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Abstract

The generation of magnetic field in shock surfaces separating regions

of different electron density is a well known phenomenon. We study how

this generation will affect the original structure of ionic flow. In a one-

dimensional geometry, it turns out that the leading magnetosonic wave-

front produced by the seed field may be compressional, ultimately evolving

into a shock in a finite time. The time where this shock occurs depends

on few parameters: sound velocity, Alfvén velocity and the variation of

the magnetic field at the original surface at time zero. The alternative

is that the magnetosonic wave may stabilize or damp out, which always

happens if we start from a null magnetic field.
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1 Introduction

The fact that the magnetic induction equation is linear in the magnetic field

shows that no magnetic field may be amplified or otherwise modified by any

plasma flow unless it starts from a state different from zero. The need to provide

a seed field for the numerous magnetic astrophysical magnetic fields induced L.

Biermann [1] to propose a plausible mechanism, the so-called Biermann battery:

since electrons are much lighter than ions, pressure forces impart them a greater

acceleration, yielding a charge separation which creates an electric field which in

its turn generates a magnetic field through Faraday’s law. That this mechanism

is both likely to occur and efficient in many astrophysical problems has been

conclusively demonstrated [2–4]. Since the Biermann battery needs a gradient

of electron pressure, an appropriate place to look for this effect is the vicinity of

a shock of the plasma flow. That this is correct has been shown theoretically and

in experiments [5,6]; in fact a complex structure related to the Rayleigh-Taylor

instability develops in the shock, something one wishes to ignore when trying to

find analytic solutions and therefore aims for a geometry as simple as possible.

The proper setting to study the shock behaviour would be the kinetic theory of

plasmas, or failing that, a fully resistive and viscous MHD system. However, it

has been shown [7] that the ideal system (inviscid fluid of infinite conductivity)

yields answers concordant with the ones of more elaborate theories; in particular

no unphysical infinities, neither theoretical nor numerical, occur. Thus we will

use this simplified model in the confidence that it will provide a good guide for

the large-scale behaviour of the flow.

It is known that at least for smooth flows, the Biermann battery corresponds

to a forcing term in the magnetic induction equation. Its value, provided that

the electron pressure follows the perfect gas law, is given by

F = −ckB
e

∇ne
ne
×∇Te, (1)

where kB is the Boltzmann constant, c the speed of light, e the electron charge,

ne the electron number density and Te the electron temperature. For F not

to vanish the gradients of density and temperature cannot be collinear, which

excludes the usual symmetric configurations. Across a shock we must use the
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MHD Rankine-Hugoniot relations (see e.g. [8, 9]). It is generally admitted that

with good precision the electron temperature is continuous across the shock

[10,11], so that the tangential derivative ∇Te×n, where n represents the normal

vector at the shock surface, is continuous. In these conditions the jump condition

for the induction equation becomes

[un ×BT + uT ×Bn + F] = 0. (2)

u represents the fluid velocity, B the magnetic field, the subindex T means

tangential component and n the normal one; [ ] is the jump, i.e. the difference

of the quantity between the right hand and the left hand side of the shock

surface. This may be written as

[−unBT +BnuT +
ckB
e

(lnne)∇Te × n] = 0, (3)

where as usual we have chosen a frame moving with the shock so that its velocity

is zero. This result is proved in [7] in a rather cavalier manner (multiplying

discontinuous functions by measures, i.e. distributions of order zero, which is

not permitted), but the proof may easily be made rigorous given the continuity

of ∇Te × n. The remaining jump relations are, taking µ0 = 1 for simplicity,

[ρun] = 0.

[ρunuT −BnBT ] = 0[
ρu2n + Π +

B2

2

]
= 0[(

1

2
ρu2 + h+B2

)
un − (u ·B)Bn

]
= 0

[Bn] = 0. (4)

Π is the kinetic pressure and h the enthalpy (equal to γΠ/(γ − 1) for poly-

tropic fluids). If we assume that u = (u(t, x), 0, 0) and B = (0, 0, B(t, x)),

F = (0, 0, f(t)), as it will occur in our model, the Rankine-Hugoniot relations

3



simplify to

[ρu] = 0[
ρu2 + Π +

B2

2

]
= 0[(

1

2
ρu2 + h+B2

)
u

]
= 0

[uB − f ] = 0. (5)

Thus we take the discontinuity at x = 0, and the Biermann forcing concentrated

at this point. One way to achieve this is to take an electron temperature of the

form

Te = f0(t, x) + f1(t, x)y. (6)

Thus

∇Te × n = (0, 0,−f1), (7)

which means that the Biermann term in (3) becomes

ckB
e

ln
ne2
ne1

(0, 0,−f1(t, 0)) = (0, 0, f(t)). (8)

In order to make the Biermann battery concentrated at the shock, one could

assume the electron density constant for x > 0 and x < 0, nej(t, x) = nej(t),

so that the Biermann term vanishes elsewhere; or take fi = fi(t) in (6) and

ne = ne(t, y). None of these hypotheses is highly likely from the physical view-

point, but they are useful to simplify the model and Biermann forcings concen-

trated at shocks are very real, so that some distribution of electron density and

temperature allowing for this must exist. Allowing for this hypothesis, the full

model is as follows: In the whole domain, except for the shock at x = 0, the

ideal MHD equations hold:

∂ρ

∂t
+∇ · (ρu) = 0

ρ
∂u

∂t
+ ρu · u = −∇Π + (∇×B)×B

∂B

∂t
= ∇× (u×B)

∇ ·B = 0, (9)
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whereas in x = 0, the Rankine-Hugoniot relations with Biermann battery term

(3-4) hold. A structure of fields consistent with our assumptions on x = 0 is as

follows:

ρ = ρ(t, x)

u = (u(t, x), 0, 0)

B = (0, 0, B(t, x)), (10)

plus the simplified relations (5). The Lorentz force may be written as

(∇×B)×B =

(
−1

2

∂B2

∂x
, 0, 0

)
. (11)

Let Π = Π(ρ, S) be the kinetic pressure, where S represents the entropy. (9)

becomes

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂

∂x

(
Π +

1

2
B2

)
= 0

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂B

∂t
+

∂

∂x
(Bu) = 0

∂S

∂t
+ u

∂S

∂x
= 0. (12)

Initial conditions will be as follows: we start from a nonstationary equilibrium

state ρ = ρ0, S = S0, u = u0 > 0, B = B0. From t = 0 on the Biermann battery

starts acting at x = 0, inducing a variation on the magnetic field and therefore

on the remaining variables. Since the system (12) is hyperbolic, this variation

is not instantaneous: the leading perturbation is the fast magnetosonic wave

starting at t = 0, x = 0. For points (t, x) not yet reached by it, the variables

remain as in the equilibrium state.

For B = 0 and S = const. (12) become the classical equations of isentropic

one-dimensional flow (see e.g. [12, 13]). A change of variables simplifies (12).

Let

R =
B

ρ
. (13)

Then R satisfies the same transport equation as S:

∂R

∂t
+ u

∂R

∂x
= 0. (14)
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R is the one-dimensional version of the magnetic field per unit mass B/ρ, which

is known to be transported by the flow: the induction and continuity equations

may be combined to yield

∂

∂t

(
B

ρ

)
+ u · ∇

(
B

ρ

)
. (15)

In the new variables,

P = Π(ρ, S) +
1

2
ρ2R2. (16)

Let the sound speed be defined as usual by

c2 =
∂P

∂ρ
=
∂Π

∂ρ
(ρ, S) + ρR2 ≥ 0. (17)

This notation is classical; there should be no confusion with the speed of light,

which will not be used henceforth. Then the system (12) may be written in the

traditional form

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= 0 (18)

∂P

∂t
+ u

∂P

∂x
+ ρc2

∂u

∂x
= 0 (19)

∂S

∂t
+ u

∂S

∂x
= 0 (20)

∂R

∂t
+ u

∂R

∂x
= 0. (21)

System (18-21) resembles the one for non isentropic flows, except by the fact

that in addition to the entropy S we have a further quantity R transported by

the flow as a passive scalar.

2 Evolution of the leading wavefront

System (18-21) possesses three families of characteristics: one double, given by

the streamlines

C0 :
dx

dt
= u(t, x), (22)

and the slow and fast magnetosonic waves:

C− :
dx

dt
= (u− c)(t, x) (23)

C+ :
dx

dt
= (u+ c)(t, x). (24)
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Notice that if u ≥ c all the perturbations are transmitted in the positive sense

of x, so that for x < 0 the state remains in equilibrium. Otherwise waves may

travel backwards, in particular the slow magnetosonic ones; and recall that we

have discounted the possible velocity of the initial shock by fixing it at x = 0.

Thus u0 > 0 means that the equilibrium flow velocity is larger than the one of

the shock. The leading characteristic is the the fast magnetosonic one starting

at (0, 0): it is given by C0
+ : x = X(t),

dX

dt
= (u+ c)(t,X(t))

X(0) = 0. (25)

As stated, for any (t, x) such that x > X(t), all the magnitudes of the problem

remain in equilibrium at this point. We will study the evolution of

∂u

∂x
(t,X(t)). (26)

The method consist in a kind of hodograph transformation using the character-

istics C+ and C0 as coordinate curves. This procedure is not uncommon in this

type of problems [14]. The new variables ξ(t, x), τ(t, x) will therefore satisfy

∂ξ

∂t
+ (u+ c)

∂ξ

∂x
= 0 (27)

∂τ

∂t
+ u

∂τ

∂x
= 0. (28)

This does not completely characterize ξ and τ : they must be labeled at one

point of each characteristic. Let us therefore take C0
+ as ξ = 0, i.e. ξ(0, 0) = 0.

For every point of C0
+, a single C0 characteristic intersects it. It will be labeled

by t, i.e. we take τ(t,X(t)) = t. This determines the value of τ for all the

points lying between C0
+ and the streamline C0

0 starting at (0, 0). The labeling

of ξ for these points is not important, as we will concentrate in C0
+. Anyway ξ

is constant along the C+ characteristics. The change of variables (t, x)→ (τ, ξ)

will remain valid for as long as these characteristics remain transversal to each

other. The jacobian matrix is

D(ξ, τ)

D(t, x)
=

 ∂ξ
∂t

∂ξ
∂x

∂τ
∂t

∂τ
∂x

 =

−(u+ c) ∂ξ∂x
∂ξ
∂x

−u∂τ∂x
∂τ
∂x

 , (29)
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whose inverse is

D(t, x)

D(ξ, τ)
=

 ∂t
∂ξ

∂t
∂τ

∂x
∂ξ

∂x
∂τ

 =

(
∂ξ

∂t

∂τ

∂x
− ∂ξ

∂x

∂τ

∂t

)−1 ∂τ
∂x − ∂ξ

∂x

−∂τ∂t
∂ξ
∂t


=

(
∂ξ

∂t

∂τ

∂x
− ∂ξ

∂x

∂τ

∂t

)−1 ∂τ
∂x − ∂ξ

∂x

u∂τ∂x −(u+ c) ∂ξ∂x

 . (30)

This implies

∂x

∂τ
= (u+ c)

∂t

∂τ
(31)

∂x

∂ξ
= u

∂t

∂ξ
. (32)

Writing now

D(ξ, τ)

D(t, x)
=

(
D(t, x)

D(ξ, τ)

)−1
=

1

J

 ∂x
∂τ − ∂t

∂τ

−∂x∂ξ
∂t
∂ξ

 , (33)

where J is the jacobian

J = − ∂t
∂ξ

∂x

∂τ
+
∂t

∂τ

∂x

∂ξ
, (34)

we obtain

∂ξ

∂t
= − 1

J

∂x

∂τ
,

∂ξ

∂x
=

1

J

∂t

∂τ
∂τ

∂t
=

1

J

∂x

∂ξ
,

∂τ

∂x
= − 1

J

∂t

∂ξ
. (35)

Of course there is an abuse of notation here; the left hand side of these equa-

tions is taken at (t, x), whereas the right hand side is taken at (ξ(t, x), τ(t, x)).

Admitting this notation in the future, applying the chain rule to any magnitude

Φ,

∂Φ

∂x
=
∂Φ

∂ξ

∂ξ

∂x
+
∂Φ

∂τ

∂τ

∂x
=

1

J

(
∂Φ

∂ξ

∂t

∂τ
− ∂Φ

∂τ

∂t

∂ξ

)
(36)

∂Φ

∂t
=
∂Φ

∂ξ

∂ξ

∂t
+
∂Φ

∂τ

∂τ

∂t
= − 1

J

(
∂Φ

∂ξ

∂x

∂τ
− ∂Φ

∂τ

∂x

∂ξ

)
. (37)

This implies

∂Φ

∂t
+ u

∂Φ

∂x
= − c

J

∂Φ

∂ξ

∂t

∂τ
. (38)
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Using (38) on u and P , equations (18-21) may be written in the new coordinates.

For (19), we obtain

− c
J

∂P

∂ξ

∂t

∂τ
+
ρc2

J

(
∂u

∂ξ

∂t

∂τ
− ∂u

∂τ

∂t

∂ξ

)
= 0, (39)

i.e.

−∂P
∂ξ

∂t

∂τ
+ ρc

∂u

∂ξ

∂t

∂τ
− ρc∂u

∂τ

∂t

∂ξ
= 0. (40)

Equation (18) becomes

− c
J

∂u

∂ξ

∂t

∂τ
+

1

ρJ

(
∂P

∂ξ

∂t

∂τ
− ∂P

∂τ

∂t

∂ξ

)
= 0, (41)

i.e.

∂P

∂τ
=

(
∂t

∂τ

)(
∂f

∂ξ

)−1(
∂P

∂ξ
− ρc∂u

∂ξ

)
. (42)

Using (40), this becomes

∂P

∂τ
+ ρc

∂u

∂τ
= 0. (43)

Finally, (20-21) become

∂S

∂ξ
=
∂R

∂ξ
= 0. (44)

Since all the quantities are continuous in a characteristic, and C0
+ is contiguous

to the equilibrium zone, in this curve we have ρ = ρ0, u = u0, S = S0, R = R0,

c = c0. In particular (44) implies that both S and R are constant at all the

C0-characteristics starting at C0
+, i.e. in the region limited by the leading mag-

netosonic wave and the leading streamline. This is logical as both magnitudes

are transported by the flow and therefore do not change until the fluid starting

at x = 0 reaches the point. Since τ is a parameter along C0
+ : ξ = 0, where

τ = t, we have

∂u

∂τ
=
∂ρ

∂τ
=
∂P

∂τ
=
∂S

∂τ
=
∂R

∂τ
= 0,

∂t

∂τ
= 1, (45)

at any point of the form (0, τ). Taking this to (40),

∂P

∂ξ
(0, τ) = ρ0c0

∂u

∂ξ
(0, τ), (46)
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and using (31, 32, 34),

∂x

∂ξ
= u0

∂t

∂ξ
,

∂x

∂τ
= u0 + c0, J = −c0

∂t

∂ξ
, (47)

always at C0
+. Hence, calling

F (τ) = F (t) =
∂u

∂x
(0, τ), (48)

and using (36) with Φ = u plus (47), we obtain

F =
1

J

∂u

∂ξ
= − 1

c0

∂u

∂ξ

(
∂t

∂ξ

)−1
. (49)

Let us differentiate (31) and (43) with respect to ξ:

∂2x

∂ξ∂τ
− ∂(u+ c)

∂ξ

∂t

∂τ
− (u+ c)

∂2t

∂ξ∂τ
= 0 (50)

∂2P

∂ξ∂τ
+
∂(ρc)

∂ξ

∂u

∂τ
+ ρc

∂2u

∂ξ∂τ
= 0. (51)

Evaluating these identities at C0
+, we obtain[

∂2x

∂ξ∂τ

]
(0,τ)

−
[
∂(u+ c)

∂ξ

]
(0,τ)

− (u0 + c0)

[
∂2t

∂ξ∂τ

]
(0,τ)

= 0 (52)[
∂2P

∂ξ∂τ

]
(0,τ)

+ ρ0c0

[
∂2u

∂ξ∂τ

]
(0,τ)

= 0. (53)

Let us differentiate now (32) and (40) with respect to τ :

∂2x

∂τ∂ξ
− ∂u

∂τ

∂t

∂ξ
− u ∂2t

∂τ∂ξ
= 0 (54)

− ∂2P

∂τ∂ξ

∂t

∂τ
− ∂P

∂ξ

∂2t

∂τ2
+
∂(ρc)

∂τ

∂u

∂ξ

∂t

∂τ
+ ρc

∂2u

∂τ∂ξ

∂t

∂τ

+ρc
∂u

∂ξ

∂2t

∂τ2
− ∂(ρc)

∂τ

∂u

∂τ

∂t

∂ξ
− ρc∂

2u

∂τ2
∂t

∂ξ
− ρc∂u

∂τ

∂2t

∂τ∂ξ
= 0. (55)

When evaluated at C0
+, these relations simplify considerably:[

∂2x

∂τ∂ξ

]
(0,τ)

− u0
[
∂2t

∂τ∂ξ

]
(0,τ)

= 0 (56)

−
[
∂2P

∂τ∂ξ

]
(0,τ)

+ ρ0c0

[
∂2u

∂τ∂ξ

]
(0,τ)

= 0. (57)
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From (53) and (57) we deduce [
∂2u

∂τ∂ξ

]
(0,τ)

= 0, (58)

and from (52) and (56),[
∂2t

∂τ∂ξ

]
(0,τ)

= − 1

c0

[
∂(u+ c)

∂ξ

]
(0,τ)

. (59)

Since P is a function of the variables (ρ, S, R), so is c. Thus

∂c

∂ξ
=
∂c

∂ρ

∂ρ

∂ξ
+
∂c

∂S

∂S

∂ξ
+
∂c

∂R

∂R

∂ξ
. (60)

At C0
+, the two last terms disappear. As for the first one, using (40) and the

fact that in that curve

∂P

∂ξ
=
∂P

∂ρ

∂ρ

∂ξ
= c2

∂ρ

∂ξ
, (61)

we obtain [
∂2t

∂τ∂ξ

]
(0,τ)

= − 1

c0

(
ρ0
c0

[
∂c

∂ρ

]
(0,τ)

+ 1

)[
∂u

∂ξ

]
(0,τ)

. (62)

Notice that since ρ, S and R are constant at C0
+, so is the term within paren-

theses in (62). Let us call it M : obviously M > 0. Then, differentiating (49)

with respect to τ (i.e. within the characteristic), we get

dF

dτ
= −c0

[(
c0
∂t

∂ξ

)−2(
∂2u

∂τ∂ξ

∂t

∂ξ
− ∂u

∂ξ

∂2t

∂τ∂ξ

)]
(0,τ)

, (63)

and using (58), (62) and the fact that t = τ at C0
+, we finally obtain

dF

dt
= −MF 2. (64)

The solution to (64) is trivial: for F (0) 6= 0,

F (t) =

(
1

F (0)
+Mt

)−1
. (65)

Therefore if F (0) > 0, F decreases to zero. Since F represents the slope of u

at the leading magnetosonic wave, we interpret this as a damping of this wave.

When F (0) < 0, F is always negative and tends to infinity at a time

t∞ = − 1

MF (0)
. (66)
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Hence u reaches a step-like discontinuity, i.e. a shock wave. For F (0) = 0,

F is always zero, which means that when the magnetosonic wave is so smooth

that even the first derivatives of the velocity are continuous across it, this wave

neither decays nor forms a shock in time. We will see later that this is a real

possibility.

Although (65) and (66) are satisfactorily simple, we must identify both M

and F (0) in terms of the real physical parameters of the problem.

3 Initial conditions and shock formation time

Let us find first the value of M . From (62) we know that M is given by

M = 1 +
ρ

c

∂c

∂ρ
, (67)

and that this value is constant in C0
+. By the formula (17),

∂c

∂ρ
=

1

2

(
∂Π

∂ρ
+ ρR2

)−1/2(
∂2Π

∂ρ2
+R2

)
. (68)

Thus

M = 1 +
ρ

2c2

(
∂2Π

∂ρ2
+R2

)
. (69)

Let us consider the particular case of a polytropic gas,

Π(ρ, S) = A(S)ργ . (70)

For A = 0 the gas is pressureless and only the magnetic field exerts a pressure.

For the general polytropic case, after some operations one finds

M = 1 +
(γ − 1)Aγργ−1 + ρR2

2c2

= 1 +
γ − 1

2
+
(

1− γ

2

) ρR2

c2
=

1 + γ

2
+
(

1− γ

2

) c2A
c2
, (71)

where cA = B/
√
ρ represents the Alfvén velocity of the flow. For A = 0, cA = c

and M = 3/2, which is independent of any parameter. Since c and cA remain

constant at the wavefront C0
+, their value is the same as the one at (0, 0).

It remains to find F (0) = (∂u/∂x)(0+, 0+). The sign + means that we must

take the limit as t → 0, t > 0, x → 0, x > 0; from the left the limit is zero,
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as we start from an equilibrium state. Assuming a small initial variation of the

magnetic field at the shock x = 0 given by the Biermann effect, for small time

the solutions will be approximated by those of the linearized system, so that

the value of F (0) may be found by finding (∂u1/∂x)(0+, 0+), u1 a perturbation

of the equilibrium velocity u0. Initial values are given, as stated, by ρ = ρ0,

u = u0 > 0, S = S0, B = B0. Thus we consider small perturbations of these,

u = u0 + u1, ρ = ρ0 + ρ1, S = S0 +S1, B = B0 +B1, which yield Π = Π0 + Π1.

We will consider the polytropic case for concretion. The linearized versions of

the Rankine-Hugoniot connection conditions in (5) are

[ρ0u1 + ρ1u0] = 0 (72)

[ρ1u
2
0 + 2ρ0u0u1 + Π1 +B0B1] = 0 (73)

[(
1

2
ρ1u

2
0 + ρ0u0u1 +

γΠ1

γ − 1
+ 2B0B1

)
u0 +

(
1

2
ρ0u

2
0 +

γΠ0

γ − 1
+B2

0

)
u1

]
= 0

(74)

[u0B1 + u1B0 − f1] = 0. (75)

where f1 is the perturbation of the Biermann term f ; since we start from f = 0

for t < 0, we may as well take f1 = f , at least while it remains small.

We will assume that u0 > c0, so that the fluid to the left of x = 0 remains

unperturbed. In this case (72-75) yield the values of ρ1, u1, B1 and Π1 at x = 0.

The linearized problem may therefore be set at the quadrant x ≥ 0, t ≥ 0, and

the perturbed quantities are zero at the points (x, 0) and have the values given

by (72-75) at the points (0, t). System (72-75) is linear, so with some work it

may be solved. The perturbed velocity has the form

u1 = λB0f, (76)

where

λ =
(2− γ)ρ0
c20 − u20

, (77)
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and

c20 =
γΠ0

ρ0
+
B2

0

ρ
. (78)

Also

ρ1 = −ρ0λ
u0

B0f. (79)

Instead of writing B1 it is better to use the perturbation of R, given by B1 =

ρ0R1 + ρ1R0. Using (72) and (75) we obtain [u0ρ0R1 − f ] = 0, i.e. for t > 0,

R1 =
f(t)

u0ρ0
= h(t). (80)

In terms of h,

u1 = λB0ρ0u0h

ρ1 = −λB0ρ
2
0h. (81)

It is clear that (76-80) occur only at the points of the form (0, t). When B0 6= 0

(and therefore R0 6= 0) system (14-17), once linearized near the equilibrium,

becomes

∂u1
∂t

+ u0
∂u1
∂x

+
c20
ρ0

∂ρ1
∂x

= −ρ0R0
∂R1

∂x
(82)

∂ρ1
∂t

+ u0
∂ρ1
∂x

+ ρ0
∂u1
∂x

= 0 (83)

∂R1

∂t
+ u0

∂R1

∂x
= 0, (84)

Equation (84) means that R1 is constant at the characteristics x−u0t = const.,

i.e. it is a function of x− u0t. Since R1(t, 0) = h(t),

R1(t, x) = 0 for x < 0

R1(t, x) = h

(
t− x

u0

)
for x ≥ 0. (85)

Notice that since h(t) = 0 for t < 0, R1(t, x) vanishes both for x < 0 and

for x > u0t; that is, R1 is limited to the domain lying between the original

Biermann sheet and the characteristic C0, which are the points reached by

transport through the equilibrium flow u0. We may see system (82-83) as a
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linear isentropic one with an independent term:

∂

∂t

u1
ρ1

+

u0 c20/ρ0

ρ0 u0

 ∂

∂x

u1
ρ1

 =

−ρ0R0(∂R1/∂x)

0

 . (86)

Since we wish to find ∂u/∂x at the fast magnetosonic front C0
+, and in the

domain D lying between the characteristics C0 and C0
+ the independent term

vanishes, we are left with the homogeneous equation. This may be written as

∂

∂x

u1
ρ1

 = −

u0 c20/ρ0

ρ0 u0

−1 ∂

∂t

u1
ρ1


=

1

u20 − c20

−u0 c20/ρ0

ρ0 −u0

 ∂

∂t

u1
ρ1

 . (87)

Now, since u1(t, 0), ρ1(t, 0) are given by (81), the limit of the right hand side

when x→ 0, (t, x) ∈ D, is

λB0ρ0
u20 − c20

−u0 c20/ρ0

ρ0 −u0

 u0

−ρ0

h′(t) =
(2− γ)ρ20
(u20 − c20)2

u20 + c20

−2ρ0u0

B0h
′(t). (88)

In particular

∂u1
∂x

(0+, 0+) =
(2− γ)ρ20(u20 + c20)

(u20 − c20)2
B0h

′(0+). (89)

The constant µ multiplying B0h
′(0+) in (89) is positive; hence the sign of

(∂u1/∂x)(0+, 0+) is the one of B0h
′(0+). We see that the key parameter de-

termining the fate of the leading wave is the variation of the Biermann forcing

at the instant t = 0. Thus, if B0h
′(0+) < 0, which means that the perturbation

of the magnetic field at the sheet x = 0 decreases its size, we obtain that the

time of formation of a shock for the leading fast magnetosonic wave is

t∞ = − 1

MµB0h′(0+)
, (90)

with M given by (69) and µ by (89). Notice that from (89) µ is very large

when the equilibrium speed sound c0 and the velocity u0 are close; in that case

the slow magnetosonic wave separates slowly from the sheet, which as we see

accelerates the formation of a shock.
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The reason for this shock formation is rather intuitive: since the size of the

magnetic field tends to diminish, the Lorentz force −∂B2/∂x points towards

the left, i.e. the flow tends to be retarded by the negative gradient of magnetic

pressure; this means that the flow is compressive, which foresees the formation

of a shock wave. On the contrary, if B(0)h′(0) > 0, the Lorentz force points

outwards and tends to accelerate the flow, thus rarefying the fluid and damping

the wave.

It remains to see what happens if B0 = R0 = 0, i.e. if we start from an

unmagnetized state; this is the situation for which the Biermann battery was

originally invoked. Then the independent term in the linearized momentum

equation (82) is zero, so we should start from a second order term. An alterna-

tive is to take B2/2 instead of B as a new variable. We leave this problem for

future research, but we must expect a rarefaction wave and no fast magnetosonic

shock.

4 Conclusions

One of the most successful mechanisms proposed to create a seed magnetic field

in an originally field-free state is to assume a charge separation in the plasma

due to the smaller inertia of electrons with respect to ions; thus kinetic pres-

sure forces may give rise to a non conservative electric field and therefore a

magnetic one. This so-called Biermann battery is more likely to occur where

large gradients of electron pressure are present, i.e. in shocks. This hypothesis

has been often invoked, with considerable success, to explain several features

present in Astrophysics and in laser experimentation. Whereas the generation

of magnetic field by this process has been extensively considered, the influence

of this new field on the plasma flow itself has been so far less studied. This

problem is analyzed in a simplified one-dimensional geometry, starting from a

non static equilibrium state and generating a magnetic field in a fixed plasma

sheet by the Biermann battery; once away from the sheet, the process is gov-

erned by the MHD equations. Thus the mathematical setting consists on the

MHD equations in two domains separated by the original shock sheet, where

the Rankine-Hugoniot formulas relate the value of the variables at both sides.
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This system may be cast in the form of a purely hydrodynamic flow with two

quantities transported by the flow: the entropy and the magnetic field per unit

mass. We find that the evolution of the leading fast magnetosonic wave is very

simple: either it damps out, remains at constant strength or gives rise to a new

shock onwards from the original one. The last case occurs, as it could be ex-

pected, when this wave is compressional. The parameters governing both if this

shock occurs as well as the time where it occurs, are few and may be related to

the values of the original equilibrium state plus the behavior of the Biermann

forcing at the initial instant. As a rule, when the Biermann current detracts

from the size of the equilibrium magnetic field, a shock must be expected: a fact

which may be intuitively explained by the braking effect of the Lorentz force

on the flow. Conversely, if the magnetic field increases its size (which is the

case why the Biermann mechanism was proposed), the Lorentz force accelerates

the flow and the fluid becomes rarefied, so that the fast magnetosonic wave

eventually damps out.
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