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Abstract

Majorities based on difference of votes and their extension, majorities based on difference
in support, were introduced in social choice voting as tools to implement the crisp prefe-
rence values (votes) and the intensities of preference provided by voters when comparing
pairs of alternatives, respectively, with the aim to declare which alternative is socially
preferred. Moreover, these rules require the winner alternative to reach a certain positive
difference in its social valuation with respect to the one reached by the loser alternative.
This paper introduces a new aggregation rule that extends majorities based on difference
of votes from the context of crisp preferences to the framework of linguistic preferences.
Under linguistic majorities with difference in support, the voters express their intensi-
ties of preferences between pairs of alternatives using linguistic labels and an alternative
defeats another one if the first one reaches a specific support fixed before the election
process. There exist two main representation methodologies of linguistic preferences: the
cardinal one based on the use of fuzzy set, and the ordinal one based on the use of the
2-tuples. Linguistic majorities with difference in support are formalised in both repre-
sentation settings, and conditions are given to guarantee that fuzzy linguistic majorities
and 2-tuple linguistic majorities are mathematically isomorphic. Moreover, linguistic
majorities with difference in support constitute a class of majority rules because all the
possible majority rules can be generalised to the linguistic framework by adjusting the
required threshold of support. Finally, linguistic majorities based on difference in support
are proved to verify relevant normative properties: anonymity, neutrality, monotonicity,
weak Pareto and cancellativeness.

Keywords: Social choice, Aggregation rule, Linguistic preferences, Linguistic
majorities, Fuzzy sets, 2-tuples, Difference in support.

1. Introduction

Decision making problems deal with the social choice of the best alternative among all
the possible alternatives taking into account the views and opinions, i.e. the preferences,
of all the individuals of a particular social group [8, 28, 32]. Two approaches are possible
to address these problems [15, 17]: a direct approach that derives a social choice from
the sole manipulation and processing of the information provided by all the individuals
without the intermediate derivation of any kind of collective information using a fusion
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(Francisco Chiclana)

Preprint submitted to Applied Soft Computing July 19, 2013



or aggregation operator, which is characteristic of the indirect approach. Obviously, the
type of aggregation rule implemented in the second approach is crucial in designing the
corresponding social choice rule, and ultimately in the final social solution to the decision
making problem. This paper deals with this specific issue, and it is devoted to the
introduction of a new aggregation rule for individual preferences.

A comparison study between different alternative preference elicitation methods is
reported in [26], where it was concluded that pairwise comparison methods are more ac-
curate than non-pairwise methods. The main advantage of pairwise comparison methods
is that facilitates individuals expressing their preferences because they focus exclusively
on two alternatives at a time. Given two alternatives, an individual either prefers one to
the other or is indifferent between them, which can be represented using a preference rela-
tion whose elements represent the preference of one alternative over another one. There
exist two main mathematical models to represent pairwise comparison of alternatives
based on the concept of preference relation [8, 29]: in the first one, a preference relation
is defined for each one of the above three possible preference states, which is usually
referred to as a preference structure on the set of alternatives; the second one integrates
the three possible preference states into a single preference relation. This paper deals
with the second type of relations, for which reciprocity of preferences is usually assumed
in order to guarantee the following basic rationality properties in making paired compar-
isons [31]: indifference between any alternative and itself, and asymmetry of preferences,
i.e. if an individual prefers alternative x to y, that individual does not simultaneously
prefer y to x.

In classical voting systems the set of numerical values {1, 0.5, 0}, or its equivalent
{1, 0,−1} [8], is used to represent when the first alternative is preferred to the second
alternative, when both alternatives are considered equally preferred (indifference), and
when the second alternative is preferred to the first one, respectively. This classical pre-
ference modelling constitutes the simplest numeric discrimination model of preferences,
and it proves insufficient in many decision making situations as the following example
illustrates: Let {x, y, z} be 3 alternatives of which we know that one individual prefers x
to y and y to z, and another individual prefers z to y and y to x; then using the above
numerical values it may be difficult or impossible to decide which alternative is the best.
As Fishburn points out in [8], if alternative y is closer to the best alternative than to the
worst one for both individuals then it might seem appropriate to ‘elect’ it as the social
choice, whilst if it is closer to the worst than to the best, then it might be excluded from
the choice set. Thus, in many cases it might be necessary the implementation of some
kind of ‘intensity of preference’ between alternatives.

The concept of fuzzy set, which extends the classical concept of set, when applied
to a classical relation leads to the concept of a fuzzy relation, which in turn allows the
implementation of intensity of preferences [36]. In [2], we can find for the first time
the fuzzy interpretation of intensity of preferences via the concept of a reciprocal fuzzy
preference relation, which was later reinterpreted by Nurmi in [27]. In this approach, the
numeric scale to evaluate intensity of preferences is the whole unit interval [0, 1] instead
of {1, 0.5, 0}, which it is argued though to assume unlimited computational abilities and
resources from the individuals [4].

Subjectivity, imprecision and vagueness in the articulation of opinions pervade real
world decision applications, and individuals usually find difficult to evaluate their prefe-
rence using exact numbers [36]. Individuals might feel more comfortable using words by
means of linguistic labels or terms to articulate their preferences [37]. Furthermore, hu-
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mans exhibit a remarkable capability to manipulate perceptions and other characteristics
of physical and mental objects, without any exact numerical measurements and complex
computations [3, 9, 16, 24, 38]. Therefore, in this paper, the individuals’ preferences
between pair of alternatives will be assumed to be given in the form of linguistic labels.

It was mentioned before that the type of aggregation rule implemented is crucial
in designing the corresponding social choice rule. This paper focuses on the majority
voting rules, which are very easy to understand by voters and therefore, when comparing
two alternatives, they are seen as very attractive and appropriate to aggregate individual
preferences into a collective one. Simple majority rule [25] stands out among the different
majority rules. Under this rule, an alternative defeats another one when the number of
votes cast for the first one exceeds the number of votes cast for the second one. Simple
majority rule states as the most decisive aggregation rule. In fact, the requirement to
declare indifference between two alternatives is quite strong given that both alternatives
have to receive exactly the same number of favourable votes. Furthermore, under the
simple majority rule, the support required for an alternative to be the winner is minimum
because it is only required to exceed the defeated alternative in just one vote. This
characteristic turns out to become a drawback because the collective decision is very
unstable, i.e. it could be reverted with the change of just one vote. In an attempt
to overcome this shortcoming, tougher requirements for declaring an alternative as the
winner have been defined and studied. Among these rules, it is worth mentioning the
following: unanimous majority, absolute majority and qualified majority [7, 8, 30].

Majority based on difference of votes (Mk) [14, 19, 22] constitute a general approach
to majority voting rule that generalises all the above majority rules. This rule allows to
calibrate the amount of support required for the winner alternative by means of a diffe-
rence of votes fixed before the election process. At the extreme cases, i.e. no difference
and maximum difference of votes, the majority based on difference of votes becomes the
simple majority and unanimous majority, respectively. With this rule, indifference be-
tween two alternatives is possible to be declared for more cases than under the simple
majority rule. In fact, the indifference state could be enlarged as much as desired. The
application of the majority based on difference of votes to the case of [0,1]-valued recip-
rocal fuzzy preference relations is known as the majority based on difference in support
(M̃k) [20].

The aim of this paper is to fill the gap between the majority based on difference of votes
and the majority based on difference in support by providing a new majority rule based
on difference of support in the linguistic framework. Linguistic majority with difference
in support keeps the essence of the former rules in the sense that for an alternative to
be declared winner a specific support fixed before the election is to be achieved. The
challenge here is to generalise formally the rule to the case of being the preferences
linguistic rather than numeric in nature. An additional challenge here is to relate the
linguistic majority with difference in support rules that can be obtained when the main
two approaches to model and represent linguistic information are applied. On the one
hand, linguistic preferences can be modelled using a cardinal approach by means of fuzzy
sets and their associated membership functions [36]. On the other hand, an ordinal
approach can be used to model and manage linguistic preferences using the 2–tuple
symbolic representation [12]. Therefore, two new and different linguistic majority with
difference in support rules will be introduced: the linguistic fuzzy majority (LMK) and
the 2–tuple linguistic majority (2TMk). Figure 1 illustrates the new linguistic majorities
in relation with the corresponding ones developed for numerical preferences.
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Figure 1: Preferences and Majorities based on differences

The remainder of the paper is structured as follows: The next section introduces con-
cepts essential to the understanding of the rest of the paper. Following that, Section 3
introduces the concept of linguistic majority with difference in support and its mathema-
tical formulation for the main two approaches to model and represent linguistic informa-
tion: fuzzy set representation (Subsection 3.1) and the 2–tuple symbolic representation
(Subsection 3.2). Section 4 proves that both linguistic majority rules are mathematically
isomorphic when fuzzy sets are defuzzified into their centroid. In Section 5, the linguistic
majority based on difference in support is proved to verify the following relevant norma-
tive properties: anonymity, neutrality, monotonicity, weak Pareto and cancellativeness.
Lastly, Section 6 concludes the paper.

2. Preliminaries

Consider m voters provide their preferences on pairs of alternatives of a set X =
{x1, . . . , xn}. The preferences of each voter can be represented using a matrix, Rp =(
rpij
)
, where rpij stands for the degree or intensity of preference of alternative xi over

xj for voter p. The elements of Rp can be numerical values or linguistic labels. In the
following we focus on the former ones, leaving for Subsection 2.3 the second ones.

2.1. Numeric Preferences

There are two main types of numeric preference relations: crisp preference relations
and [0,1]-valued preference relations; with the second one being an extension of the first
one, i.e. [0,1]-valued preference relations have crisp relations as a particular case.

1. A crisp preference relation is characterised for having elements rpij that belong to

the discrete set of values {0, 1
2
, 1}. In this context, when alternatives are pairwise

compared, voters declare only their preference for one of the alternatives or their
indifference between the two alternatives. Thus, if rpij = 1 then voter p prefers

alternative xi to alternative xj, while if rpij = 1
2

the voter p is indifferent between

both alternatives. Moreover, it is always assumed that when rpij = 1
2

it is also

rpji = 1
2
; and when rpij = 1 then rpji = 0. This reciprocity property of preferences

guarantees that the preferences are represented by a weak order, i.e. the asymmetric
property is verified and ‘inconsistent’ situations where a voter could prefer two
alternatives at the same time are avoided. Formally, a binary preference relation
represented by �p is asymmetric if given two alternatives xi and xj, xi �p xj
implies that xj �p xi.
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2. The [0,1]-valued preference relation extends the crisp preference relation in that its
elements rpij can take any value from the unit interval [0, 1], with the following inter-
pretation: rpij > 0.5 indicates that the individual p prefers the alternative xi to the
alternative xj, with rpij = 1 being the maximum degree of preference for xi over xj;
rpij = 0.5 represents indifference between xi and xj for voter p. As in the previous
case, the reciprocity property of preferences, rpij + rpji = 1, is usually assumed as an
extension of the crisp asymmetry property described above. This type of preference
relations will be referred to as reciprocal preference relations in this paper. We note
that, in probabilistic choice theory, reciprocal preference relations are referred to as
probabilistic binary preference relations. In fuzzy set theory, reciprocal preference
relations when used to represent intensities of preferences have usually been referred
to as reciprocal fuzzy preference relations. Reciprocal preference relations can be
seen as a particular case of (weakly) complete fuzzy preference relations, i.e. fuzzy
preference relations satisfying rij + rji ≥ 1 ∀i, j.

2.2. Majority based on differences

In an attempt to overcome the support problems commonly attached to the simple
majority rule in decision-making contexts with crisp preferences, Garćıa-Lapresta and
Llamazares [19] formalise the concept of majority based on difference of votes or Mk–
majority, which was later axiomatically characterised in [14, 22].

Definition 1 (Mk–majority). Given k ∈ {0, . . . ,m − 1}, and a profile of individual
crisp preferences R(X) = (R1, . . . , Rm) on a set of alternatives X = {x1, . . . , xn}, the
Mk–majority is a collective profile of crisp preferences on X, i.e. a mapping from X ×X
to {1, 1

2
, 0}, with the following expression:

Mk(xi, xj) =


1 if mi > mj + k

0 if mj > mi + k

1
2

otherwise,

where mi is the number of votes cast by the individuals for the alternative xi and mj is
the number of votes cast for the alternative xj.

Thus, under the Mk–majority, given a difference of votes k, an alternative, xi, defeats
another alternative, xj, by k votes (Mk(xi, xj) = 1) when the difference between the
votes cast for the alternative xi and the votes cast for the alternative xj is greater than
k. Compared with the simple majority rule, the main change introduced by the majority
based on difference of votes affect the indifference state. The indifference of preference
between two alternatives happens when the difference between the votes cast for both
alternatives in absolute value is lower than or equal to k, i.e. when the difference of votes
belongs to {0, 1, . . . , k}.

Mk –majority generalises other majority rules. In particular, M0 –majority is the
simple majority rule, whereas M(m−1)–majority is the unanimous majority rule. More-
over, Mk–majority and qualified majorities, which are located between absolute majority
and unanimity, are equivalent when individual indifference is ruled out from individual
preferences. These facts are summarized in Figure 2.

Garćıa-Lapresta and Llamazares extend Mk–majority to the framework of [0, 1]–

valued preferences [20]. Majority based on difference in support or M̃k–majority allows
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Figure 2: Mk–majority versus other majorities.

voters to show their preferences between pairs of alternatives through reciprocal prefe-
rence relations whilst still maintaining the requirement of a higher support to the winner
alternative than with the simple majority rule. Under M̃k–majority, an alternative, xi,
defeats another one, xj, by a threshold of support k, when the sum of the intensities of
preference of xi over xj for the m voters exceeds the sum of the intensities of preference
of xj over xi in a quantity greater than k.

Definition 2 (M̃k–majority). Given a threshold k ∈ [0,m) and a profile of individual

reciprocal preference relations R(X) = (R1, . . . , Rm), the M̃k–majority is a collective
profile of crisp preferences on X, i.e. a mapping from X × X to {1, 1

2
, 0}, with the

following expression:

M̃k(xi, xj) =


1 if

m∑
p=1

rpij >
m∑
p=1

rpji + k

0 if
m∑
p=1

rpji >
m∑
p=1

rpij + k

1
2

otherwise,

Note that with M̃k–majority, indifference between two alternative happens when the
difference in support between the alternatives in absolute value is lower than or equal to
k, i.e. it is a value in the closed interval [0, k].

A direct consequence of the reciprocity property is that M̃k–majority can be equiva-
lently expressed in terms of the average of individual intensities of preference [20]:

M̃k(xi, xj) =


1 if 1

m

m∑
p=1

rpij >
m+k
2m

0 if 1
m

m∑
p=1

rpij <
m−k
2m

1
2

otherwise.

(1)

The term 1
m

m∑
p=1

rpij can be interpreted as the collective preference (the average of all the

votes) of the first alternative, xi, over the second one, xj. Under the M̃k–majority rule,
the indifference between two alternatives does not necessarily happen when the collective
preference, expressed in terms of the arithmetic mean of the individual preferences, equals
the value 0.5. M̃k–majority declares indifference when the collective preference belongs
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to the closed interval
[
0.5− k

2m
, 0.5 + k

2m

]
, which we refer to as the indifference interval.

When the collective preference is greater than the upper bound of the indifference interval,
the first alternative is preferred to the second one. On the other hand, when the collective
preference is lower than the lower bound of the indifference interval, the second alternative
is preferred to the first one. In comparison with the simple majority rule, the M̃k–majority
rule promotes an increase on the cases where the collective indifference is declared, which
depends on the threshold of support required to define the strict preference state.

2.3. Linguistic Preferences

As mentioned before, subjectivity, imprecision and vagueness in the articulation of
opinions pervade real world decision applications, and individuals might feel more com-
fortable using words by means of linguistic labels or terms to articulate their preferences
[37]. In these cases is still valid the following quotation by Zadeh [38]: “Since words,
in general, are less precise than numbers, the concept of a linguistic variable serves the
purpose of providing a means of approximate characterization of phenomena which are
too complex or too ill-defined to be amenable to description in conventional quantitative
terms.”

Let L = {l0, . . . , ls} be a set of linguistic labels ( s ≥ 2), with semantic underlying a
ranking relation that can be precisely captured with a linear order, i.e., l0 < l1 < . . . <
ls. In Table 1, an example with seven linguistic labels and their corresponding semantic
meanings for the comparison of the ordered pair of alternatives (xi, xj).

Linguistic label Meaning
l0 xj is absolutely preferred to xi
l1 xj is highly preferred to xi
l2 xj is slightly preferred to xi
l3 xi and xj are equally preferred
l4 xi is slightly preferred to xj
l5 xi is highly preferred to xj
l6 xi is absolutely preferred to xj

Table 1: Seven linguistic labels

Assuming that the number of labels is odd and the central label ls/2 stands for the in-
difference state when comparing two alternatives, the remaining labels are usually located
symmetrically around that central assessment, which guarantees that a kid of reciprocity
property holds as in the case of numerical preferences previously discussed. Thus, if the
linguistic assessment associated to the pair of alternatives (xi, xj) is lij = lh ∈ L, then the
linguistic assessment corresponding to the pair of alternatives (xj, xi) would be lji = ls−h.
Therefore, the operator defined as N(lh) = lg with (g + h) = s is a negator operator
because N (N(lh)) = N(lg) = lh.

The corresponding matrix notation of linguistic individual preferences of voter p is
R = (lpij) with lpij ∈ L. A profile of linguistic preferences for the pair of alternatives
(xi, xj) is the vector of its associated linguistic preferences given by a set of m voters,
(l1ij, . . . , l

m
ij ) ∈ Lm. The main two representation formats of linguistic information are

[13]: the cardinal, which is based on the use of fuzzy set characterised with membership
functions and that are mathematically processed using Zadeh’s extension principle [37];
and the ordinal, which is based on the use of 2-tuples symbolic methodology [12].
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2.3.1. Fuzzy set linguistic representation format

Convex normal fuzzy subsets of the real line, also known as fuzzy numbers, are com-
monly used to represent linguistic terms. By doing this, each linguistic assessment is
represented using a fuzzy number that is characterized by a membership function, with
base variable the unit interval [0, 1], describing its semantic meaning. The membership
function maps each value in [0, 1] to a degree of performance which represents its com-
patibility with the linguistic assessment [37]. Figure 3 illustrates a fuzzy number with
Gaussian membership function.

0 0.43 0.5 0.57 1
0

0.2

0.4

0.6

0.8

1

µτ

Figure 3: Representation of a fuzzy number with Gaussian membership function

It is worth mentioning that some authors consider trapezoidal fuzzy numbers as the
most appropriate to represent linguistic preferences [5, 21] because they are more general
than triangular and interval fuzzy numbers. Given four real numbers t1, t2, t3, t4 , a
trapezoidal fuzzy number (TFN) τ = (t1, t2, t3, t4) is characterised by the the following
membership function:

µτ (u) =


0, if u < t1 or u > t4

u−t1
t2−t1 , if t1 < u < t2

1, if t2 ≤ u ≤ t3
t4−u
t4−t3 , if t3 < u < t4.

(2)

A representation of a set of seven balanced linguistic terms using trapezoidal fuzzy
numbers is given in Figure 4. Alternative representations are possible. For instance
in [11], absolute preference of one alternative over another is represented using crisp
values: l0 = (0, 0, 0, 0) and l6 = (1, 1, 1, 1).
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1
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Figure 4: Representation of seven balanced linguistic terms with trapezoidal membership functions

2.3.2. 2–tuple linguistic representation format

Linguistic assessments can also be represented and aggregated using symbolic repre-
sentation models based on an ordinal interpretation of the semantic meaning associated
to the linguistic labels. Within this framework, the following different approaches have
being developed: a linguistic symbolic computational model based on ordinal scales and
max-min operators [34], a linguistic symbolic computational model based on indexes
[6, 33].

In Herrera and Martinez [12], a more general approach was introduced: the 2-tuple
linguistic model. This linguistic model takes as a basis the symbolic representation model
based on indexes and in addition defines the concept of symbolic translation to represent
the linguistic information by means of a pair of values called linguistic 2-tuple, (lb, λb),
where lb ∈ L is one of the original linguistic terms and λb is a numeric value representing
the symbolic translation. This representation structure allows, on the one hand, to obtain
the same information than with the symbolic representation model based on indexes
without losing information in the aggregation phase. On the other hand, the result of
the aggregation is expressed on the same domain as the one of the initial linguistic labels
and therefore, the well-known re-translation problem of the above methods is avoided.

Definition 3 (Linguistic 2–tuple representation). Let a ∈ [0, s] be the result of a
symbolic aggregation of the indexes of a set of labels assessed in a linguistic term set
L = {l0, . . . , ls}. Let b = round(a) ∈ {0, . . . , s}. The value λb = a − b ∈ [−0.5, 0.5) is
called a symbolic translation, and the pair of values (lb, λb) is called the 2–tuple linguistic
representation of the symbolic aggregation a.

The 2–tuple linguistic representation of symbolic aggregation can be mathematically
formalised with the following mapping:

φ : [0, s] → L × [−0.5, 0.5)
φ(a) = (lb, λb).

(3)

Based on the linear order of the linguistic term set and the complete ordering of the set
[−0.5, 0.5), it is easy to prove that φ is strictly increasing and continuous and, therefore
its inverse function exists:

φ−1 : L × [−0.5, 0.5) → [0, s]
φ−1(lb, λb) = b+ λb = a.
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The following negation operator is defined: N(φ(a)) = φ(s− a). Figure 5 illustrates the
application of the 2-tuple function φ and its inverse for a linguistic term set of cardinality
seven. The value of the symbolic translation is assumed to be 3.7, which means that
round(3.7) = 4 and therefore it can be represented with the 2-tuple (l4,−0, 3).

a = 3.7 (lb, λb) = (l4,−0.3)

φ

φ−1

0 1 2 3 4 5 6

Figure 5: Ordinal linguistic representation: symbolic translation and 2-tuples

3. Linguistic majorities with difference in support

Before majority rules based on difference of votes in the context of linguistic prefer-
ences are defined, we need to introduce the linguistic decision rule concept. Recall that
a profile of linguistic preferences for a pair of alternatives alternatives (xi, xj) is a vector
of its associated linguistic preferences given by a set of m voters (l1ij, . . . , l

m
ij ) ∈ Lm.

Definition 4. Given a pair of alternatives (xi, xj) ∈ X ×X a linguistic decision rule is
a mapping

F : Lm → {0, 0.5, 1},

such that:

F (l1ij, . . . , l
m
ij ) =


1 if xi defeats xj;
0 if xj defeats xi, ;
0.5 if xi and xj tie.

The generalisation of the majority based on difference of votes from the context of
numerical preferences to the linguistic one involves: (1) the computation of the voters
average linguistic assessment for a pair of alternatives, and (2) the evaluation of the
difference between two linguistic evaluations. In the following, we will formalise this in
both linguistic representation methodologies.

3.1. Fuzzy linguistic majority with difference in support

In what follows, Ãpij denotes the normal and convex fuzzy set representing the lin-
guistic preference of alternative xi over xj provided by voter p. As mentioned before,
the formalisation of the fuzzy linguistic majority with difference in support requires the

computation of the average fuzzy linguistic preference, 1
m

m∑
p=1

Ãpij, of a profile of linguistic

preferences
(
Ã1
ij, . . . , Ã

m
ij

)
.

The extension principle allows the domain of a functional mapping to be extended
from crisp elements to fuzzy sets as given below [10, 37]:
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Definition 5 (Extension Principle). Let X1 ×X2 × . . .×Xn be a universal product
set and F a functional mapping of the form

F : X1 ×X2 × . . .×Xn −→ Y

that maps the element (x1, x2, . . . , xn) ∈ X1 × X2 × . . . × Xn to the element y =

F (x1, x2, . . . , xn) of the universal set Y . Let Ãi be a fuzzy set over the universal set
Xi with membership function {µÃi(xi)|xi ∈ Xi} (i = 1, 2, . . . , n). The membership

function {µB̃(y)| y ∈ Y } of the fuzzy set B̃ over the universal set Y

B̃ = F (Ã1, Ã2, . . . , Ãn)

is

µB̃(y) =

 sup
y=F (x1,x2,...,xn)

[
µÃ1

(x1) ∗ µÃ2
(x2) ∗ . . . ∗ µÃn(xn)

]
if ∃ y = F (x1, x2, . . . , xn)

0 otherwise.

(4)
where ∗ is a t-norm.

For the work presented in this paper, the minimum t-norm (∧) is used.
In what follows we will first extend the real function f : [0, 1]× [0, 1] −→ [0, 1],

f(u1, u2) = u1 + u2,

to f(Ã1, Ã2) where Ã1, Ã2 are over the set [0, 1] and associated membership functions

µÃ1
(u1), µÃ2

(u2), with u1, u2 ∈ [0, 1]. The extension principle states that B̃ = f(Ã1, Ã2)
is a fuzzy set over the set [0, 1] with membership function µB̃ : [0, 1]→ [0, 1];

µB̃(u) = sup
u1+u2=u
u1,u2∈[0,1]

[
µÃ1

(u1) ∧ µÃ2
(u2)

]
.

The representation theorem of fuzzy sets [36] provides an alternative and convenient
way to define a fuzzy set via its corresponding family of crisp α-level sets. The α-level
set of a fuzzy set Ã over the universe Z is defined as Ãα = {z ∈ Z|µÃ(z) ≥ α}. The set

of crisp sets {Ãα|0 < α ≤ 1} is said to be a representation of the fuzzy set A. Indeed,

the fuzzy set Ã can be represented as

Ã = ∪
0<α≤1

αÃα

with membership function
µÃ(z) = sup

α: z∈Ãα
α.

Let Ãα1 and Ãα2 be the α-level sets of fuzzy sets Ã1 and Ã2 described above. We have

f
(
Ãα1 × Ãα2

)
=
{
u1 + u2|u1 ∈ Ãα1 , u2 ∈ Ãα2

}
.

Both B̃α and f
(
Ãα1 × Ãα2

)
are crisp sets. Furthermore, we have:
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I. Let u ∈ B̃α. By definition, we have µB̃(u) ≥ α and there exists at least three values
u1, u2 ∈ [0, 1] such that u1 + x2 = u and

[
µÃ1

(u1) ∧ µÃ2
(u2)

]
≥ α. Therefore, it is

true that µÃ1
(u1) ≥ α and µÃ2

(u2) ≥ α, which means that u1 ∈ Ãα1 and u2 ∈ Ãα2 .

Consequently, u ∈ f
(
Ãα1 × Ãα2

)
, i.e. B̃α ⊆ f (Aα1 × Aα2 ) .

II. Let u ∈ f
(
Ãα1 × Ãα2

)
. There exist u1 ∈ Ãα1 and u2 ∈ Ãα2 such that u1 + u2 = u.

We have that µÃ1
(u1) ≥ α and µÃ2

(u2) ≥ α and therefore it is:

sup
u1+u2=u

u1∈Ãα1 ,u2∈Ãα2

[
µÃ1

(u1) ∧ µÃ2
(u2)

]
≥ α.

Because Ãα1 , Ã
α
2 ⊆ [0, 1] then we have:

sup
u1+u2=u
u1,u2∈[0,1]

[
µÃ1

(u1) ∧ µÃ2
(u2)

]
≥ sup

u1+u2=u
u1∈Ãα1 ,u2∈Ãα2

[
µÃ1

(u1) ∧ µÃ2
(u2)

]
.

We conclude that u ∈ B̃α, i.e. f
(
Ãα1 × Ãα2

)
⊆ B̃α.

Therefore, we have the following equality:

Bα = f (Aα1 × Aα2 ) . (5)

A similar reasoning will lead us to conclude that the α–level set of the average of
fuzzy numbers is equal to the average of the α–level set of fuzzy sets [39]. Denoting

f (Aα1 × Aα2 ) = Ãα1 + Ãα2 , it is safe to use the following notation

B̃ = Ã1 + Ã2 ⇐⇒
(
Ã1 + Ã2

)α
= Ãα1 + Ãα2 .

The α–level sets of fuzzy numbers are closed intervals, and therefore interval arithmetic
yields: (

Ã1 + Ã2

)α
= Ãα1 + Ãα2 = [u−1 , u

+
1 ] + [u−2 , u

+
2 ] = [u−1 + u−2 , u

+
1 + u+2 ].

An example of the addition using the α–level sets is shown in Figure 6. Given the fuzzy
numbers l3 and l4 (Figure 4), l3 + l4 is constructed by applying (5) to compute the lower
and upper bounds of its α–level sets, followed by the application of the representation
theorem of fuzzy sets. The computation of the lower bound of the 0.2–level set is given.

0 0.386 0.553 0.939 2
0

0.2

1
l3 l4 l3 + l4

Real numbers

α–level

Figure 6: α–level addition of linguistic terms

12



Once we have solved the computation of the average linguistic preference of the profile
of linguistic preferences associated to a pair of alternatives, the formalisation of the
fuzzy linguistic majority with difference in support requires its classification regarding
its containment in one of the intervals corresponding to the social preference or social
indifference established by the M̃k–majority. In other words, we need to find out when

the following inequality 1
m

m∑
p=1

Ãpij >
m+k
2m

is true or when it is false. Because crisp numbers

are particular types of fuzzy numbers, the above inequality involves the comparison of
fuzzy numbers. Yager [35], pointed out that this problem has been extensively studied
and that there is no unique best approach. Indeed, the set of fuzzy numbers is not
totally ordered and therefore it is not possible to achieve a clear social decision in this
case. This is clearly illustrated in Figure 7, where three different aggregated fuzzy set
are displayed, namely B̃1, B̃2 and B̃3. Note that because B̃1 and B̃2 completely belong
to the interval of preference for xj and to the interval of indifference between both
alternatives, respectively, there is no doubt about the social decision in these cases. On
the contrary, the case represented by B̃3 is ambiguous given that such set is located in
between the interval of preference for xi and the indifference state. Thus, a different
approach is needed if we are to provide a clear cut social choice as per Definition 4.

0 0.5− k
2m

0.5 0.5 + k
2m

1
0

1

B̃1 B̃2 B̃3

xi I xjxj P xi xi P xj

µ

0

1

Figure 7: Comparison between aggregated fuzzy sets and preference or indifference states.

A widely used approach to rank fuzzy numbers consist in converting them into a
representative crisp value, and perform the comparison on them [35]. Two defuzzification
methods widely used are: the centre of area method (COA) and the mean of maximum
method (MOM). The first one computes the centre of mass of the membership function
of the fuzzy set (the centroid), whereas the second one computes the mid-point of the
1–level set of the fuzzy set.

For a trapezoidal fuzzy number Ã with membership function (2), we have uCOA(Ã) =
t1+t4

2
and uMOM(Ã) = t2+t3

2
. Under the assumed property of internal symmetry of the

linguistic labels, it is clear that both values coincide. Therefore, we refer to these real
numbers simply as u(Ã). Also, given two trapezoidal fuzzy numbers, namely Ã1 and Ã2,

it holds that u(Ã1 + Ã2) = u(Ã1) + u(Ã2). Hence, u is an additive function.
Note that the range of function u is [ u(l0), u(ls)], while the range of m+k

2m
is [0, 1].

Thus, to carry out a fair comparison in the formalisation of the linguistic majority with
difference in support, the following function u’ with range [0, 1] is used:

u’(Ã) =
u(Ã) − u(l0)

u(ls) − u(l0)
.
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Below, we formally define the linguistic majority with difference in support represented
by fuzzy sets. Under this rule, an alternative, say xi, defeats another one, say xj by a
threshold of support K, if the defuzzified value attached to the average fuzzy set of the
voters’ linguistic valuations between xi and xj exceeds the value 0.5 in a quantity that
depends on the threshold K, fixed before the election process.

Definition 6 (LMK–majority with difference in support). Given a set of alterna-
tives X and a profile of individual reciprocal fuzzy linguistic preference relations R(X) =
(R1, . . . , Rm), the LMK–majority with difference in support is the following linguistic de-
cision rule:

LMK(Ã1
ij, . . . , Ã

m
ij ) =


1 if u’

(
1
m

m∑
p=1

Ãpij

)
> m+K

2m

0 if u’

(
1
m

m∑
p=1

Ãpij

)
< m−K

2m

0.5 otherwise.

(6)

where u’

(
1
m

m∑
p=1

Ãpij

)
is the defuzzified value of the fuzzy average linguistic preference

of the profile of fuzzy linguistic preferences of the pair of alternatives (xi, xj); and K ∈
[0, m) represents the threshold of support required for an alternative to be the social
winner.

In the following result we prove that function u’ is additive:

Proposition 1. Function u’ verifies

u’

(
1

m

m∑
p=1

Ãpij

)
=

1

m

m∑
p=1

u’(Ãpij).

Proof. Because u is additive we have that

u

(
1

m

m∑
p=1

Ãpij

)
=

1

m

m∑
p=1

u(Ãpij).

Also, we have that u and u’ are related in the form u ≡ c · u’ + d where c =
u(lh) − u(l0) and d = u(l0), it is:

u

(
1

m

m∑
p=1

Ãpij

)
= c · u’

(
1

m

m∑
p=1

Ãpij

)
+ d

u

(
1

m

m∑
p=1

Ãpij

)
=

1

m

m∑
p=1

u(Ãpij) =
1

m

(
m∑
p=1

[
c · u’(Ãpij) + d

])

= c · 1

m

m∑
p=1

u’(Ãpij) + d.

Thus, we have:

u’

(
1

m

m∑
p=1

Ãpij

)
=

1

m

m∑
p=1

u’(Ãpij),

i.e. u’ is additive.
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Therefore expression (6) can be rewritten as follows:

LMK(Ã1
ij, . . . , Ã

m
ij ) =


1 if 1

m

m∑
p=1

u’(Ãpij) >
m+K
2m

0 if 1
m

m∑
p=1

u’(Ãpij) <
m−K
2m

0.5 otherwise,

(7)

with K ∈ [0, m) and 1
m

m∑
p=1

u’(Ãpij) is the average of the defuzzified values associated

with the profile of fuzzy linguistic preferences of the pair of alternatives (xi, xj) as per
the assessment of each individual voter.

In the following, we provide an example to illustrate the application of the LMK–
majority with difference in support.

Example 1. Consider nine voters expressing their preferences between two alternatives,
(xi, xj), using the linguistic labels of Table 1. We use the set of trapezoidal fuzzy numbers
of Table 2, which were represented in Figure 4, to represent the linguistic information:

Linguistic label Trapezoidal fuzzy number u(lh) u’(lh)
l0 (0, 0, 0.033, 0.133) 0.016 0
l1 (0.033, 0.133, 0.2, 0.3) 0.166 0.155
l2 (0.2, 0.3, 0.366, 0.466) 0.333 0.327
l3 (0.366, 0.466, 0.533, 0.633) 0.5 0.5
l4 (0.533, 0.633, 0.7, 0.8) 0.666 0.672
l5 (0.7, 0.8, 0.866, 0.966) 0.833 0.844
l6 (0.866, 0.966, 1, 1) 0.983 1

Table 2: Trapezoidal fuzzy numbers and centroids.

For the following profile of linguistic preferences (l0, l1, l2, l2, l2, l3, l6, l6, l6), we compute
in Table 3 two different LMK–majorities with difference in support: the simple linguistic
majority LM0, and LM3. In the first case, it is enough to have an average centroid of
the linguistic profile greater than the centroid (0.5) of the central linguistic assessment
(l3). In the second case, the threshold required implies that the average centroid of the
linguistic profile is to be greater than the centroid of the linguistic label l4. In the first
case, we have that xi is the social winner, whilst there is social indifference in the second
case.

K u’
(

1
m

∑m
p=1 Ã

p
ij

)
= 1

m

∑m
p=1 u’

(
Ãpij

)
m+K
2m

LMK

0
3

u’(0, 0.155, 0.327, 0.327, 0.327, 0.5, 1, 1, 1) = 0.515
0.5

0.666
1

0.5

Table 3: Aggregation and results for two different LMK–majorities

The following observations are worth highlighting:
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• The LMK–majority with difference in support generalises the simple linguistic ma-
jority [18]. Indeed, LM0–majority coincides with the simple majority based on
linguistic labels. In this case, no difference of support between the alternatives is
required.

• Linguistic unanimity holds when all the voters involved in the election prefer the
same alternative, even when their intensities of preference could differ from one to
another. The following three linguistic profiles with nine voters and a set of seven
linguistic terms will serve to illustrate this concept.

(l0, l0, l0, l1, l1, l1, l2, l2, l2); (l6, l6, l6, l6, l6, l6, l6, l6, l6); (l0, l0, l0, l0, l0, l0, l0, l0, l3).

The first two profiles fulfil linguistic unanimity: in the first one all nine voters
express a preference for the second alternative, whilst in the second one the first
alternative is preferred by all nine voters. However, in the third profile there is
no unanimity of preferences because voter 9 expresses indifference between both
alternatives and therefore differs from the rest of voters, who strongly prefer the
second alternative:

Given a profile of fuzzy linguistic preferences (Ã1
ij, . . . , Ã

m
ij ), linguistic unanimity

happens if u’(Ãpij) ≤ u’(l s
2
−1) (∀p), or u’(Ãpij) ≥ u’(l s

2
+1) (∀p). In the first case, all

voters prefer the second alternative over the first one, whilst the first alternative is
preferred over the second one in the second case. Algebraic manipulation leads us
to the following threshold values: K > m− 2m · u’(l s

2
−1) for the social preference

of the second alternative, and K > 2m · u’(l s
2
+1) −m for the social preference of

the first alternative.

Because we are assuming that the linguistic labels are symmetrical and balanced
around the central one, then if the fuzzy sets used to represent them are all of the
same type and uniformly distributed in the domain [0, 1], the normalised centroid
function u’ would be u’(lh) = h/s (∀h), and therefore the threshold value to assure
linguistic unanimity would be K > 2m/s.

3.2. 2–tuple linguistic majority with difference in support

In order to extend the Mk–majority to the framework of the 2–tuple, the addition as
well as a rule to compare 2–tuples are needed.

Definition 7 (2–tuple Addition [12]). The addition of 2–tuples, φ(a1) = (lb1 , λb1)
and φ(a2) = (lb2 , λb2), with b1 = round(a1), b2 = round(a2), λb1 = a1 − b1 and
λb2 = a2 − b2 , is computed as follows:

φ(a1) + φ(a2) = (lb12 , λb12),

with b12 = round(a1 + a2), and λb12 = (a1 + a2)− b12.

Definition 8 (2–tuple Lexicographic Ordering [12]). Given φ(a1) = (lb1 , λb1) and
φ(a2) = (lb2 , λb2), we have that,

1. If b1 is greater than b2, then φ(a1) > φ(a2).

2. If b1 is equal to b2 and λb1 is greater than λb1 , then φ(a1) > φ(a2).
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3. If b1 is equal to b2 and λb1 is equal to λb1 , then φ(a1) = φ(a2).

Below, we formally define the 2–tuple linguistic majority with difference in support.
Under this rule, an alternative, say xi, defeats another one, say xj by a threshold of
support k, if the 2–tuple linguistic representation of the average symbolic aggregation
of the linguistic preferences of xi over xj exceeds the 2–tuple linguistic representation
associated to the indifference state in a value that depends on the threshold k, fixed
before the election process.

Definition 9 (2TMk–majority with difference in support). Given a set of alter-
natives X and a profile of individual reciprocal 2–tuple linguistic preference relations
R(X) = (R1, . . . , Rm), the 2TMk–majority with difference in support is the following
linguistic decision rule:

2TMk(a
1
ij, . . . , a

p
ij) =


1 if 1

m

m∑
p=1

φ
(
apij
)
> φ

(
s ·m+ k

2m

)
0 if 1

m

m∑
p=1

φ
(
apij
)
< φ

(
s ·m− k

2m

)
0.5 otherwise.

(8)

where 1
m

m∑
p=1

φ
(
apij
)

is the average of the 2–tuple representation of the linguistic preferences

provided by the voters for the pair of alternatives (xi, xj), φ is the 2–tuple symbolic
aggregation mapping (3); and k ∈ [0, m · s) represents the threshold of support required
for an alternative to be the social winner.

We note that in the context of the 2–tuple linguistic representation, the linguistic
label lh is associated a valuation that coincides with its ordering position within L, i.e.
h, and therefore the maximum social preference value a set of voters can assign to an
alternative when compared against another one is m·s, which corresponds to the linguistic
profile (ls, · · · , ls). This explains why [0, m · s) is the range of values for parameter k.

Given that in the ordinal representation of linguistic information the addition of lin-
guistic labels is defined as la1 + la2 = la1+a2 [33], it is obvious that function φ is additive.
Therefore expression (8) can be rewritten as follows:

2TMk(a
1
ij, . . . , a

p
ij) =


1 if φ

(
1
m

m∑
p=1

apij

)
> φ

(
s ·m+ k

2m

)
0 if φ

(
1
m

m∑
p=1

apij

)
< φ

(
s ·m− k

2m

)
0.5 otherwise.

(9)

where 1
m

m∑
p=1

apij is the symbolic aggregation, specifically the arithmetic mean, of the lin-

guistic preferences provided by the voters for the pair of alternatives (xi, xj).
The following example illustrates the use of the 2TMk–majority with difference in

support:

Example 2 (Example 1 continuation). Table 4 presents the results for two different
2TMk–majorities: 2TM0 and 2TM18. In the first one, the alternative xi is declared the
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winner when the 2-tuple representation of the symbolic arithmetic mean of the linguistic
preferences provided by the voters for the pair of alternatives (xi, xj) is greater than
the indifference 2-tuple (l3, 0); while it has to be greater than the 2–tuple (l4, 0) in the
second case.

k 1
m

∑m
p=1 a

p
ij φ

(
1
m

∑m
p=1 a

p
ij

)
φ
(
s·m+k
2m

)
2TMk

0
18

0+1+2+2+2+3+6+6+6
9

= 3.111 (l3, + 0.111)
(l3, 0)
(l4, 0)

1
0.5

Table 4: Aggregation and results for two different 2TMk–majorities

Examples 1 and 2 let us hypothesise that LMK–majority and 2TMk–majority coin-
cide when the following relationship hold K = k/s. This will be proven in the following
section.

4. Equivalence between LMK and 2TMk majorities with difference in support

So far, we have provided two apparently different extensions of Mk–majorities to the
framework of the linguistic preferences. In this section, we prove that LMK and 2TMk

are equivalent.
Let lh ∈ L be a linguistic label, u(lh) and φ(lh) its associated centroid and 2-tuple

representation. Let δ be the function that maps φ(lh) into u’(lh), i.e.

δ (φ(lh)) = u’(lh). (10)

Note that the following equivalence is true φ(la) ≡ a, and therefore it is true that the
above function δ is the restriction of a continuous and strictly increasing function with
domain [0, s]:

δ : [0, s] −→ [0, 1]

such that δ(0) = 0, δ(s/2) = 0 and δ(s) = 1.

Theorem 1 (LMK and 2TMk Equivalence). If δ is additive then LMK–majority is
equivalent to 2TMk–majority.

Proof. The following results is well known: if a continuous function verifies F (x + y) =
F (x) + F (y) ∀x, y ∈ R then there exists a constant a ∈ R such that F (x) = a · x ∀x ∈ R
[1]. This result applied to function δ implies that δ(x) = x/s. Therefore we have:

1

m

m∑
p=1

u’(Ãpij) >
m+K

2m
⇔ 1

m

m∑
p=1

δ
(
φ(Ãpij)

)
>

m+K

2m
,

i.e.
1

m

m∑
p=1

u’(Ãpij) >
m+K

2m
⇔ 1

m

m∑
p=1

φ(Ãpij) >
s ·m+ s ·K

2m
.

We conclude that LMK–majority is equivalent to 2TMk–majority when k = s ·K.

Theorem 1 establishes the condition for LMK–majority and 2TMk–majority to be
mathematically isomorphic: δ(x) = x/s. In the following section we prove a number of
normative properties for the 2TMk–majority with difference in support, which obviously
apply to the LMK–majority using the relationship proved in Theorem 1.
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5. Properties of linguistic majorities with difference in support

For convenience, we use Expression (8) for 2TMk–majority with difference in support:

2TMk(a
1
ij, . . . , a

p
ij) =


1 if 1

m

m∑
p=1

φ
(
apij
)
> φ

(
s ·m+ k

2m

)
0 if 1

m

m∑
p=1

φ
(
apij
)
< φ

(
s ·m− k

2m

)
0.5 otherwise.

where 1
m

m∑
p=1

φ
(
apij
)

is the average of the 2–tuple representation of the linguistic preferences

provided by the voters for the pair of alternatives (xi, xj), φ is the 2–tuple symbolic
aggregation mapping (3); and k ∈ [0, m · s) represents the threshold of support required
for an alternative to be the social winner.

The first normative property that 2TMk–majority fulfils is anonymity, i.e. the order
in which the linguistic valuations of the voters are given is irrelevant for the final social
outcome. Indeed, this is a direct consequence of the arithmetic mean being commutative.

Proposition 2 (Anonimity). Given a profile of linguistic preferences (l1, . . . , lm) ∈ Lm,
the following equality holds

2TMk(l
1, . . . , lm) = 2TMk(l

σ(1), . . . , lσ(m)).

for any permutation σ : {1, . . . ,m} → {1, . . . ,m}.

Neutrality means that the aggregation rule should treat alternatives equally. In the
proposition bellow, that property is proven.

Proposition 3 (Neutrality). Given a profile of linguistic preferences (l1, . . . , lm) ∈ Lm,
The following equality holds

2TMk(N(l1), . . . , N(lm)) = 1− 2TMk(l
1, . . . , lm).

Proof. We have to prove the following three statements.

1. If 2TMk(N(a1ij), . . . , N(amij )) = 1, then 2TMk(a
1
ij, . . . , a

m
ij ) = 0.

2. If 2TMk(N(a1ij), . . . , N(amij )) = 0, then 2TMk(a
1
ij, . . . , a

m
ij ) = 1.

3. If 2TMk(N(a1ij), . . . , N(amij )) = 0.5, then 2TMk(a
1
ij, . . . , a

m
ij ) = 0.5.

Given a profile of linguistic preferences, (l1, . . . , lm), the first step is to express it in
terms of its equivalent symbolic translation, i.e., (a1, . . . , am), and therefore we have that
lp ≡ φ(ap) and N(lp) ≡ N (φ(ap)) = φ(s− ap) = φ(s)− φ(ap) = s− φ(ap).

We have

1

m

m∑
p=1

N (φ(ap)) =
1

m

m∑
p=1

(s− φ(ap)) = s− 1

m

m∑
p=1

φ(ap)

and

φ(s)− φ
(
s ·m+ k

2m

)
= φ

(
s ·m− k

2m

)
.
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Thus
1

m

m∑
p=1

N (φ(ap)) > φ

(
s ·m+ k

2m

)
⇔ 1

m

m∑
p=1

φ(ap) < φ

(
s ·m− k

2m

)
,

which proves item 1. The proof of items 2 and 3 are similar.

Monotonicity is proven next. Under this property, the majority value does not de-
crease when the individual linguistic preference evaluation of a profile increase.

Proposition 4 (Monotonicity). Given two profiles of linguistic preferences, (l1, . . . , lm)
and (l

′1, . . . , l
′m), such that it holds that li ≥ l

′i (∀i) then:

2TMk(l
1, . . . , lm) ≥ 2TMk(l

′1, . . . , l
′m).

Proof. Recall that both function φ and the arithmetic mean are increasing, and therefore
denoting li ≡ φ(ap) and l

′i ≡ φ(a
′p) we have

li ≥ l
′i ⇒ 1

m

m∑
p=1

φ(ap) ≥ 1

m

m∑
p=1

φ(a
′p),

which proves that
2TMk(l

1, . . . , lm) ≥ 2TMk(l
′1, . . . , l

′m).

The weak Pareto property presented below, asserts that the result under the rule has
to respect unanimous profiles.

Proposition 5 (Weak Pareto). The following equalities hold:

1. 2TMk(ls, . . . , ls) = 1

2. 2TMk(l0, . . . , l0) = 0.

Proof. On the one hand, we have

1

m

m∑
p=1

φ(s) = φ(s) ≥ φ

(
m · s+ k

2m

)
(∀k),

and therefore
2TMk(ls, . . . , ls) = 1.

On the other hand

1

m

m∑
p=1

φ(0) = φ(0) ≤ φ

(
m · s− k

2m

)
(∀k),

and therefore
2TMk(l0, . . . , l0) = 0.
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Finally, the cancellative property is proven. Given two profiles with same linguistic
labels but two of them, then if the addition of the symbolic translations of the differing
linguistic labels in each profile coincide, then the social majority is the same for the two
profiles.

Proposition 6 (Cancellative). Given two profiles of linguistic preferences, (l1, . . . , lm)
and (l

′1, . . . , l
′m), such that

lh = l
′h ∀h 6= p, q; lp 6= l

′p, lq 6= l
′q with lp + lq = l

′p + l
′q

then
2TMk(l

1′ , . . . , lm
′
) = 2TMk(l

1, . . . , lm).

Proof. Note that lh = l
′h ∀h 6= p, q; lp 6= l

′p, lq 6= l
′q with lp + lq = l

′p + l
′q implies

1
m

m∑
p=1

φ(ap) = 1
m

m∑
p=1

φ(a
′p).

6. Conclusion

A new aggregation rule that extends the majority based on difference of votes from
the context of crisp preferences to the framework of linguistic preferences has been in-
vestigated. Linguistic majorities with difference in support have been formalized for the
two main representation methodologies of linguistic preferences: the cardinal, based on
the use of fuzzy set; and the ordinal, based on the use of the 2-tuples. It has been
proven that both representations are mathematically isomorphic when fuzzy numbers are
ranked using their respective centroids, and therefore it can be concluded that the car-
dinal approach constitutes a more general framework to model linguistic majorities with
difference in support. Finally, a set of normative properties have been demonstrated to
hold for the new linguistic majorities.

Some interesting extensions are left opened. Among them, the study of the collective
consistency of the linguistic majority with difference in support when more than two
alternatives are compared [23], and the development of a consistency based selection
process seems to be worth further investigation. Also, it seems interesting to explore softer
approaches to the linguistic majority with difference in support when the information is
represented using fuzzy sets. The use of type-2 fuzzy sets also seems to be a challenging
one that deserves future research effort.
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The authors are grateful to José Luis Garćıa-Lapresta and Bonifacio Llamazares for
their valuable suggestions and comments. This work is partially supported by the Spanish
Ministry of Science and Innovation (Projects ECO2009–07332 and ECO2009–12836) and
ERDF.

References

[1] T. M. Apostol: Mathematical analysis. 2nd Edition. Addison-Wesley, Massachusetts,
1974.

[2] J. Bezdek, B. Spillman and R. Spillman. “A fuzzy relation space for group decision
theory”, Fuzzy Sets and Systems, 1, 255–268, 1978.

21



[3] S.Chen, C. Hwan. Fuzzy multiple attribute decision making-methods and applica-
tions. Berlin: Springer, 1992.

[4] F. Chiclana, E. Herrera-Viedma, S. Alonso, and F. Herrera. “Cardinal consistency
of reciprocal preference relations: a characterization of multiplicative transitiv-
ity”,IEEE Transactions on Fuzzy Systems, 17 (1), 14–23, 2009.

[5] M. Delgado, J.L. Verdegay, and M.A. Vila. “Linguistic decision making models”,
International Journal of Intelligent Systems, 7, 479–492, 1992.

[6] M. Delgado, J.L. Verdegay, and M.A. Vila. “On aggregation operations of linguistic
labels”, International Journal of Intelligent Systems, 8 (3), 351–370, 1993.

[7] J.A. Ferejohn, D.M. Grether. “On a class of rational social decisions procedures”,
Journal of Economic Theory, 8, 471–482, 1974.

[8] P.C. Fishburn. The Theory of Social Choice. Princeton University Press, Princeton,
1973.

[9] J. Fodor, M. Roubens. Fuzzy preference modelling and multicriteria decision support.
Dordrecht: Kluwer Academics Publishers, 1994.

[10] M. Hanss. Applied Fuzzy Arithmetic. An Introduction with Engineering Applica-
tions. Springer-Verlag Berlin Heidelberg. 2005

[11] F. Herrera, E. Herrera-Viedma, J.L. Verdegay. “A linguistic decision process in group
decision making”, Group Decision and Negotiation, 5, 165–176, 1996.

[12] F. Herrera, L. Mart́ınez. “A 2-tuple fuzzy linguistic representation model for com-
puting with words”, IEEE Transactions on Fuzzy Systems, 8, 746–752, 2000.

[13] F. Herrera, S. Alonso, F. Chiclana, E.Herrera-Viedma. “Computing with words in
decision making: foundations, trends and prospects”, Fuzzy Optimization and Deci-
sion Making, 8, 337–364, 2009.

[14] N. Houy. “Some further characterizations for the forgotten voting rules”, Mathema-
tical Social Sciences, 53, 111–121, 2007.

[15] J. Kacprzyk. “Group decision making with a fuzzy linguistic majority”, Fuzzy Sets
and Systems, 18, 105–118, 1986.

[16] J. Kacprzyk, M. Fedrizzi. Multiperson decision making models using fuzzy sets and
possibility theory. Dordrecht: Kluwer Academic Publishers, 1990.

[17] J. Kacprzyk, M. Fedrizzi, and H. Nurmi. “Group decision making and consensus
under fuzzy preferences and fuzzy majority”, Fuzzy Sets and Systems, 49, 21–31,
1992.
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