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Abstract

Magnetosonic waves traveling in a MHD equilibrium may evolve into

shocks. We develop a criterion for the creation of fast shocks in the equa-

torial plane of axisymmetric equilibria and analyze the influence of the

most important parameters. The results are applied to Grad-Shafranov

equilibria and accretion disks.
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1 Introduction

This paper deals with the creation of magnetosonic shock waves in axisymmetric

MHD equilibria. While the theoretical results hold for all cases, the practical

application of them requires a knowledge of the particular situation we are
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dealing with. We will concentrate on two important instances: static equilibria

described by the Grad-Shafranov equation, which play such a significant part in

the analysis of stability of confined plasmas; and accretion rings near astrophys-

ical objects ranging from planets to stars to black holes. In the last instance

the full relativistic approach would be necessary, but as soon as we leave the

immediate vicinity of the object the Newtonian equations are extremely precise.

Since each of these topics has its own rationale, we introduce them in turn.

Perhaps the most successful endeavor in classical Magnetohydrodynamics

was the proof of the existence of one and two-dimensional static equilibria, as

well as the analysis of their linear stability. Among the many references we

may select the classical review [1], and the excellent modern exposition [2]. One

of the aims of this theory is to identify perturbation frequencies which lead to

exponential growth and therefore show the instability of the equilibrium. As

befits a linear theory, this does not depend on the initial size of the perturbation,

provided it is small enough for the linearized MHD equations to be considered

valid. Nonlinear stability depends more heavily on computational algorithms,

but there is an important instance where we can go a long way by analytical

methods. This concerns the propagation of MHD waves into an unperturbed

state, a subject forming part of the study of nonlinear hyperbolic systems [3,4].

Both sound and MHD waves have been studied in simple special configura-

tions from a long time ago [5–8], but never including the case of axisymmetric

equilibria.

Accretion disks form one of the most conspicuous astrophysical structures,

present e.g. in galactic nuclei, young and dwarf stars, black holes, binary systems

and wherever jets are observed. Among the plethora of general monographs

and review articles dealing with this topic, [9–11] may be commended by their

breadth and clarity. Although perhaps the main object of theoretical interest

today is the presence and consequences of the magnetorotational instability

[12–14], the existence of shocks is also relevant [15]. In fact, one of its effects is

plasma heating, which remains one of the most relevant topics in the study of

accretion disks [16].

There are several analytic approaches to the problem [17,18] of shock forma-

tion, but all lead to a differential equation satisfied along the rays by the jump
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of the time derivative of the solution at the wavefront separating the perturbed

and the unperturbed states. This equation is of Riccati type and may lead to

a blow up of the solution in a finite time, a fact which is interpreted as the

formation of a discontinuity in both velocity and magnetic field consistent with

the formation of a shock wave. A MHD shock wave yields several undesirable

effects such as the creation of surface currents in the plasma, which does not

bode well for the preservation of the equilibrium; and shock waves in accretion

diks are equally disrupting. Being a nonlinear feature, the size of the initial

perturbation is a key parameter governing the future evolution of the system.

While most classical papers assume that in the state where the wave propagates

all the quantities are constant, this simplifying hypothesis does not hold for

nontrivial static equilibria, both in the static case an in accretion disks. Fortu-

nately the general case is also included in modern treatises on nonlinear waves,

such as [19,20].

Let us end the introduction by admitting some weaknesses. Since the only

comprehensive theory of nonlinear waves and shocks involve quasilinear hyper-

bolic systems, we must use the ideal MHD system, thus ignoring both resistive

and turbulent dissipation. Also the geometry is constrained, not only because

of axisymmetry but also because of several North-South symmetries we will im-

pose; and finally, to descend to precise predictions, we must consider certain

simple configurations of the main quantities: low beta and poloidal field for

static settings, self-similar behavior for accretion disks. On the positive side, we

will obtain rigorous criteria guaranteeing that a certain perturbation located at

a fixed radius will eventually evolve into a fast magnetosonic shock, and we will

be able to pinpoint the exact location where this will occur.

2 General results

Since the main results on nonlinear waves propagating into an equilibrium are

not so well known, we will recall them briefly. Let

∂u

∂t
+

3∑
j=1

Aj(t,x,u)
∂u

∂xj
+ C(t,x,u) = 0, (1)
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be a quasilinear hyperbolic system, where all functions are assumed smooth

enough. Let u0 be a known stationary solution of the system (1). Let τ(t,x)

be a solution of the eikonal equation

det

 3∑
j=1

Aj(t,x,u0)
∂τ

∂xj
+
∂τ

∂t
I

 = 0. (2)

Assume that ∂τ/∂t is an eigenvalue of order one of the matrix

3∑
j=1

Aj(t,x,u0)
∂τ

∂xj
, (3)

and let R be a right eigenvector of this matrix, L a left eigenvector. Let

Ω(t) : τ(t,x) = const., be a level surface of τ (a characteristic surface) sep-

arating two states, one of which is precisely u0. Equation (2) corresponds to

the characteristic surfaces of the system. Assume that the variable solution

propagates into the state u = u0, where the normal vector to Ω points. This

means that

∂τ

∂t
< 0, n =

∇τ
|∇τ |

, (4)

and the velocity of Ω is

c = −∂τ/∂t
|∇τ |

. (5)

We also assume that u is continuous at both sides of Ω, but perhaps not its

derivatives. In fact, let [ ] denote the jump at Ω, i.e. the magnitude at the

positive side of Ω, u = u0, minus the one on the negative side. Then[
∂u

∂t

]
= w0R, (6)

for a scalar w0(t,x) whose evolution along the rays satisfies a certain Riccati

equation which we will detail later. Eigenvectors are determined up to a multi-

plicative constant, so that w0 depends on our particular choosing; nevertheless,

the left hand side of (6) is independent of it, as well as the time when shock

waves occur. Rays are the bicharacteristic curves of system (1), i.e. solutions

of the following equations: if c = c(n,x, t) is the velocity (5), a ray t → x(t)
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satisfies

dxi
dt

= cni + (δij − ninj)
∂c

∂nj
,

dni
dt

= (ninj − δij)
∂c

∂xj
. (7)

It is known that in general rays are not orthogonal to wavefronts: this is guar-

anteed only if the speed of propagation c does not depends on n. Since all the

quantities are evaluated at u = u0, this is an ordinary differential equation in

(t,x) [5]. For any matrix or vector B(t,x,u) we use the following notation:

(∇uB) ·R =
∑
i

Ri
∂B

∂ui
, (8)

all of them evaluated at u0. Let

q0 = L ·

 3∑
j=1

nj
c

(∇uAj) ·R

 ·R, (9)

p0 = L ·

 3∑
j=1

Aj
∂R

∂xj
+

3∑
j=1

(∇uAj ·R) ·
(
∂u0

∂xj

)+ L · (∇uC) ·R, (10)

The expression in (9) depends only on the values of the vectors L and R at a

single point, which means that once chosen a fixed normal vector n, L and R

are left and right eigenvectors of An =
∑
njAj . Then

q0 = L ·
(

1

c
(∇uAn) ·R

)
·R. (11)

This value depends only on the normal, and not on the geometry of the wave-

front. The same may be said of the product L · R. Things are different for

(10); this term involves derivatives of the quantities which must be found along

a wavefront, so we need some information on the local geometry of the surface.

If we parametrize the surface Ω in the form xi = xi(y1, y2, t), and (gαβ) is the

metric tensor of the surface, we have

p0 = L ·

An ∂R
∂n

+
∑
j,α,β

Ajg
αβ ∂xj
∂yβ

∂R

∂yα


+L ·

[∇uAn ·R]
∂u0

∂n
+
∑
j,α,β

[∇uAj ·R]gαβ
∂xj
∂yβ

∂u0

∂yα

+ L · (∇uC) ·R. (12)
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The main result is as follows: let t → x(t) represent a ray associated to the

phase τ , w(t) = w0(t,x(t)), p = (L ·R)−1p0, q = (L ·R)−1q0. Then w satisfies

dw

dt
+ pw + qw2 = 0. (13)

Since this Riccati equation lacks an independent term, it may be immediately

reduced to a linear one:

d

dt

(
1

w

)
− p

w
− q = 0, (14)

whose solution is

1

w(t)
=

1

w(t0)
exp

(∫ t

t0

p(s) ds

)
+ exp

(∫ t

t0

p(s) ds

)∫ t

t0

exp

(
−
∫ s

t0

p(r) dr

)
q(s) ds. (15)

Therefore, if there exists t1 such that

1

w(t0)
= −

∫ t1

t0

exp

(
−
∫ s

0

p(r) dr

)
q(s) ds, (16)

then w(t) tends to∞ when t→ t1, which, provided that R does not tend to zero,

means that the jump of the differential of u tends to infinity. Hence u undergoes

a jump and becomes discontinuous, i.e. a shock appears. The interval of time

where the integral is evaluated depends on the problem; it may be limited by

the physical characteristics of the process under study (as in our case, by the

dimensions of the device or the accretion disk where the equilibrium exists) or

by the possible formation of caustics and loss of regularity of the wavefront. On

the other hand, if w(t0) > 0 and the integral in (16) tends to ∞, then w(t)→ 0

and the wavefront becomes a mild discontinuity.

3 Propagation in axisymmetric equilibria

Obviously our first aim is to state the equations of ideal MHD in cylindrical

coordinates (z, r, φ). The main magnitudes are velocity, magnetic field and two

of three thermodynamic quantities: density ρ, entropy S and pressure P , related

by a state equation. The entropy uncouples from the rest and may be ignored.

We will follow ( [21], p. 16) (notice that there are a few misprints in this text)
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and use the density as primary variable. In order to simplify the result, will

assume from the beginning axisymmetry (∂/∂φ = 0). Let us denote the velocity

and magnetic field by

v = vz ẑ + vr r̂ + vφφ̂ (17)

B = Bz ẑ +Br r̂ +Bφφ̂. (18)

Let I7 denote the 7× 7 identity matrix. The main equations are

∂

∂t



vz

vr

vφ

Bz

Br

Bφ

ρ


+ (vzI7 +



0 0 0 0 Br/ρ Bφ/ρ Pρ/ρ

0 0 0 0 −Bz/ρ 0 0

0 0 0 0 0 −Bz/ρ 0

0 0 0 0 0 0 0

Br −Bz 0 0 0 0 0

Bφ 0 −Bz 0 0 0 0

ρ 0 0 0 0 0 0


)
∂

∂z



vz

vr

vφ

Bz

Br

Bφ

ρ



+(vrI7 +



0 0 0 −Br/ρ 0 0 0

0 0 0 Bz/ρ 0 Bφ/ρ Pρ/ρ

0 0 0 0 0 −Br/ρ 0

−Br Bz 0 0 0 0 0

0 0 0 0 0 0 0

0 Bφ −Br 0 0 0 0

0 ρ 0 0 0 0 0


)
∂

∂r



vz

vr

vφ

Bz

Br

Bφ

ρ



+



0

−v2φ/r +B2
φ/ρr

vrvφ/r −BrBφ/ρr
Bzvr/r

Brvr/r

ρvφ/r

ρvr/r


+



GM
(r2+z2)3/2

z

GM
(r2+z2)3/2

r

0

0

0

0

0


= 0.

(19)

We will abbreviate this to

∂u

∂t
+Az

∂u

∂z
+Ar

∂u

∂r
+ C = 0. (20)
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Without axisymmetry a further matrix Aφ would appear. Although later we

will write it formally its specific value will not be necessary. Also the last vector,

representing the gravitational force (G is the gravitational constant and M the

mass of the central object) applies only to accretions disks, and disappears for

laboratory plasmas.

We will set a number of conditions on the velocity and the field which will

be different in each case, but all have in common that the propagation velocity

c is not only axisymmetric, but even with respect to the variable z. Thus, if the

initial value τ(0) is axisymmetric, wavefronts will intersect the equator Π : z = 0

as circumferences and their normal vectors will be radial. We will limit our study

to fast magnetosonic shock waves occurring first in the plane Π. The choosing of

fast waves is logical: because they have the largest velocity, they will be the ones

to extend into an untouched equilibrium state; moreover, they are the only ones

which may develop across the equilibrium magnetic field, which will be needed

in our geometry. While one could imagine wavefront configurations creating

shocks above and below Π, usually compression is maximized at the plane and

one expects shocks beginning at the plane of symmetry. Thus the normal matrix

An coincides with Ar. The eigenvalue associated to the fast magnetosonic wave

is given by vn±µ, where vn is the velocity of the fluid normal to the wavefront,

and

2µ2 = c2 +

√
c4 − 4B2

rPρ
ρ

, (21)

where c is the total velocity, sum of the sound and Alfvén ones:

c2 = Pρ +
B2

ρ
. (22)

Provided µ2 6= B2
r/ρ (which never happens unless Pρ = Bz = Bφ = 0), the right

and left eigenvectors turn out to be

R =

(
−BzBr

ρµ
, µ− B2

r

ρµ
,−BrBφ

ρµ
,Bz, 0, Bφ,

ρ

µ

(
µ− B2

r

µ

))
, (23)

L =

(
−BzBr

µ
, ρ

(
µ− B2

r

ρµ

)
,−BrBφ

µ
,Bz, 0, Bφ,

Pρ
µ

(
µ− B2

r

µ

))
, (24)

up to multiplication by a real constant. We defer the calculations in this section

to the appendix; for typographical convenience we write vectors as rows instead
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of columns. We will see that in all our examples, in the plane Π we have Br = 0;

thus those vectors simplify to

R = (0, c, 0, Bz, 0, Bφ, ρ), (25)

L = (0, ρc, 0, Bz, 0, Bφ, Pρ). (26)

To find ∂R/∂r at Π we may use (25), but for ∂R/∂z we need the full formula

(23). Anyway, at Π,

L ·R = ρc2 +B2
z +B2

φ + ρPρ = 2ρc2. (27)

We need now to evaluate all the terms in the expressions of q0 and p0. Relegating

again a scheme of the calculations to the Appendix, one finds in all cases

q0 = 2ρc2 +B2 + ρ2Pρρ, (28)

and

L ·Ar ·
∂R

∂r
= c

∂

∂r

(
P +

B2

2

)
+ ρc2

∂c

∂r
, (29)

L · (∇uC) ·R =
ρc3

r
. (30)

The state u0 will have a different form in each case, but they will always satisfy

at the plane Π

L · (∇uAr ·R) · ∂u0

∂r
= c

(
1

2

∂B2

∂r
+ ρPρρ

∂ρ

∂r

)
. (31)

It remains to find the terms where tangential derivatives to the wavefront occur.

We know nothing about the wavefront surface other than it is axisymmetric and

z-symmetric. We may parametrize it by its section by the plane φ = 0, a curve

z → r(z), which satisfies r(z) = r(−z), so that r′(0) = 0. The surface will be

x(z, φ) = (r(z) cosφ, r(z) sinφ, z). Thus

gzz =
1

1 + r′(z)2
, gφφ =

1

r(z)2
, gzφ = 0. (32)

Thus, for any axisymmetric vector field F and matrices Aj ,∑
j,α,β

Ajgαβ
∂xj
∂yβ

∂F

∂yα
= Az

∂F

∂z
. (33)
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This is applied to the vectors and matrices F = R with Aj = Aj , as well as

F = u0 with Aj = ∇uAj · R. Now it is easy to see (shown in the appendix)

that the second term in the expression of p0 in (12) becomes

L ·

∑
j,α,β

Ajg
αβ ∂xj
∂yβ

∂R

∂yα

 = L ·Az
∂R

∂z
= −BzPρ

c

∂Br
∂z

. (34)

Finally

L ·

∑
j,α,β

[∇uAj ·R]gαβ
∂xj
∂yβ

∂u0

∂yα

 = L · [∇uAz ·R]
∂u0

∂z
= −Bzc

∂Br
∂z

. (35)

Adding (29), (30), (31), (34) and (35), we obtain

p0 = c
∂

∂r

(
P +

B2

2

)
+ ρc2

∂c

∂r
+ c

(
1

2

∂B2

∂r
+ ρPρρ

∂ρ

∂r

)
+
ρc3

r
− Bz(Pρ + c2)

c

∂Br
∂z

=
1

r

∂

∂r
(rc3ρ)− Bz(Pρ + c2)

c

∂Br
∂z

. (36)

Thus

p =
p0

2ρc2
= c

∂

∂r
ln(
√
ρc3r)− Bz(Pρ + c2)

2ρc3
∂Br
∂z

, (37)

q =
2ρc2 +B2 + ρ2Pρρ

2ρc2
. (38)

Our next step is to find the displacement along the rays, which as we know are

radial. Equations (7) simplify because by axisymmetry c depends only on r at

Π; thus

dn

dt
= (n2 − 1)

dc

dr
r̂ = 0, (39)

dx

dt
= cr̂, (40)

which means that as expected the rays are traveled at speed c. Thus d/dt =

cd/dr. Let us write (13) in terms of the parameter r:

dw

dr
+

[
∂

∂r
ln
√
ρc3r − Bzρ(Pρ + c2)

2ρ2c4
∂Br
∂z

]
w +

1

c

[
2ρc2 +B2 + ρ2Pρρ

2ρc2

]
w2 = 0.

(41)

The first factor in the exponential of the integral of p (see (15) may be found

easily:

exp

(
−
∫ r

r0

∂

∂s
ln
√
ρc3s ds

)
=

√
ρ0c30r0
ρc3r

, (42)
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Thus equation (16) may be written in terms of the radii

− 1

w(r0)

=

∫ r1

r0

(
ρ0c

3
0r0

ρc3r

)1/2(
1 +

B2 + ρ2Pρρ
2ρc2

)
exp

(∫ s

r0

Bzρ(Pρ + c2)

2ρ2c4
∂Br
∂z

ds

)
1

c
dr,

(43)

where the subindex 0 means that the quantities are taken at the point r0, and[
∂u

∂t

]
r=r0

= w(r0)R(r0). (44)

Let us consider now equation (43) to see the terms contributing to the blow up

of the solution. There is little to say in general for the term q in (16) given by

(41), other than the obvious bound

q =

(
1 +

B2 + ρ2Pρρ
2ρc2

)
1

c
≥ 1

c
. (45)

For polytropic plasmas P = Aργ with γ ≤ 2, we also have the upper bound

q ≤ 3

2c
, (46)

thus we cannot expect great effects from this term. The remaining factor is the

only one where the magnetic field configuration outside the plane Π plays any

role. Since the focusing of compressive waves in the central plane may be an

important source of shocks, we will analyze this term carefully. First we relate

it to the curvature of poloidal field lines. Let us take a parametrization of this

field line as ξ → (r(ξ), z(ξ)), where ṙ = Br, ż = Bz. As we know, the curvature

may be written as

κ =
ṙz̈ − r̈ż

(ṙ2 + ż2)
3/2

=
BrḂz − ḂrBz
(B2

z +B2
r )

3/2
. (47)

At the plane Π, Br = 0, so that κ = −Ḃr/B2
z . Thus

Bz
∂Br
∂z

=
dz

dξ

∂Br
∂z

= Ḃr = −B2
zκ. (48)

Thus the remaining factor in the integral in (43) may be written as

exp

(∫ r

r0

Bzρ(Pρ + c2)

2ρ2c4
∂Br
∂z

ds

)
= exp

(
−
∫ r

r0

B2
zρ(Pρ + c2)

2ρ2c4
κ ds

)
. (49)
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Hence the exponent is positive whenever κ < 0, negative for κ > 0. The first case

correspond to field lines concave with respect to r = 0, as occurs in the left hand

side of the magnetic axis, provided the equilibrium configuration possesses such

an axis; and the second to convex poloidal lines, as to the right of the magnetic

axis. Since the exponential grows very rapidly with the exponent, concavity

in the direction of the positive r-axis is an important factor in the formation

of shock waves. This is very intuitive: this geometry tends to push the fluid

towards the central plane, thus creating a compressive wave that may evolve

into a shock. To quantify all the terms ocurring in (43), we must descend to

particular cases.

4 Shock waves in specific axisymmetric equilib-

ria

4.1 Static equilibria

The initial state for a static axisymmetric plasma has the form

u0 = (0, 0, 0, Bz, Br, Bφ, ρ), (50)

As for the north-south symmetry, if we wish to preserve the classical picture of

magnetic field lines coiling around tori, we must demand Bz even, Br odd, Bφ

even, ρ even. This implies that at z = 0,

∂Bz
∂z

= 0, Br = 0,
∂Bφ
∂z

= 0. (51)

Thus, in the plane Π (see appendix),

∂u0

∂r
=

(
0, 0, 0,

∂Bz
∂r

, 0,
∂Bφ
∂r

,
∂ρ

∂r

)
, (52)

and

∂u0

∂z
=

(
0, 0, 0, 0,

∂Br
∂z

, 0, 0

)
. (53)

All possible static axisymmetric equilibria may be found by solving the Grad-

Shafranov equation. Among them, the family of specific equilibria found by
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Solov’ev is well known [2]. Even these analytic examples become impossibly

complex when applied to equation (43) with full generality of parameters. Thus

we take simplicity a step further by assuming a plasma of very low beta, so that

the pressure may be taken as constant and the speed of sound as negligible when

compared to the Alfvén speed. Also we want to keep the main characteristic of

tokamaks, the presence of a magnetic axis where the magnetic field is toroidal.

Thus we choose the Solov’ev parameters so as to take the flux function

ψ(r, z) = (r2 − r2m)2 − 4r2z2, (54)

whose magnetic axis is located at r = rm, z = 0, and take P = P0, I = 0 (purely

poloidal field). In these conditions, at the plane Π,

Br = −8r2z,
∂Br
∂z

= −8r2, Bz = 4(r2 − r2m),

c =
4
√
ρ
|r2 − r2m|, ρc2 = B2 = 16(r2 − r2m)2. (55)

Let us study the factors in the integral of (43). We have(
ρ(r0)c(r0)3r0
ρ(r)c(r)3r

)1/2

=
ρ(r)1/4|r20 − r2m|3/2r

1/2
0

ρ(r0)1/4|r2 − r2m|3/2r1/2
, (56)

Also

2ρc2 +B2 + ρ2Pρρ
2ρc2

=
3

2
, (57)

and

Bzρ(Pρ + c2)

2ρ2c4
∂Br
∂z

= − r2

r2 − r2m
, (58)

so that

exp

(∫ r

r0

Bzρ(Pρ + c2)

2ρ2c4
∂Br
∂z

ds

)
= exp(r0 − r)

∣∣∣∣r + rm
r − rm

∣∣∣∣rm/2 ∣∣∣∣r0 + rm
r0 − rm

∣∣∣∣−rm/2 .
(59)

Equation (43) becomes now

− 1

w(r0)
=

3

8
er0ρ(r0)−1/4|r0 − rm|(3+rm)/2|r0 + rm|(3−rm)/2

×
∫ r1

r0

e−rρ(r)3/4|r + rm|(−5+rm)/2|r − rm|(−5−rm)/2 dr. (60)
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Since due to the presence of the factor |r − rm|(−5−rm)/2 the integral is infinite

as soon as the interval [r0, r1], includes the magnetic axis rm, for any initial

condition w(r0) < 0 (if r0 < rm) or w(r0) > 0 (if r0 > rm) a shock wave forms

before the wavefront reaches the magnetic axis. This is logical since the fact

that the magnetic field vanishes there and the waves travel at the Alfvén velocity

imply that no wave can cross the magnetic axis, so successive wavefronts pile

there until a discontinuity is created.

4.2 Accretion disks with non toroidal magnetic field

Axisymmetric equilibria for accretion disks must take into account the presence

of the gravitational term and the flow velocity; the result is a generalized Grad-

Shafranov equation where the pressure is non longer a function of the magnetic

flux. It can be analytically solved if we assume that the temperature, the

density or the entropy are functions of the flux. The results, when numerically

integrated, show some differences between these three models [22]. In our case,

however, we will only worry about the equilibrium equations at the plane Π,

where many quantities vanish, and assume the existence of a general equilibrium

coinciding with ours in the equator. Later we will even assume a self-similar

form where all the quantities are powers of the radius r, and the toroidal velocity

is Keplerian. The result cannot be valid for the whole length of an accretion

disk, but we will restrict ourselves to the zone where this description holds, not

too near to the central object.

Assuming the matter in an accretion disk flows towards the equator and

rotates with the same direction in the northern and southern hemispheres, both

reasonable assumptions, the velocity must satisfy that vz is odd, vr even and

vφ even. If the magnetic field starts with e.g. a dipole topology and then it

is dragged by the flow, we must have Bz even, Br odd and Bφ odd. The odd

quantities vanish at z = 0, whereas the derivatives with respect to z of the even

ones vanish there. Taking this into account, the equilibrium equations at Π may
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be written as

−Bz
∂Br
∂z

+Bz
∂Bz
∂r

+ ρvr
∂vr
∂r

+ Pρ
∂ρ

∂r
−
ρv2φ
r

+
ρGM

r2
= 0 (61)

−Bz
∂Bφ
∂z

+ ρvr
∂vφ
∂r

= 0 (62)

vr
∂Bz
∂r

+Bz
∂vr
∂r

+
Bzvr
r

= 0 (63)

ρ
∂vz
∂z

+ vr
∂ρ

∂r
+ ρ

∂vr
∂r

+
ρvr
r

= 0. (64)

From (63) one deduces rvrBz = const. In all classical accretion disks one has

|vr| � |vφ|, and moreover the magnetic field decreases faster than r−1, so we

must take vr = 0 at Π. Taking this to (62) we find ∂Bφ/∂z = 0, and to (64)

∂vz/∂z = 0. We are left with (61), which now reads

Bz

(
∂Bz
∂r
− ∂Br

∂z

)
+
∂P

∂r
−
ρv2φ
r

+
ρGM

r2
= 0. (65)

We assume that the velocity vφ must be Keplerian, and the plasma polytropic,

with γ = 5/3. Taking a dependence of all magnitudes in powers of the radius,

[23],

ρ = ρ0r
−3/2, P = P0r

−5/2, Bz = Bz0r
−5/4, vφ = vφ0r

−1/2, (66)

and taking this to (65), we find

∂Br
∂z

= kr−9/4, (67)

with

−Bz0
(

5Bz0
4

+ k

)
− 5

2
P0 − ρ0v2φ0 + ρ0GM = 0. (68)

Hence

Bz
∂Br
∂z

= λr−7/2 =

(
−5

4
B2
z0 −

5

2
P0 − ρ0v2φ0 + ρ0GM

)
r−7/2. (69)

The expressions of u0 and its derivatives are shown in the appendix. Formula

(43) remains valid, and its factors become (
ρ0c

3
0r0

ρc3r

)1/2

=
r

r0

1 +
B2 + ρ2Pρρ

2ρc2
=

3B2
z0 + (40/9)P0

2B2
z0 + (10/3)P0

= κ > 0

1

c
=

(
ρ0

B2
z0 + (5/3)P0

)1/2

= δr−1/2. (70)
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The factor within the exponential is

B2 + 2γP

2(ρc2)2
Bz

∂Br
∂z

=
B2
z0 + (10/3)P0

2(B2
z0 + (5/3)P0)2

λr−7/2r5/2 = µr−1. (71)

Notice that the sign of µ is the same as the one of λ. Hence its associated factor

is

exp

(∫ r

r0

µ
ds

s

)
=

(
r

r0

)µ
, (72)

so that (43) becomes

− 1

w(r0)
=

∫ r1

r0

κδ

rµ+1
0

rµ+1/2 dr =
κδ

rµ+1
0

1

µ+ 3/2

(
r
µ+1/2
1 − rµ+1/2

0

)
, (73)

for µ 6= −3/2, and

− 1

w(r0)
= κδr

1/2
0 ln

(
r1
r0

)
, (74)

in the improbable case that µ = −3/2. Notice that for µ+ 3/2 > 0 and r1 > r0,

necessarily w(r0 > 0; the remaining possible combination of signs are equally

easy. Always

r1 = r0

(
1− 1

w(r0)

r
1/2
0 (µ+ 3/2)

κδ

)1/(µ+1/2)

, (75)

for µ 6= −3/2, and

r1 = r0 exp

(
− 1

w(r0)κδr
1/2
0

)
, (76)

for µ = −3/2. In theory this predicts precisely the point of formation of a shock

wave. Obviously r1 may be inaccessible because there the power description of

the main quantities (66) does not hold.

4.3 Cylindrical accretion rings

If we wish to have a nontrivial toroidal field at the equator, we may take equilib-

ria with vr = vz = Br = 0, vφ, Bz, Bφ even functions of z [24]. The equilibrium

equations reduce at the plane Π to the single equation

Bz
∂Bz
∂r

+Bφ
∂Bφ
∂r

+
∂P

∂r
−
ρv2φ
r

+
B2
φ

r
+
ρGM

r2
= 0. (77)
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Positing a form of the quantities as powers of r, and a Keplerian velocity, we

choose

ρ = ρ0r
−3/2, P = P0r

−5/2, Bz = Bz0r
−5/4

Bφ = Bφ0r
−5/4, vφ = vφ0r

−1/2, (78)

so that (77) reduces to

−5

4
B2
z0 −

1

4
B2
φ0 −

5

2
P0 − ρ0v2φ0 + ρ0GM = 0. (79)

Since Br = 0, the exponential term becomes 1 in equation (43). The remaining

factors are (
ρ0c

3
0r0

ρc3r

)1/2

=
r

r0

1 +
B2 + ρ2Pρρ

2ρc2
=

3B2
z0 + 3B2

φ0 + (40/9)P0

2B2
z0 + 2B2

φ0 + (10/3)P0
= κ1 > 0

1

c
=

(
ρ0

B2
z0 +B2

φ0 + (5/3)P0

)1/2

= δ1r
−1/2. (80)

Equation (43) is now

− 1

w(r0)
=

∫ r1

r0

r1/2 dr =
2

3

κ1δ1
r0

(
r
3/2
1 − r3/20

)
. (81)

Notice that for r1 > r0, w(r0) < 0, and for r1 < r0, w(r0) > 0. Thus

r1 =

(
r
3/2
0 − 3r0

2κ1δ1w(0)

)2/3

, (82)

with the same caveats about the location of r1 as before.

5 Conclusions

One rarely studied source of instability in axisymmetric equilibria is the possible

formation of shock waves in the plasma. Since this is a nonlinear effect, it

depends on an essential way on the size as well as the functional form of the

initial perturbation. For the case where the solution of an hyperbolic nonlinear

system moves into a stationary state, the equations describing the evolution as

well as the possible degeneration of the wavefront into a shock are known. Since
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the quickest MHD wave as well as the one which may cross magnetic surfaces

is the fast magnetosonic one, we study how this wave may start a shock into an

axisymmetric equilibrium state. The result is given in the form of an integral

identity relating the initial condition with the rest variables. This identity is

analyzed in depth in three cases: static equilibria appropriate for the laboratory

(without gravitational forcing) and described by the Grad-Shafranov equations,

in particular in the case of low beta plasma; accretion rings with a nontrivial

poloidal magnetic field, which are the most frequently posited, and cylindrical

accretion rings. In these last two cases the main quantities are assumed to be

function of a power of the radius, and the velocity to be Keplerian. In all cases

a definite prediction on the location of the formation of the shock is made.
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A Calculations for the equation coefficients

1) The calculations of the left and right eigenvectors are routine. Denoting as

asserted by I7 the 7× 7 identity matrix, the derivatives of the matrices Ar and

Az are as follows:

∇vzAr = ∇vφAr = 0, ∇vrAr = I7 (83)

∇BzAr =



0 0 0 0 0 0 0

0 0 0 1/ρ 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(84)
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∇BrAr =



0 0 0 −1/ρ 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1/ρ 0

−1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(85)

∇BφAr =



0 0 0 0 0 0 0

0 0 0 0 0 1/ρ 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0


(86)

∇ρAr =



0 0 0 Br/ρ
2 0 0 0

0 0 0 −Bz/ρ2 0 −Bφ/ρ2 ∂/∂ρ(Pρ/ρ)

0 0 0 0 0 Br/ρ
2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0


. (87)

∇vrAz = ∇vφAz = 0, ∇vzAz = I7 (88)

∇BzAz =



0 0 0 0 0 0 0

0 0 0 0 −1/ρ 0 0

0 0 0 0 0 −1/ρ 0

0 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 0 0


(89)
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∇BrAz =



0 0 0 0 1/ρ 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(90)

∇BφAz =



0 0 0 0 0 1/ρ 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0


(91)

∇ρAz =



0 0 0 0 −Br/ρ2 −Bφ/ρ2 ∂/∂ρ(Pρ/ρ)

0 0 0 Bz/ρ
2 0 0 0

0 0 0 0 0 Bz/ρ
2 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0


. (92)

In all the cases under study we have Br = 0 at the plane Π. Then

R · ∇uAr = cI7 +Bz∇BzAr +Bφ∇BφAr + ρ∇ρAr

= cI7 +



0 0 0 0 0 0 0

0 0 0 0 0 0 ρ∂/∂ρ(Pρ/ρ)

0 0 0 0 0 0 0

0 Bz 0 0 0 0 0

0 0 0 0 0 0 0

0 Bφ 0 0 0 0 0

0 ρ 0 0 0 0 0


. (93)
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Thus

(∇uAr ·R) ·R = cR +

(
0, ρ2

∂

∂ρ

(
Pρ
ρ

)
, 0, cBz, 0, cBφ, cρ

)
, (94)

and

q0 =
1

c
L · (∇uAr ·R) ·R

= 2ρc2 + ρ3
∂

∂ρ

(
Pρ
ρ

)
+B2

z +B2
φ + ρPρ = 2ρc2 +B2 + ρ2Pρρ. (95)

Since for all cases

∂R

∂r
=

(
0,
∂c

∂r
, 0,

∂Bz
∂r

, 0,
∂Bφ
∂r

,
∂ρ

∂r

)
, (96)

formula (29) is routine.

To obtain (30) we need to find

∇uC ·R = c
∂C

∂vr
+Bz

∂C

∂Bz
+Bφ

∂C

∂Bφ
+ ρ

∂C

∂ρ
. (97)

We have

∂C

∂vr
=

(
0, 0,

vφ
r
,
Bz
r
,
Br
r
, 0,

ρ

r

)
∂C

∂Bz
=
(

0, 0, 0,
vr
r
, 0, 0, 0

)
∂C

∂Bφ
=

(
0,

2Bφ
ρr

,−Br
ρr
, 0, 0, 0, 0

)
∂C

∂ρ
=

(
0,−

B2
φ

ρr
,
BrBφ
ρ2r

, 0, 0, 0,
vr
r

)
. (98)

Thus, for Br = 0

∇uC ·R =

(
0,
B2
φ

ρr
, 0,

cBz
r
, 0, 0,

cρ

r

)
(99)

L · (∇uC ·R) = ρc
B2
φ

ρr
+
cB2

z

r
+
cρPρ
r

=
ρc3

r
. (100)

The equilibrium states have the form at Π

u0 = (0, 0, 0, Bz, 0, Bφ, ρ) (Case 4.1)

u0 = (0, vr, vφ, Bz, 0, 0, ρ) (Case 4.2)

u0 = (0, 0, vφ, Bz, 0, Bφ, ρ) (Case 4.3). (101)
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and satisfy

∂u0

∂r
=

(
0, 0, 0,

∂Bz
∂r

, 0,
∂Bφ
∂r

,
∂ρ

∂r

)
(Case 4.1)

∂u0

∂r
=

(
0, 0,

∂vφ
∂r

,
∂Bz
∂r

, 0, 0,
∂ρ

∂r

)
(Case 4.2)

∂u0

∂r
=

(
0, 0,

∂vφ
∂r

,
∂Bz
∂r

, 0,
∂Bφ
∂r

,
∂ρ

∂r

)
(Case 4.3). (102)

as well as

∂u0

∂z
=

(
0, 0, 0, 0,

∂Br
∂z

, 0, 0

)
(Case 4.1)

∂u0

∂z
=

(
0, 0, 0, 0,

∂Br
∂z

, 0, 0

)
(Case 4.2)

∂u0

∂z
= 0 (Case 4.3). (103)

The expression of ∂R/∂r is already known (96). As for ∂R/∂z, we have the

general form

∂R

∂z
=

(
−Bz
ρc
, 0,−Bφ

ρc
, 0, 0, 0, 0

)
∂Br
∂z

, (104)

which degenerates into

∂R

∂z
=

(
−Bz
ρc
, 0, 0, 0, 0, 0, 0

)
∂Br
∂z

(Case 4.2)

∂R

∂z
= 0 (Case 4.3). (105)

Since we have all the needed vectors and matrices, the proof of (34-36) is now

a mere calculation.
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