interest (BW) was defined between 0.025 

Hz. and 0.050 Hz. (Fig. 2b). This corresponds to events lasting 

from 20 to 40 seconds, which has been reported as the typical 

range of the apneic events duration [32]. Moreover, BW is 

consistent with the bands found through statistical approaches 

[17], [18]. Thus, to characterize SAHS, 9 spectral features 

were extracted from the 0.025-0.050 Hz. band of each PSDn: 

minimum amplitude (mA), maximum amplitude (MA), first to 

fourth statistical moments (Mf1- Mf4), median frequency (MF), 

spectral entropy (SpecEn), and Wootters distance (WD). 

 mA and MA were computed as the lowest and the highest 

PSDn values in BW. Since PSD is normalized, the amplitude 

values of the original AF time-series do not affect the power at 

each frequency component. Hence, as BW is related to apneic 

events, mA and MA estimate the minimum and the maximum 

occurrence of them. Mean (Mf1), standard deviation (Mf2), 

skewness (Mf3), and kurtosis (Mf4) of BW were also obtained. 

They are common statistics which quantify central tendency, 

dispersion, asymmetry, and peakedness of data, respectively. 

According to Fig. 2b, mA and MA should be higher as SAHS 

worsens. Similarly, the mean (Mf1) and the standard deviation 

(Mf2) should be also higher. Finally, both the skewness (Mf3) 

and the peakedness (Mf4) seem to be higher in the BW spectral 

data of moderate and severe groups. 

MF is defined as the frequency component which separates 

the spectrum into two parts with 50% of the power each of 

them [33]. Thus, the lower the MF value, the more comprised 

is the spectrum into small frequencies. As seen in Fig 2b, the 

spectrum of BW for the no-SAHS and mild-SAHS groups is 

flat, i. e., the power is equally distributed. Conversely, a fewer 

 
Fig. 1 Block diagram of the signal processing methodology followed 

during the study. 

 

TABLE I  

DEMOGRAPHIC AND CLINICAL DATA FOR THE TWO-CLASS DIVISION 

 All SAHS-negative SAHS-positive 

# Subjects 317 110 207 

Age (years) 49.9  12.0 47.6  12.9 51.1  11.4 

Men (%) 226 (71.3) 68 (61.8) 158 (76.3) 

BMI (kg/m2) 28.1  5.2 26.5  5.0 29.0  5.1 

AHI (e/h) 28.1  26.5 6.0  2.6 39.9  25.9 

TABLE II  

DEMOGRAPHIC AND CLINICAL DATA FOR THE FOUR-CLASS DIVISION 

 no-SAHS mild moderate severe 

# Subjects 39 92 70 116 

Age (years) 43.9  12.5 50.3  12.4 49.9  11.3 51.6  11.5 

Men (%) 19 (48.7) 58 (63.0) 56 (80.0) 93 (80.2) 

BMI(kg/m2) 26.0  5.5 27.0  4.6 28.5  3.9 29.5  5.8 

AHI (e/h) 3.0  1.3 8.6  2.4 22.2 4.1 55.7  24.7 
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amount of power is observed in higher frequencies of BW for 

moderate-SAHS and severe-SAHS groups. As a consequence, 

a MF value closer to 0.0375 (the half of the band) is expected 

for the lowest severity degrees. 

SpecEn quantifies the flatness of the PSD content, which 

indirectly measures the irregularity of time series [33]. 

Thereby, high values of SpecEn are related to a flat PSD 

(similar to white noise) and, consequently, it is associated with 

more irregularity in time domain. By contrast, low values 

imply a spectrum condensed into a narrow frequency band, 

which is related to less irregularity in time domain (like in a 

sum of sinusoids) [33]. A flatter spectrum is observed in BW 

as SAHS severity decreases. Therefore, higher values of 

SpecEn are expected in no-SAHS and mild-SAHS groups. 

WD is a disequilibrium measure which assigns values close 

to 1 to those distributions with higher statistical distance to the 

uniform distribution; whereas values close to zero are assigned 

as the distance becomes smaller [34], [35]. In BW, the 

averaged spectrum of the no-SAHS and mild-SAHS groups is 

similar to a normal distribution (Fig. 2b). Hence, smaller 

values of WD are expected than in the case of the moderate-

SAHS and severe-SAHS groups. 

2) Non-linear analysis 

Alterations caused by SAHS in AF could modify the 

variability, the complexity, and the irregularity of the signal. 

Hence, to complement the spectral analysis, three global non-

linear features were also obtained from each recording in time 

domain: central tendency measure (CTM), Lempel-Ziv 

complexity (LZC), and sample entropy (SampEn). Similarly to 

PSD, each AF time series was normalized before obtaining 

CTM, LZC, and SampEn. Thereby, measuring effects caused 

by factors not related to the pathophysiology of SAHS are 

avoided. We firstly eliminated the spurious values of the 

signal. Then the time-series were divided by the remaining 

maximum absolute value in order to constrain each recording 

into the range -1, 1.  

CTM quantifies the variability of a given series x[n] on the 

basis of its first-order differences [36]. These are plotted 

following x[n+2]-x[n+1] vs. x[n+1]-x[n] [37].  The value of 

CTM is computed as the proportion of points in the plot which 

fall within a radius  [36], which acts as a design parameter. 

Thus, CTM ranges between 0 and 1, with higher values 

corresponding to points more concentrated around the center 

of the plot, i.e., corresponding to less degree of variability. 

People suffering from SAHS experiment continuous changes 

in the respiratory pattern (apneic events, snoring, choking, 

respiratory overexertion after apneas and hypopneas), which 

may add variability to the AF signal. Consequently, it is 

expected that CTM decreases in the presence of SAHS.    

LZC estimates the complexity of a finite sequence of 

symbols [38]. Hence, the first step of the algorithm is to 

convert a time-series x[n] into such a sequence [37]. Usually, a 

binary transformation is performed, with the median of each 

x[n] being used as threshold [37]. Then the sequence is 

scanned, and a counter c(n) is increased with every new 

subsequence of consecutive symbols. Finally, c(n) is 

normalized in order to make the method independent of the 

sequence length. The higher the value of LZC, the higher the 

complexity of the corresponding time-series is [37]. 

Abnormalities in the AF pattern may introduce new 

subsequences of symbols. Hence, more complexity is expected 

in the AF of SAHS patients. 

SampEn is a measure of the irregularity in time-series [39]. 

It was developed by Richman and Moorman to reduce the bias 

caused by self-matching in the estimation of the approximate 

entropy [40]. SampEn divides a time-series into consecutive 

vectors of length m. It assesses whether the maximum absolute 

distance between the corresponding components of each pair 

of vectors is less than or equal to a tolerance r, i.e., if the 

vectors match each other within r. If so, the vectors are 

considered as similar. Then the same process is repeated for 

vectors of length m+1 and the conditional probability that 

similar vectors of length m remain similar when the length is 

m+1 is computed. The final SampEn value is obtained as the 

negative logarithm of such a conditional probability [39], [40]. 

Thus, higher values of SampEn indicate less self-similarity in 

the times-series and, consequently, more irregularity [39]. 

SAHS is reflected in the AF signal by the addition of not 

regular events. As a consequence, it is expected that SampEn 

present higher values in SAHS patients. 

B. Feature selection: fast correlation-based filter 

The exhaustive characterization of the AF signal may lead to 

the extraction of several features which provide similar 

information about SAHS, i.e., which are redundant. Hence, a 

feature selection stage is included to discard those features (Xi) 

 
 

 

Fig. 2 a) Averaged PSDn for the four SAHS severity groups in the training 
set and b) detail of the band of interest BW. 
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which share more information with the others than with a 

SAHS-related dependent variable, Y. The FCBF has shown its 

utility in previous studies involving SAHS [17], as well as 

other biomedical applications [21]. In our case, Y is a vector 

whose components are the AHI value of each subject.  

FCBF relies on symmetric uncertainty (SU), which is a 

normalized quantification of the information gain (IG) 

between two variables [20]. It consists of two steps. In the first 

one, a relevance analysis of the features (Xi) is done. Thus, SU 

between each feature Xi and Y is computed as follows: 

,...,,2,1
)()(

)|(
2),( Fi

YHXH

YXIG
YXSU

i

i
i 










    (1) 

where IG (Xi | Y) = H(Xi) – H(Xi | Y), H is the well-known 

Shannon’s entropy, and F is the number of features extracted 

(F = 12). SU is constrained to 0-1. A 0 value indicates that the 

two variables are independent, whereas SU = 1 indicates that 

knowing one feature it is possible to completely predict the 

other [20]. Thus, the higher the value of SU, the more 

information shares the corresponding feature with the AHI 

and, consequently, the more relevant is. Then a ranking of 

features is done based on their SU(Xi, Y) values, i.e., from 

most relevant to least relevant. The second step is a 

redundancy analysis in which the SU between each pair of 

features (SU(Xi, Xj)) is sequentially estimated beginning from 

the first-ranked ones. If SU(Xi, Xj) ≥ SU(Xi, Y), with Xi being 

more highly ranked than Xj, the feature j is discarded due to 

redundancy and is not considered in next comparisons [20]. 

The optimum features are those not discarded when the 

algorithm ends.  

C. Classification approach: boosting 

After the feature selection procedure, each subject from our 

database is associated with a vector xk (k = 1, 2,…, N, where N 

is the size of our sample), whose components are the values of 

the features included in the optimum set. The purpose is to 

build models with the ability to determine SAHS and its 

severity on the basis of the information contained in the 

vectors xk. Boosting procedures are known to achieve good 

generalization ability [22]. Thus, 60% of the instances are 

used as training set (Ntraining = 191) to feed the boosting 

method AdaBoost (AB), which we use along with LDA and 

CART as weak classifiers (AB-LDA and AB-CART). The 

remaining 40% (Ntest = 126) is used as test group to validate 

the models. For comparison purposes, we also train a classic 

logistic regression (LR) classifier. 

1) AdaBoost algorithm 

Boosting procedures are iterative algorithms designed to 

combine models that complement one another [22]. Such a 

combination is conducted on the basis of weighted votes from 

classifiers of the same type [22], [41]. AB is a widely used 

boosting algorithm, originally developed by Freund and 

Schapire [42], which can be used along with any classifier 

[22]. However, if AB is applied to complex classifiers, the 

prediction ability on new data may be significantly decreased 

[22], i.e., its generalization ability may be lost. Thus, simpler 

procedures known as weak classifiers are preferable [22]. In 

our case, we chose the well-known LDA and CART 

algorithms to act as weak classifiers. 

At each m iteration, the AB algorithm assigns a weight, wk
m, 

to every instance (or vector) xk in the training set. Thus, the 

mth weak classifier is trained using the corresponding 

weighted instances. Then its performance is assessed through 

an error m. This error is used to determine the weighted vote, 

m, of this mth classifier [22]. Thereby, those classifiers with 

smaller m contribute more to the final decision. At the end of 

the iteration the weights of the misclassified instances are 

updated (wk
m+1) [22]. Then, the weights of all instances are 

normalized in order to maintain the original distribution [42]. 

Two versions of AB have been implemented in this study: 

AB.M1, for binary classification, and AB.M2 for the 

multiclass task. Both of them rely on reweighting those 

instances which have been misclassified after each iteration. 

Thus, the weak classifier trained during the next iteration 

gives more importance to these instances [42], being more 

likely to classify them rightly [22]. The main difference 

between AB.M1 and AB.M2 is how the error  is defined. For 

AB.M1 m is the sum of the weights of the misclassified 

instances in a given iteration m, divided by the sum of the total 

weights of all instances at that iteration: 

.
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By contrast, a weighted pseudo-loss is defined in the case of 

AB.M2, for which m is as follows [42]: 
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where c is a categorical variable representing the multiple 

classes, ctrue refers to the actual class of xk, and hm is the 

confidence of the prediction of the weak learner for an 

instance xk and a class from c. 

AB.M1 and AB.M2 perform the final classification task by 

returning the class with the highest sum of the votes from all 

classifiers, taking into account the weight of their 

corresponding predictions m computed as follows [42]: 

 ,ln mm    (4) 

where m is defined as (1 - m)/m. Additionally, the shrinkage 

regularization technique has been proposed to minimize 

overfitting [43]. It is based on adding a learning rate to the 

iterative process by redefining m as (m), where ranges 

1 and has to be experimentally estimated. 

Two criteria were used to stop the AB.M1 algorithm: i) m 

does not belong to the interval (0, 0.5) [22] or ii) the number 

of weak learners is not higher than 400 (to minimize the 

overfitting chances). In the case of AB.M2 only the second 

criterion was applied since the first one is considered too 

restrictive for multiclass approaches [42]. 
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D. Logistic regression and conventional approach algorithm 

We also implemented LR models and a conventional event-

detection algorithm to evaluate them using our own database. 

LR is a widely-used supervised learning algorithm which 

has become a standard for binary classification tasks [44]. It 

estimates the posterior probability that a given instance (or 

vector) xk belongs to one of two classes. First, the LR 

algorithm uses the maximum likelihood estimation of the 

coefficients of a linear transformation where the dependent 

variables are the components of each xk [44], in our case, 

features extracted from the signals. Then the well-known logit 

function is applied to this linear transformation in order to 

obtain the above mentioned probability [44]. Vector xk is then 

assigned to the class with the highest posterior probability. 

We also implemented a conventional scoring algorithm in 

order to apply it to our AF recordings database. Thus, a peak 

detection algorithm was used to locate inspiratory onsets and 

endings in AF time series [45]. The difference between AF 

values in consecutive onsets and endings locations determined 

the amplitude of every inspiration. According to the rules of 

the AASM, the algorithm scored those respiratory events 

which meet with i) a drop of 30% or more from the AF pre-

event baseline and ii) the drop lasts 10 seconds or more [9]. 

The baseline was computed as the mean amplitude of the s 

previous inspirations [27]. Hence, s was a design parameter. 

Once all events are scored, the total amount of them is divided 

by the sleep time to obtain an AHI estimation. To choose an 

optimum s value we computed the AHI estimations of the 

subjects in the training group, with s ranging 1-10. For each s, 

the Spearman’s correlation was computed between the 

corresponding AHI estimations and the actual AHI from the 

subjects. The highest correlation was obtained for s = 6, which 

was established as the optimum value. 

E. Statistical analysis  

The extracted features did not pass the Lilliefors normality 

test. Hence, the non-parametric Kruskal-Wallis test was used 

to establish significant statistical differences between the four 

groups of SAHS severity (p-value<0.01). Bonferroni 

correction was applied to deal with multiple comparisons. 

Diagnostic ability of the AB and LR models was assessed in 

terms of sensitivity (Se, percentage of positive subjects rightly 

classified), specificity (Sp, percentage of negative subjects 

rightly classified), accuracy (Acc, overall percentage of 

subjects rightly classified), and Cohen’s kappa (). measures 

the agreement between predicted and observed classes, 

avoiding the part of agreement by chance [22]. 

The bootstrap 0.632 algorithm [22], which was only applied 

to the training group, was used to find an optimum learning 

rate for the AB models. Thus, B new bootstrap training 

groups (Btraining), with the same size as the original one, were 

built by resampling with replacement from this [46]. We chose 

B = 500 since it suffices for a proper estimation of the error, 

while let the variance remain low [46]. A uniform probability 

was used to select from the original instances in the training 

group. Consequently, some of these instances were repeated 

for each new Btraining, whereas the same number remained 

unemployed. The latter were used as the corresponding 

bootstrap test groups (Btest). We evaluated  in the range (0, 1] 

(step = 0.1). At each step, we computed n (n = 1, 2, …, B) as 

follows [22]: 

,κ632.0κ369.0κ BtestBtraining
nnn   (5)  

where n
Btraining and n

Btest are the Cohen’s kappa values for 

each  Btraining and Btest, respectively. Then, the 500 n statistics 

were averaged in each step, and was chosenaccording to the 

highest averaged value. 

F. Balancing the classes: SMOTE 

Before training the classifiers, we applied SMOTE to 

compensate the imbalance among classes. SMOTE creates 

new synthetic instances on the basis of the available minority 

class real ones [26]. In our case, the real instances are the 

vectors of features associated to each subject in this minority 

class. According to the number of new instances (vectors) 

required for the compensation of the classes, the algorithm 

selects the K-nearest neighbors of each of the real ones [26]. 

Thus, if it is required to double the minority class vectors, K 

should be 1, and so on. Then, the difference between each 

vector and its K-nearest neighbors is computed. These 

differences, multiplied by a random number in the range 0 to 

1, are subsequently added to the original vector again, to form 

new synthetic ones whose components are between the vector 

considered and its corresponding K-nearest neighbors [26]. 

As it can be derived from Table II, our instances of features, 

xk, come from: 39 no-SAHS, 92 mild-SAHS, 70 moderate-

SAHS, and 116 severe-SAHS. These were divided into a 

training (60%) and a test set (40%). Since the training set 

plays the key role to avoid the bias towards majority classes 

[26], we adjusted its configuration to balance the classes as 

much as possible. Hence, although the inclusion of instances 

into the training set was uniformly random per class, we 

forced to include 29 no-SAHS, 54 mild-SAHS, 54 moderate-

SAHS, and 54 severe SAHS. Then we applied SMOTE (K=1) 

to the instances of the no-SAHS class to create 29 additional 

synthetic ones. Consequently, the balanced training set was 

finally composed of 58 no-SAHS, 54 mild-SAHS, 54 

moderate-SAHS, and 54 severe SAHS. Accordingly, the test 

set was composed of 10 no-SAHS, 38 mild-SAHS, 16 

moderate-SAHS, and 62 severe-SAHS.  

This instance distribution, carried out for the four classes, 

also resulted in a balanced training set for the binary 

classification task. Thus, it was composed of 104 SAHS-

negative instances (75 real and 29 synthetic) and 116 SAHS-

positive instances (all real). The test set was composed of 35 

SAHS-negative instances and 91 SAHS-positive instances.  
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TABLE III  

FEATURE VALUES  FOR THE SEVERITY GROUPS (MEAN ± SD) 

Feat. no-SAHS mild moderate severe p-value 

MA 
(10-4) 

2.012±1.091 2.854±1.460 5.148±3.134 13.736±11.360 <<0.01 

mA 

(10-4) 
1.359±0.729 1.849±0.930 2.903±1.294 6.225±4.498 <<0.01 

Mf1 
(10-4) 

1.670±0.912 2.296±1.131 3.900±1.886 9.400±7.295 <<0.01 

Mf2 
(10-5) 

2.140±1.424 3.193±2.428 7.418±8.268 24.864±27.774 <<0.01 

Mf3 0.190±0.540 0.259±0.512 0.149±0.619 0.429±0.689 0.19+ 

Mf4 2.154±0.590 2.269±0.569 2.298±0.637 2.608±1.115 0.41+ 

WD 0.046±0.019 0.052±0.029 0.063±0.041 0.086±0.056 0.003+ 

MF 0.038±0.001 0.038±0.002 0.037±0.002 0.036±0.002 0.004+ 

SpecEn 

(10-1) 
9.963±0.032 9.958±0.046 9.924±0.168 9.882±0.134 0.024+ 

CTM 
(10-1) 

9.993±0.007 9.988±0.015 9.987±0.009 9.963±0.023 <<0.01 

LZC 0.057±0.009 0.057±0.007 0.057±0.006 0.058±0.007 0.71+ 

SampEn 0.059±0.012 0.063±0.014 0.062±0.016 0.058±0.014 0.18+ 

+Not lower than Bonferroni correction (p-value=0.01/6). 

IV. RESULTS 

A. Feature extraction and selection 

 The optimum values for  (CTM), as well as m and r 

(SampEn), were obtained by evaluating the ranges  [0.001, 

0.1] (step=0.001), and m=1, 2 and r  [0.10*SD, 0.25*SD] 

(step=0.05*SD), where SD is the standard deviation of the time 

series. In the case of the range was chosen according to the 

character of data [36]. Thus, values of < 0.001 were discarded 

since they led to a CTM value ≈ 0 regardless the SAHS severity 

group of the subjects. Similarly, values of > 0.1 were also not 

considered since they led to CTM values = 1 for every subject. 

The ranges of m and r were suggested by Pincus (2001) as those 

which experimentally produced a good entropy estimation in 

time series longer than 60 samples [47]. We chose those 

configurations (for CTM and m = 2 and r = 0.1*SD  

for SampEn) for which the corresponding CTM and SampEn 

values showed the highest Spearman’s correlation with the 

variable composed of the AHI measures from the subjects. We 

only used training data for this purpose. Table III shows the 

values of the extracted features for the SAHS severity levels in 

the training set (mean ± SD only from the real instances), 

along with the corresponding p-values. Four out of the 9 

spectral features (MA, mA, Mf1, and Mf2), as well as CTM, 

showed statistical significant differences among classes after 

the Bonferroni correction (p-value < 0.01). These spectral 

features showed higher values as the SAHS severity increased. 

An opposite tendency was shown by CTM values. Thus, the 

variability also increased with the severity of SAHS. 

The FCBF was also applied to the training set (only real 

instances). According to FCBF, the ranking of the 12 extracted 

features, from higher to lower SU values, was: Mf1, MA, CTM, 

mA, Mf2, WD, SpecEn, MF, Mf4, LZC, Mf3, and SampEn. Then, 

WD was found redundant with Mf2; and Mf3 with MF. Hence, 

the final FCBF optimum set was composed of 10 features, 7 

from BW (Mf1, MA, mA, Mf2, SpecEn, MF, and Mf4) and 3 

from the non-linear analysis (CTM, LZC, and SampEn).  

B. Classification 

1) Model selection and training 

The AB binary models (AB-LDA2 and AB-CART2) were 

selected according to the optimum  value. Fig. 3 displays the 

corresponding averaged  values for each after the bootstrap 

0.632 algorithm. As mentioned above, this procedure was only 

applied to the training set. The maximum values of  for AB-

LDA2 and AB-CART2 (0.602 and 0.713, respectively) were 

reached at = 0.1 and = 0.6. Then the whole original 

training set was used along with these  values to train the 

AB-LDA2 and AB-CART2 models. AB-LDA2 ended after 53 

iterations (54 ≥ 0.5). Hence, 53 LDA models were taken into 

account for the final classification task. AB-CART2 reached 

the limit of learners established. Therefore, it was assessed in 

the bootstraps sets with more weak learners (500 to 1000). No 

improvement in  was reached. Consequently, the weighted 

votes of 400 CART models were used for the classification. 

For the case of the AB multiclass models (AB-LDA4 and 

AB-CART4), we optimized both the learning rate and the 

number of learners (up to 400) during the bootstrap procedure. 

Hence, for each value of between 0 and 1 (step=0.1) we 

varied the number of weak learners from 1 to 400 (step=10) in 

order to compute Fig. 4 displays the values of as a 

function of  and the number of weak learners. For AB-LDA4 

the optimum values were  = 1 along with 110 weak learners, 

whereas for AB-CART4, were  = 0.8 and 160 weak learners. 

2) Performance of the models 

Table IV shows the diagnostic ability of the binary models 

(test set). The highest values for Acc and  are shown in bold. 

AB-CART2 outperformed the other models in Se, Acc, and 

as well as reached the highest Sp along with LR. These 

results show its higher diagnostic performance. AB-LDA2 also 

improved the results from the classic event-detection 

algorithm and LR. However, the latter was more specific. 

Additionally, AB-LDA2 and AB-CART2 widely improved the 

performance of single models based on LDA and CART 

(LDA2 and CART2). 

 
Fig. 3 Optimum  configuration for AB-LDA2 and AB-CART2 (obtained 

after bootstrap process). 
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The lowest performance was reached by the algorithm based 

on the event-detection approach. 

In the multiclass task, Table V displays the confusion 

matrices of each model, i.e., the model class estimation for 

each subject vs. their actual SAHS severity group. Notice that, 

since it is a binary classifier, LR was evaluated following the 

one vs. all strategy [41]. The overall accuracy (main diagonal) 

of the models and the event-detection algorithm was low in 

test set: event-detection 39.7%, LR 57.4%, AB-LDA4 60.3% 

(47.6 % in the case of a single LDA4 model), and AB-CART4 

57.4% (54.8 % in the case of a single CART4 model). 

Classification of mild and moderate subjects was particularly 

poor for all the models. In contrast to the overall accuracy, the 

diagnostic performance increases when assessing the 

predictions of the models in each of the AHI severity cutoffs 

(5 e/h, 15 e/h, and 30 e/h). Table VI displays such 

performance for the multiclass models and the event-detection 

algorithm. Consistent with the overall accuracy, values are 

low. However, high diagnostic accuracies are reached by AB-

LDA4 and AB-CART4. They outperformed LR and the event-

detection algorithm in terms of Acc and when assessing the 

three AHI cutoffs. Finally, AB-LDA4 widely improved the 

overall performance of single LDA4, as well as the Acc for 

each AHI cutoff. AB-CART4 also improved the overall 

performance of CART4, as well as the Acc for 5 e/h and 30 

e/h. However, CART4 outperformed the Acc of AB-CART4 

when considering 15 e/h as the AHI cutoff. 

V. DISCUSSION AND CONCLUSIONS 

In this paper, new methodologies to help in SAHS diagnosis 

have been proposed. Binary and multiclass AB models, 

composed of LDA and CART classifiers, have been evaluated 

to distinguish SAHS and its severity. Their performances were 

compared with a conventional approach (event-detection 

algorithm) and the classic LR classifier, both of them applied 

to our own database. AB outperformed these, showing high 

diagnostic ability.   

Spectral and non-linear data, extracted from single-channel 

AF from NPP, were the only source of SAHS-related 

information used to feed the models. The spectral analysis 

showed significantly higher spectral power (Mf1) and power 

spectral density (MA and mA) in the 0.025-0.050 Hz. 

frequency band as SAHS severity increased. Since we  

 

 

TABLE IV  
DIAGNOSTIC ABILITY OF THE BINARY MODELS IN THE TEST SET 

Models Se (%) Sp (%) Acc (%) 

Event-detec. 75.8 54.3 69.0 0.286 

LR 83.5 
 

80.0 82.5 0.593 

LDA2 72.5 74.3 73.0 0.410 

CART2 85.7 68.6 81.0 0.593 

AB-LDA2 86.8 77.1 84.1 0.618 

AB-CART2 89.0 80.0 86.5 0.672 

 

    
Fig. 4 Optimum  and number of weak learners for a) AB-LDA4 and b) AB-CART4 (obtained after the bootstrap process). 

TABLE V. CONFUSION MATRICES FOR EACH MODEL IN THE TEST SET. RESULTS FROM LDA AND CART SINGLE MODELS IN PARENTHESES. 

Estimated → 

Event-detection LR (one vs. all) AB-LDA4 (LDA4) AB-CART4 (CART4) 

no mild mod. severe no mild mod. sever

e 
no mild mod. severe no mild mod. severe 

A
ct

u
al

 no-SAHS 2 4 3 1 8 0 2 0 8 (8) 0 (0) 2 (2) 0 (0) 8 (7) 1 (2) 1 (1) 0 (0) 

mild 12 16 5 5 14 8 10 6 11 (13) 16 (7) 8 (13) 3 (5) 14 (16) 8 (11) 12 (9) 4 (2) 

moderate 1 5 5 5 3 3 4 6 3 (5) 4 (2) 6 (6) 3 (3) 3 (4) 2 (3) 6 (6) 5 (3) 

severe 3 17 15 27 2 1 7 52 1 (4) 3 (5) 12 (14) 46 (39) 0 (3) 3 (0) 9 (14) 50 (45) 

 
TABLE VI. DIAGNOSTIC ABILITY OF THE MULTICLASS MODELS IN THE TEST SET. RESULTS FROM LDA AND CART SINGLE MODELS IN PARENTHESES. 

 
Event-detection  LR (one vs. all)  AB-LDA4 (LDA4)  AB-CART4 (CART4)

5 15 30 



  



      

Se (%) 86.2 66.7 43.5 83.6 88.5 83.9 87.1 (81.0) 85.9 (79.5) 74.2 (62.9) 

 

85.3 (82.8) 89.7 (87.2) 80.6 (72.6) 

Sp (%) 20.0 70.8 82.8 80.0 62.5 81.3 80.0 (80.0) 72.9 (58.3) 90.6 (87.5) 80.0 (70.0) 64.6 (75.0) 85.9 (92.2) 

Acc (%) 81.0 68.3 63.5 83.3 78.6 82.5 86.5 (81.0) 81.0 (71.4) 82.5 (75.4) 84.9 (81.7) 80.2 (82.5) 83.3 (82.5) 

 0.152  0.370  0.432 (0.281)  0.381 (0.369) 
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normalized the PSD values, these measures are related to a 

higher occurrence of the apneic events, and not with their 

amplitude. This supports these features as SAHS severity 

dependents. Dispersion (Mf2) in the PSDn values at BW was 

also significantly higher as SAHS worsened, suggesting a 

more heterogeneous occurrence of apneic events throughout 

the frequencies within BW. Finally, the non-linear analysis 

showed significantly higher variability (lower CTM values) 

when SAHS severity increased. This is consistent with our 

initial assumption that the more severe SAHS the more 

changes in the respiratory pattern and, consequently, the 

higher variability in AF. These five features were selected by 

FCBF. Although Mf2, SpecEn, MF, LZC, and SampEn did not 

show discriminative power to distinguish SAHS severity, they 

were also automatically chosen, suggesting their usefulness by 

providing complementary information. Moreover, spectral and 

non-linear features were included in the 10-feature FCBF 

optimum set, which indicates that one analysis complement 

the other, as suggested in previous studies involving AF from 

thermistor [17], [18]. 

AB-CART2 achieved the highest Acc and  values for the 

binary (AHI cutoff = 10 e/h) classification task (86.5% Acc, 

0.672 ). In the multiclass classification, AB-LDA4 obtained 

86.5%, 81.0%, 82.5% Acc for 5 e/h, 15 e/h, and 30 e/h, 

respectively, as well as  = 0.432. It is worth noting that both 

AB-LDA4 and AB-CART4 reached high statistics when 

evaluating 5 e/h and 30 e/h. They outperformed the LR 

models, the single-model LDA and CART classifiers, as well 

as the event-detection algorithm. These cutoffs are particularly 

important. AHI = 5 e/h draws the line for the lower degree of 

SAHS. Furthermore, AHI = 30 e/h, which establish the 

boundary for the highest SAHS severity, has been associated 

with mortality [49], as well as suffices to recommend a 

treatment even in the absence of other symptoms [49]. In this 

regard, and according to Table V, 46 out of the 52 subjects 

(88.5 %) that the AB-LDA4 ensemble predicted as severe-

SAHS were rightly classified, whereas the remaining 6 

(11.5%) were mild- or moderate-SAHS, at least. Similarly, 50 

out of the 59 subjects (84.7%) that the AB-CART4 ensemble 

predicted as severe were indeed severe, with 0 subjects from 

the no-SAHS group falling within this class. 

Table VII summarizes performances from previous works 

focused on the use of single-channel AF from NPP to help in 

SAHS diagnosis [10], [13], [50]-[52]. All studies, except the 

present one, adopted an event detection approach. When 

assessing AHI = 10 e/h, only Wong et al achieved higher 

diagnostic performance than AB-CART2 [10], [51]. However, 

a small sample size was used to evaluate their proposals. 

Nakano et al detected apneic events in AF with the help of 

spectral analysis [50]. They reported higher Se (97.0%) but 

lower Sp (76.0%). Unfortunately, some data about the 

population under study, required to complete the comparison, 

were not reported by the authors. None of the studies, 

outperformed our AB-LDA4 model (86.5% Acc) in the 

assessment of AHI = 5 e/h. However, Nakano et al reported 

significantly higher Se (97.0%) [50]. Additionally, 

BaHammam et al and Nigro et al exhibited higher diagnostic 

ability when assessing AHI = 30 e/h [13], [52]. Nonetheless, 

their databases were composed of 95 and 90 subjects, 

respectively, in contrast to the 317 subjects involved in our 

study. Finally, all the studies performed similarly to our AB-

LDA4 model (81.0% Acc) when evaluating AHI = 15 e/h. 

Despite we have shown the utility of our proposal, some 

limitations need to be addressed. Although our sample is large 

(317 subjects), analyzing more recordings would enhance the 

statistical power of our results. Particularly, a more balanced 

proportion of the classes would be desirable for the sake of the 

model training. Nonetheless, our sample reflects a realistic 

proportion among the people who undergo the PSG test. 

Additionally, we applied the SMOTE technique to our data in 

order to compensate the imbalance. The single use of NPP to 

acquire AF may be another limitation. The AASM 

recommends using both NPP and thermistor for a proper 

quantification of the number of apneas and hypopneas [9]. 

However, our proposal does not rely on a classic event-

detection approach. In this regard, previous studies of our 

research group showed high diagnostic ability when 

evaluating data from single-channel AF acquired through a 

thermistor [17], [18]. Our current proposal has shown that 

using AF data from NPP is also possible in order to reach a 

high diagnostic performance. Another limitation arises 

regarding the redundant information removed by the FCBF 

algorithm. The features discarded share more information with 

the selected ones than with the AHI. However, the features 

selected might still share information with the others to some 

extent. The training time of the AdaBoost models is another 

limitation if we compare it with simpler methodologies such 

as logistic regression. However, once the models are trained, 

the runtime after they are applied to new data is trivial. 

Finally, since we propose an automatic procedure with 

potential to reach diagnosis in few minutes after data 

collection, it would be of great interest if future works could 

TABLE VII  

COMPARISON WITH THE STATE OF THE ART OF SINGLE-CHANNEL AF 

FROM NPP 

Studies Subjects 

(n) 

AHI cutoff Se (%) Sp (%) Acc (%) 
aDe Almeida et al 

[10] 
30 10 85.7 87.5 nd 

aNakano et al   

[50] 
217 

5 97.0 77.0 nd 

10 97.0 76.0 nd 

15 97.0 73.0 nd 
aWong et al  
[51] 

33 
10 92.0 86.0 90.9* 

30 91.0 75.0 81.5* 

aBaHammam et 

al [52] 
95 

5 79.0 68.0 76.8* 

10 70.0 89.0 77.9* 

15 65.0 94.0 81.8* 

30 63.0 98.0 83.2* 

aNigro et al  

[13] 
90 

5 89.3 60.0 84.4* 

10 80.4 82.3 nd 

15 76.7 83.0 80.0* 

30 88.5 95.3 93.3* 

bAB-CART2  317  10  89.0 80.0 86.5 

bAB-LDA4
 317 

5 87.1 80.0 86.5 

15 85.9 72.9 81.0 

30 74.2 90.6 82.5 
aEvent detection approach; bDirect subject classification approach; 
*Computed from reported data; nd: Not enough data to estimate. 
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address the assessment of our methodology embedded in a 

diagnostic test at patient’s home. It would be also interesting 

the implementation and assessment of a multiclass logistic-

regression based AdaBoost algorithm. 

To the best of our knowledge, this is the first time that the 

AB algorithm is used along with spectral and nonlinear 

features from single-channel AF to help in SAHS diagnosis. 

Our AB proposals for binary and multiclass classification 

outperformed the classic LR as well as a conventional event-

detection algorithm, both of them applied to our own database. 

The new AB-CART2 and AB-LDA4 models achieved high 

diagnostic ability compared with the state of the art. 

Additionally, we showed that it is possible to achieve high 

diagnostic ability by the use of spectral and nonlinear data 

from NPP AF. These results highlight the usefulness of our 

proposal when detecting SAHS and its severity. 
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