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Abstract
Heisenberg-type higher order symmetries are studied for both classical 
and quantum mechanical systems separable in Cartesian coordinates. A 
few particular cases of these types of superintegrable systems were already 
considered in the literature, but here they are characterized in full generality 
together with their integrability properties. Some of these systems are 
defined only in a region of nR , and in general they do not include bounded 
solutions. The quantum symmetries and potentials are shown to reduce to 
their superintegrable classical analogs in the 0ħ →  limit.

Keywords: superintegrability, higher order symmetries, quantum 
superintegrable systems
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(Some figures may appear in colour only in the online journal)

1. Introduction

We will consider a classical two–dimensional Hamiltonian, H, separable in Cartesian  
coordinates having the form
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= + = + = +H H H H p v x H p v y, , .x y x x x y y y
2 2( ) ( ) (1.1)

As this system is separated, there are two integrals of motion: one of them is the Hamiltonian 
itself H, while the other one, A, can be taken, for example, as the difference of both comp-
onent Hamiltonians, = −A H Hx y. Therefore, the system is integrable (there are two constants 
of motion H and A in involution). In this paper, we want to search for systems having this 
general structure and allowing for another independent constant of motion, B, polynomial in 
the momentum variables p p,x y. So, such systems will be superintegrable, with three indepen-
dent integrals H,A and B. We will restrict ourselves to a special class of such superintegrable 
systems, based on a particular property of the one–dimensional component Hamiltonians, as 
it is shown below.

First, we want that the additional integral of motion Bn for this Hamiltonian be also separa-
ble in the coordinates x,y in the form

= −B x y p p B x p B y p, , , , , .n x y nx x ny y( ) ( ) ( ) (1.2)

Second, we ask the functions Bnx and Bny to be n–degree polynomials in the momentum 
variables p p,x y:

∑ ∑= =
= =

B x p f x p B y p g y p, , , ,nx x
j

n

j x
j

ny y
j

n

j y
j

0 0

( ) ( ) ( ) ( ) (1.3)

the coefficients fj(x), gj( y ) being some unknown functions, depending on the variables x and 
y, respectively.

Third, the functions Bnx and Bny must satisfy the following Heisenberg-type Poisson brack-
ets (PB):

= = =H B x p H B y p, , , , constant 1.x nx x y ny y{ ( )} { ( )} (1.4)

The constant can be taken, without loss of generality, equal to one. Then, it is clear that the 
function Bn given by (1.2) will satisfy, together with the Hamiltonian (1.1), the following PB,

= − =H B x y p p H B x p H B y p, , , , , , , , 0.n x y x nx x y ny y{ ( )} { ( )} { ( )} (1.5)

In this way, we have arrived to an ‘extra’ constant of motion to achieve superintegrability. Such 
a constant of motion is called to be of Heisenberg type, since it is based on the Heisenberg alge-
bra (1.4) for each of the one dimensional components: H B, , 1x nx⟨ ⟩ and H B, , 1y ny⟨ ⟩. Each one 
dimensional Hamiltonian Hx, Hy is called Heisenberg Hamiltonian. Depending on the value 
of n we will speak of n-degree superintegrable system, when n 3⩾  the constant of motion B3 
is said to be of ‘higher order’ (since the ‘standard’ constants of motions are of degree two). 
Recall that the PB for the functions F x y p p G x y p p, , , , , , ,x y x y( ) ( ) is defined in the usual way,

=
∂
∂
∂
∂
+
∂
∂
∂
∂
−
∂
∂
∂
∂
−
∂
∂
∂
∂

F G
F

x

G

p

F

y

G

p

F

p

G

x

F

p

G

y
, .

x y x y

{ } (1.6)

We will see that some of the superintegrable Hamiltonians are only defined in regions of 
the plane 2R , furthermore the corresponding potentials will not allow for a bounded motion. 
Therefore, the evolution of a particle in these potentials will have only a piece of its trajectory 
in the domain of superintegrability. We could ‘extend’ any such Hamiltonian to another one 
defined in the whole plane, but it will not be superintegrable anymore, and in case this new 
extended Hamiltonian has a bounded motion, in general this motion will not be periodic.

This program can also be carried out for the corresponding quantum systems in a quite 
similar way. In the quantum context, we write the Hamiltonian operator in the form

F Güngör et alNonlinearity 30 (2017) 1788
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= + = + = +P V X P V Y, , ,x y x x x y y y
2 2( ) ( )H H H H H (1.7)

where P P,x y and X, Y are the momentum and position operators, satisfying the well known 
commutation relations

= =X P Y P, i , , i .x yħ ħ[ ] [ ] (1.8)

We will work in the coordinate representation where the action of the momentum operators is 
given by = − ∂P ix xħ , = − ∂P iy yħ , and the action of the position operators X,Y is just the multi-
plication by the variables x and y, respectively. This two dimensional Hamiltonian operator (1.7) 
can be considered integrable in the sense that it has already two independent symmetry operators 
in involution: H itself and (for example) = −x yA H H . In order to get quantum superintegrable 
systems of Heisenberg type, as in the classical case, we will look for a symmetry operator, poly-
nomial of degree n in the momentum operators Px, Py, having the separated form

= −X Y P P X P Y P, , , , , ,n x y nx x ny y( ) ( ) ( )B B B (1.9)

where

∑ ∑= =
= =

X P f X P Y P g Y P, , , .nx x
j

n

j x
j

ny y
j

n

j y
j

0 0

( ) ( ) ( ) ( )B B (1.10)

We will ask the component operators to satisfy Heisenberg-type commutation relations,

= =X P Y P, , , , i ,x nx x y ny y ħ[ ( )] [ ( )]H B H B (1.11)

so that the symmetry condition

=, 0n[ ]H B (1.12)

is automatically satisfied. This symmetry is of order n, and when n 3⩾  it is said to be of 
‘higher order’.

For a wide discussion of general third and fourth-order integrals of motion, the reader is 
referred to the excellent review [1]. The one dimensional case of higher order symmetries has 
been studied in [2, 3]. It is also worth to mention references [4–8], dealing with higher order 
symmetries, which are more related to our approach. In the Conclusions we will comment on 
the connection between the methods and results of these references and those obtained in the 
present paper.

2. Heisenberg-type higher order integrals of motion: the classical problem

In this section we will investigate the existence of classical potentials and integrals of motion 
satisfying equation  (1.4) and we will try to determine their explicit expressions. Here, we 
need to consider only one pair of the variables (for instance x,px), because the results are the 
same for the other variable pair. Also, in order to simplify the notation, we will take ≡p px , 

≡B x p B,nx n( ) , ≡H Hx n, and therefore ≡v x v xx n( ) ( ).
Notice that the PB relation (1.4) can be interpreted as follows. We can think of the 

Heisenberg function  −Bn and the Hamiltonian Hn as new canonical variables x̃, p̃:

≡ = = −H p H x p x B x p, , , .n n n˜ ˜ ( ) ˜ ( ) (2.1)

The new momentum p̃ is also identified with the new Hamiltonian Hn˜ . This means that the new 
pair of canonical variables x p,˜ ˜ corresponds to the characteristic function of Hamilton-Jacobi 
theory [9]. We can solve the motion for the new variables:

F Güngör et alNonlinearity 30 (2017) 1788
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α

β

=
∂
∂
= = +

= −
∂
∂
= =

x
H

p
x t

p
H

x
p

˙ 1, ,

˙ 0, ,

˜
˜
˜

˜

˜
˜
˜

˜
 

(2.2)

where α β,  are constants fixed by the initial conditions. From the motion of x p,˜ ˜, we can 
find the evolution of the initial variables x,p algebraically by reverting the relations (2.1). In 
summary, the problem of finding a Heisenberg system characterized by the function Bn and 
Hamiltonian Hn is equivalent to the search of systems such that the canonical variables of the 
characteristic function include the coordinate x̃ given by a polynomial function of degree n in 
the momentum p.

We start this section with a list of particular cases for some values of n in order to see 
some features of the potentials vn(x) and the functions Bn. Later on, closed formulas for the 
general n–order case are supplied. Finally, it is explained how the superintegrable systems are 
obtained together with their properties from the previous results.

2.1. Particular cases

 • Case n  =  1

  The x-Hamiltonian and the x-part of the integral of motion have the form

= + = +H p v x B f x f x p, ,1
2

1 1 0 1( ) ( ) ( ) (2.3)

  and they must satisfy

=H B, 1.1 1{ } (2.4)

  Substituting (2.3) in (2.4) we get a set of differential equations from the coefficients of the 
powers =p j, 0, 1, 2j :

= = =′ ′ ′f f f v2 0, 2 0, 1 ,1 0 1 1 (2.5)

where the prime denotes the derivative with respect to the argument. For the sake of 
simplicity, from now on we omit the explicit dependence of the functions fj and v1(x) on 
the variable x. Thus, for three unknown functions f f,0 1 and v1(x), there are three equa-
tions given by (2.5). The first two equations give =f k1 1 and =f k0 0, where k1 and k0 are 
integration constants. Thus, from the last equation the potential is

= +v x
x

k
c1

1
1( ) (2.6)

  where c1 is an irrelevant integration constant. Hence, B1 takes the form:

= +B k k p.1 0 1 (2.7)

 • Case n  =  2
  For this case the function B2 is quadratic

= + +B f f p f p ,2 0 1 2
2 (2.8)

  and together with H2 satisfy

F Güngör et alNonlinearity 30 (2017) 1788
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=H B, 1.2 2{ } (2.9)

  Using the Hamiltonian function and (2.8) in (2.9), we obtain a set of equations

= = = =′ ′ ′ ′ ′f f f f v f v2 0, 2 0, 2 2 , 1 .2 1 0 2 2 1 2 (2.10)

This case lead us to the same potential:

= = +v x v x
x

k
c .2 1

1
1( ) ( ) (2.11)

  The Heisenberg function B2 takes the form

= + + + = + + = +B k k p k v k p k k p k H B k H .2 0 1 2 2 2
2

0 1 2 2 1 2 2 (2.12)

  Thus, B2 is the same as B1, except for a ‘trivial term’ proportional to the Hamiltonian 
corresponding to the constant k2.

 • Case n  =  3
  For this case the function B3 is cubic

= + + +B f f p f p f p .3 0 1 2
2

3
3 (2.13)

  After imposing the condition =H B, 13 3{ } , the coefficients fj in (2.13) are the solutions of 
the set of differential equations

=

=

=

=

=

′

′

′ ′

′ ′

′

f

f

f f v

f f v

f v

2 0,

2 0,

2 3 ,

2 2 ,

1 .

3

2

1 3 3

0 2 3

1 3   

 

(2.14)

  If we solve this system for the functions fj, we get the following differential equation for 
potential

⎜ ⎟
⎛
⎝

⎞
⎠+ =′k k v v

3

2
11 3 3 3 (2.15)

which gives

+ = +k v k v x c
3

4
.1 3 3 3

2
3 (2.16)

  The solution of this quadratic equation can be given explicitly,

= − ± + +v x
k

k k x k k c
1

3
2 2 3 3 ,3

3
1 3 1

2
3 3( )( ) (2.17)

  where c3 is an integration constant. The new information for this case is obtained taking 
k1  =  0 in (2.17). For instance, if we choose k1  =  0, =±k 4 33 / , c3  =  0 we will have the 
particular solutions:

=± ±v x x .3( ) (2.18)

  Remark that depending on the sign, this potential makes sense either for x 0⩾  or for x 0⩽ .
The expression of B3 is

F Güngör et alNonlinearity 30 (2017) 1788
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⎜ ⎟
⎛
⎝

⎞
⎠= + + + + +

= + + + = + + + −

B k k v k k v p k p k p

B k H k p v p k k p k H k p H p

3

2
3

2

1

2
3 .

3 0 2 3 1 3 3 2
2

3
3

1 2 3 3
3

3 0 1 2 3 3
3

3( ) ( )
 

(2.19)

  Therefore, we notice that the potential v3(x) depends on three constants: k1, k3 and c3, but 
the last constant is irrelevant since it can be eliminated by a translation in x. The integral 
of motion B3 depends on the corresponding constants, k1 and k3; it also includes one 
additional term proportional to the Hamiltonian, k H2 3, but this can be eliminated without 
any consequence.

 • Case n  =  4
  This leads us to the same potential as in the previous case n  =  3; =v x v x3 4( ) ( ). But, the 

function B4 is slightly different:

⎜ ⎟
⎛
⎝

⎞
⎠= + + + + + + + +

= + + + +

B k k v k v k k v p k k v p k p k p

B k H k p v p k H

3

2
2

3

2
.

4 0 2 4 4 4
2

1 3 4 2 4 4
2

3
3

4
4

1 2 4 3
3

4 4 4
2

( )

( ) ( )
 

(2.20)

 • Case n  =  5
  Now B5 is a fifth-order polynomial in p

= + + + + +B f f p f p f p f p f p .5 0 1 2
2

3
3

4
4

5
5 (2.21)

  Imposing the condition =H B, 15 5{ } , the functions fj in (2.21) turn out to be the solutions 
of the set of differential equations

=

=

=

=

=

=

=

′

′

′ ′

′ ′

′ ′

′ ′

′

f

f

f f v

f f v

f f v

f f v

f v

2 0,

2 0,

2 5 ,

2 4 ,

2 3 ,

2 2 ,

1 .

5

4

3 5 5

2 4 5

1 3 5

0 2 5

1 5   

 

(2.22)

  After solving this system for the functions fj, the equation for the potential has the form

⎜ ⎟
⎛
⎝

⎞
⎠+ + =′k k v k v v

3

2

15

8
11 3 5 5 5

2
5 (2.23)

or

+ + = +k v k v k v x c
3

4

5

8
1 5 3 5

2
5 5

3
5 (2.24)

  from which the solution can be explicitly obtained. For instance, if we concentrate on the 
particular values = = =k k c 01 3 1 , k5  =  8/5, we get

=v x x .5
3( ) (2.25)

F Güngör et alNonlinearity 30 (2017) 1788
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  For this case, the Heisenberg function B5 is

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= + + + + + + + +

+ +

= + + + + + + + +

B k k v k k v k v p k k v p k k v p

k p k p

k k p k H k p v p k H k p v p v p

3

2

15

8
2

5

2

3

2

5

2

15

8
.

5 0 4 5 1 3 5 5 5
2

2 4 5
2

3 5 5
3

4
4

5
5

0 1 2 5 3
3

5 4 5
2

5
5

5
3

5
2

( )

( ) ( ) ( )
 

(2.26)

  We see that the potential v5(x) given in equation (2.24) depends on the constants k1, k3 and 
k5 (the constant c5 can be eliminated as before by means of a translation). With respect to 
the function B5 it depends on these three constants (the terms including k k,4 2 and k0 can 
be omitted). The coefficients of these constants have the same expressions in terms of v(x) 
as the corresponding ones in the previous cases, except for the new one corresponding  
to k5:

≡ + + = − +k B k p v p v p k p p H pH
5

2

15

8

3

8

10

3
5 .5 5

0
5

5
5

3
5
2

5
5 3

5 5
2( ) ( ) (2.27)

 • Case n  =  6
  The case n  =  6, gives us the same equation for potential and therefore the same potential 

as in the previous case n  =  5: =v x v x5 6( ) ( ). The function B6 differs from B5 in a trivial 
term proportional to H6

3.
 • Case n  =  7
  The integral of motion will be

= + + + + +B f f p f p f p f p f p ,7 0 1 2
2

3
3

4
4

5
5 (2.28)

  the coefficients satisfying the system

 

=

=

=

=

=

=

=

=

=

′

′

′ ′

′ ′

′ ′

′ ′

′ ′

′ ′

′

f

f

f f v

f f v

f f v

f f v

f f v

f f v

f v

2 0,

2 0,

2 7 ,

2 6 ,

2 5 ,

2 4 ,

2 3 ,

2 2 ,

1 .

7

6

5 7 7

4 6 7

3 5 7

2 4 7

1 3 7

0 2 7

1 7

 

(2.29)

  The solution of these equations lead to

+ + + =′
⎛

⎝
⎜

⎞

⎠
⎟k k v k

v
k

v
v

3!!

2

5!!

2 2!

7!!

2 3!
11 3 7 2 5

7
2

3 7
7
3

7 (2.30)

  or

+ + + = +k v k
v

k
v

k
v

x c
3!!

2 2!

5!!

2 3!

7!!

2 4!
,1 7 3

7
2

2 5
7
3

3 7
7
4

7 (2.31)
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  which is an implicit expression of the potential. The new relevant information in this 

equation is obtained for ≠k 07 . In particular if = = = =k k k c 01 3 5 7  and =±k7
2 4!

7!!

3

, we 

have the potential:

( ) =± ±v x x .7
4 (2.32)

  Remark that depending on the sign of k7 this potential makes sense either for x 0⩾  or for 
x 0⩽ .

2.2. General case

The functions Bn found above can be expressed in two ways: (a) collecting the terms by the 
integration constants kj, or (b) grouping terms in powers of p.

(a) Solutions in terms of ki

We have seen that the problems for consecutive odd and even degrees �= +n 2 1 and 
�= +n 2 2 have essentially the same solutions. Therefore, let us restrict to an odd function 

Bn, �= +n 2 1, � = …0, 1, , and the corresponding potential �+v x2 1( ), then their expressions 
take the general form

�

� �

� �∑ ∑ α= = ++
=

+ +
=

=

+ + +
+

+B k b p k v x c, ,
j

j j
j

j

j j
j

2 1
0

2 1 2 1
0

2 1 2 1 2 1
1

2 1( ) (2.33)

where b2j+1( p ) are polynomials of degree 2j  +  1 of p and α +j2 1 are constants which are 
obtained in the integration process, while k2j+1 and �+c2 1 are arbitrary integration constants. 
Thus, only the odd integration constants are important, the even ones do not play any role in 
the solutions.

There are two particular cases worth to mention.

 (i) If � =+k 02 1 , but ≠k 0j , �∀ <j , then the formulas (2.33) valid for �= +n 2 1 come into the 
ones for the previous case �= − +n 2 1 1( ) . In other words, the formulas for �= +n 2 1, 
include as particular cases all the formulas for the previous cases.

 (ii) If � ≠+k 02 1 , but kj  =  0, �∀ <j , then we get that the potential is a root,

�
�= ++
+v x a x b ,2 1

1 1( ) ( ) /( ) (2.34)

  where a,b depend on the integration constants, while � � �=+ + +B k b p2 1 2 1 2 1( ) is a poly-
nomial of degree �+2 1, according to (2.33). In conclusion, we can say that this type of 
superintegrable potentials include all the roots �

�∝+
+v x x2 1

1 1( ) /( ), starting with the trivial 
linear potential ∝v x x1( ) .

(b) Solutions in powers of p
Now, we will deal with the general case of the polynomial function expressed in powers 

of p as

∑=
=

B x p f x p,n
j

n

j
j

0

( ) ( ) (2.35)

and substitute it in the PB equation (1.4). Then we get a list of equations for the coefficients 
fj and the potential v(x),

F Güngör et alNonlinearity 30 (2017) 1788
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( )
( )

  

=

=

=

= −

= −

=

=

′

′

′ ′

′ ′

′ ′

′ ′

′

−

−

− −

− −

� �

f

f

f nf v

f n f v

f n f v

f f v

f v

2 0,

2 0,

2 ,

2 1 ,

2 2 ,

2 2 ,

1 .

n

n

n n

n n

n n

1

2

3 1

4 2

0 2

1

 

(2.36)

Remark that for every value of n this system can be completely separated into two: one only 
for the odd-index ( …f f, ,1 3 ) functions and another only for the even-index functions ( …f f. ,0 2 ).

We introduce the following notation

�
⎧
⎨
⎪

⎩⎪
= + + + + +−

− −
−

−

− −
B x p f p f p f p f p

f n

f n
,

, for even

, for oddn n n
n

n n n
n

n
n n

n n2
,0 1

2
,0

1

2
,1

2
1

2
,1

3 2
,
2

1
2

, 1
2

( )
     

     

 (2.37)

where the ‘old’ fj and ‘new’ µ νf ,  coefficients are related as follows:

= = = = …− − − − −f f f f f f f f, , , ,n n n n n n n n
2

,0 1 1
2

,0 2
2

,1 3 1
2

,1 (2.38)

Then, equation (2.36) can be integrated and the coefficients µ νf ,  are given by

∑
µ ν
µ ν ν ν

=
Γ + −
Γ + − −

′
′µ ν

ν

ν ν ν

µ ν
=

−

−
′

′

′f
v

k
1

1 !
.,

0
2

( )
( ) ( ) ( ) (2.39)

As only the odd index cases seem to be relevant, let us assume that �= +n 2 1 is odd. Then if 
we substitute the formula for f1 given by the last equation of (2.36), we will get

∑ ν
ν

≡ =
Γ + −
Γ −

=′ ′
′

′
′

ν

ν

ν+
=

−

+ −
′

′

′
�

�� �

� �

�

⎛

⎝
⎜

⎞

⎠
⎟f v f v

v
k v

3 2

3 2 !
1.1 1

2
,

0
2 1 2

( / )
( / ) ( )

 (2.40)

Thus, we get the algebraic equation for the potential:

( / )
( / ) ( )∑ ν

ν
Γ + −
Γ + −

= +
′

′ν

ν

ν
=

+ −

+ −
′

′

′
�

�

� �

�
v

k x c
3 2

3 2 1 !
.n

0

1

2 1 2 (2.41)

2.3. Superintegrable Hamiltonians and integrals of motion

In this section we will discuss different ways to construct superintegrable Hamiltonians from 
the previous results.

(a) Superintegrable Hamiltonians by adding two Heisenberg Hamiltonians
Once we have the Heisenberg algebras H B, , 1nx nx⟨ ⟩, H B, , 1ny ny⟨ ⟩ we can write the superin-

tegrable Hamiltonian

= + = +H H H v x y v x v y, , ,n nx ny nn nx ny( ) ( ) ( ) (2.42)

whose ‘extra’ constant of motion of odd degree �= +n 2 1 is given by
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= −B B B .n nx ny (2.43)

Remark that, in general these systems are only defined in a region of the plane 2R . Some 
examples are:

 (i) α β= +v x y x y,11( ) .
 (ii) α β= +v x y x y,33( ) ,  x y0, 0⩾ ⩾ .
 (iii) α β= +v x y x y,55

1 3 1 3( ) / / .
 (iv) α β= +v x y x y,77

1 4 1 4( ) / / ,  x y0, 0⩾ ⩾ .

Example (ii) was considered in [8] as case 5.
In fact, we can build superintegrable systems by combining Heisenberg algebras of differ-

ent orders,

= + = +H H H v x y v x v y, , ,mn mx ny mn mx ny( ) ( ) ( ) (2.44)

whose ‘extra’ constant of motion of odd degree �= + = +m k nmax 2 1, 2 1( ) will be given by

� �= −+ + + +B B B .k k x y2 1,2 1 2 1 2 1 (2.45)

The corresponding potentials include linear combinations of different roots,

�
�α β= ++ +

+ +v x y x y, .k
k

2 1,2 1
1 1 1 1( ) /( ) /( ) (2.46)

Some special cases are:

 (v) α β= +v x y x y,13( ) ,  y 0⩾ .
 (vi) α β= +v x y x y,35

1 3( ) / ,  x 0⩾ .
 (vii) α β= +v x y x y,15

1 3( ) / .

Example (v) was included in [8] as case 7. Notice that since each one dimensional potential 
vmx(x) or vny( y ) is a monotonous function, these potentials vnm will not allow for any bounded 
motion.

(b) Global and local Hamiltonians in 2R
As it is clear from example (ii) given above, some of the superintegrable Hamiltonians 

have potentials vmn(x,y) defined only in a region D of the plane. We may try to extend this 
Hamiltonian to the whole plane by pasting it with other superintegrable systems with poten-
tials v x y,mn

i ( ) defined in disjoint (except for their boundaries) regions iD , such that they cover 
the whole plane, ∪ =i

i 2RD . For instance, considering the particular case α β= = 1, we can 
‘complete’ the potential of case (ii) as follows:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= | | + | | =

= + =

= − + =

= − + − =

= + − =

v x y x y

v x y x y x y

v x y x y x y

v x y x y x y

v x y x y x y

,

, , , 0, 0

, , , 0, 0

, , , 0, 0

, , , 0, 0

33

33
1 1

33
2 2

33
3 3

33
4 4

˜ ( )

{( ) ⩾ ⩾ }

{( ) ⩽ ⩾ }

{( ) ⩽ ⩽ }

{( ) ⩾ ⩽ }

D

D

D

D
 

(2.47)

Another example extended from case (i) is given by

=| | + | |v x y .11 ̃ (2.48)

We can apply this ‘pasting process’ in order to produce a global potential such that it will 
allow for bounded trajectories, as it is the case of the extensions (2.47) or (2.48), given above. 
However, in these cases, the resulting system with global potential v x y,33˜ ( ) will not be super-
integrable since there is not a ‘global’ constant of motion for ṽ. In a motion under v x y,33˜ ( ), 
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when the particle is in 1D  the constant of motion is B1, but when the particle crosses from the 
domain 1D  to 2D , the constant of motion will change and it will take a different value B2, and 
so on. In this way after the particle has been n1 times in the region 1D , the constant of motion 
B1 will have taken, in general, n1 different values. Therefore, in general the motion will not be 
periodic. In figure 1 it is shown the plot of the ‘pasted potential’ given by (2.47). The motion 
of a particle in this potential is a superposition of two one-dimensional motions corresponding 

to the potentials = | |v xx̃  and = | |v yỹ . In this case, the ratio of the frequencies νx and νy is 
obtained by action-angle variables method and it is given by

⎛

⎝
⎜

⎞

⎠
⎟ν

ν
=

E

E
.x

y

x

y

3 2/

 
(2.49)

Only when this ratio is a rational number, the bounded motion in the plane will be periodic. 
Examples of periodic and non-periodic orbits for this pasted potential are given in figure 2. For 
‘global’ superintegrable systems all the bounded motions are periodic and the trajectories look 
like deformed Lissajous curves [10, 11]. We should remark that such trajectories are smooth 
and they do not present ‘angles’ when crossing the boundary of a domain. This point was not 
clearly explained in previous references [7, 8].

(c) Superintegrable Hamiltonians in higher dimensions
We can define superintegrable Hamiltonians in three or more dimensions. For instance, 

we simply add three one dimensional Heisenberg Hamiltonians to get a three dimensional 
Hamiltonian

= + +H H x H y H z .nmp nx my pz( ) ( ) ( ) (2.50)

This new Hamiltonian is superintegrable. First of all, as it is separable, we have three constants 
of motion in involution, for instance: Hnx(x), Hmy( y ) and Hpz(z). Second, as each Hamiltonian 
is of Heisenberg type, we can construct two additional independent constants of motion:

= − = −B B B B B B, .nx my my pz1 2 (2.51)

The symmetry algebra of all the independent constants of motion is very easy to compute, it is 
essentially a subalgebra of the direct sum of one-dimensional Heisenberg algebras.

3. Heisenberg-type higher order symmetries: the quantum problem

In the framework of quantum mechanics, let us consider now a Hamiltonian operator H in one 
Cartesian coordinate (2m  =  1):

= +P V X ,2 ( )H (3.1)

where P and X are the momentum and position operators, satisfying the well known commuta-
tion relation

=X P, i .ħ[ ] (3.2)

In the sequel, we will work in the coordinate representation of wave functions where the 
momentum operator is = −P xi d dħ /  and the position operator X is just the multiplication by 
the variable x.

Now, we introduce the notion of Heisenberg operator nB  for this Hamiltonian H as a n-order 
polynomial in the momentum operator P with x-dependent coefficients, where the powers of 
the operator P are placed ‘on the right’, that is:
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∑=
=

F x P ,n
k

n

k
k

0

( )B (3.3)

being Fk(x) functions of the real variable x, to be determined. The Heisenberg function (3.3) 
must satisfy the following commutation relation with the Hamiltonian (3.1)

=, i .n ħ[ ]H B (3.4)

Figure 2. Plot of a non periodic trajectory corresponding to parameters 
= = =E E B3, 1, 5x y  (left) and a closed periodic trajectory with parameters 
= = =E E B1, 4 , 1x y

3  (right). The pieces of trajectory corresponding to each quadrant 
of the plane are in a different color.

Figure 1. Plot of the potential = | | + | |v x y33˜ .

F Güngör et alNonlinearity 30 (2017) 1788



1800

This condition eventually will gives us a condition on the potential, that will depend on x, 
but also on n; due to this fact, instead of (3.1) we will use the following notation for the 
Hamiltonian

= +P V x .n n
2 ( )H (3.5)

Remark that if we take the formal adjoint of relation (3.4) we get

=, i ,n ħ[ ]†H B (3.6)

where n
†B  is the adjoint differential operator of nB . Therefore,

= = +, i ,
1

2
.n

s
n
s

n nħ[ ] ( )†H B B B B (3.7)

Hence, we can always assume the operator nB  in (3.4) to be a Hermitian differential operator.
In the following, for the sake of simplicity we will omit the explicit dependence of the 

functions �F x( ) and �V x( ) on the variable x.

3.1. The potentials and the Heisenberg operators

Now, we will find the form of the potentials and the operators nB  satisfying equation (3.4), for 
different values of n.

 • Case n  =  1

  The Heisenberg operator has the form

= +F F P,1 0 1B (3.8)

  similar to its classical equivalent (2.3). Substituting (3.8) in (3.4), with = −P xi d dħ / , we 
get the following system of ordinary differential equations

= = =′ ′ ′F F FV0, 0, 1.1 0 1 1 (3.9)

  where the primes denotes the derivative with respect to the variable x. Observe that this 
system is exactly the same obtained in the classical situation (2.5), without any ‘quantum 
corrections’. Therefore, it is trivially solved and we get the same solutions as in the clas-
sical case:

= = = = + = +F k F k V x
x

k
P

x

k
k k P, , , , ,1 1 0 0 1

1
1

2

1
1 0 1( ) H B (3.10)

  where k1 and k0 are integration constants; we have omitted a third irrelevant additive 
integration constant in the potential.

 • Case n  =  2
  The Heisenberg operator takes the form

= + +F F P F P .2 0 1 2
2B (3.11)

  Substituting (3.11) in (3.4) we get the following set of equations:

″ ″= = = = + −′ ′ ′ ′ ′F F F F V FV F F V0, 0, , 1 i .2 1 0 2 2 1 2 0 2 2ħ( ) (3.12)

  Here we have a quantum version of the classical result (2.10), with a quantum correction 
of first order in ħ. Nevertheless, this ħ dependence is only apparent because the coefficient 
of ħ turns out to be zero. In fact, the solution of this system is:
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= = = +F k F k F k k V, , ,2 2 1 1 0 0 2 2 (3.13)

  where k k,0 1 and k2 are integration constants (k0 is irrelevant and will be neglected), and 
the potential is exactly the same obtained in the case n  =  1 given in equation (3.10):

= = = +V x
x

k
V x P

x

k
, .2

1
1 2

2

1
( ) ( ) H (3.14)

  Hence, the operator 2B  has the expression:

= + + = +k P k P V B k H .2 1 2
2

2 1 2 2( )B (3.15)

  The term k H2 2 is redundant, and therefore the nontrivial solution reduces to k P1 . Hence, 
the case n  =  2 does not provide new interesting results, as its solution coincides exactly 
with the one obtained in case n  =  1.

 • Case n  =  3
  Now, the Heisenberg operator is

= + + +F F P F P F P .3 0 1 2
2

3
3B (3.16)

  Substituting (3.16) in (3.4) we get the following set of equations:

″ ″
″ ″ ″

=

=
=

= + −

= + − −

′

′

′ ′

′ ′

′ ′

F

F

F F V

F F V F F V

FV F F V F V

2 0,

2 0,

2 3 ,

2 2 i 3 ,

1 i .

3

2

1 3 3

0 2 3 1 3 3

1 3 0 2 3
2

3 3

ħ
ħ ħ

( )
( )

 

(3.17)

  Observe the presence on the right hand side of this system of some nontrivial quantum 
corrections which obviously were not present in the classical case (2.14): nonvanishing 
terms containing powers of ħ, that eventually will make more difficult to find the solution. 
Indeed, the ‘quantum system’ does not have the separation property between the func-
tions with even indices ( …F F, ,0 2 ) and odd indices ( …F F, ,1 3 ), something that is true in the 
classical case, as can be clearly seen in (2.36).

  The solution of the system (3.17) exhibits the explicit presence of quantum terms:

= = = + = + − ′F k F k F k k V F k k V k V, ,
3

2
,

3

4
i ,3 3 2 2 1 1 3 3 0 0 2 3 3 3ħ (3.18)

  where the �k  are integration constants (k0 will be omitted in the sequel), and the potential 
V3(x) must satisfy the following third order nonlinear differential equation

ħ( )″ − − + =′ ′ ′k V V V k V6 4 4 0,3
2

3 3 3 1 3 (3.19)

  which is the ‘quantum version’ of (2.15): indeed, if we make = 0ħ  in (3.19) we recover 
(2.15).

  The nonlinear differential equation (3.19) can be integrated once:

″ − − + + =k V V k V x c3 4 4 0.3
2

3 3
2

1 3 3ħ( ) (3.20)

  Remark that the information really new in the case n  =  3 comes from the term with coef-
ficient k3: indeed, if for example we put k3  =  0 in (3.20) we go back to the result (3.14). 
If we take k1  =  0 we have

″ − + + =k V V x c3 4 03
2

3 3
2

3ħ( ) (3.21)
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  that can be finally reduced to the first Painlevé equation

= +
W

z
W z

d

d
6

2
3

2 3
2 (3.22)

  by means of the following transformations:

⎛
⎝
⎜

⎞
⎠
⎟= −

| |
− =

| |
x k

k
z

c
V

k
Wsign

2 4
, 2

2
.3

3
4

3
3

3

2 5

35
ħ ħ( )     

/

 (3.23)

  Notice that if we take = 0ħ  in (3.20), the equation  reduces to the classical solution 
obtained previously in (2.18), without necessity of any further integration. Obviously in 
the quantum case the presence of the terms with powers of ħ make the whole story more 
interesting and also more difficult to deal with.

  The operator 3B  can be written as

= + +k k ,3 1 2 3 3 3
0B B H B (3.24)

  and, obviously, only the 3
0B  term gives us new interesting information:

⎜ ⎟
⎛
⎝

⎞
⎠= + − = +

+
= − −

+′P V P V P
V P PV

P
P P3

2

3

4
i

3

2 2

1

2
3

2
.3

0 3
3 3

3 3 3 3 3 3ħB
H H

 

(3.25)

  We see that 3
0B  is the symmetrized version of the classical expression (2.19).

 • Case n  =  4
  The integral of motion is now of fourth order. The problem is solved as in the previous 

cases and we obtain that the potential V4(x) must satisfy a third order nonlinear differ-
ential equation which is exactly the same as (3.19) for V3(x), therefore =V x V x4 3( ) ( ). The 
integral of motion 4B  has the form:

= + + +k k k .4 1 2 4 3 3
0

4 4
2( )B B H B H (3.26)

  There is no new interesting information, because the terms containing powers of 4H  are 
irrelevant, and the other two components, 1B  and 3

0B  have been already obtained. A similar 
situation appeared in case n  =  2, and is typical of all the even cases.

 • Case n  =  5
  The integral of motion is

= + + + + +F F P F P F P F P F P .5 0 1 2
2

3
3

4
4

5
5B (3.27)

  Substituting (3.27) in (3.4), we get the following set of equations:

″ ″

″ ″ ″

″ ″ ″

″ ″ ″

=
=
=

= + −

= + − −

= + − − +

= + − − + +

′
′

′ ′

′ ′

′ ′ ′

′ ′ ′

′ ′

F

F

F F V

F F V F F V

F F V F F V F V

F F V F F V F V F V

FV F F V F V F V F V

2 0,
2 0,

2 5 ,

2 4 i 10 ,

2 3 i 6 10 ,

2 2 i 3 4 5i ,

1 i i .

iv

iv v

5

4

3 5 5

2 4 5 3 5 5

1 3 5 2 4 5
2

5 5

0 2 5 1 3 5
2

4 5
3

5 5

1 5 0 2 5
2

3 5
3

4 5
4

5 5

ħ
ħ ħ
ħ ħ ħ

ħ ħ ħ ħ

( )
( )
( )  

( )      

( )

( ) ( )

 

(3.28)

  Observe that this quantum version of the classical result (2.22) has quantum corrections 
up to order 4ħ . Looking at (3.28) it is quite obvious that the quantum corrections are 

F Güngör et alNonlinearity 30 (2017) 1788



1803

growing in importance. In spite of the imposing aspect of this system, it is possible to find 
the explicit solution of the functions �F  appearing there:

″

″ ″

= = = +

= + −

= + − + −

= + − + − − +

′

′

′ ′ ′

⎜ ⎟
⎛
⎝

⎞
⎠

F k F k F k k V

F k k V k V

F k k V k V k V V

F k k V k V k V V k V V V

, ,
5

2
,

2
15

4
i ,

3

2
2i

15

8

25

8
,

6

8
i

15

16
i 2 i ,

5 5 4 4 3 3 5 5

2 2 4 5 5 5

1 1 3 5 4 5 5 5
2 2

5

0 0 2 5 3 5 4 5
2 2

5 5 5 5
2

5

ħ

ħ ħ

ħ ħ ħ ħ( ) ( ( ) )

  where the �k  are integration constants. The potential V5(x) must satisfy the following fifth 
order nonlinear differential equation

″ ″ ″+ − − + − + =′ ′ ′ ′ ′ ′k V V V V V V V k V V V k V30 20 10 24 4 16 16.v
5

4
5 5

2
5

2
5 5

2
5 5 3 5 5

2
5 1 5ħ ħ ħ ħ( ) ( )( )

 (3.29)
  Some remarks are in order here: (i) if we take = 0ħ  in this nonlinear fifth-order differ-

ential equation, we recover the simple first order differential equation  (2.23) of the 
classical n  =  5 case; (ii) if we take k5  =  0 we go back to the case n  =  3 studied before 
(3.19); (iii) only constants �k  with odd indices are present in (3.29): the constants k k,0 2 
and k4 does not play any role in the solution of the problem we are studying (in particular, 
k0 will be neglected in the sequel); (iv) the equation can be integrated once to give

″ ″+ − + + − + = +′k V V V V V k V V k V x c10 5 2 12 4 16 16 .iv
5

4
5 5

3 2
5 5 5

2
3 5

2 2
5 1 5 5ħ ħ ħ( ( ( ) )) ( ( ) )( )

 (3.30)
  As in the case n  =  3, the new relevant information of the present case is obtained by 

taking = =k k 01 3  in (3.30)

⎜ ⎟
⎛
⎝

⎞
⎠″− + + =

+′V V V V V
x c

k
10

1

2
10

16
.iv4

5
2

5 5 5
2

5
3 5

5
ħ ħ ( )( ) (3.31)

  Remark that if = 0ħ , we recover basically the classical n  =  5 result (2.25). With the 
simple transformations

κ= = − =V W x z
c

k
2 ,

16
,

8
,5

2
5

5
6

5
ħ

ħ
  (3.32)

  equation (3.31) turns out to be

⎛
⎝
⎜

⎞
⎠
⎟ κ= + − +

W

z
W

W

z

W

z
W z

d

d
20

d

d
10

d

d
40 ,

4
5

4 5

2
5

2
5

2

5
3 (3.33)

  which appears in the list of fourth order Painléve equations of polynomial class, classified 
by Cosgrove [12]: it is precisely the so-called equation F-V (see equation (2.67) of [12] 
with α β= = 0). Equation F-V has the Painléve property and arises as group-invariant 
reduction of the KdV5 equation (a member of the KdV hierarchy). It is also a member of 
the so-called Painléve-I hierarchy and is denoted by the notation P1 4 [13]. It is conjectured 
that F–V (in the nonautonomous case) defines a new transcendent in the sense that the 
general solution of F–V cannot be expressed in terms of known transcendents including 
the six Painléve transcendents, elliptic, hyperelliptic, abelian and automorphic functions.
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  The second order Painléve transcendents PI, PII, PIV as quantum potentials have appeared 
previously [4, 7, 8, 14, 15]. A fourth order form of the potential equation which can be 
integrated in terms of solutions of the fourth Painléve equation PIV first appeared in [4]. To 
the best of our knowledge, the occurrence of a genuine fourth order Painléve transcendent 
as potential is new. The surprising connection of superintegrability in the quantum case 
with soliton theory of infinite-dimensional integrable nonlinear systems manifests itself 
here once again.

  The Heisenberg operator 5B  has the form:

= + + + +k k k k ,5 1 2 5 3 3
0

4 5
2

5 5
0B B H B H B (3.34)

  where, the essentially new term is given by

ħ ħ ħ ħ( ) ( )

( ( ) ( ))

B ″ ″= + − + − − −

= − + + +

′ ′ ′P V P V P V V P V V V

P PHP P HP H P PH

5

2

15

4
i

5

8
3 5

15

16
i 2

3

8

5

3

5

2
.

5
0 5

5
3

5
2

5
2 2

5 5 5
2

5

5 2 2 2 2

 

(3.35)

  Notice that the last expression is a symmetrized version of the corresponding classical 
function (2.27).

 • Case n  =  6
  As we have already seen in the previous analysis, the even cases do not provide new 

information, and therefore we will skip the case n  =  6.
 • n  =  7
  This is the last case that we will consider in this paper. The Heisenberg operator is of 

seventh order,

= + + + + + + +F F P F P F P F P F P F P F P .7 0 1 2
2

3
3

4
4

5
5

6
6

7
7B (3.36)

  Substituting (3.36) in (3.4) we get the following set of equations:

″ ″
″ ″ ″

″ ″ ″

″ ″ ″

″ ″ ″

″ ″ ″

=

=

=

= + −

= + − −

= + − − +

= + − − + +

= + − − + + −

= + − − + + − −

′

′

′ ′

′ ′

′ ′ ′

′ ′ ′

′ ′ ′

′ ′ ′

′ ′

F

F

F F V

F F V F F V

F F V F F V F V

F F V F F V F V F V

F F V F F V F V F V F V

F F V F F V F V F V F V F V

FV F F V F V F V F V F V F V

2 0,

2 0,

2 7 ,

2 6 i 21 ,

2 5 i 15 35 ,

2 4 i 10 20 35i ,

2 3 i 6 10 15i 21 ,

2 2 i 3 4 5i 6 7i ,

1 i i i .

iv

iv v

iv v vi

iv v vi vii

7

6

5 7 7

4 6 7 5 7 7

3 5 7 4 6 7
2

7 7

2 4 7 3 5 7
2

6 7
3

7 7

1 3 7 2 4 7
2

5 7
3

6 7
4

7 7

0 2 7 1 3 7
2

4 7
3

5 7
4

6 7
5

7 7

1 7 0 2 7
2

3 7
3

4 7
4

5 7
5

6 7
6

7 7

ħ
ħ ħ
ħ ħ ħ
ħ ħ ħ ħ
ħ ħ ħ ħ ħ

ħ ħ ħ ħ ħ ħ

( )
( )
( )
( )
( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

 (3.37)
  The solution of this system is:
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″

″ ″

″ ″

″

″ ″

″

″ ″

= = = + = + −

= + − + −

= + − + − − +

= + − + − + −

+ − − +

= + − + − + −

+ − − +

+ − + − +

′

′

′ ′ ′

′ ′ ′

′

′ ′ ′

′

′ ′ ′

F k F k F k k V F k k V k V

F k k V k V k V V

F k k V k V k V V k V V V

F k k V ik V k V V k V V V

k V V V V V

F k k V ik V k V V k V V V

k V V V V V

k V V V V V V V

, ,
7

2
, 3

35
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  where the �k  are integration constants, and the potential V7 must satisfy the following 
seventh order nonlinear differential equation:
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(3.38)

  Remark that only �k  with odd indices are present: the constants k k k, ,0 2 4 and k6 do not 
play any role in the solution of the problem we are studying (indeed, as in the previous 
cases, we will omit k0 from now on). If we consider the limit case = 0ħ , the nonlinear 
differential equation (3.38) reduces to the much simpler equation (2.30). In spite of its 
formidable aspect, equation (3.38) can be integrated once:
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 (3.39)
  If we consider here = 0ħ , all the terms with derivatives of V7(x) completely disappear, 

and the corresponding fourth order polynomial equation (2.31) is obtained for the clas-
sical potential.

  The special case of (3.39) where = = =k k k 01 3 5  and ≠k 07  gives rise to a novel potential
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(3.40)

  We have checked if equation  (3.40) passes the Painlevé test, what is only a necessary 
condition for the equation  to possess the Painlevé property. The resonances occur at 
r  =  2, 4, 5, 7, 10 at which all compatibility conditions are satisfied which implies that the 
test is passed. This feature is typical of all quantum potentials obtained so far. The simple 
transformations

κ= = − = −V x W x x z
c
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  allows to transfer the dependence on ħ of the whole equation to the independent variable, 
transforming equation (3.40) into

″ ″ ″ κ= + + − − + +′ ′ ′W W W W W W W V W W W z14 28 21 70 70 35 .vi iv
7 7 7 7 7 7

2
7
2
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2

7 7
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 (3.42)
  As we have already mentioned, this sixth-order nonlinear differential equation correspond 

to some sixth-order Painlevé equation to be determined.
  The integral of motion 7B  has the form:

= + + + + + +k P k k k k k k ,7 1 2 7 3 3
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5 5
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  where, again, new information comes only from the last term:
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3.2. Superintegrable Hamiltonians and their symmetries

Once we have the Heisenberg Hamiltonians , , 1mx mx⟨ ⟩H B , and , , 1ny ny⟨ ⟩H B  we can write a 
superintegrable Hamiltonian by adding them just as in the classical context:

= + = +V x y V x V y, , ,mn mx ny mn mx ny( ) ( ) ( )H H H (3.44)

where the degrees m and n of each Hamiltonian can be different. The third symmetry of odd 
degree given by m nmax ,( ) is

= − .mn mx nyB B B (3.45)

In this way we can trivially extend this method to get superintegrable Hamiltonians in three 
or higher dimensions.

However, the one dimensional potentials involved are given by solutions of nonlinear 
differ ential equations  that are not well known in much detail. For instance, some of the 
potentials may have singularities or may not be well defined in the whole real line. This 
can depend on the initial conditions imposed to the solutions. In this sense the study of all 
the possible potentials is as complex as the classification of the solutions of such nonlinear 
equations.

In the quantum case the pasting of ‘local’ superintegrable potentials in order to get a poten-
tial defined in the whole plane is out of place. For instance, in the same way as (2.48), we 
could define the potential

=| |+| |V x y .11 ̃ (3.46)

But we can not apply any property related to superintegrability to this two–dimensional 
system. Here, we can not act as in the classical case, pasting the trajectories of different 
domains.
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4. Conclusions

In this work we have carried out a systematic study of superintegrable Hamiltonian systems 
separable in Cartesian coordinates such that each component is of Heisenberg type. A one-
dimensional Hamiltonian Hn is said to be of Heisenberg type in the classical context if there is 
a function Bn of degree n in the momentum variable such that the Heisenberg Poisson commu-
tator =H B, 1n n{ }  is satisfied. In the quantum frame a similar definition applies for a Hamilton 
operator nH  and a polynomial operator nB  that satisfy the commutator =, in n ħ[ ]H B .

In the classical case we have found a general solution to this problem for any value of n. 
The relevant solutions are realized for the odd values �= +n 2 1. The potentials of this type of 
Hamiltonians satisfy an algebraic equation of degree �+ 1. A representative potential for such 
a value is given by a root of index �+ 1: �

�∝+
+v x x2 1

1 1( ) /( ), �∈N. Some of the resulting super-
integrable Hamiltonians are defined in a region of the plane (in the case of two Cartesian coor-
dinates) so that we are lead to a restricted concept of superintegrability. This type of potentials 
do not allow for classical bounded motions, so that a particle that initially is in one of these 
regions, in general after a time will leave it and cross to another region where the superintegra-
bility is not satisfied. In conclusion, for some cases we can describe only a part of the motion 
by means of the superintegrability properties for such a kind of Heisenberg systems.

In the quantum case it is possible to work out the solutions for any value of n, but we 
have not found closed expressions. It is shown that, as in the classical case, the odd values 

�= +n 2 1 are relevant. For some values of �, the expression for the operator �+2 1B  in terms 
of the potential function �+V x2 1( ) has been explicitly computed, as well as the differential 
equation that �+V x2 1( ) must satisfy. Contrary to the corresponding classical analog, here the 
equations (except for the case � = 0 that can be integrated) are not algebraic, but nonlinear 
differential equations that can not be integrated in terms of known special functions. In fact, 
they belong to a type of higher order Painlevé equations, starting with Painlevé I for � = 1. 
Given the equations for the potential and the expressions for the Heisenberg operators of the 
quantum problem in terms of the potential, then if we perform the classical limit 0ħ → , the 
corresponding classical equations for �+v x2 1( ), as well as the classical expressions �+B2 1 are 
recovered, in a certain sense.

Some particular solutions of the general approach contained in this paper can be found 
in previous references [4, 7, 8]. For example, in [4] the symmetries of the two-dimensional 
Euclidean systems separable in Cartesian coordinates, up to third order, are exhaustively stud-
ied; the results include as particular cases all our solutions up to order three: In the quantum 
systems these potentials are labeled as (Q.17) and (Q.20), while in the classical framework are 
the cases (C.5) and (C.7). Reference [7] analyses the same problem as [4] paying attention to 
the algebraic structure of the symmetries. Some of the potentials they obtained (cases 5, 7 and 
8, where the symmetry algebra is Heisenberg) are the same as in our work. We have carefully 
explained that the local superintegrability affect the trajectories corresponding to these three 
cases. Another reference dealing with a similar strategy is [5], where the author is also search-
ing for higher order symmetries, for the same type of systems, by means of ladder operators. 
However, the difference is that we use as the basic ingredient the Heisenberg algebra instead 
of the ladder algebra.

In conclusion, we have shown here that a fruitful way to find higher order symmetries of 
classical and quantum systems can be based on the algebraic properties of the corresponding 
Hamiltonian. In the present work this key idea is successfully implemented by looking for 
superintegrable Hamiltonians of Heisenberg type.
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