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Abstract

Fast magnetosonic waves in a two-dimensional plasma are studied in

the geometrical optics approximation. The geometry of rays and wave-

fronts influences decisively the formation and ulterior evolution of shock

waves. It is shown that the curvature of the curve where rays start and

the angle between rays and wavefronts are the main parameters governing

a wide variety of possible outcomes.
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1 Introduction

While the model of ideal magnetohydrodynamics represents the simplest de-

scription of the evolution of a neutral plasma, and both its weaknesses and its

strengths are well known, the long term behavior of solutions is anything but

easy to predict. In common with all nonlinear hyperbolic systems, shocks may

develop and indeed do in many physically relevant situations, but their location

and later evolution are extremely complex problems. However, for high fre-

quency perturbations the methods of nonlinear geometric optics provide a more

amenable analytical approach. While its philosophy is highly classical [1, 2],

rigorous mathematical justifications are more recent and in fact continue to this

day [3–5]. There exists a vast bibliography for this technique and its applica-

tions [6–8], e.g. in elasticity [9], fluid dynamics [10, 11] and ideal MHD [12,13].
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The most desirable case occurs when dealing with waves of a single phase. When

one admits superposition of waves whose phases are different solutions of the

eikonal equation, resonance may occur [14, 15] and the waves interact in un-

suspected ways. Methods to deal with particular cases have been successfully

applied e.g. to the two-dimensional Euler equation [5]. We will assume a single

phase and make use of two excellent survey articles [16, 17]. Even in this case

most specific results assume dependence on a single spatial variable (although

the system itself may be multidimensional). This way rays are straight and

parallel lines and there is no trouble with their intersection. We wish to ana-

lyze a genuinely multidimensional case, keeping the remaining data as simple

as possible; thus we consider propagation of fast magnetohydrodynamic waves

in a static plane equilibrium: density, pressure and magnetic field are constant.

Rays are straight lines and their angle with wavefronts is constant along each

ray. Nevertheless, setting the location of the initial perturbation along an arbi-

trary curve in the plane, we allow for rays to converge generating caustics, and

the wavefront normal also differ among different rays. The crucial parameters

are precisely the curvature of the original curve, and also the variation along it

of the angle between the static magnetic field and the normal. A very lengthy

calculation shows that the first order term for the asymptotic expansion of the

solution satisfies a differential equation along the rays which may be reduced

to the Burgers equation, whose behavior is well understood. In particular the

time of shock formation and the ulterior evolution of the shock wave are widely

available in the literature e.g. in [7,8] and specially in [18]. However, the neces-

sary changes both of variables and functions to reduce our problem to a Burgers

form depend on the sign and relative size of the equilibrium quantities, plus the

data in the original curve, so the admirable universality of the Burgers solution

(which tends always to an N-wave) gives rise to a surprising variety of possi-

ble outcomes for the velocity, the shock strength and the overall shape of this

wave. A final word of caution related to the intrinsic limitations of nonlinear

geometrical optics. The evolution of the shock along each ray is governed by the

Rankine-Hugoniot relations, but there is no guarantee that the final solution,

transported through different rays, will satisfy also the Rankine-Hugoniot rela-

tions in the transverse direction to these rays. To achieve this further constraints

in the original values would be necessary. Although the wavelength of our solu-

tions is small, when rays approach one another interference occurs, which is not

covered by geometrical optics; obviously for diverging rays the approximation

is excellent.
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2 Geometry of rays

Consider a quasilinear hyperbolic system, written in the Einstein notation

∂u

∂t
+Aj(x,u)

∂u

∂xj
+ C(x,u) = 0, (1)

For any spatial vector k and equilibrium state u0 take a fixed eigenvalue Λ(k),

det(Λ(k)I +Aj(x,u0)kj) = 0. (2)

The eikonal equation associated to this eigenvalue is

∂φ

∂t
= Λ(∇φ), (3)

and φ is the phase. In our case the system will be the ideal MHD one, and we

choose for Λ the fast magnetosonic frequency (see e.g. [19]). If u0 corresponds

to a static state with pressure P , density ρ and magnetic field B,

Λ(k)2 =
1

2

(
∂P

∂ρ
+
B2

ρ

)
|k|2 +

1

2

[(
∂P

∂ρ
+
B2

ρ

)2

|k|4 − 4
∂P

∂ρ

(B · k)2

ρ
|k|2

]1/2
.

(4)

Rays are solutions of the system

dx

dt
= ∇kΛ(x,k)

dk

dt
= −∇xΛ(x,k). (5)

The phase is constant along rays,

d

dt
(φ(t,x(t))) = 0. (6)

Often one takes a normalized vector n = k/|k| and uses the frequency

c(n) =
Λ(k)

|k|
. (7)

Equations (5) for the plane may be written in terms of c, n and its orthogonal

n⊥, chosen so that {n,n⊥} form an orthonormal positive system:

dx

dt
= cn + (n⊥ · ∇nc)n

⊥, (8)

dn

dt
= −(n⊥ · ∇xc)n

⊥. (9)
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For static equilibria, the fast magnetosonic frequency c(n) satisfies

c(n)2 =
1

2

(
∂P

∂ρ
+
B2

ρ

)
+

1

2

[(
∂P

∂ρ
+
B2

ρ

)2

− 4
∂P

∂ρ

(B · n)2

ρ

]1/2
. (10)

This equation may be written in terms of the speed of sound c2s = ∂P/∂ρ, Alfvén

speed c2A = B2/ρ, and the angle θ that forms the magnetic field B with n:

c(n)2 =
1

2
(c2s + c2A) +

1

2

[
(c2s + c2A)2 − 4c2sc

2
A cos2 θ

]1/2
. (11)

From now on we will consider a static ideal MHD equilibrium where both mag-

netic field and density are constant in space. In this case c(n) does not depend

on x, so that we find from (9) that n (and n⊥) are constant along the ray; and

since both coefficients in (8) are constant, rays are straight lines. Denoting by

b the unit magnetic field, by our definition of θ

n = cos θ b + sin θ b⊥

n⊥ = − sin θ b + cos θ b⊥, (12)

which implies

dn

dθ
= (− sin θ)b + (cos θ)b⊥ = n⊥, (13)

so that, writing as in (11) c as a function of θ (all the rest being constants), and

denoting by c′ the derivative of c with respect to θ,

dc

dθ
= c′(θ) =

dn

dθ
· ∇nc = n⊥ · ∇nc, (14)

so that (8) may be written

dx

dt
= cn + c′n⊥. (15)

We see from (5) that k = k0 is constant along the ray, and since ∇φ = k0, this

is also constant along the ray, as well as

∂φ

∂t
= −c|k0|. (16)

Let us fix a single ray, and call α = cn + c′n⊥. Then the ray is given by

x(t) = αt+ x(0). (17)

Choosing as parameter the arc length s instead of t so that we may reserve this

for the time,

x(s) =
α

|α|
s+ x(0). (18)
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Since

d

dt
φ(t, s(t)) =

∂φ

∂t
+ |α|∂φ

∂s
= 0, (19)

we find the simple expression for the phase in a single ray

φ(t, s) = c
|k0|
|α|

(s− |α|t) + const. (20)

Abbreviating |α| = α, and labeling φ(0, 0) = 0, we may write

φ(t, s) = A(s− αt). (21)

To set the ray geometry appropriate to our problem, we start from a curve g

parametrized by the arc length ξ, ξ ∈ (ξ0−ε, ξ0+ε), and consider rays orthogonal

to this curve. Let us therefore take a normal unitary vector T , chosen so that

g′(ξ) = T⊥(ξ), and T, T⊥ form a positive orthonormal system. Thus the ray

starting at g(ξ) may be parametrized by the arc length s as s→ g(ξ) + sT(ξ).

It is easy to see that the transported curves gs : ξ → g(ξ)+sT(ξ) form with the

rays a family of orthogonal curves for as long as there is not self-intersection.

While (ξ, s) form a global family of orthogonal coordinates for the area covered

by these curves, the fact that ξ is not the arc length in the curve gs makes us

to choose r, the arc length on this curve, starting at (r = 0) (i.e. ξ = ξ0), as

new variable. We see that r = r(ξ, s). Since T⊥ is the tangent vector to gs and

T is minus the normal vector,

dT⊥

dr
= −κT dT

dr
= κT⊥, (22)

where κ = κ(r, s) represents the curvature of gs. Let us find κ(r, s) in terms of

the curvature of the original curve κ(r, 0). We have

g′s : r → g′(r) + sT′(r) = T⊥(r) + sκ(r, 0)T⊥(r)

g′′s : r → −κ(r, 0)T(r) + s
∂κ

∂r
(r, 0)T⊥(r)− sκ(r, 0)2T(r). (23)

For any plane curve such as gs we have the formula

κ =
(g′s × g′′s ) · ẑ
|g′s|3

. (24)

Thus we find

κ(r, s) =
(1 + sκ(r, 0))(−κ(r, 0)− sκ(r, 0)2)(T⊥ ×T) · ẑ

|1 + sκ(r, 0)|3

=
κ(r, 0)

1 + sκ(r, 0)
. (25)
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The sign of 1 + sκ(r, 0) is always positive: obviously for κ ≥ 0, which corre-

sponds to rays spreading from the (convex) curve, and for κ < 0 because at

s = −1/κ(r, 0) rays cut themselves and a caustic appears. These rays emanate

from the immediate vicinity of r = 0, s = 0, not from some other portion of the

curve. (22) may be therefore written as

dT⊥

dr
= − κ(r, 0)

1 + sκ(r, 0)
T

dT

dr
=

κ(r, 0)

1 + sκ(r, 0)
T⊥. (26)

Let us consider now the normal vector to the wavefront n as a function of (r, s).

As a function of (ξ, s) it only depends on ξ, but r = r(ξ, s). Since n · n = 1,

there exists a scalar function λ(r, s) such that

dn

dr
= λn⊥,

dn⊥

dr
= −λn. (27)

For any function constant along the rays, h = h(ξ), we may find dh/dr as

follows: since r is the arc length of the curve gs, whose derivative is found in

(23),

dξ

dr
=

1

1 + sκ(r, 0)
, (28)

we have

dh

dr
(r, s) =

1

1 + sκ(r, 0)

dh

dξ
(r, s) =

1

1 + sκ(r, 0)

dh

dr
(r, 0). (29)

In particular

λ(r, s) =
λ(r, 0)

1 + sκ(r, 0)
. (30)

λ may be related to two angles: to the angle θ formed by the magnetic field and

the normal, and to the angle ψ formed by the normal and the ray. Start from

(12) and recall that b is constant everywhere. Thus

dn

dr
= − sin θ

(
dθ

dr

)
b + cos θ

(
dθ

dr

)
b⊥ =

(
dθ

dr

)
n⊥, (31)

so that

λ(r, s) =
dθ

dr
(r, s) =

1

1 + sκ(r, 0)

dθ

dr
(r, 0). (32)

On the other hand, writing

n = cosψT + sinψT⊥

n⊥ = − sinψT + cosψT⊥, (33)
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we get

dn

dr
(r, s) = − sinψ(r, s)

(
∂ψ

∂r
(r, s) + κ(r, s)

)
T

+ cosψ(r, s)

(
∂ψ

∂r
(r, s) + κ(r, s)

)
T⊥. (34)

therefore

λ(r, s) =
∂ψ

∂r
(r, s) + κ(r, s) =

1

1 + sκ(r, 0)

(
∂ψ

∂r
(r, 0) + κ(r, 0)

)
. (35)

We may find easily ψ from (15). Since T = (cosψ)n− (sinψ)n⊥,

cosψ =
c√

c2 + c′2
, sinψ = − c′√

c2 + c′2
. (36)

Expression (35) shows that by choosing appropriately the variation of n with

respect to r in the original curve, we may give to λ any sign.

3 Weakly nonlinear geometrical optics

We return to (1) for the ideal MHD system in the plane and take a left and

right eigenvectors of the matrix in (2). That is,

L · (cI + njAj(u0)) = (cI + njAj(u0)) ·R = 0. (37)

Let φ be the phase associated to c and to any initial values we choose. Let ε� 1

and ζ = φ/ε. It is shown in [13] that the first order term in the asymptotic

expansion of the solution

v = εv1(t,x, ζ) + ε2v2(t,x, ζ) + . . . , (38)

has the form

v1(t,x, ζ) = w(t,x, ζ)R(x,u0). (39)

Moreover, defining

q0 = L · (R · ∇uAj(u0)(R))
∂τ

∂xj
, (40)

p0 = L ·
[
∂R

∂t
+Aj(u0)

∂R

∂xj
+∇uC(u0) ·R + (R · ∇uAj(u0))

∂u0

∂xj

]
(41)

q = q0(L ·R)−1, p = p0(L ·R)−1, (42)
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where ∇uAj = Rk∂Aj/∂uk, w satisfies

∂w

∂t
+ L ·

(
(Aj(u0) ·R)

∂w

∂xj

)
+ pw + qw

∂w

∂ζ
= 0. (43)

The first two terms represent the derivative along the ray,

dw

dt
=
∂w

∂t
+ α

∂w

∂s
. (44)

In [16, 17] it is shown why for initial conditions of compact support in ζ the

asymptotic expansion is valid, there is no resonance and the approximation

remains valid even after the shock is formed. The terms L ·R and q0 may be

obtained independently of any chosen frame: their value may be found in [12]

for a general static equilibrium. Its precise form does not need to concern us

for our case, except to notice that for constant equilibria they are both positive

constants, and therefore so is q. The term p0 is the hardest one. Let us write

the vector u as

u = (B1, B2, v1, v2, ρ), (45)

where B represents the magnetic field, v the velocity and ρ the density (see

e.g. [19]). Let us take in R5 the basis given by

(n;0; 0) = (n1, n2, 0, 0, 0)

(n⊥;0; 0) = (−n2, n1, 0, 0, 0)

(0;n; 0) = (0, 0, n1, n2, 0)

(0;n⊥; 0) = (0, 0,−n2, n1, 0)

(0;0; 1) = (0, 0, 0, 0, 1). (46)

The matrices Aj may be written as

An =


0 0 0 0 0

0 0 Bn⊥ −Bn 0

0 Bn⊥/ρ 0 0 Pρ/ρ

0 −Bn/ρ 0 0 0

0 0 ρ 0 0

 , (47)

and

An⊥ =


0 0 −Bn⊥ Bn 0

0 0 0 0 0

−Bn⊥/ρ 0 0 0 0

Bn/ρ 0 0 0 Pρ/ρ

0 0 0 ρ 0

 . (48)
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and the vectors R and L are, up to multiplicative constants,

R =

(
0,

ρc2Bn⊥

ρc2 −B2
n

, c,
−cBnBn⊥

ρc2 −B2
n

, ρ

)
, (49)

L =

(
0,

ρc2Bn⊥

ρc2 −B2
n

, ρc,
−ρcBnBn⊥

ρc2 −B2
n

, Pρ

)
. (50)

All those terms may also be set in terms of the angle θ,

An =


0 0 0 0 0

0 0 B sin θ −B cos θ 0

0 (B sin θ)/ρ 0 0 Pρ/ρ

0 −(B cos θ)/ρ 0 0 0

0 0 ρ 0 0

 , (51)

and

An⊥ =


0 0 −B sin θ B cos θ 0

0 0 0 0 0

−(B sin θ)/ρ 0 0 0 0

(B cos θ)/ρ 0 0 0 Pρ/ρ

0 0 0 ρ 0

 . (52)

Also

R =

(
0,

ρc2B sin θ

ρc2 −B2 cos2 θ
, c,
−cB2 sin θ cos θ

ρc2 −B2 cos2 θ
, ρ

)
, (53)

L =

(
0,

ρc2B sin θ

ρc2 −B2 cos2 θ
, ρc,
−ρcB2 sin θ cos θ

ρc2 −B2 cos2 θ
, Pρ

)
. (54)

Let us study p0. Since u0 is constant, the only non vanishing term is

p0 = L ·
(
Aj(u0)

∂R

∂xj

)
. (55)

It may be set in any orthonormal base: thus

p0 = L · (An∇nR +An⊥∇n⊥R)

= L · (AT∇TR +AT⊥∇T⊥R) . (56)

The last expression is useful because since R depends only on θ, it is constant

along the ray, so

∇TR = 0, ∇T⊥R =
∂R

∂r
. (57)
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On the other hand, by (33),

∇nR = cosψ∇TR + sinψ∇T⊥R = sinψ
∂R

∂r

∇n⊥R = − sinψ∇TR + cosψ∇T⊥R = cosψ
∂R

∂r
, (58)

which means

p0 = L · (sinψAn + cosψAn⊥)
∂R

∂r
=

1√
c2 + c′2

L · (−c′An + cAn⊥)
∂R

∂r
. (59)

Expression (53) may be written as

R =

(
ρc2B sin θ

ρc2 −B2 cos2 θ
n⊥; cn +

−cB2 sin θ cos θ

ρc2 −B2 cos2 θ
n⊥; ρ

)
. (60)

Using (27) and (32), we find

∂R

∂r
= λz(θ), (61)

for a certain vector z obtained by differentiating the components of R with

respect to θ, and using the known values of the derivatives of n and n⊥ with

respect to r. Thus

p(r, s) = λ(r, s)µ(θ) =
λ(r, 0)

1 + sκ(r, 0)
µ(θ), (62)

where

µ =
1

(L ·R)
√
c2 + c′2

L · (−c′An + cAn⊥) · z. (63)

The expression of µ in terms of the equilibrium functions is enormously complex,

but the fact is that it depends only on θ and therefore it is constant along the

ray. From now on we may consider only the ray r = 0 so that the only variable

in (62) is s. To reduce (43) to a practicable form we change variables:

(s, t)→ (s′, ζ),

s′ = s, ζ =
A

ε
(s− αt). (64)

Thus

∂

∂t
+ α

∂

∂s
=

1

α

∂

∂s′
. (65)

Calling again s′ = s, (43) may be written

∂w

∂s
+ αpw + αqw

∂w

∂ζ
= 0. (66)

From now on, we will use

β = αµλ(0, 0), αq = γ. (67)
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4 Shock wave evolution

To reduce (66) to the Burgers form, one takes the new function

σ(s, ζ) = w(s, ζ) exp

(∫ s

0

αp(s1) ds1

)
, (68)

and then one changes s to `, given by

`(s) =

∫ s

0

αq exp

(∫ s1

0

αp(s2) ds2

)
ds1. (69)

Notice that σ(0, ζ) = w(0, ζ). σ satisfies

∂σ

∂`
+ σ

∂σ

∂ζ
= 0. (70)

We will assume that w(0, ζ) has compact support, say contained in [ζ0, ζ1]. This

means

ζ0 ≤
A

ε
(s− αt) ≤ ζ1, (71)

and it may be achieved in several ways: if we wish to set the initial condition at

t = 0, s must be allowed to vary in the portion of the ray εζ0/A ≤ s ≤ εζ1/A; or

if the initial condition must be set at the initial curve s = 0, then it is defined

along the time interval −εζ1/(αA) ≤ t ≤ −εζ0/(αA). Other combinations are

possible.

(68) and (69) may be written for our particular p as

σ(s, ζ) = w(s, ζ) exp

(∫ s

0

β

1 + κs1
ds1

)
, (72)

`(s) =

∫ s

0

γ exp

(∫ s1

0

β

1 + κs2
ds2

)
ds1. (73)

Thus there are the following possibilities:

a1) For κ 6= 0, σ(s, ζ) = w(s, ζ)(1 + κs)β/κ. (74)

a2) For κ = 0, σ(s, ζ) = w(s, ζ)eβs. (75)

b1) For κ 6= 0, β/κ 6= −1, `(s) =
γ

β + κ

[
(1 + κs)1+β/κ − 1

]
. (76)

b2) For κ 6= 0, β/κ = −1, `(s) =
γ

κ
ln(1 + κs). (77)

b3) For κ = 0, β 6= 0, `(s) = γ
eβs − 1

β
. (78)

b4) For β = 0, `(s) = γs. (79)
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Let us consider first the formation time of the shock wave. It is well known (see

e.g. [18]) that for the initial condition σ0(ζ) = σ(0, ζ), the shock occurs precisely

at

`b = −
(

inf
ζ∈R

dσ0
dζ

)−1
, (80)

provided this infimum is negative; otherwise, there exists a rarefaction wave and

no shock. If σ0 possesses compact support, σ remains within this support until

the shock forms. To see if this `b may be reached by a length sb within the ray,

we must study cases b1)-b4). Recall that for κ < 0, the ray is limited by 1/|κ|.
We will write on the left the interval of values of s and on the right the one of

`(s).

c1) κ > 0,
β

κ
+ 1 > 0, s ∈ [0,∞), `(s) ∈ [0,∞). (81)

c2) κ < 0,
β

κ
+ 1 > 0, s ∈ [0, 1/|κ|), `(s) ∈ [0, γ/(|κ| − β)). (82)

c3) κ > 0,
β

κ
+ 1 < 0, s ∈ [0,∞), `(s) ∈ [0, γ/(|κ|+ β)). (83)

c4) κ < 0,
β

κ
+ 1 < 0, s ∈ [0, 1/|κ|), `(s) ∈ [0,∞). (84)

c5) κ > 0,
β

κ
+ 1 = 0, s ∈ [0,∞), `(s) ∈ [0,∞). (85)

c6) κ < 0,
β

κ
+ 1 = 0, s ∈ [0, 1/|κ|), `(s) ∈ [0,∞). (86)

c7) κ = 0, β > 0, s ∈ [0,∞), `(s) ∈ [0,∞). (87)

c8) κ = 0, β < 0, s ∈ [0,∞), `(s) ∈ [0, 1/|β|). (88)

c9) β = 0, s ∈ [0,∞), `(s) ∈ [0,∞). (89)

Thus there is guarantee that shock will form except in cases c2, c3 and c8. For

those the value `b given in (80) must lie within the interval in the right hand

side to achieve this. Notice that there is no correspondence between short rays

and absence of shocks: in c3, the ray goes to infinity, but there are not shocks

for all compressive initial conditions; whereas in c6 the ray is short, but there

is always shock for compressive initial conditions.

Let us turn now to the evolution of the shock one this is formed. Refer-

ring again to the admirable exposition in [18], pp.136ss, we assume σ0 to have
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compact support and define

M0 = −2 inf
ζ∈R

∫ ζ

−∞
σ(0, ζ1) dζ1 ≥ 0

M1 = 2 sup
ζ∈R

∫ ∞
ζ

σ(0, ζ1) dζ1 ≥ 0. (90)

Let N(`, ζ) be the triangular function (N-wave)

N(`, ζ) =
ζ

`
for −

√
M0` < ζ <

√
M1`, (91)

and 0 otherwise. Then there exists a constant C such that∫ ∞
−∞
|σ(`, ζ)−N(`, ζ)| dζ ≤ C

`1/2
. (92)

Often the convergence is both fast and more accurate than this mere convergence

in integral suggests. Notice that if the initial condition is a positive hump

(M0 = 0) the wave only propagates to the right; if negative, to the left. When

σ0 = w0 has several maxima, shock superposition occurs, but nevertheless the

limit is precisely the N-wave. The jump of N at the ends of the interval (the

force of the shock) is respectively −
√
M0/`,

√
M1/`. When writing the N-wave

in terms of (t, s), we get

N(t, s) =
A(s− αt)
ε`(s)

, −ε
√
M0`(s) < A(s− αt) < ε

√
M1`(s), (93)

0 otherwise. If in addition, κ < 0, the condition s < 1/|κ| must be added.

Notice that the center of the N-wave corresponds to s = αt, i.e. it travels along

the ray at speed α. For a fixed s, the time where the wave travels along s is

given by

s

α
− ε

αA

√
M1`(s) ≤ t ≤

s

α
+

ε

αA

√
M0`(s). (94)

Recall that this is a valid asymptotic expression when ` → ∞, so it cannot

be used in the cases c2 (82), c3 (83) or c8 (88). Still, there is a rich array of

possibilities for the wave to behave. As an example, when κ < 0, 1 + β/κ < 0,

as s approaches its limit 1/|κ|, `(s) tends to infinity, the wave speed decreases

so much that it lingers indefinitely, although the force of the shock tends to

vanish.

Remember that in addition to the departure of the triangular form due to

the factor `(s), from (74) and (75) the function N must be multiplied either

by (1 + κs)−β/κ (for κ 6= 0) or by e−βs (for κ = 0). The possible behavior of

13



w is very diverse according to the signs of the different parameters. Take for

example κ > 0, 1 + β/κ > 0. Then w for s (and therefore `(s)) large as

A(β + κ)(s− αt)
γ(1 + κs)β/κ [(1 + κs)β+κ+1 − 1]

, (95)

which, when moving with the wave (i.e. keeping s−αt constant) decreases with

s when 2β/κ + 1 > 0, but increases if 2β/κ + 1 < 0, i.e. −κ < β < −κ/2.

Although the possible shape of the limit shock wave seems so manifold as to be

almost unmanageable, at least this fact reminds us of how sensitive is the fast

wave to small amounts of variation in the original data: in this case, curvature of

the data curve, plus the angles between the wavefront, the equilibrium magnetic

field and the ray direction.

5 Conclusions

It is well known that solutions of nonlinear hyperbolic systems may evolve into

shock waves, and also that both the shock formation and its later evolution

are phenomena of bewildering complexity. We consider one of the simplest ex-

amples: the equations of ideal magnetohydrodynamics in the plane and the

evolution of high frequency fast magnetosonic waves in a stationary constant

state. This problem may be studied with the methods of nonlinear geomet-

rical optics, which have been applied successfully in many instances of weak

nonlinearity. In our case rays are straight lines and the wavefront normals are

constant along each ray, but rays may converge giving rise to caustics, and the

angle with the magnetic field varies from one ray to another. The equations

satisfied by the first order solution yield a differential system along each ray, in-

volving both derivatives with respect to the ray and to the phase of the solution.

This equation may be reduce to the Burgers one, which is so well known that we

may predict both the time of formation of the shock and the later evolution of

this, to the so-called N-wave. However, the changes necessary for this reduction

depend on the geometrical parameters of the equilibrium and the initial state

in such a sensitive way that when recovering the original solution as a function

of time and space we find a bewildering array of possibilities: the ray may be

finite (ending in a caustic) or infinite, the shock may form or not, the shock

wave may slow or increase its velocity, and its force may increase or decrease.

While lacking in universality, these results show the intrinsic complexity of the

problem. There is also a caveat: geometrical optics works well as long as the

wavelength is shorter than the typical dimensions of the physical setting, but

14



when they fail to do so (e.g. when rays collide) it fails; in particular, there is no

interference if the solution depends only on what happens along each ray. As a

consequence, while our solutions satisfy the Rankine-Hugoniot relations along

the ray, they in general do not transversally to them. This, however, does not

affect our conclusion about the sensitivity of fast shock waves with respect to

initial conditions.
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