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On Morrison’s definite integral

J. Arias de Reyna, M. L. Glasser and Y. Zhou

Abstract. As an application of Cauchy’s Theorem we prove that

∫ 1

0
arctan

(
arctanh x − arctan x

π + arctanh x − arctan x

)
dx

x
=

π

8
log

π2

8

answering by this means a question posted in 1984 by J. A. Morrison in the Problem Section
of the journal SIAM Review.

Mathematics Subject Classification. 30E20, 44A20.

1. Introduction

The Wiener–Hopf problem on the half-line with kernel depending on e−|x|

occurs, for example, in the theory of the anomalous skin effect [5] (the subject
of MLG’s Ph.D. thesis [1]) and Gaussian–Markov Estimation theory [3]. In
1983 Murray Klamkin asked MLG to examine the definite integral

M =
∫ 1

0

{
2
π

arctan
[

2
π

arctan
1
x

+
1
π

log
(

1 + x

1 − x

)]
− 1

2

}
dx

x
(1.1)

the evaluation of which arose in [3] and had been submitted as an unsolved
problem to the SIAM Review by Morrison [2, p. 266]. In attempting to find
its value the integral was transformed into several different forms; one of them

I1 =
∫ 1

0

arctan
(

arctanhx − arctan x

π + arctanh x − arctan x

)
dx

x
, (1.2)

is the subject of this note. The value M = 1
2 log(π/2

√
2) was eventually conjec-

tured by heuristic means (see Morrison [4] or also [2, p. 266]), and Morrison’s
integral was published as Problem 84-8 in the SIAM Review [4]. No solutions
were submitted and the problem remained open for the subsequent 20 years
until the Siam Review problem column was cancelled, and into the subsequent
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decade. In 2013, having discovered the question-and-answer internet site Math-
ematics Stack Exchange MLG decided to reopen the matter by submitting the
modified integral (2) [6]. No solution has yet been recorded, but shortly there-
after a similar integral was posted by Vladimir Reshetnikov [7], which can be
put in the form

I2 =
∫ 1

0

arctan
(

arctanhx − arcsin x

2π + arctanh x − arcsin x

)
dx

x
√

1 − x2
. (1.3)

In this note a complete evaluation of these integrals will be presented, thus
bringing to an end an inquiry begun nearly a half-century ago.

We devote the remainder of this note to evaluating I1 and then apply the
result to Morrison’s problem of finding the value of (1.1). In view of the ele-
mentary, but intriguing, nature of (1.2) and the novel application of a textbook
technique required for its solution we feel that this note is of interest to the
mathematical community.

2. Computation of I1

2.1. Preparations

Proposition 2.1. The integral in (1.2) is well defined.

Proof. For −1 < x < 1 we have

arctanhx =
∫ x

0

dt

1 − t2
, arctan x =

∫ x

0

dt

1 + t2

so that

arctanh x − arctan x =
∫ x

0

2t2

1 − t4
dt. (2.2)

Therefore,

f(x) :=
1
π

(arctanh x − arctan x) (2.3)

is a differentiable, strictly increasing and non negative function on [0, 1). It
follows that f(x)

1+f(x) is continuous. Also f(0) = 0 so that

arctan
(

arctanhx − arctan x

π + arctanhx − arctan x

)
1
x

= arctan
(

f(x)
1 + f(x)

)
1
x

is continuous and bounded in [0, 1). �

In this paper log z always denotes the main branch of the logarithmic func-
tion defined by log z = log |z| + i arg(z), with | arg(z)| < π. This function is
analytic in the complex plane with a cut along the negative real axis.
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Let Ω ⊂ C be the complex plane with four cuts, two along the real axis,
one from 1 to +∞, the other from −1 to −∞, and two along the imaginary
axis, one from i to +i∞ the other from −i to −i∞. This is a star-shaped open
set with center at 0.

Proposition 2.4. The function f(x) defined in (2.3) extends to an analytic
function on the simply connected open set Ω and we have

f(z) =
1
2π

(
log

1 + z

1 − z
+ i log

1 + iz

1 − iz

)
, z ∈ Ω (2.5)

and

f(z) =
2
π

∞∑
n=0

z4n+3

4n + 3
, |z| < 1. (2.6)

Proof. We may write

f(z) =
2
π

∫ z

0

t2dt

1 − t4
, z ∈ Ω. (2.7)

It is clear that this defines an analytic function in Ω. We may integrate along
the segment joining 0 to z ∈ Ω, which by the star-shaped property of Ω is
contained in Ω where the integrand t2(1 − t4)−1 is analytic.

When |z| < 1 we may integrate the Taylor expansion

t2

1 − t4
=

∞∑
n=0

t4n+2

which proves (2.6).
The expression 1+z

1−z is a negative real number only when z is real and
|z| > 1. Therefore, log 1+z

1−z is well defined and analytic in Ω. In the same way
we show that log 1+iz

1−iz is well defined and analytic in Ω. Therefore, the right
hand side of (2.5) is an analytic function in Ω. Expanding in power series we
see that the Taylor series of this right hand side function coincides with the
power series in (2.6).

From this it is clear that we have equality in (2.5) for |z| < 1, and by
analytic continuation we have equality for all z ∈ Ω. �

Proposition 2.8. We have

I :=
∫ 1

0

arctan
(

arctanhx − arctan x

π + arctanhx − arctan x

)
dx

x

= Im
∫ 1

0

log (1 + (1 + i)f(z))
dz

z
. (2.9)

Proof. For all positive real values x we have

arctan
(

x

1 + x

)
= Im log (1 + (1 + i)x) .
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Therefore,

I =
∫ 1

0

Im log (1 + (1 + i)f(x))
dx

x
.

When x = 0 we have f(x) = 0, so that the above logarithm vanishes there.
For x near 1 we have |f(x)| ≤ C log(1 − x)−1 by (2.5), so that the integrand
is O(log log(1 − x)−1). Therefore, the integral

∫ 1

0

log (1 + (1 + i)f(x))
dx

x

is well defined, completing the proof. �

2.2. Application of Cauchy’s theorem

Proposition 2.10. The function

G(z) :=
1
z

log (1 + (1 + i)f(z)) (2.11)

is an analytic function in the first quadrant.

Proof. We will show that Re (1 + (1 + i)f(z)) > 0 when z is in the first quad-
rant. Its log is well defined and by composition of analytic functions it will be
analytic.

The bilinear function w = 1+z
1−z transforms the first quadrant into the points

w with Im(w) > 0 and |w| > 1. Then log 1+z
1−z = a + iϕ where a > 0 and

0 < ϕ < π. The bilinear transform w = 1+iz
1−iz transforms the first quadrant in

the points w with Im(w) > 0 and |w| < 1. So log 1+iz
1−iz = −b + iθ, where b > 0

and 0 < θ < π. Then, for z in the first quadrant, by (2.5)

f(z) =
1
2π

(a + iϕ − θ − ib),

Re(1 + (1 + i)f(z)) = 1 +
a + b

2π
− ϕ + θ

2π
> 0.

It is also clear that at z = 0 the function G(z) is analytic, because f(z) is
analytic at z = 0 and has a zero there. �

The function G(z) in Proposition 2.10 has branch points at z = 1 and
z = i, but has well defined limits at all other points of the boundary (in fact
it extends analytically at these points). This follows from the fact that for x
real we have f(x) real and f(ix) purely imaginary, so that 1 + (1 + i)f(z) �= 0
on the boundary of the first quadrant.
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Proposition 2.12. For |z| > 1 in the first quadrant we have

f(z) =
i − 1

2
+

2
π

∞∑
n=0

1
(4n + 1)z4n+1

. (2.13)

Proof. Take z = (1 + i)x with x > 1 very large. Then by (2.5)

f(z) =
1
2π

(
log

z−1 + 1
z−1 − 1

+ i log
(iz)−1 + 1
(iz)−1 − 1

)

so that we have, for x → ∞,

z−1 + 1
z−1 − 1

= −1 +
i − 1

x
+ O(x−2),

(iz)−1 + 1
(iz)−1 − 1

= −1 +
1 + i

x
+ O(x−2).

It follows that for the main branch of log we have

log
z−1 + 1
z−1 − 1

= πi + log
1 + z−1

1 − z−1
, log

(iz)−1 + 1
(iz)−1 − 1

= πi + log
1 + (iz)−1

1 − (iz)−1
.

Therefore, for these values of z we have

f(z) =
i − 1

2
+

1
2π

(
log

1 + z−1

1 − z−1
+ i log

1 + (iz)−1

1 − (iz)−1

)

so that we only need to use the known expansion in Taylor series to get the
equality for z = (1 + i)x with x > 1. Since f(z) and the expansion are both
analytic for |z| > 1 on the first quadrant, we get the equality for z in the first
quadrant with |z| > 1. �

Theorem 2.14. We have∫ 1

0

arctan
(

arctanh x − arctan x

π + arctanh x − arctan x

)
dx

x
=

π

8
log

π2

8
. (2.15)

Proof. Let the path CR,ε, consist of the positive real interval [0, R] (R > 1)
followed by the circular arc Reiθ, 0 ≤ θ ≤ π/2, closed by the imaginary interval
[iR, 0] and with semicircular indentations of radius ε < 1 to avoid z = 1, i.
Then by Cauchy’s Theorem to G(z)∫

CR,ε

G(z) dz = 0.

The integrals along the small semicircles tend to 0 when ε → 0, so that by
Cauchy’s Theorem

∫ 1

0

G(x) dx +
∫ R

1

G(x) dx + iR

∫ π/2

0

G(Reix)eix dx

−
∫ i

0

G(z) dz − i

∫ R

1

G(iy) dy = 0. (2.16)
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Two of the integrals combine to give our integral. In fact
∫ 1

0

G(x) dx −
∫ i

0

G(z) dz =
∫ 1

0

G(x) dx − i

∫ 1

0

G(ix) dx,

and we have

G(x) − iG(x) =
1
x

log (1 + (1 + i)f(x)) − i

ix
log (1 + (1 + i)f(ix)) .

By (2.6) for 0 < x < 1 we have f(ix) = −if(x), so that

G(x) − iG(x) =
log (1 + (1 + i)f(x)) − log (1 + (1 − i)f(x))

x

=
2i

x
Im log (1 + (1 + i)f(x)) .

Then our two integrals are
∫ 1

0

G(x) dx −
∫ i

0

G(z) dz = 2i

∫ 1

0

Im log (1 + (1 + i)f(x))
dx

x
.

Applying (2.9) we get
∫ 1

0

G(x) dx −
∫ i

0

G(z) dz = 2Ii. (2.17)

Our Eq. (2.16), obtained by Cauchy’s Theorem, may now be written as

2iI +
∫ R

1

G(x) dx + iR

∫ 2π

0

G(Reix)eix dx − i

∫ R

1

G(iy) dy = 0. (2.18)

In a similar way we also find that
∫ R

1

G(x) dx − i

∫ R

1

G(iy) dy =
∫ R

1

(G(x) − iG(ix)) dx

with

G(x) − iG(ix) =
1
x

{log (1 + (1 + i)f(x)) − log (1 + (1 + i)f(ix))} .

Here x > 1 and we substitute the values of f(x) and f(ix) given by (2.13)

1 + (1 + i)f(x) =
2(1 + i)

π

∞∑
n=0

1
(4n + 1)x4n+1

,

1 + (1 + i)f(ix) =
2(1 − i)

π

∞∑
n=0

1
(4n + 1)x4n+1

.
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We arrive at
∫ R

1

G(x) dx − i

∫ R

1

G(iy) dy

=
∫ R

1

{
log

(
2(1 + i)

π

∞∑
n=0

1
(4n + 1)x4n+1

)

− log

(
2(1 − i)

π

∞∑
n=0

1
(4n + 1)x4n+1

)}
dx

x
.

Both logarithms have the same real part. Therefore, only the integrals of the
imaginary parts remain

∫ R

1

G(x) dx − i

∫ R

1

G(iy) dy =
∫ R

1

πi

2
dx

x
=

πi

2
log R.

Substituting this in (2.18) we get

2iI +
πi

2
log R + iR

∫ π/2

0

G(Reix)eix dx = 0. (2.19)

The last integral can be transformed in the following way

iR

∫ π/2

0

G(Reix)eix dx = iR

∫ π/2

0

1
Reix

log
(
1 + (1 + i)f(Reix)

)
eix dx

= i

∫ π/2

0

log
(
1 + (1 + i)f(Reix)

)
dx.

Since R > 1 and Reix is in the first quadrant, the function f(z) can be com-
puted by (2.13).

1 + (1 + i)f(Reix) =
2(1 + i)

π

∞∑
n=0

e−ix(4n+1)

(4n + 1)R4n+1

=
2(1 + i)

πR
e−ix +

2(1 + i)
5πR5

e−i5x + · · ·

Then for R large enough

log
(
1 + (1 + i)f(Reix)

)
= log

(
2(1 + i)

πR
e−ix

)

+ log
(

1 +
e−i4x

5R4
+

e−i8x

9R8
+ · · ·

)

and
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i

∫ π/2

0

log
(
1 + (1 + i)f(Reix)

)
dx

= i

∫ π/2

0

{
log

2
√

2
πR

+
(π

4
− x

)
i

}
dx + O(R−4)

or1

i

∫ π/2

0

log
(
1 + (1 + i)f(Reix)

)
dx = −πi

2
log R +

πi

2
log

2
√

2
π

+ O(R−4).

Substituting this in (2.19) we get

2iI +
πi

2
log

2
√

2
π

+ O(R−4) = 0. (2.20)

Taking limits for R → ∞ we get

I = −π

4
log

2
√

2
π

=
π

8
log

π2

8
.

�

Corollary 2.21. Reshetnikov’s integral I2 defined in (1.3) is equal to I1.

Proof. We begin by noting that by the substitution x = sin(2θ) = 2 tan θ/(1+
tan2 θ),

I2 =
∫ π/4

0

arctan

(
1
2 arctanh 2 tan θ

1+tan2 θ − θ
1
2 arctanh 2 tan θ

1+tan2 θ + π − θ

)
sec2 θ

tan θ
dθ. (2.22)

Next, by the substitution u = tan θ and the elementary identity

arctanh
(

2u

1 + u2

)
= 2arctanh u, −1 < u < 1,

we find that I2 = I1. �

3. Solution of Morrison’s problem

By noting the simple identities
2
π

arctan
1
x

= 1 − 2
π

arctan x, x > 0

log
(

1 + x

1 − x

)
= 2arctanh x, −1 < x < 1

arctan x − arctan 1 = arctan
x − 1
x + 1

, x > −1,

(3.1)

1The term O(R−4) is = 0 but we do not need to prove this.
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one has from (1.1)

M =
2
π

∫ 1

0

{
arctan

(
1 − 2

π
(arctan x − arctanhx)

)
− π

4

}
dx

x
. (3.2)

However, arctan 1 = π/4, so by (3.1)

=
2
π

∫ ∞

0

arctan
(

arctanhx − arctan x

π + arctanhx − arctan x

)
dx

x
=

1
2

log
π

2
√

2
(3.3)

completely solving Morrison’s problem.
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