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Abstract

Numerical stability when integrating plane waves of cubic Schrödinger equation is thor-

oughly analysed for some explicit exponential methods. We center on the following second-

order methods: Strang splitting and Lawson method based on a one-parameter family of

2-stage 2nd-order explicit Runge-Kutta methods. Regions of stability are plotted and

numerical results are shown which corroborate the theoretical results. Besides, a tech-

nique is suggested to avoid the possible numerical instabilities which do not correspond to

continuous ones.
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1. Introduction

Numerical stability of plane wave solutions of cubic Schrödinger equation has already been

a subject of research in the literature. In the first place, that analysis has been done in [11]

for the first-order Lie splitting method when the initial condition is just a small perturbation

of a constant. Secondly, in [6] the study has been performed for two implicit methods (Besse

and Fei) for the more general case of small perturbations of initial conditions which have

the form u0(x) = aeikx (a ∈ C, k ∈ R.) In all previous cases, the analysis has been based

on linear stability in the sense of ignoring terms which are quadratic on the perturbation.

Afterwards, an analysis has been performed [8] using also modulated Fourier expansions for

Strang splitting method. That type of analysis is theoretically valid for longer times although

requires more restrictions on the parameters of integration. However, up to our knowledge,

there is no numerical corroboration of the benefits of being more restrictive.

On the other hand, quite recently explicit exponential splitting and Runge-Kutta-based Law-

son methods [2–5, 9] have been thoroughly developed and recommended for cubic Schrödinger

equation. The former conserve two invariants (norm and momentum) while the latter do not.

However, in [3–5], the conclusions are that, after projecting (very cheaply) on one of the invari-

ants (norm), we are also projecting onto another invariant (momentum) for many solutions.

Besides, plane wave solutions are among those. In the comparison with splitting methods in

terms of computational efficiency [5], high order of accuracy in time and space is in favour
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of projected Lawson methods, although exponential splitting methods are also many times a

preferable tool.

The aim of this paper is to analyse and compare both type of methods with respect to

its behaviour in terms of numerical stability when integrating plane wave solutions. For that,

we will center for simplicity and, as a first stage, on second order methods: Strang splitting

method [12] and Lawson methods based on explicit 2-stage Runge-Kutta methods. The latter is

a one-parameter family of methods and all the analysis will be made in terms of that parameter

(d). Besides, we will consider the unprojected and projected variants of these methods. In

the numerical experiments, we have chosen pseudospectral discretization because it is very

accurate for regular solutions and because it fits perfectly with the analysis in terms of the

different frequencies which is done throughout the paper for the continuous in space problem.

We will see that Strang splitting method exactly integrates in time exact plane wave solutions

(i.e without considering rounding errors). Nevertheless, Lawson methods do not. However,

when projecting onto the norm, we achieve that the error not only in the momentum but also

in the Hamiltonian vanishes for these solutions, which led us to believe that projected methods

would behave better in terms of stability.

On the one hand, one conclusion in the paper is that the results are independent of the

value of the frequency k of the unperturbed wave in contrast with what happens with Besse &

Fei methods in [6]. On the other hand, in the comparison among Strang and Lawson methods,

when |λ||a|2 is small enough (λ being a real parameter in the equation), all methods behave in a

similar manner. However, when |λ||a|2 is bigger, Strang method behaves better than projected

Lawson integrator and the last one better than the unprojected one.

In any case, we also suggest a filtering technique so as to try to avoid the numerical insta-

bilities with all numerical methods when the continuous problem is stable.

The paper is structured as follows. Section 2 gives some preliminaries on the continuous

problem and the considered numerical integrators. In Section 3, the behaviour of all considered

methods when integrating the exact plane wave is justified. Besides, the precise results on the

numerical stability with all methods when integrating a plane wave are stated. For the sake

of clarity, the proofs have been relegated to an appendix. In Section 4, the different regions of

stability are plotted for Strang and Lawson methods corresponding to d = 1. Finally, in Section

5 the numerical performance is shown for the different methods, different initial conditions and

different time stepsizes and the technique to avoid instabilities is suggested.

2. Preliminaries

2.1. Continuous problem

We will consider the equation

ut = iuxx − iλ|u|2u, λ ∈ R, (2.1)
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with periodic boundary conditions in a certain interval, which we will take as [0, 2π] for the

sake of simplicity. It is well known that this problem has as invariant quantities

H =
1

2

∫ 2π

0

(|ux|2 +
λ

2
|u|4),

I1 = −1

2

∫ 2π

0

|u|2, (2.2)

I2 = −1

2

∫ 2π

0

Im(uux),

which are usually denoted by Hamiltonian, norm and momentum.

Plane wave solutions have the following form

u(x, t) = aei(kx−ωt), a ∈ C,

where

ω = k2 + λ|a|2. (2.3)

We are interested in studying the numerical stability when integrating these solutions. But

let us first remind what happens in the continuous case [1]. If

u0 = a(1 +
∞∑

l=−∞

ϵ̂l(0)e
ilx)eikx, (2.4)

where all ϵ̂l(0) are assumed to be small, the exact solution of (2.1) can be written as

u(x, t) = aei(kx−ωt)(1 +
∞∑

l=−∞

ϵl(t)e
ilx),

where, neglecting terms of higher order on ϵl,

d

dt

(
ϵl
ϵ̄−l

)
= iGl

(
ϵl
ϵ̄−l

)
, Gl =

(
−l2 − 2kl − λ|a|2 −λ|a|2

λ|a|2 l2 − 2kl + λ|a|2

)
.

From this, it can be deduced that ϵ0(t) = ϵ̂0(0)e
−λ|a|2it, which remains in modulus constant

with time. On the other hand, for l ̸= 0, as the eigenvalues of iGl are

(−2k ±
√
l2 + 2λ|a|2)il,

the corresponding mode is unstable when

l2 < −2λ|a|2.

Therefore, instability can only occur when λ < 0.

2.2. Description of the methods

We will consider Strang splitting, which is given, at each time stepsize, by

u1 = ei
h
2 ∂xxΨh(e

ih
2 ∂xxu0),
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where eit∂xxuI denotes the exact solution of

ut = iuxx, u(0) = uI ,

after time t and Ψt(ū) denotes the exact solution of

ut = −iλ|u|2u, u(0) = uI ,

after the same time. Notice that, as noticed in [11], |u| is an invariant of this equation, and

therefore

Ψt(uI) = e−iλt|uI |2uI .

On the other hand, for any nonzero value of the parameter d, we will consider the exponential

Lawson method which is constructed from the second-order Runge-Kutta method corresponding

to Butcher tableau
0 0

d d 0

2d−1
2d

1
2d

.

(For simplicity on the results, we restrict ourselves to d ∈ (0, 1], which are in fact the most

interesting values in practice.) The exponential Lawson method [10] then reads as follows

K = eidh∂xxu0 − dhiλeidh∂xx |u0|2u0,

u1 = eih∂xxu0 − hiλ[
2d− 1

2d
eih∂xx |u0|2u0 +

1

2d
ei(1−d)h∂xx |K|2K]. (2.5)

We will also consider its projection onto the norm I1, which is an invariant of the problem. In

such a way, the method is given by [4, 5],

ũ1 =

√∫
|u0|2∫
|u1|2

u1. (2.6)

3. Theoretical results

3.1. Behaviour of the different methods when integrating the exact plane wave

Let us assume, for the moment, that the initial condition is the exact plane wave solution,

without perturbations

u0 = aeikx.

Then, it is easy to observe that Strang method produces the exact solution after one stepsize

since

eit∂xxeikx = ei(kx−k2t), (3.1)

Ψs(ae
i(kx−k2t)) = ae−iλ|a|2sei(kx−k2t),

which implies that

u1 = ei
h
2 ∂xxΨh(ae

i(kx−k2 h
2 )) = ei

h
2 ∂xx(e−iλh|a|2aei(kx−k2 h

2 ))

= ae−iλh|a|2ei(kx−k2h) = aei(kx−h(k2+λ|a|2)) = aei(kx−ωh).
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Fig. 3.1. Error against time with unprojected Lawson method (d = 1) when integrating an exact plane

wave with h = 0.1, 0.01, 0.001: L2-error (top left), error in Hamiltonian (top right), norm error (bottom

left), momentum error (bottom right)

On the other hand, the numerical solution after stepsize h with Lawson method is given by

u1 = aAei(kx−ωh), (3.2)

where ω is given by (2.3) and

A = eiλ|a|
2h
(
1− λ2h2

2
|a|4 − λ4h4

2
d2|a|8 − λhi|a|2 − λ3h3i

2
d|a|6

)
. (3.3)

It can be noticed that A differs from 1 in

h3λ3|a|6i(d
2
+

1

6
) +O(h4), (3.4)

which corresponds to a local error behaving as O(h3) when d ̸= −1
3 and leads in general to the

second order for the global error in the L2-norm. Nevertheless,

|A| = 1 +
1

2
λ4h4|a|8(−d2 + d+

1

4
) +O(h6), (3.5)
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which explains that the method shows order 3 in the invariants I1, I2 and H (2.2), taking into

account that

|u(t)|2 = |a|2, |u1|2 = |a|2|A|2, |ux(t)|2 = k2|a|2, |u1,x|2 = k2|a|2|A|2

uūx(t) = −ik|a|2, u1ū1,x = −ik|a|2|A|2.

This can be numerically corroborated in Figure 3.1 where that error is represented against

time taking N = 10 nodes in a pseudospectral space discretization and time stepsizes h =

0.1, 0.01, 0.001. We have considered (2.1) with λ = 1 and initial condition u0 = 0.5eix. The

value of the parameter d has been taken as d = 1.

However, when considering the projection of the method onto the norm I1 [4,5], it happens

that

ũ1 =

√∫
|u0|2∫
|u1|2

u1 =
1

|A|
u1 = a

A

|A|
ei(kx−ωh).

From this, it is clear that, with the projected method, not only the error in the norm vanishes

but also the error in the momentum and the Hamiltonian.

Moreover, regarding stability, notice that the amplitude of the exact plane wave solution,

before projecting and according to (3.5), is growing after a time stepsize when d ∈ (0, 1] for

small enough h. However, after projecting, that does not happen any more, which seems to

suggest that ‘projecting’ is going to be beneficial also for stability. The following results will be

more precise in the behaviour for the perturbed plane wave solution.

3.2. Behaviour of the different methods when integrating a perturbed plane wave

In order to study the numerical stability when integrating a perturbed plane wave (2.4), we

write the solution after stepsize h as

u1 = a

(
1 +

∞∑
l=−∞

ϵ̂l,1(h)e
ilx

)
ei(kx−ωh).

After n stepsizes we will consider the following notation

un = a

(
1 +

∞∑
l=−∞

ϵ̂l,n(h)e
ilx

)
ei(kx−ωnh).

With our linear stability analysis, we neglect the terms of second order in the perturbation.

This is not so serious if the perturbation is small and if we recognize that the results are valid

for moderate times, but not too long times. At the same time, the results in [7] indicate that,

in spite of the fact that the equation is nonlinear, when the perturbation of the plane wave is

small enough in a Sobolev norm, the solution remains essentially localized in the same k-mode

over very long times and the perturbation remains small in the same Sobolev norm. Although

this result of stability is just for the continuous problem (and small enough amplitude of the

plane wave solution when λ < 0), it also helps the numerical method in terms of stability and

in not mixing frequencies.

In fact, neglecting terms of second-order on ϵ̂j(0), the coefficients ϵ̂l,n(h) will just depend

on those corresponding to the same frequency ϵ̂l(0). We are interested in looking at the growth

of the former coefficients with respect to the latter and n, and we will say that the frequency l

is stable if ϵ̂l,n(h) does not grow with n.
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Theorem 3.1. When using Strang splitting, discarding the terms which are of quadratic

order on the initial perturbations {ϵ̂j(0)},(
ϵ̂l,1(h)

ϵ̂−l,1(h)

)
=

(
Bl Cl

C−l B−l

)(
ϵ̂l(0)

ϵ̂−l(0)

)
, (3.6)

where

Bl = (1− iλh|a|2)e−(2kl+l2)hi, Cl = −iλh|a|2e−2klhi. (3.7)

From this, (
ϵ̂l,n(h)

ϵ̂−l,n(h)

)
=

(
Bl Cl

C−l B−l

)n(
ϵ̂l(0)

ϵ̂l(0)

)
. (3.8)

It happens that the modulus of all the eigenvalues of the matrix in (3.6) are independent of k

and just depend on λh|a|2 and l2h. Furthermore, when

| cos(l2h)− λh|a|2 sin(l2h)| < 1,

the eigenvalues are different and have unit modulus, while whenever

| cos(l2h)− λh|a|2 sin(l2h)| > 1,

one of the eigenvalues has modulus > 1. Moreover,

• For l = 0, ϵ̂0,n satisfies

Re(ϵ̂0,n(h)) = Re(ϵ̂0(0)), Im(ϵ̂0,n(h)) = Im(ϵ̂0(0))− 2λh|a|2nRe(ϵ̂0(0)), (3.9)

which implies that the real part of ϵ̂0,n remains constant at each step while the imaginary

part grows linearly if Re(ϵ̂0(0)) ̸= 0, λ ̸= 0 and a ̸= 0.

• For l ̸= 0 and small enough h,

• Whenever λ > 0, all frequencies are stable since all eigenvalues of the matrix in (3.6)

are different and have unit modulus.

• Whenever λ < 0, if l2 < −2λ|a|2, some eigenvalue of the matrix in (3.6) has modulus

> 1 (in fact 1 +O(h)), which makes those frequencies unstable. If l2 > −2λ|a|2, all
eigenvalues are different and have unit modulus and are thus stable.

Remark 3.1. Notice that, for k = 0, the conclusions about stability for Strang method are the

same as those obtained for Lie-splitting method in Section 5.3 in [6], although the matrix in

(3.6) is not the same.

Remark 3.2. Notice that, for small enough h, instability with Strang method only takes place

when λ < 0 and l2 < −2λ|a|2, which corresponds to the instability in the continuous problem.
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Theorem 3.2. When using Lawson methods (2.5), discarding the terms which are of quadratic

order on the initial perturbations {ϵ̂j(0)}, for j ̸= 0, (3.6) applies with

Bl = (1− 2λhi|a|2 − λ3h3id|a|6 − 2λ2h2|a|4 − 2λ4h4d2|a|8)e−(l2+2kl−λ|a|2)hi

+
(1
2
(λ2h2|a|4 − λ4h4d2|a|8)− iλ3h3d|a|6

)
e((2d−1)l2−2kl+λ|a|2)hi, (3.10)

Cl =
(
(−λ4h4d2|a|8 − λ2h2|a|4)− λhi

2d
(2d− 1)|a|2

)
e−(l2+2kl−λ|a|2)hi

+
(
− λ4h4d2|a|8 − λhi

2d
(|a|2 + 3λ2h2d2|a|6)

)
e((2d−1)l2−2kl+λ|a|2)hi. (3.11)

Moreover, for l = 0,(
ϵ̂0,1(h)

ϵ̂0,1(h)

)
= S0

(
ϵ̂0(0)

ϵ̂0(0)

)
+

(
A− 1

A− 1

)
, S0 =

(
B0 C0

C̄0 B̄0

)
(3.12)

where B0 and C0 correspond to (3.10) and (3.11) with l = 0 and A to (3.3). From here, for

l ̸= 0 (3.8) applies again while for l = 0,(
ϵ̂0,n(h)

ϵ̂0,n(h)

)
= Sn

0

[(
ϵ̂0(0)

ϵ̂0(0)

)
− (I − S0)

−1

(
A− 1

A− 1

)]

+(I − S0)
−1

(
A− 1

A− 1

)
, (3.13)

where the last term (or the second one inside the brackets) can be seen to be O(h2).

It happens that, for all frequency l, the eigenvalues of matrix(
Bl Cl

C−l B−l

)
(3.14)

are independent of k and just depend on λh|a|2, h2l and obviously d. On the other hand, for

small enough h,

• Frequency l = 0 is unstable since in this case all eigenvalues of the matrix which is raised

to n in (3.13) have modulus > 1 (although 1 +O(h4)).

• For l ̸= 0,

• Whenever λ > 0, the eigenvalues of matrix (3.14) have modulus < 1 for l2 /∈ I with

I =
(
max{0, λ|a|2(1−

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1
)}, λ|a|2(1 +

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1
)
)
, (3.15)

while for l2 ∈ I, there exists at least an eigenvalue of modulus > 1 (in fact 1+O(h4)).

• Whenever λ < 0, if 2λ|a|2 + l2 < 0, frequency l is unstable since there exists at

least an eigenvalue of matrix (3.14) which has modulus > 1 (in fact 1 + O(h)). If

2λ|a|2 + l2 > 0, the eigenvalues have modulus < 1 and the frequency is stable.
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Remark 3.3. Notice that, in contrast with Strang method, for small enough h, there appear

instabilities with Lawson methods which do not correspond to the continuous ones. However,

in that case, those instabilities are much weaker than those corresponding to the continuous

problem. (The modulus of the eigenvalues is 1 + O(h4) against 1 + O(h).) In practice, many

times the former do not mean a real instability.

Theorem 3.3. When using projected Lawson methods (2.6), discarding the terms which

are of quadratic order on the initial perturbations {ϵ̂j(0)}, for j ̸= 0,(
ϵ̂l,1(h)

ϵ̂−l,1(h)

)
=

1

|A|

(
Bl Cl

C−l B−l

)(
ϵ̂l(0)

ϵ̂−l(0)

)
, (3.16)

where A is that in (3.3) and Bl, Cl are those in (3.10)-(3.11). Moreover, for l = 0,(
ϵ̂0,1(h)

ϵ̂0,1(h)

)
= S̃0

(
ϵ̂0(0)

ϵ̂0(0)

)
+

 A
|A| − 1

A
|A| − 1

 , S̃0 =

(
B̃0 C̃0

¯̃C0
¯̃B0

)
, (3.17)

with

B̃0 =
A

2|A|
(1− AC̄0 + ĀB0

|A|2
) +

B0

|A|
,

C̃0 =
A

2|A|
(1− AB̄0 + ĀC0

|A|2
) +

C0

|A|
.

From here, for l ̸= 0 (3.8) applies again while for l = 0,(
˜̂ϵ0,n(h)

˜̂ϵ0,n(h)

)
= S̃n

0

[(
ϵ̂0(0)

ϵ̂0(0)

)
− (I − S̃0)

−1

(
A
|A| − 1
A
|A| − 1

)]

+(I − S̃0)
−1

(
A
|A| − 1
A
|A| − 1

)
, (3.18)

where the last term (or the second one inside the brackets) can be seen to be O(h2).

It happens that A and the modulus of the eigenvalues of the matrices in (3.16) and (3.17)

are independent of k and just depend on λh|a|2, h2l and obviously d. On the other hand, for

small enough h,

• Frequency l = 0 is stable since the matrix in (3.17) has all its eigenvalues of modulus < 1.

• For l ̸= 0,

• Whenever λ > 0, the eigenvalues of

1

|A|

(
Bl Cl

C̄−l B̄−l

)
(3.19)

have modulus < 1 for l2 /∈ Ĩ with

Ĩ =
(
max{0, λ|a|2(1−

√
−2d2 + 2d+ 2

2d2 − 2d+ 1
)}, λ|a|2(1 +

√
−2d2 + 2d+ 2

2d2 − 2d+ 1
)
)
,

while for l2 ∈ Ĩ there exists at least an eigenvalue of modulus > 1 (in fact 1+O(h4)).
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• Whenever λ < 0, if 2λ|a|2 + l2 < 0, frequency l is unstable since there exists at least

an eigenvalue of (3.19) which has modulus > 1 (in fact 1+O(h)). If 2λ|a|2+ l2 > 0,

that frequency is stable since all eigenvalues have modulus < 1.

Remark 3.4. Projecting Lawson method has improved stability for small enough h in the fol-

lowing sense. On the one hand, for l = 0, the weak instability which existed has disappeared.

On the other hand, for l ̸= 0 and λ > 0, the set of values {l2} for which instability occurs

diminishes since √
−2d2 + 2d+ 2

2d2 − 2d+ 1
<

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1
,

for d ∈ (0, 1]. In any case, we remark again that the possible instability is a very weak one since

the modulus of the eigenvalues continues to be 1 +O(h4).

4. Regions of stability

In this section, we will observe when an unstable numerical behaviour will turn up. We are

not just interested in what happens when h → 0 for each particular l, but in what happens in

a particular problem where several frequencies are important and we are considering a certain

value of h which is assumed to be good enough for consistency in the numerical integration of

the problem.

As it was stated in previous theorems, for every method considered in this paper, the

stability or instability just depends on the values hλ|a|2 and
√
hl for each frequency and it is

independent of the value k of the initial condition.

Therefore, by using coordinates x = hλ|a|2 and y =
√
hl, we are plotting in the plane (x, y)

a dot where the matrices which determine stability in Theorems 3.1,3.2,3.3 happen to have an

eigenvalue of modulus > 1.000001 according to MATLAB. (We have chosen this value instead

of 1 because of the high sensitivity of the calculus of the eigenvalues near double ones and

because eigenvalues which differ in modulus from 1 less than 0.000001 do take a long time to

show the unstable behaviour).

Figure 4.1 shows the regions of stability for Strang, unprojected Lawson method with d = 1

and projected Lawson method corresponding also to d = 1. In the considered area (the same as

in [6]), the less unstable is clearly Strang method while the projected Lawson method is more

stable than the unprojected one at least at l = 0, which corroborates the results of previous

sections. Notice also that the continuous instability corresponds to the interior of the parabola

which is plotted in discontinuous red line in the figures.

One could think that all these methods are useless in front of the implicit ones considered

in [6], where the regions of instability are much smaller. However, that is not the fact because,

on the one hand, these methods are much cheaper because they are explicit, and on the other

hand, the restriction on the stepsize because of consistency reasons leads to consider values of

hλ|a|2 much smaller than 30. (Notice for example that, for the exact plane wave solution, the

local truncation error corresponding to the unprojected method (3.4) depends directly on the

cube of such quantity). Therefore, in Figure 4.2, we have again plotted the regions of stability

of the different methods but in a much narrower window on hλ|a|2 than before. The conclusion

is again clear. In that window, the area of instability of Strang method is quite smaller than

that which corresponds to the projected and unprojected Lawson method, mainly when λ > 0
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and small l. The only clear improvement of the projected Lawson method over the unprojected

one is that corresponding to the frequency l = 0. Furthermore, notice that, for small enough

h and λ < 0, the different regions of stability fit very well with the parabola which determines

the continuous stability. This corroborates the results in the previous sections. More precisely,

Theorems 3.1, 3.2 and 3.3. Similarly, for the unprojected and projected Lawson method, when

λ > 0, the regions of stability fit quite well with the parabolas y2 = 5x/2 and y2 = (1 +
√
2)x

respectively, which are drawn in discontinuous line in magenta and correspond to the upper

extremes in the intervals I and Ĩ which determine the values of instability for d = 1 in Theorems

3.2 and 3.3. We remark that in Figure 4.2 there is no fitting to such parabolas for the very

smallest values of h because we are drawing in blue just the values which lead to eigenvalues of

modulus > 1+10−6. As the same theorems prove, the modulus of the eigenvalues in the region

inside the parabola are 1 +O(h4) and therefore, for very small values of h, the program is not

drawing them inside the instability region and, in fact, the instability would take a long time

to be seen.

The following section will explain how to avoid, in any case, the instabilities corresponding

to the higher frequencies.

5. Avoiding instabilities

In this section, we show how to avoid numerical instabilities when integrating perturbations

of plane wave solutions of Schrödinger equation which satisfy that are regular or that have a very

small but awkard noise. For that, we need to have a region of stability for the corresponding

method which contains a small rectangle centered at (0, 0) in the variables (hλ|a|2, h1/2l) except

for the points inside the parabola which determines the continuous instability. Notice that, for

Strang and the unprojected and projected Lawson method in the previous section, we could

consider at least a rectangle of height 2× 1.5 and width 2× 0.025.

Notice that our problem (2.1) is very well fitted for pseudospectral discretization, so that

the error in space can be considered negligible. We have integrated problem (2.1) with λ = 1

and initial condition

u0 = 0.5(1 + 0.1x7(2π − x)7/π14),

which is a regular perturbation of the plane wave solution corresponding to a = 0.5 and k = 0.

When considering N = 100 nodes in space and time stepsizes h = 0.1, 0.01, 0.001, we measure

the error in the Hamiltonian and represent it against time in Figure 5.1 for the different methods

considered. It is evident in all methods the instability which occurs when h = 0.1 but which

disappears when h diminishes. For l ̸= 0, this is in accordance with Theorems 3.2 and 3.3, as

λ|a|2(1 +

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1
) = 5/8, λ|a|2(1 +

√
−2d2 + 2d+ 2

2d2 − 2d+ 1
) =

1 +
√
2

4
,

in our problem and there is no value of l2 with natural l ̸= 0 which is less than any of those

two values.

In Figure 5.2, we plot the maximum of the absolute value of the eigenvalues of the matrices

which determine stability for l = 0, 1, . . . , 50, for the different methods when a = 0.5, λ = 1

and h = 0.1. (They are calculated with MATLAB again). It is clear that in all methods that

maximum is mainly one except for l = 35. We would also like to remark that, for l = 0,

for Strang method we obtain a maximum absolute value of ∼ 1 + 2 × 10−12 while with the
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unprojected Lawson method we get ∼ 1 + 2 × 10−7 and ∼ 1 + 9 × 10−15 with the projected

one. There is an improvement with the projection as it could be expected from Theorem 3.3.

However, what causes the instability in all three methods is just the frequency l = 35 in the

range [0 : 1 : 50]. Even for the unprojected Lawson method, the numerical stability at l = 0

is so weak that it is not seen in the experiments. For the other values of h = 0.01, 0.001, the

maximum is always mainly less than 1 for that range of frequencies.

In order to better compare among the three methods considered in the paper, for the same

problem we have taken as initial condition

u0 = 2(1 + 0.1x7(2π − x)7/π14),

which just means to change the value of a to a = 2. In such a way,

λ|a|2(1 +

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1
) = 10, λ|a|2(1 +

√
−2d2 + 2d+ 2

2d2 − 2d+ 1
) = 4(1 +

√
2),

so that for the unprojected and projected Lawson methods there exist values of l ̸= 0 which

lead to numerical instability for small h when λ > 0. Besides, although the modulus of one

eigenvalue is just 1 +O(h4), the constant in O(h4) will contain a term of the form Cλ4|a|8 for

some moderate constant C. The fact that λ = 1 and a = 2 makes that term nonnegligible

at least for not too smallest values of h. The same happens with the instability at l = 0 for

the unprojected method. In fact, for h = 0.1, the maximum in modulus of the eigenvalues is

calculated through MATLAB to be∼ 1+3×10−2 while it is∼ 1+3×10−7 for h = 0.01. However,

with projected Lawson method, the same value is exactly 1 for h = 0.1 and ∼ 1+ 2× 10−15 for

h = 0.01. For Strang method, ∼ 1 + 8× 10−9 for h = 0.1 and ∼ 1 + 2× 10−9 for h = 0.01.

Figure 5.3 shows the errors with the three different methods, as before. All methods show

instabilities although the unprojected Lawson method is the worst in the sense that it is not

able to produce any result in the floating point arithmetic with h = 0.1.

The maximum of the modulus of the eigenvalues is plotted in Figure 5.4 for h = 0.1 and

h = 0.01 where the frequencies which produce instabilities can be observed in all cases. Except

for l = 0, that number of frequencies is very similar with the unprojected and projected Lawson

methods. However, there are less frequencies which cause instability with Strang method.

What we suggest in this section, in order to avoid the possible instabilities with Strang and

unprojected and projected Lawson method, is the following: At each step, when

√
h|l| > 1.5, (5.1)

if we denote by Cn(l) the coefficient corresponding to the lth-frequency in the pseudospectral

discretization at step n, whenever |Cn+1(l)| > 1.000001|Cn(l)|, we change Cn+1(l) to

C̄n+1(l) = Cn+1(l)
|Cn(l)|

|Cn+1(l)|
,

so that the coefficient corresponding to that frequency cannot grow with time in modulus.

That is exactly what happens when the situation corresponds to stability in the continuous

case. Besides, as we are not changing the coefficients of the smallest frequencies of the problem

for small enough h because of (5.1), the consistency of the methods is not altered for regular

perturbations. (This is due to the fact that the coefficients of the bigger frequencies are much

smaller than those of the smaller ones and therefore they are the ones which matter). The
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corresponding results, after filtering, are shown in Figure 5.5 for a = 0.5 and in Figure 5.6 for

a = 2. For a = 0.5, the improvement is clear with all methods. However, for a = 2 and h = 0.1

the unprojected Lawson method does not manage to get a solution and, with the projected

one, the errors are still very bad. (The reason for that is that in that case hλ|a|2 = 0.4, so

that we are not in the ‘rectangular’ region of stability which was mentioned at the begining

of the section.) Nevertheless, for Strang method and all considered timestepsizes and Lawson

methods with the rest of values of h, the errors are already very much acceptable.

A. Proof of Theorem 3.1

Considering the particular form of u0 (2.4) together with (3.1), neglecting terms of higher

order in the small coefficients ϵ̂j(0), it can be shown that

u1 = aei(kx−(k2+λ|a|2)h)
[
1 + (1− iλh|a|2)

∞∑
l=−∞

ϵ̂l(0)e
−(2kl+l2)hieilx

−iλh|a|2
∞∑

l=−∞

ϵ̂−l(0)e
−2klhieilx

]
,

from where, neglecting again terms of higher order on {ϵ̂j(0)}, (3.6) is deduced with Bl and Cl

in (3.7). To study the eigenvalues of this matrix, we must study the roots of

z2 − (BlB−l)z +BlB−l − ClC−l.

Simple calculations give that

Bl +B−l = 2e−2klhi[cos(l2h)− λh|a|2 sin(l2h)],
BlB−l − ClC−l = e−4klhi,

from what the eigenvalues of the matrix in (3.6) are the roots of[
z

e−2klhi

]2
− 2[cos(l2h)− λh|a|2 sin(l2h)]

[
z

e−2klhi

]
+ 1 = 0.

It is easy to deduce from here that when

| cos(l2h)− λh|a|2 sin(l2h)| < 1,

both roots are different and have unit modulus which implies that the perturbations on the

corresponding coefficients propagate in a stable way. However, when

| cos(l2h)− λh|a|2 sin(l2h)| > 1,

one of the roots will have modulus > 1 and therefore, the corresponding perturbation will

propagate in an unstable way. Finally, when

cos(l2h)− λh|a|2 sin(l2h) = 1 or cos(l2h)− λh|a|2 sin(l2h) = −1,

both roots are the same and have modulus equal to 1. Nevertheless, the matrix does not

diagonallize if a ̸= 0 and λ ̸= 0, so the nth-powers of the matrix in (3.6) grow linearly. This

case corresponds, for example, to l = 0, for which the the precise formula (3.9) is deduced.
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On the other hand, for l ̸= 0, by considering the asymptotic expansion on h,

cos(l2h)− λh|a|2 sin(l2h) = 1− l2h2(
l2

2
+ λ|a|2) +O(h4),

from what, for small enough h, if λ > 0, the absolute value of this is always < 1 and all

frequencies are stable. Nevertheless, if λ < 0, whenever l2 < −2λ|a|2, the absolute value is > 1

and the corresponding frequency is unstable while otherwise, it is stable. Notice also, to be

more precise, that, in the unstable case, one of the roots satisfies

z

e−2klhi
= 1 + h|l|

√
−l2 − 2λ|a|2 +O(h2). (A.1)

from what the theorem is completely proved.

B. Proof of Theorem 3.2

It is just a question of patience to deduce from (2.5) that, when u0 is like in (2.4), after

neglecting terms of higher order on {ϵ̂j(0)},

u1 ≈ a
[
A+

∞∑
l=−∞

Blϵ̂l(0)e
ilx +

∞∑
l=−∞

Clϵ̂−l(0)e
ilx
]
ei(kx−ωh), (B.1)

where Bl and Cl are those in (3.10)-(3.11).

From here, except for terms of higher order on {ϵ̂l(0)}, for l ̸= 0, (3.6) and (3.8) apply with

Bl and Cl in (3.10)-(3.11). Moreover, for l = 0, (3.12) and (3.13) are satisfied where the last

term (or the second term inside the brackets) can be seen to be O(h2).

From (3.10) and (3.11),

B0 =

(
1− 3

2
λ2h2|a|4 − 5

2
λ4h4d2|a|8 + i(−2λh|a|2 − 2λ3h3d|a|6)

)
eλ|a|

2hi, (B.2)

C0 =

(
− λ2h2|a|4 − 2λ4h4d2|a|8 − i(λh|a|2 + 3

2
λ3h3d|a|6)

)
eλ|a|

2hi. (B.3)

Now, we will take into account that, by making the corresponding calculations,

B0B̄0 − C0C̄0

= 1 + (
5

4
− 5d2 + 5d)λ4h4|a|8 − 13

4
λ6h6d2|a|12 + 9

4
λ8h8d4|a|16, (B.4)

from what

(B0 + B̄0)
2 − 4(B0B̄0 − C0C̄0) = (10d2 − 12d− 19

6
)λ4h4|a|8 +O(h6).

Now the expression in brackets in the O(h4)-term is a parabola which takes negative values for

d ∈ (0, 1], which implies that the eigenvalues of the matrix in (3.12) are complex conjugate.

Now, for the same values of d, the expression in brackets in the term which is O(h4) in (B.4)

is a parabola which is positive in the mentioned interval, which proves that the modulus of the

eigenvalues is > 1 for small enough h.
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On the other hand, for l ̸= 0, by making the corresponding calculations, it happens that

Bl +B−l = e−2klhi
[
2(1− 2λ2h2|a|4 − 2λ4h4d2|a|8) cos((l2 − λ|a|2)h)

−2(2λh|a|2 + λ3h3d|a|6) sin((l2 − λ|a|2)h)
+(λ2h2|a|4 − λ4h4d2|a|8) cos(((2d− 1)l2 + λ|a|2)h)
+2λ3h3d|a|6 sin(((2d− 1)l2 + λ|a|2)h)

]
.

BlB−l − ClC−l

= e−4klhi

[
1− 4d2 − 4d+ 2

4d2
λ2h2|a|4 + (

7

4
− 4d2 + 4d)λ4h4|a|8

+
21

4
λ6h6d2|a|12 + 9

4
λ8h8d4|a|16

+[
4d2 − 4d+ 2

4d2
λ2h2|a|4 + (d− d2 − 1

2
)λ4h4|a|8] cos(2dl2h)

−4d− 4d2 − 2

2d
λ3h3|a|6 sin(2dl2h)

]
.

We notice that the terms in brackets do not depend on k, just on d, l2h and λh|a|2. Expanding
these terms till O(h4), the eigenvalues of (3.14) satisfy

z

e−2klhi
≈ 1− (λl2|a|2 + l4

2
)h2 ±

√
1− (2λl2|a|2 + l4)h2 − 1. (B.5)

Now, if 2λ|a|2 + l2 > 0, for small enough h,

z

e−2klhi
≈ 1− (λl2|a|2 + l4

2
)h2 ± i

√
2λ|a|2l2 + l4h,

which has modulus 1 except for O(h4). As this is just an approximation of the eigenvalue, we

must consider at least also the terms in O(h4) to discuss about stability. Besides, it is clear

that, in this case of complex conjugate values, the square of the modulus of those values will be

BlB−l − ClC−l

e−4klhi
.

The coefficient of h4 in this expression can be proved to be, except for the factor λ2|a|4,

−(2d2 − 2d+ 1)l4 − (4d− 4d2 − 2)l2λ|a|2 + (
5

4
− 5d2 + 5d)λ2|a|4.

This can be interpreted as a parabola in x = l2, which gets its maximum at x = λ|a|2.
When λ > 0, this value is positive. There, the parabola takes the value (−3d2+3d+ 9

4 )λ
2|a|4.

This number can be proved to be positive when d ∈ (0, 1]. Besides, for those values of d, the

parabola vanishes at

x = λ|a|2
[
1±

√
−3d2 + 3d+ 9

4

2d2 − 2d+ 1

]
.

As the rational function inside the square root can take values between 0 and 6 depending on

the explicit value of d, the values of l which lead to eigenvalues of modulus > 1 for small enough

h are those which may lie in the range l2 ∈ I, with I in (3.15).
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When λ < 0, the abscissa of the maximum of the parabola x = λ|a|2 is negative, Besides,

the value of this parabola at x = −2λ|a|2 > 0 can be calculated to be

λ2|a|4[−21d2 + 21d− 27

4
],

which can be proved to be negative for every real value d. From here, the parabola is always

negative for x > −2λ|a|2. This means that, for small enough h, the eigenvalues of the studied

matrix have modulus < 1 for l2 > −2λa2.

On the other hand, if 2λ|a|2 + l2 < 0, from (B.5),

z

e−2klhi
≈ 1− (λl2|a|2 + l4

2
)h2 ±

√
−(2λ|a|2l2 + l4)h, (B.6)

and therefore, for small enough h, there is always an eigenvalue of modulus > 1.

C. Proof of Theorem 3.3

Notice that, when u0 has the general form (2.4), by using (B.1), the projected method after

one stepsize gives

ũ1 =

√∫
|u0|2∫
|u1|2

u1 =

√
1 + ϵ̂0(0) + ϵ̂0(0)

|A|2 + (AB̄0 + ĀC0)ϵ̂0(0) + (AC̄0 + ĀB0)ϵ̂0(0)
u1. (C.1)

From here, notice that

ũ1 = a(1 +
∞∑

l=−∞

˜̂ϵl,1(h)e
ilx)eik(x−ωh),

where, neglecting terms of higher order in ϵ̂j(0),(
˜̂ϵ0,1(h)

˜̂ϵ0,1(h)

)
=

(
B̃0 C̃0

C̃0 B̃0

)(
ϵ̂0(0)

ϵ̂0(0)

)
+

(
A
|A| − 1
A
|A| − 1

)
,

with

B̃0 =
A

2|A|
(1− AC̄0 + ĀB0

|A|2
) +

B0

|A|
, (C.2)

C̃0 =
A

2|A|
(1− AB̄0 + ĀC0

|A|2
) +

C0

|A|
.

Then, in the same way than (3.13), (3.18) can be deduced where the last term (or the second

term inside the brackets) can be seen to be O(h2).

By making the corresponding calculations, it can be proved that

B̃0
¯̃B0 − C̃0

¯̃C0 =
1

|A|4

[
|B0|2|A|2 − |C0|2|A|2 +Re

(
AB̄0(|A|2 −AC̄0 − ĀB0)

)
−Re

(
AC̄0(|A|2 −AB̄0 − ĀC0)

)]
. (C.3)

Then from (3.3), (B.2) and (B.3), it is deduced that

B̃0
¯̃B0 − C̃0

¯̃C0 = 1− λ6h6|a|12(19
4
d2 +

3

4
) +O(h8). (C.4)
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As the coefficient of h6 is always negative, this implies that the product of the eigenvalues of

the corresponding matrix is always less than 1 for small enough h, independently of the value

of λ and d. Moreover,

(B̃0 +
¯̃B0)

2 − 4(B̃0
¯̃B0 − C̃0

¯̃C0) = −4λ4h4|a|8(1
3
+ d) +O(h6).

As the coefficient of h4 in this expression is negative for d ∈ (0, 1], the eigenvalues of the

corresponding matrix are complex conjugate and, by (C.4), they have modulus < 1.

Now, for l ̸= 0, (3.16) is clearly deduced and the modulus of the eigenvalues of (3.14) divided

by |A| must be studied.

From the proof of Theorem 3.2, in the case of complex conjugate roots (2λ|a|2 + l2 > 0),

to the square of the modulus of those roots we now have to multiply by 1/|A|2, which is

1 − λ4h4|a|8(−d2 + d + 1
4 ). In such a way, the coefficient of h4 in that expression, except for

the factor λ2|a|4, is

−(2d2 − 2d+ 1)l4 − (4d− 4d2 − 2)l2λ|a|2 + (1− 4d2 + 4d)λ2|a|4. (C.5)

Again this can be interpreted as a parabola in x = l2 which also gets its maximum at x = λ|a|2.
When λ > 0, the abscissa of the maximum is > 0. That maximum is (−2d2 +2d+2)λ2|a|4,

which is positive when d ∈ (0, 1]. On the other hand, in the latter case, the parabola vanishes

at

λ|a|2(1±
√

−2d2 + 2d+ 2

2d2 − 2d+ 1
),

from what the result on the interval Ĩ follows.

When λ < 0, the abscissa of the maximum is < 0. Now, the value of the parabola at

x = −2λ|a|2 > 0 can be calculated to be

λ2|a|4(−20d2 + 20d− 7),

which is negative for every real value d. This implies that, for l2 > −2λ|a|2, the eigenvalues

have modulus < 1 for small enough h. On the other hand, for l2 < −2λ|a|2, there is at least an
eigenvalue of modulus > 1 considering (B.6) in the proof of Theorem 3.2 and the fact that the

modulus > 1 there is due to a term which is O(h) and not O(h4), as the difference between 1

and 1/|A|.
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Fig. 4.1. Regions of stability for Strang method (top), Lawson method (d=1) when unprojected (mid-

dle) and projected (bottom) (blue corresponds to instability of the method and the interior of the

parabola in red discontinuous line corresponds to continuous instability)
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in magenta discontinuous line corresponds to instability of the method for λ > 0 and small enough h

through Theorems 3.4 and 3.6)
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Fig. 5.1. Strang method (top), Lawson method (d=1) when unprojected (middle) and projected (bot-

tom), when a = 1/2.
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Fig. 5.2. Maximum absolute value of eigenvalues associated to stability matrices: Strang (top) and

Lawson method (d=1) when unprojected (middle) and projected (bottom), when a = 1/2, h = 0.1.
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Fig. 5.3. Strang method (top), Lawson method (d=1) when unprojected (middle) and projected (bot-

tom), when a = 2.
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Fig. 5.4. Maximum absolute value of eigenvalues associated to stability matrices: Strang (top) and

Lawson method (d=1) when unprojected (middle) and projected (bottom), when a = 2, h = 0.1 (left)

h = 0.01 (right) and λ = 1.
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Fig. 5.5. Filtered Strang (top) and filtered Lawson method (d=1) when unprojected (middle) and

unprojected (bottom), when a = 1/2.
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Fig. 5.6. Filtered Strang (top) and filtered Lawson method (d=1) when unprojected (middle) and

unprojected (bottom), when a = 2.


