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Abstract

We consider a parametric deformation model for distributions. More precisely, we assume
we observe J samples of random variables which are warped from an unknown distribution
template. We tackle in this paper the problem of estimating the individual deformation
parameters. For this, we construct a registering criterion based on the Wasserstein dis-
tance to quantify the alignment of the distributions. We prove consistency of the empirical
estimators.
Keywords: Wasserstein distance, deformation, semi-parametric model.

1. Introduction

In this paper we focus on the issue of registering measures warped by a parametric de-
formation operator. When confronted to large data sample, the data may present several
sources of variability that include small deformations on the data such as translations,
scale location models for instance or more general warping procedures. These deforma-
tions prevent the use of usual methods in data analysis and deserve a special statistical
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treatment in order to align the data. We refer for instance to (Gamboa et al., 2007),
(Dupuy et al., 2011), (Ramsay and Silverman, 2005), (Bercu and Fraysse, 2012) and ref-
erences therein to applications to functional data analysis, to (Trouve and Younes, 2005)
or (Amit et al., 1991) for applications in image analysis or to (Bolstad et al., 2003) for
applications in biology.

In this paper we consider the problem of registration of distributions. Such situa-
tion occurs often in biology for example, when considering gene expression data obtained
from microarray technologies, which are used to measure genome wide expression lev-
els of genes in a given organism; the registration issue is known as normalization, see
for instance in (Bolstad et al., 2003) and the related work (Gallon et al., 2013). Here
we consider the extension of semi-parametric registration methods as in (Gamboa et al.,
2007) or (Vimond, 2010a) to the problem of estimating a distribution of random variables,
observed in a warping framework.

Actually, assume that we observe i = 1, . . . , n samples of j = 1, . . . , J independent
random variablesXij with distribution µj. Each sample is drawn from a mean distribution
µ with some variations in the sense that there exist unobserved warping functions ϕ, such
that, for all j, we have µj = µ ◦ ϕ−1

j . To deal with this issue, we assume a parametric
model for the warping function. We consider that the deformations follow a known shape
which depends on parameters, specific for each sample. Hence there are parameters
θ? = (θ?1, . . . , θ

?
J) such that ϕj = ϕθ?j , for all j = 1, . . . , J. Each θ?j represents the warping

effect that undergoes the jth sample, which must be removed to recover the unknown
distribution by inverting the warping operator. So the observation model is

Xij = ϕθ?j (εij) 1 6 i 6 n, 1 6 j 6 J, (1)

where εij are unobserved i.i.d. random variables with unknown distribution µ. Our
objective is thus to build an estimator for the parameters θ?j .

When tackling registration issues, two points of view can be considered. On the one
hand, a solution is given by choosing one observation as a reference and align all the
data onto this chosen template. This problem has been investigated in (Lescornel and
Loubes, 2012). On the other hand a more robust solution, and less sensitive to such a
prior choice, is obtained by aligning the sample onto the mean of the warped distribution.
This solution is discussed for the regression case in (Vimond, 2010a). In the following, we
provide a generalization of this work to the case of the deformation of distribution, which
moreover enables to handle the case of multidimensional warping parameters.

In this paper, to align the distribution, we use the so-called 2-Wasserstein distance to
measure discrepancies (see Section 2 for details). This distance has been used previously
with the same objective, the main difference being that these previous results do not use
parametric models for the deformations as used in this paper. In fact, they employ a
non-parametrical framework or, if any, they only handle linear transformations like those
ones included in Examples 5.1 and 5.3. It is worth mentioning that, as suggested by a
referee, our procedure may also handle multiple distortions which are applied in different
segments of the curve under consideration (only Proposition 3.4 could fail because, in this
case, the differentiability assumption A7 could not be satisfied). However, we prefer to
keep the analysis restricted to the case of single distortions in order to keep the statements
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and technicalities as simple as possible.
Concerning the previously known results, we would like to mention (Mémoli, 2011)

where the author carries out an interesting and deep theoretical study on this problem.
Apart from the references in this paper, we would like to mention (Haker et al., 2004) and
(Ni et al., 2009) and, mostly, (Bonneel et al., 2014) and (Boissard et al., 2014) because
their use of barycenters is quite close to the point of view we employ here. Slightly
different is the problem handled in (Schmitzer and Schnorr, 2013) where the authors
propose a procedure that, apart to align two images, also tries to identify the image of
interest from the background.

The paper falls into the following parts. Section 2 provides a description of the para-
metric warping operator that acts over the deformations and the construction of the
estimator. In Section 3, we prove the consistency of the estimators of the deformation
parameters. In Section 4, we give a method to compute the alignment criterion. Sec-
tion 5 presents examples of deformation families while some simulations are presented in
Section 6. Proofs are postponed to Section 7.1.

2. A model for distribution deformation

In this section, we will precise the model considered to estimate the deformations. We
start by giving some notations.

For a given sample Y = (Y1, . . . , Yn) ∈ Rn, we denote by Y(1) 6 · · · 6 Y(i) 6 · · · 6 Y(n)

its order statistics. The symbol ⇀ denotes convergence in distribution. In all the paper,
we denote by ‖ ‖k the euclidean norm on Rk for all k ∈ N, k > 2.

For i = 1, . . . , n and j = 1, . . . , J , set εij unobserved i.i.d. random variables with
unknown distribution µ defined on an subset Ia of a complete, separable metric space
(E, d). We assume that we observe only some deformations of these observations. More
precisely, we consider a family of invertible deformation functions, indexed by parameters
λ which warps a point x onto another point ϕλ(x). The shape of the deformation is
modelled by the known function ϕ while the amount of deformation is characterized by
the parameter λ ∈ Rp, for p > 0. Namely, set

ϕ : Λ× Ia → Ib
(λ, x) 7→ ϕλ (x)

for Λ an open subset of Rp and Ia, Ib subsets of E which can be unbounded.
Recall that we observe the model (1)

Xij = ϕθ?j (εij) 1 6 i 6 n, 1 6 j 6 J,

where θ?j is the unknown deformation parameter in Λ ⊂ Rp, associated with the j-th
sample (X1j, . . . , Xnj), and εij are i.i.d random variables.

Our aim is to estimate the parameter θ? ∈ ΠJ
j=1Λ. For this, we will study a cri-

terion based on a registration procedure for the distributions µj of each i.i.d. sample
(X1j, . . . , Xnj), for all j = 1, . . . , J . We denote its empirical law by µ(n)

j = 1
n

∑n
i=1 1Xij ,

where 1x denotes the delta mass distribution at point x.
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To recover the deformation parameter θ?, we will minimize an energy needed to align all
the distributions µj. For this, a natural distance to measure the deformation cost to align
two distributions is given by the 2-Wasserstein distance which is at the heart of warping
issues between probabilities or cloud points due to its relationship with transportation
issues.

Consider the following set of probabilities

W2 (E) =

{
P probability on E s.t.

∫
E

d(x0, x)2dP (x) <∞ for some x0 ∈ E
}
,

where we recall that d(., .) is the distance on E.
Given two probabilities P andQ inW2 (E) , we denote by P(P,Q) the set of all probability
measures π over the product set E × E with first (resp. second) marginal P (resp. Q).

The transportation cost with quadratic cost function, or quadratic transportation cost,
between these two measures P , Q is defined as

T2(P,Q) = inf
π∈P(P,Q)

∫
d(x, y)2dπ(x, y). (2)

The quadratic transportation cost allows to endow the setW2 (E) with a metric by defin-
ing the 2-Wasserstein distance between P and Q as

W2(P,Q) = T2(P,Q)1/2.

We will use the W2 metric in this work. This choice is led by the issue of optimal
matching between cloud points. Yet other choices

W r
r (P,Q) = inf

π∈P(P,Q)

∫
d(x, y)rdπ

are possible for different r and other distances d on the chosen metric space E. In
particular, the earth-mover distance which corresponds to r = 1 and E = Rp could be
used with more complicated calculations. However the study of this criterion falls beyond
the scope of this paper. More details on Wasserstein distances and their links with optimal
transport problems can be found in (Rachev and Rüschendorf, 1998) or (Villani, 2009)
for instance.

It is known, see for instance (Bickel and Freedman, 1981), that the infimum defined
in (2) is reached for some pair (X?, Y ?) ∈ P(P,Q) which is called an optimal coupling.
Hence one have W2(P,Q) = E

[
‖X? − Y ?‖2] .

An important subject of research related to the Wasserstein distance concerns the
correlation structure of this optimal coupling. Especially the question of the existence of
a measurable function T : supp(P ) 7→ supp(Q) such that Y ? = T (X?) has received a lot
of interest. Conditions for the existence of such a map (which is called an optimal map)
are stated for instance in (Cuesta and Matran, 1989) or (Villani, 2009).

The case of Wasserstein distance over Hilbert spaces is investigated for instance in
(Cuesta and Matran, 1989) and a study of more general settings can be found in (Villani,
2009). Statisticians have recently used this distance for instance in geometric inference
in (Caillerie et al., 2011) or to build tests of similarity between distributions in (Alvarez-
Esteban et al., 2008).
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Recall that in the case of probabilities inW2 (R), a simplest expression for the Wasser-
stein distance is available. As shown in (Whitt, 1976), it can be written as

W 2
2 (P,Q) =

∫ 1

0

(
F−1 (t)−G−1 (t)

)2
dt,

where F (resp. G) is the distribution function associated with P (resp. Q).

In this work, we aim at aligning the law of the observations Xj. We propose the
following procedure

• For a parameter θ, we compute the image of the observation by the inverse operator
to un-warp the observations. More precisely for all candidate θ = (θ1, . . . , θJ), and
to each observation Xij = ϕθ?j (εij), we apply the inverse deformation with parameter
θj, which amounts to computing the following random variables

Zij (θ) = ϕ−1
θj

(Xij) ,

for all i = 1, . . . , n and j = 1, . . . , J .

• Then, we aim at picking choose the parameter which minimizes the energy needed
to align the distribution of the un-warped variables with the distribution of their
mean. The Wasserstein distance is chosen to measure this energy.

Actually, denote by µj (θ) the common law of the elements of the i.i.d. sample
(Z1j (θ) , . . . , Znj (θ)). We have µj (θ) = µj ◦ ϕθj . Next, if µ(n)

j (θ) = 1
n

∑n
i=1 1Zij(θ) is

the empirical law of the sample (Zij (θ))16i6n, then we also have µ(n)
j (θ) = µ

(n)
j ◦ ϕθj .

Now, set µ (θ) the mean distribution of the µj (θ)’s, that is µ (θ) = 1
J

∑J
j=1 µj (θ).

Our procedure to recover the unknown quantity θ? consists in aligning using the 2-
Wasserstein distance the distributions µj (θ)’s on µ (θ) by varying the parameter θ.

First consider µ(n) (θ) := 1
J

∑J
j=1 µ

(n)
j (θ) the mean distribution of the µ(n)

j (θ)’s. Note
that it corresponds to the empirical law of the sample (Zij (θ)) for 1 6 i 6 n, 1 6 j 6 J
which is made of independent but not identically distributed random variables. However,
it does not correspond to the empirical law associated with µ (θ).

We quantify the alignment of the µj (θ)’s onto the mean distribution through the
following quantity

M (θ) =
J∑
j=1

W 2
2 (µj (θ) , µ (θ)) , where θ ∈ ΠJ

j=1Λ.

Remark that for all j, µj (θ?) = µ, so M (θ?) = 0. This function provides a character-
ization of our parameter of interest, θ?, if we choose the distribution of the first sample
as the reference. This is equivalent to consider that θ?1 is known, or to identify εi1 = Xi1

for every i, and then, it happens that µ(θ∗) = µ1. Therefore, from now on, we will only
handle the set Θ = ΠJ

j=2Λ.
However, we do not choose to align the empirical laws on the reference sample. Indeed,

considering the mean law may attenuate the errors done in practice if the reference sample
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is not well chosen. A criterion based on the reference sample was investigated in (Lescornel
and Loubes, 2012) in a slightly different setting. The same kind of problem has also been
studied in (Castillo and Loubes, 2009) in the case of the estimation of shift parameters
between curves. In this previous work, the matching criterion between the curves is the
maximum profile likelihood maximization, which is replaced, in the case of deformations
between distributions, by the Wasserstein’s distance.

A natural idea is to study the empirical version of this criterion, simply obtained by
considering the empirical laws instead of the real ones

Mn (θ) =
J∑
j=1

W 2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
. (3)

Hence, this leads to consider as an estimator of the deformation parameters the esti-
mate defined as any element in the set

arg min
θ∈Θ

Mn (θ) . (4)

In the following section, we investigate the asymptotic behaviour of the estimator
defined in (4).

3. Estimation of the warping parameters

3.1. Assumptions
In the following we restrict the class of deformations used hereafter to the ones that

satisfy the following assumptions.

For all λ ∈ Λ, x 7→ ϕλ(x) is invertible from Ia to Ib. (A1)

The following assumption is required to ensure that the Wasserstein distances between
the samples is defined.

∀λ ∈ Λ,∀1 6 j 6 J,

∫
E

d(ϕ−1
λ ◦ ϕθ?j (x), x0)2dµ <∞ for one x0 ∈ E (A2)

that is
∫
E

d(x, x0)2dµj (θ) <∞ ∀θ ∈ Θ and x0 ∈ E.

A regularity assumption is added on the deformation functions.

ϕ−1 is continuous on Λ× Ib. (A3)

We define a ball B = B(x0, R) of the space (E, d) as B(x0, R) = {x ∈ E, d(x, x0) < R}.
The following tightness assumption ensures that the mass charged by the law µj (θ)

goes to sets with quite small µj probability if ‖θj‖ is large.

For any ball B and any numbers ν > 0, there are a closed set S and a constant H > 0
(A4)

such that ‖λ‖ > H implies ϕλ (B) ⊂ S with µj [S] < ν ∀j = 1, . . . , J.
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We point out that the set S is not necessarily bounded, as shown in the examples
considered later.

Finally, the following assumption provides the identifiability of the model.

M has an unique minimizer. (A5)

Let Id denotes the identity function. Remark that A5 is verified as soon as there
exists j with 2 6 j 6 J such that ϕ−1

θj
◦ϕθ?j 6= Id for θ 6= θ? on a set of positive µ-measure.

We provide some examples of deformations that undergo these assumptions in Section 5.

3.2. Main Result
The assumptions stated in previous subsection enable to obtain a result of almost sure

convergence for the estimator θ̂(n) defined in (4).

Theorem 3.1. Under Assumptions A1 to A5, θ̂(n) → θ? almost surely (a.s.) when
n→∞.

The proof of this result follows is inspired by (Cuesta and Matran, 1988). It is carried
out in the Appendix and it is divided in two steps:

• We first establish that a sequence defined by (4) is a.s. bounded through the two
following lemmata.

Lemma 3.2. For all θ ∈ Θ, Mn (θ) converges a.s. to M (θ).

Lemma 3.3. We have P
[{
θ̂(n)
}
n∈N

is bounded
]

= 1.

This part mainly relies on the assumption A4 and some classical tools of Probability
theory.

• Next, we prove that on a set of probability one, the sequence
{
θ̂(n)
}
n∈N

has an
unique accumulation point equal to θ?.

This part requires Assumption A5.

Another argument to choose to align the distributions on the mean law instead of the
reference sample is the following. If θ is well chosen, then µ(n) (θ) can be viewed as an
approximation of the empirical law associated with an i.i.d. sample of law µ of size nJ .
On the other hand, the reference sample µ(n)

1 is the empirical law associated with a sample
which is really of i.i.d. elements of law µ, but only of size n.

Then, the aligned empirical mean distribution µ(n)
(
θ̂(n)
)

= 1
J

∑J
j=1 µ

(n)
j

(
θ̂(n)
)
will be

a proper estimate of the true distribution µ. The following result justifies this intuition.

Consider the case where E is a vectorial space endowed with a norm ‖·‖. Assume in
addition that

For all x ∈ Ib, ϕ−1
λ :

Λ → Ia
λ 7→ ϕ−1

λ (x)
is continuously differentiable, (A6)

and
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∀1 6 j 6 J, the family
(
∂ϕ−1

λ (·)
)
λ∈Λ

has an envelope in L2 (µj) , (A7)

that is sup
λ∈Λ

∥∥∂ϕ−1
λ (x)

∥∥ 6 H(x), H ∈ L2 (µj) .

Then, we have the following proposition

Proposition 3.4. Under Assumptions A1 to A7,

W2

(
µ(n)

(
θ̂(n)
)
, µ
)

n→+∞−−−−→ 0 a.s.

This result is inspired by the paper (Lescornel and Loubes, 2012). The proof is post-
poned to the appendix.

4. Computation of the criterion

When the template measure is defined on some subset of R, the value of Mn is easily
available using the expression of the Wasserstein distance giving by (2) and the order
statistics of the deformed observations. Indeed, recall that if Fn is the empirical distribu-
tion associated to a sample (Y1, . . . , Yn), then we have

F−1
n (t) = Y(i), for

i− 1

n
< t 6

i

n
.

Hence, setting Z(k) (θ) the k-th order statistic of the sample (Zij (θ))16i6n
16j6J

, and Z(k)j

to the corresponding one in the sample (Zij (θ))16i6n, standard computations lead to

Mn (θ) =
1

J

J∑
j=1

1

Jn

n∑
i=1

J∑
k=1

[
Z(i)j (θ)− Z(J(i−1)+k) (θ)

]2
.

If the measure is defined on a more general space, we can use the ideas in (Alvarez-
Esteban, 2009) to give a procedure to compute the Wasserstein distance between these
laws denoted by µ(n) (θ) and µ

(n)
j (θ). First note that those laws are uniform on A =

{x1, . . . , xnJ} and B = {y1, . . . , yn}. We denote these laws by UA and UB, however note
that A (resp. B) is not necessarily a set of nJ (resp. n) different elements.

Set X ∼ UA and Y ∼ UB. Then, we have that

E
[
d(X, Y )2

]
=

(nJ,n)∑
(i,k)=(1,1)

d(xi, yk)
2cik (5)

where c = {cik}16i6nJ
16k6n

∈ C, is such that

cik > 0 ∀i, k,

nJ∑
i=1

cik =
1

n
∀k,
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and
n∑
k=1

cik =
1

nJ
∀i.

Indeed, setting
cik = P [(X, Y ) = (xi, yk)] , (6)

we obtain equality (5) for some X ∼ UA and Y ∼ UB with joint law defined by (6).
Hence, computing the Wasserstein distance between UA and UB turns to solve a linear

optimization problem

W 2
2 (X, Y ) = inf

c∈C

(nJ,n)∑
(i,k)=(1,1)

d (xi, yk)
2 cik := inf

c∈C
L(A,B, c).

So for θ ∈ Θ we follow this procedure to compute for all j a sequence cj (θ) ∈ C such
that

W 2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
= L

(
(Zij (θ))16i6n

16j6J
, (Zij (θ))16i6n , c

j (θ)

)
,

and we obtain Mn (θ) = 1
J

∑J
j=1 L

(
(Zij (θ))16i6n

16j6J
, (Zij (θ))16i6n , c

j (θ)

)
.

5. Applications

Now we provide some examples of admissible deformations, which undergo previous
set of assumptions.

5.1. Example 1 : Location/scale model

ϕλ (x) =
x

λ2

+ λ1.

Here E = Rp, and ϕλ is invertible on Rp if λ2 6= 0 so Λ ⊂ Rp × R− {0}.
We have ϕ−1

λ (x) = λ2x − λ1λ2 = ϕ(−λ1λ2, 1
λ2

)(x), and ϕ−1
λ (ϕβ (x)) = λ2

β2
x + β1 − λ1λ2

which is in L2 (µ) if µ ∈ W2 (Rp). Hence Assumptions A1 to A3 and A5 take place if µ
is in W2 (Rp) and atom-less.

Now consider the assumption A4. Assume that µ has a bounded density with re-
spect to the Lebesgue measure. Then for all ν > 0, we can find η such that for all x,
µj
(
B̄(x, η)

)
< ν and M such that µj (B(0,M)c) < ν.

We have ϕλ (B(y0, r)) = B( 1
λ2
y0+λ1,

1
|λ2|r). Hence if only |λ2| → ∞, then ϕλ (B(y0, r)) ⊂

B̄(xλ, η) if ‖λ‖ is sufficiently large. Now, if ‖λ1‖ → ∞, ϕλ (B(y0, r)) ⊂ B(0,M)c if
|λ2| > α > 0. Then, if in addition Λ ⊂ Rp×]−∞;−α]∪ [α; +∞[ with α > 0, A4 is valid.

This example can also be connected to a more general model of ANOVA, where the
variables εij have different variances. More precisely it corresponds to the case where we
observe

Xij = µ?j + σ?j ε̃ij 1 6 i 6 n 1 6 j 6 J

where ε̃ij are random independent variables of same law with mean 0.
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One particular case is the translation model

ϕλ (x) = x+ λ.

With the same arguments, it can be shown that Assumptions A1 to A4 are satisfied if µ
is in W2

(
Rd
)
.

We can also consider the scale model

ϕλ (x) =
1

λ
x.

In this case, all the assumptions are valid if Λ = R − {0} and if µ is in W2 (Rp) with
µ(0) = 0. Note that such deformations constitute the extension to the density warping
case of the deformations studied in Vimond (2010a) in the case of functional warping.

5.2. Example 2 : Logarithmic transformation

ϕλ (x) =
1

λ
log(x).

ϕλ is invertible from (0,+∞) to R for all λ 6= 0, so here Λ must be contained in
(0,+∞) and the support of µ in (0,+∞). We have ϕ−1

λ (x) = exp (xλ), and ϕ−1
λ (ϕβ (x)) =

exp
(
λ log(x)

β

)
= x

λ
β . Hence ϕ−1

λ ∈ L2 (X1j) if E
[
ε

2λ
θ?
j

]
<∞ for all λ ∈ Λ. Assumptions A1

to A3 and A5 take place if the support of µ is contained in (0,+∞) and if E
[
ε

2λ
θ?
j

]
<∞

for all λ ∈ Λ.
In this case the conditions are more restrictive on the law µ, but notice that, for

instance, the exponential distribution satisfies them.
Moreover, for y0 and r such that B(y0, r) ⊂ (0,+∞), we have log (B(y0, r)) ⊂

log
(
B̄(y0, r)

)
⊂ B̄(z0, R) because the image of a compact set through a continuous func-

tion still is a compact set. Hence ϕλ (B(y0, r)) ⊂ B̄
(
z0
λ
, R|λ|

)
and A4 is verified if µ(0) = 0.

5.3. Example 3 : Affine transformation

ϕλ(x) = A−1x+ b.

Here x ∈ Rp, and λ = (A, b) ∈ GL (Rp) × Rp. We have ϕ−1
λ (x) = A (x− b). Hence

ϕ−1
λ1
◦ ϕλ2(x) = A1

(
A−1

2 x+ b2 − b1

)
, so Assumptions A1 to A3 and A5 are valid if µ is

in W2 (Rp) and atom-less.
Now, for y0 ∈ Rp and r > 0 we have ϕλ(B(y0, r)) ⊂ B (A−1y0 + b, r ‖A−1‖). Hence,

as in Example 1, Assumption A4 is verified if we assume that µ has a bounded density
with respect to the Lebesgue measure and if one chooses A in a subset of GL (Rp) with
‖A‖ > α > 0.
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5.4. Example 4 : Composition

ϕλ(x) = f ◦ ϕ̃λ(x)

Consider a function ϕ̃λ(x), a law µ and a parameter θ? which satisfies all the assump-
tions A1 to A5. Then, if f is an homeomorphism from Ib to Ic the deformation function
ϕλ(x) = f ◦ ϕ̃λ(x) with the same law µ and parameter θ? verifies also these assumptions
replacing Ib by Ic. Indeed, Assumptions A1 and A3 are easily checked, and we have

ϕ−1
λ ◦ ϕβ = ϕ̃−1

λ ◦ f
−1 ◦ f ◦ ϕ̃β = ϕ̃−1

λ ◦ ϕ̃β.
Hence µ̃j (λ) = µ ◦ ϕ̃−1

θ?j
◦ ϕ̃λ = µ ◦ ϕ−1

θ?j
◦ ϕλ = µj (λ) so Assumptions A2, A5 are also

satisfied. In particular the criterion M̃ (θ) corresponding to ϕ̃ is exactly the same than
the criterion M (θ) corresponding to ϕ.

Choose ν > 0, a ball B and S a closed set such that ϕ̃λ (B) ⊂ S with µ̃j [S] < ν for
all j if λ is sufficiently large. We have ϕλ (B) ⊂ f (S) which is closed because f is an
homeomorphism. Moreover µj [f (S)] = µ̃j [S] < ν so A4 is also verified.

This allows us to consider a lot of new deformations. For instance, in the same
setting of the scale model we can consider the logit model, with the deformation function
ϕλ (x) = (1 + exp (x/λ))−1.

This example is also related to the usual logistic regression. The aim is to explain
Bernoulli variables (Xj)

J
j=1 as functions of a random variable ε, and the model can be un-

derstood as follows. For all j there exists θ?j such that P (Xj = 1/ ε) =
(
1 + exp

(
ε/θ?j

))−1.
Hence if the data collected permits to approach the quantity P (Xj = 1/ ε), our method
gives also an alternative to estimate the parameters θ?j .

The study of Example 2 also gives the conditions under which the deformation ϕλ (x) =

x
1
λ can be studied by our method.

5.5. Deformations coming from differential equations
In Younes (2004) is given a general class of deformations used in image registration

as follows. Set v : Γ × Rp × [0;T ] → R a function C2 on Γ × Rp × [0;T ], depending
on parameters in Γ is an open subset of Rd. Assume that for all (λ, t) ∈ Γ × [0;T ], the
support of v (λ, ·, t) is contained in Ω, an open bounded subset of Rp. For t ∈ [0;T ] and
x ∈ Ω, consider the equations

(E)

{
∂4Φ (λ, x; t, s) = v (λ,Φ (λ, x; t, s) , s)
Φ (λ, x; t, t) = x

where ∂4Φ (λ, x; t, s) denotes the partial derivative of Φ with respect to the variable s.
Then let Φ (λ, x; t, ·) be the unique solution to the system of equations (E) defined on [0;T ].
Hence, if (s, t) is fixed, the solution to the system (E) at point s, Φ (λ, x; t, s) = ϕλ(x)
is a deformation function based on a vector field indexed by the parameters λ. Such
diffeomorphisms used in image deformations (see for instance (Bigot et al., 2009) and
references therein) fall into the scope of this paper and the parameters λ can be estimated
with our methodology. Yet the computation costs are heavy since the dimension of the
set of parameters play an important role when finding the minimum of the criterion (3)
and for such examples d is large. Hence the application of our methodology to such class
of deformations deserve a specific treatment that falls out of the scope of this paper.
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6. Simulations

In this section, we challenge our method with different simulations. For this we have
generated n-sized samples of independent random variables εij with a Gaussian standard
distribution where j = 1, .., J and i = 1, . . . , n. We can simulate the following observations
Xij = ϕθ∗j (εij) for given parameters θ∗j , which will be estimated. To obtain an estimation
of the deformation parameters, we have to minimize the criterion defined in (4). The
main difficulty comes from the minimization of the Wasserstein distance which requires a
special treatment. For this, using the software R, we have used the function optim with
the option L-BFGS-B which minimizes a given function with a quasi-Newton method and
the function Partial.Transport (a new package for transport cost optimization that can be
obtained upon request) which computes the Wasserstein distance between 2 probability
distributions. The simulations are fast but the complexity grows with the dimension of
the parameters θ∗j . We have considered two different deformation functions

• A scale location-model
ϕθ∗j (x) =

x

θ∗1
+ θ∗2

We have made simulations for 5 pairs of the parameters (θ?1, θ
?
2) : (2,1), (7,2),

(2.5,2), (5,5) and (10,8). Recall that θ?1 is the scale parameter and θ?2 is the location
parameter.

• A matrix as the scale parameter

ϕθ∗j (x) = x ∗ (θ∗1)−1 + θ∗2

where x is a 1×2 vector (an observation from the bivariate normal distribution) and

θ∗1 is a 2× 2 matrix of the form
(
θ∗11 0
0 θ∗12

)
. The simulations have been made for

4 sets of parameters which are (2,2,1), (4,3,2), (2.5,3,1.5) and (5,2,2). The first two
parameters correspond to θ∗11 and θ∗12 respectively and the last one to the location
parameter.

All simulations have been done for n = 20, 50, 100, 200, 300 and J = 2. To analyze the
estimation error, we provide in the figure 6 the boxplots of the errors in the estimations for
each pair of parameters. The results of the other simulations are available upon request.

As expected, the error decreases as the sample size increases leading to good estimators
for large sample sizes. We point out that the location parameter estimator behaves better
than the scale parameter estimator, as shown in the tables 1 and 2, presenting the mean
and the standard deviation for these parameters and for different sample sizes.

Note that in the case of the location parameter, the mean of the estimator in the
simulations is very close to the real value of the deformation parameter and the standard
deviation is small, even for small sample sizes. For the scale parameter the results are not
as good for small sample size but they significantly improve as the sample size grows.

Last we made a simulation for J = 3, with the scale location deformation function.
In the boxplot 6 and the table 3 with the mean and standard deviation we can see that
although the results for small sample sizes are worse than the ones for J = 2, in the
biggest sample sizes the approximation is becoming accurate.

12
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Figure 1: Boxplot of the errors for parameters 2,1

Table 1: Mean and Standard Deviation for Scale Parameter estimation
Mean

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8
20 1,627001701 2,0839746 4,167520282 5,9679944 8,389333779
50 1,778303097 2,2620969 4,470069471 6,4297052 9,211445528
100 1,891638304 2,3781902 4,70858878 6,5357411 9,379041831
200 1,922227623 2,3981952 4,791570246 6,7249666 9,668745199
300 1,950083809 2,4351132 4,875349531 6,8101462 9,71924409

Standard Deviation
Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 0,323957502 0,3636535 0,771711943 1,181713 1,549372177
50 0,184464246 0,2189685 0,4213675 0,7855247 1,007653165
100 0,122020757 0,1480172 0,315504577 0,4910598 0,69810673
200 0,098394056 0,1054195 0,25755501 0,3594169 0,525405374
300 0,098315417 0,0958916 0,215009943 0,2329655 0,425525537
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Table 2: Mean and Standard Deviation for Location Parameter estimation
Mean

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8
20 1,0023873 6,9945413 5,0027399 1,9982004 7,9984572
50 0,9936314 7,0010124 5,0039185 2,0037834 7,9990901
100 0,9963651 7,0030782 4,9968519 2,0000012 7,9993247
200 1,0008455 6,9993688 4,9993167 2,0007894 8,0000355
300 1,0015348 6,9970673 5,0006839 1,9993071 8,0007074

Standard Deviation
Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 0,1304445 0,1007973 0,0491171 0,040827 0,0265132
50 0,074524 0,0574477 0,032775 0,0228102 0,0144892
100 0,0483674 0,040702 0,0200511 0,0144279 0,0093959
200 0,0386074 0,0283701 0,0154285 0,0099725 0,0079499
300 0,0306963 0,0220878 0,0124193 0,008336 0,0061003
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Figure 2: Boxplot of the errors for parameters when J = 3
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Table 3: Mean and Standard Deviation for the 4 parameters when J = 3

Mean
Sample Sizes\Parameter Scale j=2 Location j=2 Scale j=3 Location j=3

20 1,464537092 1,008042501 2,967974141 2,997307357
50 1,683731845 0,98915318 3,347790181 2,997213004
100 1,784915087 1,000058216 3,51445098 3,00086421
200 1,849162384 0,991362845 3,712380117 2,997154113
300 1.903418458 0.999896672 3.813571177 2.998477961

Standard Deviation
Sample Sizes\Parameter Scale j=2 Location j=2 Scale j=3 Location j=3

20 0,257727866 0,152380211 0,518586349 0,070961424
50 0,180780109 0,077025035 0,375416689 0,038774036
100 0,132750853 0,047759921 0,24000684 0,024065151
200 0,095342177 0,036894564 0,192043519 0,019273895
300 0.075536603 0.028990515 0.13926473 0.016831891

7. Appendix.

7.1. Proof of Theorem 3.1
The proof of Theorem 3.1 is split in two steps. We begin with the proof of Lemmas

3.2 and 3.3.

Proof of Lemma 3.2

Proof. We will use the following equivalence:
If {Pn}n∈N is a sequence in W2 (E) and P ∈ W2 (E), then

W2 (Pn, P )
n→∞−−−→ 0 if and only if

{
Pn ⇀ P∫
E
d(x, x0)2dPn(x)

n→∞−−−→
∫
E
d(x, x0)2dP (x),

(7)

where x0 is any point of E.
This characterization of the convergence in the Wasserstein’s sense is proved for in-

stance in (Shorack and Wellner, 2009) p.63 in the particular case of probabilities on R
and in (Bickel and Freedman, 1981) or (Rachev, 1982) in abstract spaces.

From the properties of the empirical distribution we have that for all j and θ, a.s.

µ
(n)
j (θ) ⇀ µj(θ) (8)∫

E

d(x, x0)2dµ
(n)
j (θ)

n→∞−−−→
∫
E

d(x, x0)2dµj (θ) . (9)

So -using for instance the characterization of convergence in distribution with the
bounded and continuous functions- from (8), we have that a.s.

µ(n) (θ) =
1

J

J∑
j=1

µ
(n)
j (θ) ⇀

1

J

J∑
j=1

µj (θ) = µ (θ) , (10)
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and from (9), a.s. ∫
E

d(x, x0)2dµ(n) (θ)
n→∞−−−→

∫
E

d(x, x0)2dµ (θ) . (11)

Using equivalence (7) we get that (10) and (11) imply

W2

(
µ(n) (θ) , µ (θ)

) n→∞−−−→ 0 a.s.

Equivalence (7), now joined to (8) and (9), also gives that for all j and θ fixed

W 2
2

(
µ

(n)
j (θ) , µj (θ)

)
n→∞−−−→ 0, a.s.

The last two relations finally give that

Mn (θ) =
J∑
j=1

W 2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
n→∞−−−→M (θ) =

J∑
j=1

W 2
2 (µj (θ) , µ (θ)) a.s.

Proof of Lemma 3.3

Proof. Remember that we are assuming that µ1 = µ, and that µ(n)
1

(
θ̂(n)
)

= µ
(n)
1 because

the first sample remains unchanged. Thus, Lemma 3.2 and the properties of the empirical
distributions imply that there exists a set Ω0 of probability 1 on which:

W2

(
µ

(n)
1

(
θ̂(n)
)
, µ
)
→ 0, (12)

Mn (θ?) → M (θ?) , (13)

µ
(n)
j ⇀ µj, for every j = 1, . . . J. (14)

From now on, we fix an element in the set Ω0, and we will show that every sequence
θ̂(n) ∈ arg minθ∈ΘMn (θ) is bounded. By contradiction, assume that lim supn→∞

∥∥∥θ̂(n)
∥∥∥
p(J−1)

=

∞ and choose j ∈ {2 . . . J} such that lim supn→∞

∥∥∥θ̂(n)
j

∥∥∥
p

=∞.

Consider an extraction {nh}h>1 such that limh→∞

∥∥∥θ̂(nh)
j

∥∥∥
p

=∞.

With Assumption A4, for all ball B and all ν > 0 there exist a closed set S and an

integer h0 such as, for all h > h0, ϕ
θ̂
(nh)
j

(B) ⊂ S and so µj
[
ϕ
θ̂
(nh)
j

(B)

]
6 µj [S] 6 ν.

Hence
lim sup
h→∞

µ
(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
6 lim sup

h→∞
µ

(nh)
j [S] .

Now recall the assertion of Portmanteau’s theorem (stated in (Dudley, 2002), Theorem
11.1.1 p.386 for instance), which claims that a sequence of probabilities Pn defined on a
metric space converges weakly to a probability P if and only if for all closed sets F ,
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lim supn→∞ Pn (F ) 6 P (F ). Hence using the convergence in law of the measure µ(nh)
j

stated in (14), we can write

lim sup
h→∞

µ
(nh)
j [S] 6 µj [S] ,

so
lim sup
h→∞

µ
(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
6 ν.

This inequality holds for all ν > 0, so we can conclude that for every ball B

µ
(nh)
j

(
θ̂(nh)

)
[B] = µ

(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
h→∞−−−→ 0.

Moreover, by definition of θ̂(n)

Mnh (θ?) >Mnh

(
θ̂(nh)

)
so, from (13),

0 = M (θ?) > lim inf
h→∞

Mnh

(
θ̂(nh)

)
. (15)

From here, we have that

0 = lim inf
h→∞

W 2
2

(
µ

(nh)
1

(
θ̂(nh)

)
, µ(nh)

(
θ̂(nh)

))
.

First, recall that on Ω0, (12) holds. Hence, considering the subsequence such that

0 = lim
q→∞

W 2
2

(
µ

((nh)q)
1

(
θ̂((nh)q)

)
, µ((nh)q)

(
θ̂((nh)q)

))
we necessarily have µ((nh)q)

(
θ̂((nh)q)

)
q→∞−−−→ µ for the Wasserstein distance. Hence we

have obtained a sub-sequence such that for one j and all ball B

µ
((nh)q)
j

(
θ̂((nh)q)

)
[B]

q→∞−−−→ 0 (16)

and the "mean" law converges in distribution

µ((nh)q)
(
θ̂((nh)q)

)
⇀ µ.

Set δ > 0 and x0 ∈ E. Using (16), we know that for all H ∈ N, one can find qH such
that for all q > qH

µ
((nh)q)
j

(
θ̂((nh)q)

)
[B (x0;H)] 6 δ. (17)

Hence, we can construct a new subsequence (which we still denote by (nh)q for sake
of simplicity) such that for all H > 0 (17) holds and

µ((nh)q)
(
θ̂((nh)q)

)
⇀ µ.
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Since µ((nh)q)
(
θ̂((nh)q)

)
is a sequence of measures in a complete separable metric space

which converges in distribution, it is a tight sequence. In consequence, for all ν > 0, there
exists a compact K such that for all q ∈ N, µ((nh)q)

(
θ̂((nh)q)

)
[K] > 1− ν. However K is

bounded, then there exists M such that K ⊂ B (x0;M). Then

ν > µ((nh)q)
(
θ̂((nh)q)

)
[Kc] > µ((nh)q)

(
θ̂((nh)q)

)
[B (x0;M)c]

>µ
((nh)q)
j

(
θ̂((nh)q)

)
[B (x0;M)c] > 1− δ.

If we take ν = 1−δ
2
, we have a contradiction with the tightness of the sequence

µ
((nh)q)
j

(
θ̂((nh)q)

)
. Hence lim supn→∞

∥∥∥θ̂(n)
∥∥∥
p(J−1)

<∞ on Ω0.

After Lemma 3.3, Theorem 3.1 will be proved if we show the following lemma:

Lemma 7.1. The sequence
(
θ̂(n)
)
, n ∈ N satisfies that

P
[(
θ̂(n)
)

has an unique accumulation point equal to θ?
]

= 1.

In the proof of this lemma, we will employ Skohorod’s Theorem, stated in (Dudley,
2002) (Theorem 11.7.2 p.415), which gives an almost sure representation for the conver-
gence in distribution.

Theorem 7.2. Let S be a separable metric space, and {Pn}n∈N be probability laws on
S converging in distribution to a probability P . Then, on some probability space there
exist random variables {Xn}n∈N and X with values in S such that Xn ∼ Pn for all n and
X ∼ P , and Xn → X (a.s).

Proof of Lemma 7.1.

Proof. To prove this lemma, let us consider the set Ω0 of probability one, introduced in
Lemma 3.3, whose points satisfy (12), (13) and (14).

From now on, we reason in a deterministic setting by fixing one element of this set.
According to Lemma 3.3, the sequence

(
θ̂(n)
)
n>1

is bounded on Ω0 and we only need to

show that if θ0 is the limit of any subsequence of
(
θ̂(n)
)
n>1

, then, it happens that θ? = θ0.
For sake of simplicity we keep the same notation for the subsequence, so we assume that
θ̂(n) → θ0.

As shown in Lemma 3.3 inequality (15) holds. From this inequality, we have that, for
every j = 1, . . . , J ,

lim inf
n→∞

W2

(
µ

(n)
j

(
θ̂(n)
)
, µ(n)

(
θ̂(n)
))

= 0.

Thus, perhaps taking a new subsequence (which we still denote with the same nota-
tion), we have that

W2

(
µ

(n)
j

(
θ̂(n)
)
, µ(n)

(
θ̂(n)
))

n→∞−−−→ 0, for every j = 1, . . . , J. (18)
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This, when applied to j = 1, and (12), gives that

W2

(
µ(n)

(
θ̂(n)
)
, µ
)

n→∞−−−→ 0.

Now, if j = 1, . . . , J , from here and (18), we have that

µ
(n)
j

(
θ̂(n)
)
⇀ µ. (19)

On the other hand, (14) is satisfied. Thus, we can apply Theorem 7.2 to obtain
random vectors Zn, n = 0, 1, . . . , such that, the sequence {Zn} converges a.s. to Z0 and
the distribution of Z0 is µj and that of Zn is µ(n)

j . Since θ̂(n) → θ0, Assumption A3 gives
that

ϕ−1

θ̂
(n)
j

(Zn)
n→∞−−−→ ϕ−1

θ0j
(Z0), a.s.

Therefore, we have that
µ

(n)
j

(
θ̂(n)
)
⇀ µj

(
θ0
)
. (20)

This, joined to (19), gives that µj (θ0) = µ for all j. Finally, it happens that M (θ0) =
0 = M (θ?). Thus, from Assumption A5 it follows that θ0

j = θ∗j and the proof ends.

7.2. Proof of Proposition 3.4
Proof. Proposition 3.4 is easily tractable using the caracterization of convergence in the
Wasserstein sense given by (7).

Step 1 It happens that µ(n)
j

(
θ̂(n)
)
⇀ µ a.s.

All the arguments are contained in the proof of Lemma 7.1.
Indeed, we have already shown in (20) that if θ̂(n) → θ0 a.s, then

µ
(n)
j

(
θ̂(n)
)
⇀ µj

(
θ0
)
.

Hence, using Theorem 3.1, we get µ(n)
j

(
θ̂(n)
)
⇀ µ a.s.

Step 2 Let ε be a r.v. with the same distribution as the r.v.’s εij’s introduced in (1).

Then, 1
n

∑n
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2
n→∞−−−→ E

[
‖ε‖2] a.s.

Using the Strong Law of Large Numbers, we know that

lim
n→∞

1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

= lim
n→∞

1

n

n∑
i=1

‖εij‖2 = E
[
‖ε‖2] a.s.

Hence it is sufficient to show that limn→∞
1
n

∑n
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

= limn→∞
1
n

∑n
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

.
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We have∣∣∣∣∣ 1n
n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

− 1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

(∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥− ∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥)(∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥+
∥∥∥ϕ−1

θ?j
(Xij)

∥∥∥)∣∣∣∣∣
6

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥(∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥+
∥∥∥ϕ−1

θ?j
(Xij)

∥∥∥)
6

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥(∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥+ 2
∥∥∥ϕ−1

θ?j
(Xij)

∥∥∥)
6

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥2

+2

√√√√ 1

n

n∑
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∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥2

√√√√ 1

n

n∑
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∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

.

From here, Assumption A6, and the Mean Inequality with Assumption A7 give∣∣∣∣∣ 1n
n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

− 1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

∣∣∣∣∣
6

 1

n

n∑
i=1

H (Xij)
2 + 2

√√√√ 1

n

n∑
i=1

H (Xij)
2

√√√√ 1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

∥∥∥θ̂(n)
j − θ?j

∥∥∥ ,
which converges (a.s) to 0 using the Strong Law of Large Numbers and Theorem 3.1.
Hence, (a.s)

lim
n→∞

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

= E
[
‖ε‖2] .

Finally, using the characterization of the convergence in the Wasserstein sense given
in (7), Proposition 3.4 is proved.
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