UNIVERSIDAD DE VALLADOLID
ESCUELA DE INGENIERIAS INDUSTRIALES

MÁSTER EN ENERGÍA: GENERACIÓN, GESTIÓN Y USO EFICIENTE

ANÁLISIS DE LA CAPACIDAD DE LAS ENERGÍAS RENOVABLES PARA CUBRIR LA DEMANDA ELÉCTRICA EN ESPAÑA CONSIDERANDO SU INTERMITENCIA.

Autor:
Martín Mayordomo, Clara

Tutor:
Horrillo Güemes, Alfonso
Dpto. Ingeniería Energética y Fluidomecánica

Valladolid, Julio 2017
ÍNDICE

1. RESUMEN..5
2. OBJETIVOS..6
3. INTRODUCCIÓN ...7
 3.1. Caracterización y tecnologías... 7
 3.2. Economía de las energías renovables ... 9
 3.3. Integración de las energías renovables. Intermitencia y predictibilidad 11
 3.4. Efecto sobre la red de transporte.. 13
 3.5. Almacenamiento de la energía eléctrica... 14
 3.6. Análisis sistema eléctrico español... 18
 3.7. Análisis básico de la cobertura de la demanda 25
 3.7.1. Definiciones... 25
 3.7.1. Metodología... 26
 3.8. Índice de cobertura mínimo peninsular.. 28
 3.9. Factor de capacidad.. 29
4. METODOLOGÍA ..31
 4.1. Demanda de energía eléctrica.. 31
 4.1.1. Obtención de datos... 31
 4.1.2. Tratamiento de los datos... 33
 4.2. Estudio de probabilidad... 37
 4.2.1. Variables... 37
 4.2.2. Ajuste del modelo.. 38
 4.2.3. Análisis descriptivo de los datos... 39
 4.2.4. Entrada de datos.. 39
 4.2.5. Resultados del ajuste de distribuciones................................. 40
 4.2.7. Casos prácticos... 44
 4.3. Generación de energía eléctrica renovable..................................... 54
 4.3.1. Obtención de datos... 54
 4.3.2. Tratamiento de los datos... 56
 4.3.3. Estudio de probabilidad.. 60
5. RESULTADOS ..62
 5.1. Potencia Instalada... 62
 5.2. Factor de capacidad.. 65
 5.3. Producción anual.. 70
5.4. Demanda anual .. 71
5.5. Producción y demanda .. 74
6. CONCLUSIONES .. 86
7. BIBLIOGRAFÍA ... 88
ANEXOS I .. 89
ANEXO II .. 109
ANEXOS III .. 118
1. RESUMEN

Seguridad de suministro, respeto por el medio ambiente y competitividad económica son ejes fundamentales de la política energética española. En este trabajo se considera un modelo estadístico para la evolución de la potencia eléctrica instalada y la generación anual desde fuentes renovables (eólica, solar fotovoltaica, solar térmica e hidráulica) y un mantenimiento de la demanda eléctrica de acuerdo con lo observado en los últimos años. El estudio tiene un escenario histórico hasta 2050 en el que se evalúa la posibilidad de que España solo produzca energía eléctrica a partir de fuentes de energía renovables. Los resultados del trabajo permiten concluir que con las hipótesis del trabajo es posible la cobertura completa de la demanda eléctrica desde el año 2045.

Palabras clave:
Generación, Electricidad, Renovable, intermitencia, autoabastecimiento
2. OBJETIVOS

El objetivo principal de este trabajo será analizar las posibilidades de disponer de un sistema de generación completamente renovable en España teniendo en cuenta la intermitencia de las energías renovables y suponiendo que las demás instalaciones de generación eléctrica no renovables quedarán inhabilitadas. Para ello nos fijamos un horizonte temporal que será el año 2050.

Se analizará lo siguiente:

- Estudio de los factores que afectan a la demanda eléctrica y su previsión en un horizonte temporal.
- Obtención de una función estadística que represente la demanda eléctrica horaria.
- Estudio de la evolución de la generación eléctrica en función de la potencia instalada y del factor de capacidad.
- Obtención de una función estadística que represente la generación de energía eléctrica horaria de origen hidráulica, eólico y solar.
- Estudio horario de la cobertura de la demanda de energía eléctrica con tecnología renovable.
3. INTRODUCCIÓN

La energía se clasifica en renovable y no renovable en función de su capacidad de renovación. Se define como “recurso renovable” aquel que no se agota con su utilización, debido a que vuelve a su estado original después de su uso o se regenera a una tasa mayor o igual a la tasa con que el mismo es disminuido por su utilización. Atendiendo a esta definición, es cierto que algunos recursos renovables podrían dejar de serlo si su tasa de utilización fuera tan alta que se impidiera su total renovación; sin embargo, algunos de esos recursos renovables se pueden clasificar como perpetuos, ya que no es posible su agotamiento por muy intensiva que sea su utilización. Normalmente, la utilización de un recurso o energía renovable tiene la característica intrínseca de producir un impacto mucho menor en el medio ambiente respecto a la utilización o transformación de energía no renovable. [8]

3.1. Caracterización y tecnologías.

A continuación se describen algunos de los recursos renovables actualmente utilizados para la producción de energía renovable.

Agua

El agua se utiliza para producción energía eléctrica en centrales hidroeléctricas. La cantidad de energía que se puede extraer del agua, en una zona geográfica concreta, depende del volumen disponible así como de las características orográficas del terreno por el que transcurre. Las centrales hidráulicas se subdividen en: regulables, fluyentes y de bombeo.

- Regulables: las cuales almacenan agua en un embalse de gran capacidad y producen electricidad en función de las expectativas sobre el valor futuro de dicha agua embalsada (precio esperado del mercado) y las precipitaciones futuras (aportes de agua al embalse).
- Fluyentes: las cuales no disponen de grandes embalses (almacenamiento limitado), dependiendo su producción básicamente del aporte de agua recibido en cada momento.
- De bombeo o reversibles: consiguen la energía a base de bombear agua desde un nivel situado a una altura inferior a la de las turbinas, hasta un embalse situado por encima de las mismas (consumiendo electricidad para ello), para, con posterioridad, producir electricidad turbinando el agua previamente elevada. Generalmente, bombean
cuando el precio de la electricidad es bajo y generan (turbinando el agua previamente bombeada) cuando el precio de la electricidad es elevado, obteniendo así un margen y contribuyendo a estabilizar los precios del mercado. Se pueden clasificar en dos tipos: las de bombeo puro, en las que el embalse superior es un gran depósito cuya única aportación de agua es la que se bombea del embalse inferior, y las de bombeo mixto, en las que el embalse superior tiene también aportaciones naturales.

Biomasa

La biomasa se define como “todo material de origen biológico excluyendo aquellos que han sido englobados en formaciones geológicas sufriendo un proceso de mineralización”. La caracterización de la biomasa es muy compleja debido a la diversidad de sustancias que se incluyen bajo esta denominación: cultivos energéticos (especies leñosas y herbáceas), residuos forestales y de la industria forestal, residuos procedentes de la ganadería y lodos, etc. La combustión de la biomasa permite obtener vapor de agua y posteriormente energía eléctrica de forma análoga a lo que se hace en las centrales térmicas convencionales. En general, se considera que la emisión neta de CO$_2$ de la energía producida por la biomasa se compensa en su mayor parte ya que el CO$_2$ emitido (en su combustión) ha sido previamente captado en la formación de la materia orgánica. Se puede afirmar, por tanto, que la biomasa es un recurso renovable, siempre que los ritmos de explotación sean los adecuados para la zona geográfica de la cual se obtiene, evitando un mal uso de este recurso que pueda conducir a su agotamiento.

Viento

El aprovechamiento de la energía del viento da lugar a lo que se conoce como energía eólica. La energía se obtiene mediante aerogeneradores que aprovechan la energía cinética del viento transformándola en energía eléctrica. Este recurso puede calificarse como perpetuo, y la cantidad potencialmente obtenible en una zona geográfica concreta depende del régimen de vientos y de la orografía del lugar.

La energía eólica es una de las fuentes renovables que ha alcanzado un mayor grado de madurez, especialmente la terrestre (u “on-shore”). Por ello, presenta unas importantes expectativas de incrementar su contribución futura al abastecimiento energético interno –nacional y europeo. Asimismo, está proliferando también el desarrollo de parques de generación eólica marina (u “off-shore”), con características diferenciadas frente a las instalaciones en tierra – el recurso eólico en el mar es superior (mayor utilización de la instalación), el impacto visual y acústico es menor.
Sol

El aprovechamiento de la energía de la radiación solar para la producción de energía eléctrica se concreta en dos tecnologías diferentes: fotovoltaica y solar térmica, y su potencial está directamente ligado a la latitud geográfica del lugar (horas de luz diaria) así como al régimen de nubosidad y al índice de claridad de la zona.

- En la tecnología fotovoltaica se produce energía eléctrica directamente mediante paneles solares, que son unos dispositivos de material semiconductor que transforman la energía de la radiación solar en energía eléctrica de corriente continua.
- La tecnología solar térmica utiliza la energía térmica de la radiación solar para producir vapor de agua y a partir del mismo producir energía eléctrica, de forma análoga a lo que se hace en una central térmica convencional.

Adicionalmente se puede decir que, de los cuatro tipos de recursos renovables descritos, dos de ellos, el eólico y en menor medida el solar, pueden presentar, y de hecho así lo hacen, un elevado nivel de aleatoriedad e imprevisibilidad en su producción. Además, estos dos tipos de energía renovable podrían clasificarse como intermitentes y de carácter poco gestionable, y su papel se limita a disminuir el consumo de combustibles fósiles y las emisiones de CO2, pero al ser intermitente su producción no aportan seguridad de suministro al Sistema en un instante concreto por lo que la seguridad de suministro que requiere la demanda no gestionable, debe ser aportada por otras tecnologías.

[12]

3.2. Economía de las energías renovables

De acuerdo con lo anterior, puede decirse que cada tecnología renovable presenta unas características propias que condicionan su desarrollo así como las necesidades de apoyo que le son necesarios. En general, las tecnologías renovables tienen costes de desarrollo más elevados que las tecnologías convencionales y, a su vez, muy diferentes entre sí.

La tecnología eólica terrestre, la fotovoltaica y la hidráulica son las únicas que están relativamente cerca de la competitividad. Las tecnologías solar termoeléctrica y eólica marina se encuentran muy lejos de ser competitivas y todavía necesitan elevados apoyos para asegurar su rentabilidad económica.
A medio camino podría encontrarse la utilización de la biomasa cuyo coste dependerá de la disponibilidad de biomasa y de que se pueda establecer un sistema de recogida y transporte de la misma hasta el lugar de quemado que sea competitivo económicamente.

La situación actual de cada una de las energías renovables en España y sus horas de utilización anual se resume en lo siguiente:

- **Hidráulica:** existe potencial para el desarrollo de bombeos y ampliación de las centrales existentes, si bien existe una limitación importante de nuevos emplazamientos debido a motivos medioambientales. En la actualidad existen proyectos que totalizan 2.040 MW de potencia hidráulica instalada. Las previsiones según el PER para el año 2020 acerca de la potencia instalada de energía hidráulica alcanza los 26.950 MW en un escenario óptimo.

- **Eólica:** la terrestre está próxima a la competitividad (dependiendo siempre del nivel de precios del mercado) y actualmente la media de utilización de la potencia instalada es de unas 2.100 horas.

- **Biomasa:** el coste de producción con biomasa, al margen del coste de combustible, sale penalizado respecto al de las grandes plantas de generación debido al pequeño tamaño de sus plantas (economía de escala del coste de inversión) y relativamente bajo rendimiento de su ciclo termodinámico. Las horas de utilización de la potencia instalada fueron de 5.100 horas/año aproximadamente en 2013.

- **Solar fotovoltaica:** en la actualidad esta tecnología está inmersa en un proceso de desarrollo y transformación tecnológica importante, por lo que es previsible que su coste de producción disminuya a corto plazo. Horas de utilización de la potencia instalada 1.800 horas/año aproximadamente.

- **Solar térmica:** en la actualidad están identificadas tres tecnologías de concentración solar como las de mayor viabilidad técnica y económica. En orden inverso a su posible desarrollo: discos parabólicos, sistemas de torre y concentradores cilindro – parabólicos, y, como extensión de esta última tecnología, se encuentran los concentradores tipo Fresnel. Los aspectos más importantes a mejorar, de cara a un desarrollo del rendimiento tecnológico, son la reducción de los costes en los procesos de fabricación, la mejora de los sistemas de limpieza de los concentradores y el desarrollo de nuevos fluidos portadores de calor.
que permitan el almacenamiento del mismo. Las horas de utilización de la potencia instalada variarán en función de si la instalación dispone o no de almacenamiento térmico. En el primero de los casos las horas de utilización podrían alcanzar las 3.500 horas/año y 2.000 horas/año en el caso de no disponer de almacenamiento.

[12]

3.3. Integración de las energías renovables. Intermitencia y predictibilidad

Actualmente, con la potencia instalada de energías renovables, la necesidad de equilibrar en todo momento la generación y la demanda del Sistema, unido a la variabilidad intrínseca de las energías no gestionables exigirá disponer de una oferta de generación convencional y de una demanda flexibles, lo que supondrá implementar diversas modificaciones en el funcionamiento y operación del Sistema orientadas a incrementar su flexibilidad y asegurar la calidad de suministro.

Al considerar las implicaciones que la generación eólica u otro tipo de renovables no gestionables, como las solares, tendrán en el Sistema Eléctrico, conviene pensar en que son una fuente de energía y no una fuente de potencia garantizada, ya que no se puede predecir en ningún momento del tiempo concreto cuál será la potencia inyectada en el Sistema; solamente en términos estadísticos se puede afirmar que la energía producida será la correspondiente a un factor de carga, que será diferente para cada tecnología. [12]

Energía eólica

Dado que la energía primaria en el caso de la energía eólica, es el viento, y éste se produce como consecuencia de diferencias en presiones atmosféricas, es muy improbable que pueda haber tales diferencias a lo largo de toda la geografía española, por lo que no es posible que en un instante concreto estén produciendo todas las instalaciones a su potencia nominal.

Las causas de la variación de la energía eólica son principalmente:

- **Ráfagas de viento** (turbulencias), con una escala de variación de segundos.
- **Variaciones de viento**, con una escala de variación de minutos.
- **Inversión de capas**, con una escala de variación horaria.
- **Ciclo diario de vientos**, con una escala de variación diaria.
- Cambio de perfil diario de viento, con una escala de variación diaria.
- Ciclo estacional, con una escala de variación mensual.
- Variación anual, con una escala de variación anual.

[3]

Asimismo, es prácticamente imposible que la cronológica de un año presente el mismo nivel de viento, a nivel horario, con las de otro año, pero si una tendencia estadística como estudiaremos en capítulos posteriores. También, por otro lado, es prácticamente imposible que no esté produciendo ninguna tecnología en ningún momento, siempre habrá alguna que está produciendo algo de electricidad en un momento dado y en esta hipótesis se basará nuestro estudio en capítulos posteriores. Se basará en la instalación potencia suficientemente grande para que en alguno de los parques estén produciendo electricidad para el autoabastecimiento nacional.

Energía solar

La integración de la energía solar presenta también problemas de integración en el Sistema Eléctrico, si bien presenta diferencias respecto a la energía eólica. Así pues:

- Es más predecible que la energía eólica. A nivel extraterrestre la energía solar está totalmente determinada para cada instante de tiempo en función de la latitud geográfica. El índice de claridad asociado a cada localización concreta así como la nubosidad introducen cierta aleatoriedad en su predicción, si bien mucho menor que la asociada al régimen de vientos.
- De las dos tecnologías existentes, fotovoltaica y térmica, la primera es menos sensible al efecto de las nubes dispersas (que ocultan el sol momentáneamente) dado que aprovecha la energía del albedo. Por el contrario, la solar térmica es más sensible a este fenómeno, si bien en la actualidad existen diseños con cierto grado de almacenamiento de energía térmica, lo que permite a estas instalaciones suministrar energía incluso en aquellas horas en las que no hay radiación solar.

En el Sistema Eléctrico español todas las centrales eléctricas están obligadas a presentar ofertas en el mercado por su energía. Ciertamente, para un instalación eólica resulta muy difícil predecir cuál será su producción en un instante concreto, si bien, presentando ofertas de forma agrupada se disminuye la incertidumbre asociada a la predicción del conjunto. Posteriormente, se compara la producción real con la previsión (desvíos) y se imputan los costes que dicha diferencia ha producido en el Sistema. [12]
Actualmente se ha mejorado mucho en las herramientas de predicción de las horas de funcionamiento de la energía eólica. Por ejemplo, Red Eléctrica Española posee una herramienta propia para la estimación de la producción del parque de generación eólico llamado Sipreólico, ilustración 3.1, en donde se puede predecir la producción con un horizonte de 48 horas. El error en la predicción disminuye a medida que la misma se acerca al momento en tiempo real.

3.4. Efecto sobre la red de transporte

Una de las principales limitaciones de desarrollo de la energía eólica es la capacidad de evacuación de las redes, ya que la generación eólica se encuentra concentrada en áreas geográficas determinadas, que son aquellas con mayor disponibilidad de recurso eólico. La instalación de mayor potencia eólica en esos emplazamientos viene limitada por la capacidad de la red existente en la zona. [3]

El desarrollo futuro de la red de transporte se deberá realizar de forma que sea posible evacuar la energía de todos los parques en condiciones normales. Así pues, será necesario diseñar y ampliar la red de transporte para conectar las nuevas instalaciones de origen renovable. Ello supondrá, sin duda, un mayor coste de desarrollo de la red de transporte. La volatilidad de la energía
eólica podrá ser mitigada por diversos métodos, entre los que sin duda se encuentra el reforzamiento de las interconexiones con Francia y Portugal. [12]

3.5. Almacenamiento de la energía eléctrica.

El inconveniente que siempre han tenido las energías renovables, y en particular a la energía eólica, es su alta variabilidad y la dificultad para su almacenamiento. Esta afirmación es cada vez menos cierta, debido al rápido desarrollo en los últimos años del almacenamiento de energía eólica, principalmente basado en baterías electroquímicas.

Con el posible desarrollo de un almacenamiento a más largo plazo y eficiente de la energía eólica podríamos solucionar los siguientes problemas que se plantean en la actualidad:

- Permitiría gestionar la energía del viento (Se podría mejorar su precio de venta)
- Elevaría la capacidad de crédito y aumentaría el nivel de penetración en el mercado (reduciría los costes de desvío)
- Permitiría explotar lugares con gran potencial eólico pero muy remotos (reduciendo los costes de transmisión)

En la actualidad existen multitud de sistemas de almacenamiento en función de la aplicación deseada, se caracterizan por la cantidad de energía acumulada y tiempo de almacenamiento necesario. En la ilustración 3.2 se representan los tiempos de almacenamiento de cada una de las tecnologías existentes respecto a su rango de potencia.
Volantes de inercia
En estos dispositivos la energía eléctrica se almacena como energía cinética. Se componen de un eje central que mueve un rotor y un volante de inercia. Almacenan la energía de forma cinética mediante la aceleración del rotor y del volante a una velocidad muy alta y liberan energía al invertir el proceso de carga, empleando el motor como generador. [3]

SMES
Los sistemas SMES ("Superconducting Magnetic Energy Storage") almacenan energía electromagnética con pérdidas insignificantes mediante la circulación de corriente continua a través de bobinas superconductoras enfriadas criogénicamente. La energía almacenada se puede inyectar de nuevo a la red descargando la bobina. [3]

Superconductores
Los superconductores almacenan energía eléctrica en forma de cargas electroestáticas confinadas en pequeños dispositivos, formados por pares de placas conductivas separadas por un medio dieléctrico. Los conductores, a diferencia de los condensadores tradicionales, poseen elevadas áreas, para ello se emplean dos capas (un ánodo y un cátodo) con esteras de carbono o filamentos metálicos que son fundidos con líquidos que se emplean como dieléctrico. [3]

Bombeo hidráulico
Es el sistema más maduro, ha sido empleado desde los años veinte. Consiste en el almacenamiento energético mediante el bombeo de agua desde una
presas a un nivel bajo hasta una presa a un nivel mayor, de este modo en horas valle se puede almacenar energía. En horas punta, cuando se quiere emplear la energía almacenada, funciona como una central hidroeléctrica convencional. [3]

Aire comprimido
Esta técnica consiste en el almacenamiento de aire comprimido en reservorios bajo tierra a unas presiones normalmente entre 60-70 bar. El aire se comprime en forma escalonada, con enfriamientos intermedios, con lo cual se consigue un buen rendimiento en la etapa de almacenamiento de energía en los períodos en los que existe un excedente energético. [3]

Baterías
Las baterías son sistemas recargables donde se produce un almacenamiento de energía eléctrica en forma de energía química, generándose iones cargados eléctricamente durante el período de carga y empleando los iones para crear un flujo de electrones durante la descarga. Por lo tanto, su capacidad energética depende de su potencia. [3]

Baterías de flujo Redox
Se pueden considerar sistemas híbridos entre las baterías y las pilas de combustible. El electrolito está contenido en tranques externos y es circulado a través del stack. Son sistemas electroquímicos donde la oxidación y reducción involucra especies iónicas en solución y las reacciones tienen lugar sobre los electrodos inertes. Estos sistemas tienen una vida útil elevada, pero su densidad de corriente suele ser baja debido a la solubilidad limitada de los materiales activos. Su capacidad puede variar incrementando o disminuyendo la cantidad de electrolito. [3]

Hidrógeno
El método de producción de hidrógeno a gran escala más económico es el reformado de gas natural, pero si se tiene una consideración la captura de CO₂ generado, es más eficiente su generación empleando energías renovables mediante electrolisis. En la actualidad se está produciendo un incipiente desarrollo del estudio de este tipo de sistemas. [3]

En las ilustraciones 3.3 y 3.4 hacemos una comparación entre las diferentes tecnologías de almacenamiento energético.
<table>
<thead>
<tr>
<th>APLICACIÓN</th>
<th>POTENCIA</th>
<th>TIEMPO DE ALMACENAMIENTO</th>
<th>ENERGÍA</th>
<th>TIEMPO DE RESPUESTA</th>
<th>TECNOLOGÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGO PLAZO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generación, nivelación de carga</td>
<td>100’s MW</td>
<td>6-10 h</td>
<td>100-1,000</td>
<td>minutos</td>
<td>Baterías plomo-ácido; Baterías avanzadas; Baterías de flujo; Bombeo hidráulico; CAES; H₂</td>
</tr>
<tr>
<td>Rampa, seguimiento de carga</td>
<td>100’s MW</td>
<td>varias hs</td>
<td>100-1,000</td>
<td>< ciclo</td>
<td>Baterías plomo-ácido; Baterías avanzadas; Baterías de flujo; H₂</td>
</tr>
<tr>
<td>MUY LARGO PLAZO</td>
<td>(MWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergencia back-up</td>
<td>1 MW</td>
<td>24 horas</td>
<td>24 seg-mins</td>
<td></td>
<td>Baterías plomo-ácido; Baterías de flujo; Baterías avanzadas; H₂</td>
</tr>
<tr>
<td>Almacenamiento estacional</td>
<td>50-300 MW</td>
<td>semanas</td>
<td>10,000-100,000 mins</td>
<td>CAES; H₂</td>
<td></td>
</tr>
<tr>
<td>Renovables back-up</td>
<td>100 MW-1 kW</td>
<td>7 días</td>
<td>20-200 seg-mins</td>
<td></td>
<td>Baterías avanzadas; Baterías de flujo; Bombeo hidráulico; CAES; H₂</td>
</tr>
<tr>
<td>MUY CORTO PLAZO</td>
<td>(KWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uso final en cortes de red, calidad de energía, arranque motores</td>
<td>≤ 1 MW</td>
<td>seg</td>
<td>~0,2</td>
<td>< 1/4 ciclo</td>
<td>Volante Inercia; Supercondensadores; Micro-SMES; Baterías plomo-ácido; Baterías de flujo; H₂</td>
</tr>
<tr>
<td>Transitorios</td>
<td>< 1 MW</td>
<td>seg</td>
<td>~0,2</td>
<td>< 1 ciclo</td>
<td>Volante Inercia; Supercondensadores; Micro-SMES; Baterías plomo-ácido; Baterías de flujo; H₂</td>
</tr>
<tr>
<td>Estabilización red transporte y distribución</td>
<td>> 100 MW</td>
<td>seg</td>
<td>20-50</td>
<td>< 1/4 ciclo</td>
<td>SMES; H₂; Baterías plomo-ácido; Baterías de flujo</td>
</tr>
</tbody>
</table>

Ilustración 3.3. Aplicaciones y tecnologías de almacenamiento apropiadas para cada aplicación.

Fuente: "Wind Energy and Hydrogen Integration"
3.6. Análisis sistema eléctrico español

En este capítulo analizaremos los datos históricos y actuales de la potencia instalada, producción y demanda para poder realizar un análisis posterior de dicha evolución.

El número y distribución de las centrales instaladas en España en la Península Ibérica podemos verlo en la siguiente ilustración 3.5.

Wind Energy and Hydrogen Integration
En este mapa podemos observar que la mayor potencia de energía eólica instalada se encuentra en Castilla y León (5652 MW), seguida de Castilla la mancha (3800 MW), Galicia (3362 MW) y Andalucía (3325 MW).

En el caso de la hidráulica las comunidades autónomas con mayor potencia instalada son: Castilla y León (4399 MW), Galicia (3690 MW), Cataluña (2356 MW) y Extremadura (2278 MW).

En el caso de la energía solar térmica y fotovoltaica las comunidades con más potencia instalada son: Andalucía (1866 MW), Extremadura (1409 MW) y Castilla y León (1272 MW).

La potencia instalada por tecnologías a fecha del 15 de diciembre de 2015 se muestra en la tabla 1.

<table>
<thead>
<tr>
<th>Sistema Peninsular</th>
<th>Sistema no peninsular</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>20.352</td>
<td>1</td>
</tr>
<tr>
<td>Nuclear</td>
<td>7.573</td>
<td>-</td>
</tr>
<tr>
<td>Carbón</td>
<td>10.468</td>
<td>468</td>
</tr>
<tr>
<td>Fuel/gas</td>
<td>0</td>
<td>2.490</td>
</tr>
<tr>
<td>Ciclo combinado</td>
<td>24.948</td>
<td>1.722</td>
</tr>
<tr>
<td>Hidroeólica</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Eólica</td>
<td>22.864</td>
<td>156</td>
</tr>
<tr>
<td>Solar fotovoltaica</td>
<td>4.420</td>
<td>244</td>
</tr>
<tr>
<td>Solar térmica</td>
<td>2.300</td>
<td>-</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>(1) (2)</td>
<td>742</td>
</tr>
<tr>
<td>Cogeneración</td>
<td>(2)</td>
<td>6.684</td>
</tr>
<tr>
<td>Residuos</td>
<td>(3)</td>
<td>677</td>
</tr>
<tr>
<td>Total</td>
<td>101.027</td>
<td>5.220</td>
</tr>
</tbody>
</table>

(1) Incluye biogás, biomasa, hidráulica marina y geotérmica.
(2) Los valores de incrementos incluyen residuos hasta el 31/12/2014.
(3) Potencia incluida en otras renovables y en cogeneración hasta el 31/12/2014.
Fuente Comisión Nacional de los Mercados y la Competencia (CNMC) en: hidráulica no UGH, eólica, solar fotovoltaica, solar térmica, otras renovables, cogeneración y residuos

A día 31 de diciembre del 2015, el Sistema Eléctrico español cuenta con una potencia instalada de 106.247 MW, un 0,5% superior a la del 2014. Este ligero incremento corresponde a la entrada en funcionamiento de la central hidroeléctrica de bombeo de La Muela II, de 878 MW, y de la central hidráulica de San Pedro II, de 23 MW. [13]
Este aumento de potencia se ha visto contrarrestado por el cierre de Foix, de 506 MW, la última central de fuel-gas que aún existía en el sistema eléctrico peninsular. [13]

En lo que nos atañe para este trabajo, la energía renovable ha aumentado desde el 2014 en un 1,8% y desde el 2006 un 65%. Esto nos indica el gran desarrollo de entras tecnologías en España.

Sin embargo, en los últimos 5 años, la potencia instalada de energías renovables ha crecido más lentamente debido a la situación política y económica que atraviesa nuestro país.

Los porcentajes de la potencia instalada por tecnologías hasta el 31 de diciembre de 2015 se muestran en la ilustración 3.6 y en la ilustración 3.7 se muestra la reparto en energía renovable y no renovable de la potencia instalada.

La generación de energía eléctrica nacional, que engloba la producción de la península y la de los sistemas no peninsulares, se ha situado en 267.584 GWh, un 0,3% superior a 2014, la primera tasa positiva tras dos años consecutivos de descenso. Por tecnologías, la variación de la producción respecto al año anterior ha sido muy desigual.

En la tabla 2 se representa la generación de energía eléctrica en 2015 en España.
Las energías renovables peninsulares, si bien continúan manteniendo un papel destacado en la estructura de la generación eléctrica peninsular con un 36,9%, descienden respecto a 2014 condicionadas sobre todo por las características hidrológicas del año que han propiciado una notable caída de la producción hidroeléctrica (un 27,5%). Como contrapartida, las energías no renovables elevan su participación al 63,1%, con importantes incrementos de la generación con carbón (un 23,8%) y de ciclo combinado (un 18,7%).

<table>
<thead>
<tr>
<th></th>
<th>Sistema Peninsular</th>
<th>Sistema no peninsular</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>30.815</td>
<td>4</td>
<td>30.819</td>
</tr>
<tr>
<td>Nuclear</td>
<td>54.755</td>
<td>-</td>
<td>54.755</td>
</tr>
<tr>
<td>Carbón</td>
<td>50.924</td>
<td>1.865</td>
<td>52.789</td>
</tr>
<tr>
<td>Fuel/gas (2)</td>
<td>0</td>
<td>6.497</td>
<td>6.497</td>
</tr>
<tr>
<td>Ciclo combinado (3)</td>
<td>25.334</td>
<td>4.022</td>
<td>29.357</td>
</tr>
<tr>
<td>Hidroeólica</td>
<td>-</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Eólica</td>
<td>47.707</td>
<td>402</td>
<td>48.109</td>
</tr>
<tr>
<td>Solar fotovoltaica</td>
<td>7.839</td>
<td>398</td>
<td>8.236</td>
</tr>
<tr>
<td>Solar térmica</td>
<td>5.085</td>
<td>-</td>
<td>5.085</td>
</tr>
<tr>
<td>Otras renovables (4) (5)</td>
<td>4.615</td>
<td>10</td>
<td>4.625</td>
</tr>
<tr>
<td>Cogeneración (6)</td>
<td>25.076</td>
<td>32</td>
<td>25.108</td>
</tr>
<tr>
<td>Residuos (6)</td>
<td>1.886</td>
<td>311</td>
<td>2.196</td>
</tr>
<tr>
<td>Generación</td>
<td>254.036</td>
<td>13.548</td>
<td>267.584</td>
</tr>
<tr>
<td>Consumos en bombeo</td>
<td>-4.520</td>
<td>-</td>
<td>-4.520</td>
</tr>
<tr>
<td>Enlace Península-Baleares (7)</td>
<td>-1.336</td>
<td>1.336</td>
<td>0</td>
</tr>
<tr>
<td>Saldo intercambios Internacionales (8)</td>
<td>-133</td>
<td>-</td>
<td>-133</td>
</tr>
<tr>
<td>Demanda (b.c.)</td>
<td>248.047</td>
<td>14.884</td>
<td>262.931</td>
</tr>
</tbody>
</table>

Dentro de la generación de energía eléctrica de origen renovable la distribución por tecnologías sigue el mismo patrón que los años anteriores, siendo la energía eólica la que mayor energía eléctrica produce, ilustración 3.9.

En el año 2015 la energía eólica supuso el 51,4%, la solar fotovoltaica y térmica un 13,9% y la hidráulica el 27,9% del total de energía producida por centrales de energía renovable.
3.7. Análisis básico de la cobertura de la demanda

3.7.1. Definiciones

Las siguientes definiciones se toman de la metodología general de los estudios de cobertura de la demanda de la UCTE.

Fiabilidad: término general que comprende todos los aspectos, expresados en forma de índices numéricos, sobre la capacidad del sistema para suministrar electricidad a todos los puntos de utilización dentro de los valores aceptados por las normas y en las cantidades requeridas. La fiabilidad de un sistema de potencia, que comprende las infraestructuras de transporte y la generación, puede describirse con dos conceptos básicos: idoneidad y seguridad.

Idoneidad: medida de la capacidad del sistema de potencia para suministrar la demanda agregada de potencia eléctrica a requerimiento de los consumidores, dentro de los valores nominales de capacidad de los equipos y de los límites de tensión establecidos, teniendo en cuenta las indisponibilidades previstas e imprevistas de los componentes del sistema. La idoneidad mide la capacidad del sistema de potencia para suministrar la demanda en todas las condiciones estáticas que puedan definirse dentro de las normas establecidas.
Seguridad: medida de la capacidad del sistema de potencia para soportar las perturbaciones repentinas, tales como cortocircuitos, fallos imprevistos de componentes del sistema o condiciones de carga no esperadas, cumpliendo con las restricciones de operación. Otro aspecto de la seguridad es la integridad del sistema, que es la capacidad para mantener la operación interconectada. La integridad se refiere a la preservación de la operación interconectada del sistema, evitando la disgregación incontrolada del mismo, en presencia de determinadas perturbaciones severas.

3.7.1. Metodología

Se realizan dos análisis distintos, uno de potencia (cobertura de la punta de demanda máxima previsible, tanto en invierno como en verano) y otro de energía (cobertura de la demanda de energía esperada a lo largo del año). Ambos se hacen “a nudo único”, es decir, sin considerar las restricciones de red.

Análisis de potencia (cobertura de la demanda punta)

Para realizar este análisis se precisa por un lado de una previsión de la máxima demanda a suministrar y, para cada tecnología, es necesario determinar la potencia disponible en los momentos de punta del sistema.

De acuerdo con la definición de la UCTE, el análisis de cobertura de la punta de la demanda se basa en una comparación entre la carga y la capacidad de la generación considerada como “disponible con fiabilidad” para los operadores de las centrales (que se corresponde con la capacidad de generación después de deducir diversas causas de indisponibilidad —capacidad no utilizable, indisponibilidades programadas y no programadas—), y las reservas requeridas por los operadores del sistema para la provisión de los servicios complementarios del mismo. No se tienen en cuenta las aportaciones de los intercambios internacionales.

En el presente apartado se van a seguir los siguientes criterios:

- Para estos momentos, se supone que las centrales no realizan mantenimiento, reservándolo para otros períodos menos comprometidos, ni se destina potencia al bombeo hidráulico.

- En base a datos históricos, se estiman unos coeficientes de potencia indispensible para cada tecnología por averías (tasas de fallo fortuito). En conjunto se comete un error, puesto que la tasa de fallo va a depender de la edad y madurez de la tecnología de los grupos, dato que no se tiene en cuenta en el análisis.
Además de estas causas de indisponibilidad, hay que considerar otros factores de base:

- La producción hidráulica punta es limitada.

- En la punta de verano, el factor temperatura afecta a la potencia disponible de algunos grupos, en particular directamente a los ciclos combinados. No se tienen en cuenta restricciones de producción por temperatura del agua de refrigeración, aunque esto puede ser una situación real.

El sistema peninsular español está formado por un conjunto heterogéneo de tecnologías y fuentes primarias de energía, que se pueden agrupar en:

- No gestionables (previsibles pero no programables), cuya aportación depende de factores meteorológicos externos no controlables, por lo que su garantía de potencia (potencia disponible respecto a la instalada) será reducida.

 ➢ Parques eólicos: dependen del viento, y de la coincidencia o no de una situación de anticiclón en la península con frío o calor extremo. La experiencia indica que por cada MW eólico en funcionamiento deben estar conectados a la red 0,9 MW de tecnología convencional, por esta causa.

 ➢ Fotovoltaica: se puede considerar una mayor presencia en la punta de verano.

 ➢ El resto del régimen especial es potencialmente gestionable. En este grupo podemos encontrar la minihidráulica, la cogeneración, la solar térmica y resto de régimen especial térmico.

Análisis de Energía

Además de determinar si el sistema es capaz de proporcionar los valores máximos estimados, hay que verificar si la energía que pueden aportar las distintas tecnologías cubre las necesidades a lo largo del año. Las principales limitaciones a tener en cuenta son las siguientes:

- Centrales hidráulicas: la aportación total de energía tiene unos límites, según sea el año seco o húmedo respecto a la media de datos históricos.
- Mantenimientos: dan indisponibilidades programadas y prolongadas a 3-4 semanas.

- Horas de funcionamiento de centrales solares y parques eólicos: si bien en la cobertura de la demanda punta el régimen especial tiene un efecto muy limitado, como hemos indicado, sin embargo en la cobertura de la demanda de la energía a lo largo del año sí puede tener, y de hecho tiene, gran importancia. Hay que tener en cuenta que este tipo de centrales no funcionan a todas horas, ni lo hace a plena potencia. Tampoco se sabe exactamente el desarrollo que pueden tener estas tecnologías ni tecnologías complementarias, como el aprovechamiento de la energía.

3.8. Índice de cobertura mínimo peninsular

Debido a la no disponibilidad de las plantas generadoras en diferentes situaciones se plantea el estudio de cobertura de la demanda. El objetivo de este estudio es analizar la satisfacción de la demanda eléctrica del sistema bajo determinadas hipótesis de crecimiento de la misma y de desarrollo del parque generador.

En los estudios de cobertura de la punta de demanda se determina a priori un valor objetivo de margen de reserva entre la potencia realmente disponible (esto es, la potencia instalada menos la que se considera indisponible por fallos, falta de aporte de combustible primario, etc.) y la potencia máxima demandada. En España, este margen de reserva se evalúa normalmente con un parámetro básico, el índice de cobertura anual (IC), que es el cociente entre las dos magnitudes anteriores, potencia disponible y demanda máxima, con un valor deseable de 1.1 o superior.

Los estudios de la UCTE lo evalúan a través del ARM (Adecuacy Reference Margin), que es la diferencia entre la potencia disponible y la potencia instalada, con un valor objetivo del 5%. [6]

En la siguiente tabla representamos los índices de cobertura mínimos peninsulares desde el 2007 hasta el 2015.

<table>
<thead>
<tr>
<th>Año</th>
<th>Índice de cobertura mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1,19</td>
</tr>
<tr>
<td>2008</td>
<td>1,23</td>
</tr>
<tr>
<td>2009</td>
<td>1,25</td>
</tr>
<tr>
<td>2010</td>
<td>1,34</td>
</tr>
<tr>
<td>2011</td>
<td>1,39</td>
</tr>
<tr>
<td>2012</td>
<td>1,38</td>
</tr>
<tr>
<td>2013</td>
<td>1,43</td>
</tr>
<tr>
<td>2014</td>
<td>1,45</td>
</tr>
<tr>
<td>2015</td>
<td>1,37</td>
</tr>
</tbody>
</table>

Vemos una clara evolución de estos índices a medida que la potencia instalada es mayor aunque en el 2015 se produce una caída de este índice.

3.9. Factor de capacidad

El factor capacidad se define como la relación entre la energía generada \(E \) por un tipo de tecnología dada, durante un periodo dado y la que se hubiera producido si durante ese periodo hubiese estado funcionando continuamente a potencia nominal \(P_n \).

En general, el factor de capacidad se calcula para un período de un año (8760 horas), aunque puede ser calculado para cualquier otro período. Teniendo en cuenta la anterior definición, el factor de capacidad se expresa por la relación siguiente:

\[
CF = \frac{E}{P_n} \cdot 8760
\]

Ec. 3.1

El factor de capacidad es adimensional, por lo que si se multiplica por 100 se puede dar en %. El valor del CF debe ser mayor que 20% para que un sistema de generación de electricidad.

En la tabla 4 mostramos la calificación de los factores de capacidad agrupados en seis rangos.
<table>
<thead>
<tr>
<th>Factor de capacidad (CF)</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 0,2</td>
<td>Inaceptable</td>
</tr>
<tr>
<td>0,2-0,25</td>
<td>Aceptable</td>
</tr>
<tr>
<td>0,25-0,30</td>
<td>Bueno</td>
</tr>
<tr>
<td>0,3-0,4</td>
<td>Muy bueno</td>
</tr>
<tr>
<td>0,4-0,5</td>
<td>Excelente</td>
</tr>
<tr>
<td>Mayor de 0,5</td>
<td>Extraordinario</td>
</tr>
</tbody>
</table>
4. METODOLOGÍA

4.1. Demanda de energía eléctrica

4.1.1. Obtención de datos

Los datos de la demanda de energía eléctrica por horas se obtienen a través de la plataforma digital ESIOS, www.esios.ree.es.

En el apartado Análisis de esta página web nos permite la obtención de una gran diversidad de datos según las necesidades requeridas. Una vez seleccionada la demanda eléctrica podremos seleccionar:

- El periodo de obtención de esos datos, la fecha de inicio y fin de los mismos.
- La agrupación que queremos hacer de estos datos: diez minutos, horas, días, meses, y años.
- La comparación de los datos demandados con otro tipo de datos como puede ser el consumo, la demanda programada, previsiones, etc.

En la página se representa un gráfico con los datos seleccionados, ilustración 4.1.
Ilustración 4.11. Demanda eléctrica real del año 2014. Fuente: ESIOS

Exportamos estos datos a Excel y empezamos el tratamiento de los mismos. Los datos exportados aparecen de la siguiente forma, Tabla 5.

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>geoid</th>
<th>geoname</th>
<th>value</th>
<th>datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>24301</td>
<td>667</td>
<td>26.402,3</td>
<td>2014-01-01T00:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>23365</td>
<td>3333</td>
<td>26.371,0</td>
<td>2014-01-01T01:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>21672</td>
<td>3333</td>
<td>26.138,5</td>
<td>2014-01-01T02:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>20192</td>
<td>3333</td>
<td></td>
<td>2014-01-01T03:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>19220</td>
<td>667</td>
<td></td>
<td>2014-01-01T04:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>18954</td>
<td>5555</td>
<td></td>
<td>2014-01-01T05:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>19022</td>
<td>3333</td>
<td></td>
<td>2014-01-01T06:00:00+01:00</td>
</tr>
<tr>
<td>129</td>
<td>Demanda real</td>
<td>19295</td>
<td>667</td>
<td></td>
<td>2014-01-01T07:00:00+01:00</td>
</tr>
</tbody>
</table>
4.1.2. Tratamiento de los datos

Tenemos un total de 26280 datos que tratar de los tres años. Se realiza una clasificación de estos datos atendiendo a los siguientes criterios:

Por estaciones: invierno, primavera, verano y otoño.

Lo que esta clasificación está teniendo en cuenta son las variaciones climatológicas que se dan a lo largo del año en la Península Ibérica. El factor que más afecta a la demanda de electricidad es la temperatura, teniendo temperaturas más extremas en los meses de verano e invierno. La influencia sobre la demanda es tal que en algunos meses puede llegar hasta el 12% de la misma que se puede explicar por este fenómeno. La mayor instalación de calefacción eléctrica frente al aire acondicionado supone que los consumidores son más sensibles al frío en invierno y entretiempo que al calor en verano, esto es, por cada grado que varía la temperatura en invierno la variación en la demanda es mayor que por cada grado que varía la temperatura en verano. Esta sensibilidad no es uniforme para todo el rango de temperaturas si no que se pone de manifiesto especialmente a partir de unos umbrales. Las variaciones de temperatura influyen notablemente en la demanda eléctrica a partir de los 15°C en los meses de invierno y primavera-otoño y de los 20°C en los meses de verano. Sin embargo, la temperatura afecta más en verano al consumo de electricidad ya que en invierno podemos calefaccionar con combustibles fósiles o con energía eléctrica. Sin embargo, en invierno las horas de luz en la Península Ibérica son menores por lo que este hecho hace que la demanda de energía eléctrica aumente. Los picos de máxima demanda de energía eléctrica se suelen dar en estas dos estaciones. [5]

Por días festivos y no festivos.

La evolución de la demanda eléctrica diaria sigue un ciclo semanal y está caracterizada por la actividad productiva que tiene lugar cada día de la semana.

Considerando una semana en la que no hay festivos ni se producen fenómenos meteorológicos extremos, la demanda de energía eléctrica es máxima y de igual magnitud para el martes, miércoles, jueves y viernes. Mientras que los valores más bajos se obtienen el sábado y el domingo. El lunes, a pesar de ser día laborable, presenta una demanda menor dado que la industria necesita un cierto periodo de tiempo para volver a los niveles predeterminados de producción tras el descanso dominical. [5]
En la ilustración 4.2 vemos como la demanda cae notablemente para el sábado y el domingo. Este patrón general descrito anteriormente puede verse afectado por la influencia de la temperatura y del trabajo. Temperaturas excepcionalmente altas o bajas pueden provocar, por ejemplo, que un sábado o un domingo presente una fuerte demanda eléctrica que en principio no coincida con lo que cabría esperar. Por otro lado, la demanda disminuye en los días festivos, especialmente si no se da en fin de semana, y su efecto se contagia a los días posteriores y anteriores provocando en los mismos una reducción de la demanda. Si existe un evento especial en un día determinado puede provocar una variación importante en la demanda que hay que tener en cuenta, por ejemplo una manifestación multitudinaria.

Por horas.

El perfil horario de demanda sufre fuerte oscilaciones y presenta dos o tres puntas durante el día y un profundo valle en la noche. Sin embargo, se puede identificar un patrón estable de dicho perfil horario en función del tipo de día y de los factores como la jornada laboral o la estación del año.
En la siguiente ilustración se muestra el perfil horario para el día 12 de Marzo de 2014.

Ilustración 4.3. Evolución horaria de la demanda de energía eléctrica para el día 22 de Enero de 2014. Fuente ESIOS

Durante el invierno, las bajas temperaturas y las pocas horas de luminosidad dan lugar a una curva de demanda con oscilaciones bruscas.

Como se observa en la ilustración 4.3 entre las seis y las once horas de la mañana se produce una subida importante de la energía eléctrica demandada para los días laborables. Esta rampa de subida larga y empinada responde a la puesta en marcha de actividades residenciales, industriales y de servicios.

En torno a las doce horas de la mañana tanto el sector industrial como el sector servicios se encuentran a pleno rendimiento lo que da lugar al primer pico de demanda del día. Una vez alcanzado este máximo de demanda desciende progresivamente hasta las seis de la tarde.

Entre las seis y las ocho de la tarde se produce una nueva subida en rampa de la demanda eléctrica aunque esta vez el pico alcanzado es mayor. Tras la
La jornada laboral, el regreso al domicilio supone el uso de luminarias, calefacción y demás aparatos que consumen energía eléctrica para su funcionamiento, lo que provoca este aumento de la demanda a pesar de la bajada de la demanda del sector industrial y del sector servicios.

A partir de las ocho de la tarde se inicia una rampa de bajada de la demanda eléctrica finalizando en un mínimo a las 6 de la mañana del día siguiente.

Durante el verano, la disponibilidad de luz natural en las horas de mayor actividad económica así como la suma de demandas con diferentes características dan lugar a un perfil de demanda con oscilaciones menos acusadas que en invierno.

En este caso, para los días laborables el pico máximo de demanda se da a la una de la tarde.

Los sábados y los domingos tanto para invierno como para verano presentan una actividad económica menor que los días laborables lo que da lugar a una demanda inferior para todas las horas del día y a un retraso en la aparición tanto de los picos como de los valles de demanda. Para los sábados este desplazamiento sería de una hora mientras que para los domingos sería de dos horas.

El perfil horario característico de la demanda con dos o tres puntas y un profundo valle supone un reto para el sector eléctrico. Durante la noche la demanda es muy baja y se produce un excedente de energía mientras que durante el día se debe regular la producción de forma relativamente rápida para ajustarse a los picos de demanda. Con el fin de intentar mitigar este comportamiento se han adaptado medidas tales como tarifas especiales para las horas valle, mejoras en la eficiencia de equipos y procesos o una mayor concienciación de la necesidad de ahorro energético.

Una vez identificados los factores de los que depende la demanda eléctrica procedemos al tratamiento de los datos clasificándoles en función de los tres parámetros descritos anteriormente. Como resultado tendremos un fichero de Excel con el siguiente formato:
Hemos añadido una columna a mayores que nos sirve para el estudio estadístico posterior que realizaremos de los datos. Para el cálculo de esta columna primeramente necesitamos obtener la media de la demanda horaria dividir cada demanda horaria entre esta media. Los números que se obtendrán serán cercanos a la unidad.

4.2. Estudio de probabilidad

4.2.1. Variables

Queremos caracterizar la demanda eléctrica actual por horas y días en términos relativos. Sea $EETA_X$ la energía eléctrica total consumida en el año X. El valor medio diario será:
$EEMD_x = \frac{EETA_x}{365}$
y el valor medio horario será:

$EEMH_x = \frac{EETA_x}{365 \times 24}$

La probabilidad de demanda horaria en tanto por uno está calculada con la ecuación anterior, dividiendo cada valor horario entre $EEMH_x$, y es el valor que utilizaremos para el estudio estadístico.

En el caso de la demanda vamos a diferenciar los días festivos y no festivos, considerando festivo el domingo y las fiestas nacionales, y las cuatro estaciones del año. Tendremos, por tanto, 8 divisiones en los que clasificar los días. Y para cada tipo de día tendremos 24 horas por lo que tendremos un total de 192 valores estadísticos.

4.2.2. Ajuste del modelo

Vamos a realizar un estudio estadístico de los conjuntos de datos pertenecientes a una estación, un tipo de día y una hora determinada. Para ello filtraremos los datos en Excel y los meteremos en el programa Statgraphics. Vamos a utilizar este software para hacer un estudio estadístico de las posibles funciones a las que se pueden ajustar los grupos de valores.

El objetivo de la utilización de este software será asignar un modelo de probabilidad a un conjunto de datos, de forma que el modelo elegido pueda interpretarse como la población de la que proceden esos datos. A esta búsqueda de un modelo de probabilidad a partir de una muestra de datos se le denomina ajuste de una distribución. Para que un modelo de probabilidad pueda considerarse que es un modelo razonable para explicar los datos, han de realizarse pruebas estadísticas. La realización de estas pruebas se denomina diagnosis o crítica del modelo. Por tanto, diremos que un modelo tendrá un buen ajuste a nuestros datos si supera con éxito la diagnosis. La forma habitual para hacer ajuste de modelos es la siguiente:

A partir del análisis de la muestra se comparará su distribución con la de algún modelo conocido (Normal, Weibull, Exponencial, etc). Para evaluar si un modelo tiene un buen ajuste realizaremos el test de la Chi cuadrado.
Los datos que tenemos que ajustar serán los datos de la columna de probabilidad de demanda en tanto por uno en función de la hora, tipo de día y estación. Estos datos estarán en torno a 1.

4.2.3. Análisis descriptivo de los datos

Lo primero que haremos, será un estudio descriptivo de los datos (Medidas características, Histograma). Así podemos hacernos una idea de la distribución de los datos.

Para realizar el histograma: Describir/Datos Numéricos/Análisis de una variable

![Histograma](image)

Ilustración 4.4. Histograma de los datos del a demanda eléctrica en invierno, día no festivo a las 22:00.
Fuente: elaboración propia

Con esta representación podremos hacernos una idea de las distribuciones que pueden ajustarse a dichos datos.

4.2.4. Entrada de datos

Antes de realizar el análisis de todos los datos, vamos a intentar ver si existe algún patrón y poder agilizar el proceso de análisis del conjunto de datos.

Describir/Ajuste de distribuciones/Ajuste de datos no censurados. Introducimos la columna de datos que queramos estudiar, Ilustración 4.5.
En la siguiente pantalla tendremos la opción de seleccionar cinco distribuciones entre todas las que el programa nos permite estudiar, Ilustración 4.6.

Ilustración 4.6. Elección de las distribuciones a estudiar en Statgraphics.

4.2.5. Resultados del ajuste de distribuciones

Resumen del análisis
El Resumen del análisis muestra el número de observaciones, el rango de los datos, y los valores de los parámetros estimados para cada distribución que es ajustada a los datos estudiados, un ejemplo de este resumen es la ilustración 4.7.

Resumen del análisis de los datos en Statgraphics.

<table>
<thead>
<tr>
<th>Distribuciones Ajustadas</th>
<th>Exponencial</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>1.13634</td>
<td></td>
<td>1.1364</td>
<td>1.1364</td>
</tr>
<tr>
<td>Forma</td>
<td>173,5521</td>
<td></td>
<td>1.1364</td>
<td></td>
</tr>
<tr>
<td>Escala</td>
<td>152,701</td>
<td></td>
<td>0.0871002</td>
<td>0.0850231</td>
</tr>
<tr>
<td>Desv. estándar log. med.</td>
<td>0.124932</td>
<td></td>
<td></td>
<td>0.0765338</td>
</tr>
</tbody>
</table>

Prueba de Bondad de Ajuste

El panel de Prueba de Bondad de Ajuste, Ilustración 4.8, realiza hasta 7 pruebas diferentes para determinar si es razonable que los datos provengan de la distribución ajustada. Para todas las pruebas, las hipótesis de interés son:

- Hipótesis Nula: los datos son muestras independientes de la distribución especificada
- Hipótesis Alt: los datos no son muestras independientes de la distribución especificada

La prueba que será corrida es seleccionada usando las Opciones del Panel. Las primeras 2 pruebas en general pueden ser aplicadas a cualquier conjunto de datos.

El cálculo de los P-Valores en la distribución específica estará basado en tablas o fórmulas específicamente desarrolladas para la distribución que es probada. De otra manera, los P-Valores serán basados en tablas o fórmulas generales que aplican a todas las distribuciones. La aproximación general es más conservadora (no rechazar una distribución tan fácilmente) pero puede ser preferida cuando comparamos P-Valores entre distribuciones diferentes.
En este ejemplo vemos que la distribución que más se ajustaría fijándonos sólo en el P-Valor sería la distribución normal pero sin poder rechazar con una 95% de confianza a la distribución Gamma, Lognormal y Weibull. Sin embargo, la distribución Exponencial sí se podría rechazar con un 95% de confianza siguiendo este criterio.

Trazas de densidad

Un buen lugar para empezar cuando se selecciona una distribución para un conjunto de datos es las Trazas de Densidad. Las Trazas de Densidad proveen un estimador no paramétrico de la función de densidad de probabilidad de la población de la cual los datos fueron muestreados. Esta es formada contando el número de observaciones que caen dentro de una ventana de anchura fija movida a través del rango de los datos.
La mejor forma para ver distribuciones ajustadas es a través del **Histograma de Frecuencias**. Este panel muestra un histograma de los datos como un conjunto de barras verticales, junto con la densidad de probabilidad estimada de una o más funciones, ilustración 4.10.

En esta ventana existen unas opciones de panel que podremos personalizar para que represente los datos de la forma adecuada, ilustración 4.11. Las opciones son las siguientes:

![Histograma Statsgraphics](image)

Ilustración 4.10. Histograma del conjunto de datos seleccionados en Statgraphics.

![Opciones Tabulación de Frecuencias](image)

Ilustración 4.11. Opciones del panel del histograma en Statgraphics.
- **Número de Clases**: El número de intervalos en los cuales los datos serán divididos. Los intervalos son adyacentes y tienen igual anchura. El número de intervalos en los cuales los datos serán divididos por defecto es fijado en la pestaña EDA de la caja de diálogo de Preferencias en el menú Edición.

- **Límite Inferior**: Límite inferior del primer intervalo.

- **Límite Superior**: Límite superior del primer intervalo.

- **Mantener**: Mantiene el número de intervalos y límites iguales aunque la fuente de datos cambie. Por defecto, el número de clases y los límites son recalcados cuando los datos cambian. Es necesario que todas las observaciones sean desplegadas por si algún dato actualizado cae más allá de los límites originales.

- **Desplegar**: La manera en la cual las frecuencias son desplegadas. Un Histograma escala las barras de acuerdo al número de observaciones en cada clase. Un Rotograma escala las barras de acuerdo a la raíz cuadrada del número de observaciones. Un Rotograma Suspendido escala por la raíz cuadrada y suspende las barras de la curva.

4.2.7. Casos prácticos

Una vez vista la teoría debemos realizar estos estudios con todos los datos que tenemos. A continuación se muestran algunos de los estudios de los grupos de datos en verano en días no festivos a diferentes horas.
DEMANDA: VERANO NO FESTIVO 11:00h
Datos/Variable: Verano No festivo 11:00h
238 valores con rango desde 0,92 a 1,35
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma = 178,317</td>
<td>media = 1,16441</td>
<td>media = 1,16437</td>
<td>forma = 15,0684</td>
</tr>
<tr>
<td>escala = 153,145</td>
<td>desviación est. = 0,0879359</td>
<td>desviación est. = 0,0867378</td>
<td>escala = 1,20415</td>
</tr>
<tr>
<td>Escala log: media = 0,149373</td>
<td>Escala log: desv. est. = 0,0754122</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pruebas de Bondad-de-Ajuste para Verano No festivo 11:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th></th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0278113</td>
<td>0,0276867</td>
<td>0,036394</td>
<td>0,0775797</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0672669</td>
<td>0,0691409</td>
<td>0,0619267</td>
<td>0,0341513</td>
</tr>
<tr>
<td>DN</td>
<td>0,0672669</td>
<td>0,0691409</td>
<td>0,0619267</td>
<td>0,0775797</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,232261</td>
<td>0,205602</td>
<td>0,322974</td>
<td>0,113993</td>
</tr>
</tbody>
</table>

El P-Valor mayor es para la distribución normal y podemos ver que se ajusta bastante bien a esta distribución en el histograma.
DEMANDA: VERANO NO FESTIVO 12:00h
Datos/Variable: Verano No festivo 12:00h
238 valores con rango desde 0,93 a 1,39
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>forma</th>
<th>media</th>
<th>escala</th>
<th>desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>159,155</td>
<td>1,19009</td>
<td>133,739</td>
<td>0,095171</td>
</tr>
<tr>
<td>Lognormal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,170844</td>
<td>0,079842</td>
</tr>
</tbody>
</table>

Pruebas de Bondad-de-Ajuste para Verano No festivo 12:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Distribución</th>
<th>DMAS</th>
<th>DMENOS</th>
<th>DN</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>0,0430223</td>
<td>0,0380261</td>
<td>0,0739425</td>
<td>0,148202</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0,0517932</td>
<td>0,0683544</td>
<td>0,128796</td>
<td>0,216482</td>
</tr>
<tr>
<td>Normal</td>
<td>0,0818963</td>
<td>0,0347248</td>
<td>0,0821385</td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td>0,0818963</td>
<td>0,0347248</td>
<td>0,0821385</td>
<td></td>
</tr>
</tbody>
</table>

Aunque el P-Valor no es demasiado grande para afirmar que se pueda ajustar a alguna de las funciones y en el histograma no se ajuste de forma correcta, la función normal es la que más se aproxima a nuestros valores.
DEMANDA: VERANO NO FESTIVO 13:00h

Datos/Variable: Verano No festivo 13:00h
238 valores con rango desde 0,95 a 1,42
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma</td>
<td>150,458</td>
<td>media = 1,20736</td>
<td>media = 1,20731</td>
<td>forma = 13,5735</td>
</tr>
<tr>
<td>escala</td>
<td>124,622</td>
<td>desviación estándar = 0,0992201</td>
<td>desviación estándar = 0,0980846</td>
<td>escala = 1,25233</td>
</tr>
</tbody>
</table>

Escala log: media = 0,185069
Escala log: desv. est. = 0,0820413

Pruebas de Bondad-Ajuste para Verano No festivo 13:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Distribución</th>
<th>DMAS</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS 0,0511305</td>
<td>0,0464088</td>
<td>0,0591719</td>
<td>0,0842298</td>
<td></td>
</tr>
<tr>
<td>DMENOS 0,0676278</td>
<td>0,0698199</td>
<td>0,0615727</td>
<td>0,0414313</td>
<td></td>
</tr>
<tr>
<td>DN 0,0676278</td>
<td>0,0698199</td>
<td>0,0615727</td>
<td>0,0842298</td>
<td></td>
</tr>
<tr>
<td>Valor-P 0,226928</td>
<td>0,196559</td>
<td>0,32981</td>
<td>0,0682969</td>
<td></td>
</tr>
</tbody>
</table>

Este caso es parecido al anterior pero con un P-Valor ligeramente superior, también vemos en el Histograma que la que más puede ajustarse es la distribución normal.
DEMANDA: VERANO NO FESTIVO 14:00h
Datos/Variable: Verano No festivo 14:00h
238 valores con rango desde 0,95 a 1,41
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma</td>
<td>144,694</td>
<td>1,18516</td>
<td>1,18513</td>
<td>12,9651</td>
</tr>
<tr>
<td>escala</td>
<td>122,092</td>
<td>0,0991379</td>
<td>0,0985495</td>
<td>1,23071</td>
</tr>
</tbody>
</table>

Escala log: media = 0,16639
Escala log: desv. est. = 0,0835037

Pruebas de Bondad-de-Ajuste para Verano No festivo 14:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0516839</td>
<td>0,0483522</td>
<td>0,0588432</td>
<td>0,0994766</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0656851</td>
<td>0,0665694</td>
<td>0,0620162</td>
<td>0,0587294</td>
</tr>
<tr>
<td>DN</td>
<td>0,0656851</td>
<td>0,0665694</td>
<td>0,0620162</td>
<td>0,0994766</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,256785</td>
<td>0,242842</td>
<td>0,321262</td>
<td>0,0180041</td>
</tr>
</tbody>
</table>

El dato del P-Valor de Weibull aparece en rojo porque el programa nos avisa de que el P-Valor está por debajo del 0,05 y por lo tanto esta función puede ser descartada con un 95% de confianza
DEMANDA: VERANO NO FESTIVO 15:00h
Datos/Variable: Verano No festivo 15:00h
238 valores con rango desde 0,92 a 1,41
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma</td>
<td>media</td>
<td>media</td>
<td>forma</td>
</tr>
<tr>
<td>126,664</td>
<td>1,15726</td>
<td>1,15723</td>
<td>12,0173</td>
</tr>
<tr>
<td>escala</td>
<td>desviación estándar</td>
<td>desviación estándar</td>
<td>escala</td>
</tr>
<tr>
<td>109,455</td>
<td>0,103504</td>
<td>0,102882</td>
<td>1,20463</td>
</tr>
</tbody>
</table>

| Escala log: media | 0,142074 |
| Escala log: desv. est. | 0,0892609 |

Pruebas de Bondad-de-Ajuste para Verano No festivo 15:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th></th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0573138</td>
<td>0,0537409</td>
<td>0,0625919</td>
<td>0,084399</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0466436</td>
<td>0,0480641</td>
<td>0,0432275</td>
<td>0,0731673</td>
</tr>
<tr>
<td>DN</td>
<td>0,0573138</td>
<td>0,0537409</td>
<td>0,0625919</td>
<td>0,084399</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,420684</td>
<td>0,509904</td>
<td>0,310415</td>
<td>0,0673757</td>
</tr>
</tbody>
</table>

En este caso la función que más se ajusta es la función Lognormal que tiene un P-Valor mayor de 0,5 y tiene unos parámetros de media y desviación prácticamente idénticos a la función normal.
DEMANDA: VERANO NO FESTIVO 15:00h
Datos/Variable: Verano No festivo 15:00h
238 valores con rango desde 0,92 a 1,41
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma</td>
<td>126,664</td>
<td>media = 1,15726</td>
<td>media = 1,15723</td>
<td>forma = 12,0173</td>
</tr>
<tr>
<td>escala</td>
<td>109,455</td>
<td>desviación estándar = 0,103504</td>
<td>desviación estándar = 0,102882</td>
<td>escala = 1,20463</td>
</tr>
<tr>
<td>Escala log: media</td>
<td>0,142074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escala log: desv. est.</td>
<td>0,0892609</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pruebas de Bondad-de-Ajuste para Verano No festivo 15:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0573138</td>
<td>0,0537409</td>
<td>0,0625919</td>
<td>0,084399</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0466436</td>
<td>0,0480641</td>
<td>0,0432275</td>
<td>0,0731673</td>
</tr>
<tr>
<td>DN</td>
<td>0,0573138</td>
<td>0,0537409</td>
<td>0,0625919</td>
<td>0,084399</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,420684</td>
<td>0,509904</td>
<td>0,310415</td>
<td>0,0673757</td>
</tr>
</tbody>
</table>

En este caso la función que más se ajusta es la función Lognormal que tiene un P-Valor mayor de 0,5 y tiene unos parámetros de media y desviación prácticamente idénticos a la función normal.
DEMANDA: VERANO NO FESTIVO 16:00h

Datos/Variable: Verano No festivo 16:00h
238 valores con rango desde 0,9 a 1,41

Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma</td>
<td>111,247</td>
<td>1,14989</td>
<td>1,14983</td>
<td>11,4379</td>
</tr>
<tr>
<td>escala</td>
<td>96,7508</td>
<td>0,109973</td>
<td>0,108744</td>
<td>1,19939</td>
</tr>
<tr>
<td>Escala log: media</td>
<td>0,135115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escala log: desv. est.</td>
<td>0,0954203</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pruebas de Bondad-de-Ajuste para Verano No festivo 16:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Prueba</th>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0412069</td>
<td>0,0363115</td>
<td>0,0492494</td>
<td>0,0757352</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0517648</td>
<td>0,0551513</td>
<td>0,0432706</td>
<td>0,0641307</td>
</tr>
<tr>
<td>DN</td>
<td>0,0517648</td>
<td>0,0551513</td>
<td>0,0492494</td>
<td>0,0757352</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,546442</td>
<td>0,47321</td>
<td>0,610726</td>
<td>0,130424</td>
</tr>
</tbody>
</table>

El P-Valor mayor es el de la función normal con un 0,61.
DEMANDA: VERANO NO FESTIVO 17:00h

Datos/Variable: Verano No festivo 17:00h
238 valores con rango desde 0,89 a 1,4

Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Distribución</th>
<th>forma</th>
<th>media</th>
<th>desviación estándar</th>
<th>escala</th>
<th>desviación estándar</th>
<th>escala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>108,079</td>
<td>1,14882</td>
<td>0.111634</td>
<td>94,0846</td>
<td>0,109933</td>
<td>1,19853</td>
</tr>
<tr>
<td>Lognormal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>1,14874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Escalas log:
- media = 0,134032
- desv. est. = 0,096945

Pruebas de Bondad-de-Ajuste para Verano No festivo 17:00h

<table>
<thead>
<tr>
<th>Distribución</th>
<th>DMAS</th>
<th>DMENOS</th>
<th>DN</th>
<th>Valor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma</td>
<td>0,034008</td>
<td>0,0582911</td>
<td>0,0582911</td>
<td>0,398386</td>
</tr>
<tr>
<td>Lognormal</td>
<td>0,0277888</td>
<td>0,0606324</td>
<td>0,0606324</td>
<td>0,348491</td>
</tr>
<tr>
<td>Normal</td>
<td>0,0452923</td>
<td>0,0516599</td>
<td>0,0516599</td>
<td>0,549081</td>
</tr>
<tr>
<td>Weibull</td>
<td>0,0732074</td>
<td>0,0492977</td>
<td>0,0732074</td>
<td>0,156039</td>
</tr>
</tbody>
</table>

El P-Valor mayor es el de la función normal con un 0,55.
DEMANDA: VERANO NO FESTIVO 18:00h
Datos/Variable: Verano No festivo 18:00h
238 valores con rango desde 0,89 a 1,37
Distribuciones Ajustadas

<table>
<thead>
<tr>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>forma = 118,289</td>
<td>media = 1,13717</td>
<td>media = 1,1371</td>
<td>forma = 12,0279</td>
</tr>
<tr>
<td>escala = 104,026</td>
<td>desviación estándar = 0,105601</td>
<td>desviación estándar = 0,103986</td>
<td>escala = 1,18431</td>
</tr>
<tr>
<td>Escala log: media = 0,124249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escala log: desv. est. = 0,0926634</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pruebas de Bondad-de-Ajuste para Verano No festivo 18:00h
Prueba de Kolmogorov-Smirnov

<table>
<thead>
<tr>
<th>Gamma</th>
<th>Lognormal</th>
<th>Normal</th>
<th>Weibull</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAS</td>
<td>0,0347377</td>
<td>0,0291605</td>
<td>0,0444586</td>
</tr>
<tr>
<td>DMENOS</td>
<td>0,0605564</td>
<td>0,0623059</td>
<td>0,0551035</td>
</tr>
<tr>
<td>DN</td>
<td>0,0605564</td>
<td>0,0623059</td>
<td>0,0551035</td>
</tr>
<tr>
<td>Valor-P</td>
<td>0,350033</td>
<td>0,315769</td>
<td>0,474421</td>
</tr>
</tbody>
</table>

El P-Valor mayor es el de la función normal con un 0,47. En el histograma vemos que se ajusta bastanate bien a esta función.

Una vez estudiado un gran número de grupos de datos, llegamos a la conclusión de que podemos simplificar este estudio y suponemos que todos los grupos de datos siguen una distribución normal con su media y desviación estándar correspondiente. Para esta conclusión hemos tenido más en cuenta la representación de la función normal sobre el histograma de los datos de
cada grupo aunque el P-valor en ocasiones nos sugiera lo contrario. En el ANEXO I se encuentran las tablas con los datos de las medias y las desviaciones típicas para cada grupo de datos.

4.3. Generación de energía eléctrica renovable

4.3.1. Obtención de datos

Los datos de la generación de energía eléctrica por horas se obtienen a través de la plataforma digital ESIOS, siendo la página web: www.esios.ree.es

En el apartado Análisis de esta página web deberemos buscar datos de generación de energía eléctrica proveniente de energías renovables, en concreto energía eólica, hidráulica y solar que son las que tendremos en cuenta para este trabajo.

- El periodo de obtención de esos datos, la fecha de inicio y fin de los mismos.
- La agrupación que queremos hacer de estos datos: diez minutos, horas, días, meses y años.
- La comparación de los datos demandados con otro tipo de datos como puede ser el consumo, generación, intercambios, pérdidas, etc.

En la página aparecerá la representación de los datos seleccionados, ilustración 4.12.
Estos datos los exportamos a Excel y el formato en que aparecen es el siguiente, tabla 7.

Tabla 7. Formato de los datos de la demanda eléctrica real exportados desde ESIOS. Fuente: ESIOS

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>geoid</th>
<th>geoname</th>
<th>value</th>
<th>datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>11.042,3</td>
<td></td>
<td>2014-01-01T00:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>11.150,0</td>
<td></td>
<td>2014-01-01T01:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>10.872,8</td>
<td></td>
<td>2014-01-01T02:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>10.804,1</td>
<td></td>
<td>2014-01-01T03:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>10.636,3</td>
<td></td>
<td>2014-01-01T04:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>10.440,5</td>
<td></td>
<td>2014-01-01T05:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>10.035,6</td>
<td></td>
<td>2014-01-01T06:00:00+01:00</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Generación T.Real eólica</td>
<td>9.814,8</td>
<td></td>
<td>2014-01-01T07:00:00+01:00</td>
<td></td>
</tr>
</tbody>
</table>
4.3.2. Tratamiento de los datos

Tenemos un total de 26280 datos que tratar de los tres años por cada tecnología de generación. Vamos a realizar la siguiente clasificación de los datos de la generación:

Por estaciones: invierno, primavera, verano y otoño.

Como consecuencia del desplazamiento en la superficie de la tierra de las zonas de alta presión (anticiclones) y de zonas de baja presión, la velocidad y dirección del viento varía generalmente a lo largo del año. Las isostaquias de enero son diferentes a las de julio. Como la posición de las áreas ciclónicas y anticiclónicas depende de la posición del sol respecto del ecuador, se observa una variación más o menos cíclica del viento en intensidad y en dirección.

La producción de energía es proporcional al cubo de la velocidad del viento y en los meses de verano la velocidad del viento es menor por lo que la energía producida también se reducirá para en caso de la energía eólica. [7]

En el caso de la energía solar tenemos un escenario diferente ya la generación de energía aumenta con la cantidad de irradiación que llega a la tierra proveniente del sol, esta irradiación puede ser directa o difusa. La irradiación es mayor en los meses de verano. En la ilustración 4.13 presentamos un ejemplo de la cantidad de irradiación mensual en Valladolid.

Como resultado de la diferencia mensual de irradiación podemos apreciar una clara diferencia de generación de energía solar a lo largo de un año, Ilustración 4.15.
Observamos una clara diferencia entre las distintas estaciones, sobre todo en invierno, donde la generación es mínima, y en verano, donde la generación es máxima.

Por otra parte, la energía hidráulica depende de la cantidad de agua almacenada o transportada por los ríos. Lo habitual es que la cuenca hidráulica se encuentre con mayor nivel durante los meses de invierno y primavera, debido al deshielo. En la ilustración 4.15 se muestra la generación de energía hidráulica en el 2014, donde se puede ver la diferencia en la producción en los diferentes meses.
Por horas.

En el caso de la energía eólica podemos apreciar una variación de la generación de energía durante un día. Los vientos sufren oscilaciones diarias debido a efectos de convección. Siendo el calor específico de la tierra inferior al del agua, aquélla se calienta más rápidamente que el mar bajo el efecto de la radiación solar. Por ello, cuando el tiempo es bueno, se originan movimientos de convección sobre la parte continental. Durante el día se produce una corriente de aire en las proximidades del suelo, en el sentido del mar hacia la tierra. Por la tarde el fenómeno se invierte al enfriarse la tierra con más rapidez que el mar. Estos fenómenos se observan hasta a 50 km de la costa y alrededor de los grandes lagos. En las montañas se originan brisas, a partir de las 10:00h el viento va del valle a la montaña por lo que los montes se calientan antes. Por la tarde la corriente se invierte. Cabe aclarar, que la presencia de vientos dominantes puede modificar sensiblemente las conclusiones indicadas sobre las brisas. Aquí el viento dominante se compone con las corrientes de convección para dar como resultante el viento real. Como las brisas dependen de los fenómenos
térnicos, se deduce que también se producen variaciones diarias más o menos cíclicas en la intensidad y dirección del viento. [1]

La irradiación solar varía a lo largo del día por lo que la producción de energía solar variará en función de ésta. En la ilustración 4.16 se muestra la energía solar generada el 13 de Agosto de 2014. En ella se puede ver la gran diferencia de generación durante el día y noche, teniendo su máximo alrededor de las 15:00h.

Debido a la influencia de estos factores debemos dividir los datos en función de estas categorías para las distintas formas de generación. Añadiremos una columna a mayores que será la probabilidad de producción en tanto por uno (generación horaria/generación media de energía eléctrica de una tecnología determinada). El formato final que utilizaremos para el posterior análisis se muestra en la tabla 8.
Tabla 8. Ejemplo del tratamiento de los datos de la generación eléctrica horaria. Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>GENERACIÓN MW</th>
<th>Probabilidad DE GENERACIÓN</th>
<th>ESTACIÓN</th>
<th>HORA</th>
<th>datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>11042,333</td>
<td>1,979001389</td>
<td>INVIERNO</td>
<td>0</td>
<td>2014-01-01T00:00:00+01:00</td>
</tr>
<tr>
<td>11150</td>
<td>1,998297415</td>
<td>INVIERNO</td>
<td>1</td>
<td>2014-01-01T01:00:00+01:00</td>
</tr>
<tr>
<td>10872,833</td>
<td>1,948623684</td>
<td>INVIERNO</td>
<td>2</td>
<td>2014-01-01T02:00:00+01:00</td>
</tr>
<tr>
<td>10804,167</td>
<td>1,936317398</td>
<td>INVIERNO</td>
<td>3</td>
<td>2014-01-01T03:00:00+01:00</td>
</tr>
<tr>
<td>10636,333</td>
<td>1,906238272</td>
<td>INVIERNO</td>
<td>4</td>
<td>2014-01-01T04:00:00+01:00</td>
</tr>
<tr>
<td>10440,5</td>
<td>1,87114118</td>
<td>INVIERNO</td>
<td>5</td>
<td>2014-01-01T05:00:00+01:00</td>
</tr>
<tr>
<td>10035,667</td>
<td>1,798587213</td>
<td>INVIERNO</td>
<td>6</td>
<td>2014-01-01T06:00:00+01:00</td>
</tr>
<tr>
<td>9814,833</td>
<td>1,759009454</td>
<td>INVIERNO</td>
<td>7</td>
<td>2014-01-01T07:00:00+01:00</td>
</tr>
<tr>
<td>9887</td>
<td>1,771943187</td>
<td>INVIERNO</td>
<td>8</td>
<td>2014-01-01T08:00:00+01:00</td>
</tr>
<tr>
<td>9063,5</td>
<td>1,62435593</td>
<td>INVIERNO</td>
<td>9</td>
<td>2014-01-01T09:00:00+01:00</td>
</tr>
</tbody>
</table>

4.3.3. Estudio de probabilidad

Hidráulica

Queremos caracterizar la generación hidráulica actual por horas y estaciones en términos relativos. Sea \(EHTA_x \) la energía eléctrica hidráulica total generada en el año \(X \). El valor medio diario será:

\[
EHMD_X = \frac{EHTA_X}{365}
\]

y el valor medio horario será:

\[
EHMH_X = \frac{EHTA_X}{365 \times 24}
\]

La probabilidad degeneración de energía hidráulica horaria en tanto por uno está calculada con la ecuación anterior.

Eólica

Sea \(EOTA_x \) la energía eléctrica eólica total generada en el año \(X \). El valor medio diario será:
\[EOMD_x = \frac{EOTA_x}{365} \]

y el valor medio horario será:

\[EOMH_x = \frac{EOTA_x}{365 \times 24} \]

Solar

Sea \(ESTA_x \) la energía eléctrica eólica total generada en el año \(X \). El valor medio diario será:

\[ESMD_x = \frac{ESTA_x}{365} \]

y el valor medio horario será:

\[ESMH_x = \frac{ESTA_x}{365 \times 24} \]

Se realiza el mismo estudio de los datos que con la demanda eléctrica para ajustarlos a una función de probabilidad. Para estos tres casos vemos que podemos ajustar los grupos de datos a una función normal, dando la media y desviación estándar. En el ANEXO I se representa una tabla en la que se clasifican los datos dando su media y desviación típica.
5. RESULTADOS

Utilizaremos el software MATLAB para calcular una serie de datos utilizando los valores estadísticos obtenidos y datos ya calculados con registros históricos. Los datos que se pretenden obtener con este programa serán:

- Generación eléctrica de energías renovables del año elegido
- Demanda eléctrica de ese año
- Número total de horas deficitarias de ese año
- Energía total acumulada deficitaria
- Número de horas totales excedentarias ese año
- Energía total acumulada excedentaria
- Máxima energía deficitaria en una hora
- Suma diaria acumulada de energía deficitaria y excedentaria. Esto nos daría una estimación de la capacidad de almacenamiento diario que necesitamos
- Suma semanal acumulada de energía deficitaria y excedentaria
- Suma anual acumulada de energía deficitaria y excedentaria
- Porcentaje horario de la demanda cubierta por cada tecnología

Lo primero que hace el programa es pedir al usuario que introduzca un año a estudiar, estando limitado este estudio para un rango de años desde el 2017 hasta el 2050.

Una vez que el usuario ha introducido el año, guardamos este dato en la variable ‘year’ (los resultados numéricos que presentamos a continuación estarán calculados para el año 2050). Una vez que tenemos el año para el que realizar los cálculos tendremos que calcular lo siguiente:

5.1. Potencia Instalada

La potencia instalada de la energía hidráulica hemos supuesto que apenas variará a lo largo de estos años debido a la mayor limitación que existe de un emplazamiento adecuado para la implantación de nuevas plantas hidráulicas por lo que la hemos fijado constante en un valor de 20352 MW. La potencia solar y eólica instalada será función del año introducido. Esta función está basada en unas líneas de tendencia calculadas con el histórico de datos. La tabla 9 muestra el histórico de potencia instalada hidráulica, solar y eólica desde el 2006 hasta el 2015.

<table>
<thead>
<tr>
<th>Potencia instalada</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eólica</td>
<td>11.286</td>
<td>13.525</td>
<td>15.992</td>
<td>18.714</td>
<td>19.560</td>
</tr>
<tr>
<td>Solar</td>
<td>130</td>
<td>623</td>
<td>3.270</td>
<td>3.483</td>
<td>4.188</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potencia instalada</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eólica</td>
<td>21.017</td>
<td>22.608</td>
<td>22.846</td>
<td>22.864</td>
<td>22.864</td>
</tr>
</tbody>
</table>

La potencia instalada de energía renovable de estas tres tecnologías representa en 2015 el 49% de la potencia instalada en el sistema peninsular. Vamos a estudiar la evolución de la potencia instalada de estas tres tecnologías, siguiendo la hipótesis de que la potencia instalada de energía eólica y energía solar seguirá en aumento siguiendo la línea de tendencia que estableceremos para los datos que tenemos en cada caso.

Potencia eólica instalada

En el siguiente gráfico representamos la potencia instalada eólica desde el 2006 hasta el 2015.

Ilustración 5.1. Potencia eólica instalada. Fuente: Elaboración propia
Vemos que en los últimos años ha habido un claro estancamiento de la instalación de aerogeneradores en la península ibérica. Esto se debe a la situación política y económica que existe en España. Hemos establecido una ley de tendencia lineal para poder calcular cual será la tendencia de instalación de esta tecnología siguiendo la hipótesis de linealidad.

La ecuación que representa la línea de tendencia de la Potencia eólica instalada es, Ec. 5.1:

\[P_{IE} = 1315,05 \cdot \text{Año} - 2624789,56 \] \hspace{1cm} \text{Ec. 5.1}

Para el año 2050, por ejemplo, tendríamos la siguiente potencia eólica instalada:

\[P_{IE} = 1315,05 \cdot 2050 - 2624789,56 = 71062,94 \text{ MW} \]

Una potencia bastante razonable si queremos limitar nuestra producción de generación de energía eléctrica a energías renovables.

Potencia solar instalada

En este caso también tomamos la hipótesis de que la evolución de la instalación de potencia será lineal a lo largo de los años. La ecuación que representa esta línea de tendencia es la Ec. 5.2.

\[P_{IS} = 777,13 \cdot \text{Año} - 1558100,38 \] \hspace{1cm} \text{Ec. 5.2}

Particularizando para el 2050 tendremos la siguiente potencia solar instalada:

\[P_{IS} = 777,13 \cdot 2050 - 1558100,38 = 35016,12 \text{ MW} \]

Potencia hidráulica instalada

Representamos ahora la potencia hidráulica desde el 2006 hasta diciembre de 2015. En este caso no tenemos una línea de tendencia lineal ya que no vamos a aceptar la hipótesis de que la potencia hidráulica instalada aumente siguiendo una línea de tendencia. En este trabajo supondremos que la potencia hidráulica en el 2050 será la misma que en el 2015.

5.2. Factor de capacidad

En nuestro caso, hemos calculado el factor de capacidad para la energía hidráulica, eólica y solar desde el año 2006 hasta diciembre del año 2015. Para ello hemos utilizado la siguiente ecuación:
Donde el denominador de la ecuación 5.3 se representa en la tabla 10.

Tabla 10. Potencia instalada por 8760 horas (MWh). Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Potencia instalada</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>164.808</td>
<td>165.577</td>
<td>167.013</td>
<td>167.387</td>
<td>167.683</td>
</tr>
<tr>
<td>Eólica</td>
<td>98.862</td>
<td>118.479</td>
<td>140.091</td>
<td>163.932</td>
<td>171.346</td>
</tr>
<tr>
<td>Solar</td>
<td>1.137</td>
<td>5.454</td>
<td>28.642</td>
<td>30.507</td>
<td>36.683</td>
</tr>
<tr>
<td>TOTAL</td>
<td>264.808</td>
<td>289.512</td>
<td>335.746</td>
<td>361.827</td>
<td>375.713</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potencia instalada</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>167.835</td>
<td>169.760</td>
<td>170.324</td>
<td>170.378</td>
<td>178.281</td>
</tr>
<tr>
<td>Eólica</td>
<td>184.109</td>
<td>198.043</td>
<td>200.128</td>
<td>200.290</td>
<td>200.290</td>
</tr>
<tr>
<td>Solar</td>
<td>44.301</td>
<td>54.933</td>
<td>58.656</td>
<td>58.710</td>
<td>58.866</td>
</tr>
<tr>
<td>TOTAL</td>
<td>396.246</td>
<td>422.738</td>
<td>429.109</td>
<td>429.380</td>
<td>437.438</td>
</tr>
</tbody>
</table>

La producción de energía hidráulica, solar y eólica para los mismos años es la siguiente:

Tabla 11. Evolución de la producción de energía renovable Peninsular (GWh). Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Producción de energía renovable</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>25.375</td>
<td>27.104</td>
<td>22.934</td>
<td>26.186</td>
<td>41.834</td>
</tr>
<tr>
<td>Eólica</td>
<td>22.881</td>
<td>27.249</td>
<td>31.758</td>
<td>37.889</td>
<td>43.208</td>
</tr>
<tr>
<td>Solar</td>
<td>102</td>
<td>471</td>
<td>2.421</td>
<td>5.959</td>
<td>6.832</td>
</tr>
<tr>
<td>Total</td>
<td>259.858</td>
<td>269.516</td>
<td>277.386</td>
<td>261.884</td>
<td>270.197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Producción de energía renovable</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>30.270</td>
<td>20.309</td>
<td>36.506</td>
<td>38.798</td>
<td>27.651</td>
</tr>
<tr>
<td>Eólica</td>
<td>42.105</td>
<td>48.140</td>
<td>54.344</td>
<td>50.635</td>
<td>47.707</td>
</tr>
<tr>
<td>Solar</td>
<td>8.924</td>
<td>11.274</td>
<td>12.360</td>
<td>12.761</td>
<td>12.924</td>
</tr>
<tr>
<td>Total</td>
<td>262.652</td>
<td>265.291</td>
<td>256.156</td>
<td>249.847</td>
<td>250.872</td>
</tr>
</tbody>
</table>
El resultado de dividir la producción de cada año entre su correspondiente potencia instalada multiplicada por el número de horas que tiene un año es el factor de capacidad, tabla 12.

<table>
<thead>
<tr>
<th>CF</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>0,15</td>
<td>0,16</td>
<td>0,14</td>
<td>0,16</td>
<td>0,25</td>
</tr>
<tr>
<td>Eólica</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,23</td>
<td>0,25</td>
</tr>
<tr>
<td>Solar</td>
<td>0,09</td>
<td>0,09</td>
<td>0,08</td>
<td>0,20</td>
<td>0,19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CF</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidráulica</td>
<td>0,18</td>
<td>0,12</td>
<td>0,21</td>
<td>0,23</td>
<td>0,16</td>
</tr>
<tr>
<td>Eólica</td>
<td>0,23</td>
<td>0,24</td>
<td>0,27</td>
<td>0,25</td>
<td>0,24</td>
</tr>
<tr>
<td>Solar</td>
<td>0,20</td>
<td>0,21</td>
<td>0,21</td>
<td>0,22</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Como se puede apreciar, los factores de capacidad han cambiado a lo largo de los años.

Para hacer una previsión del factor de capacidad que tendremos a lo largo de los años vamos a representar la evolución histórica de dichos factores y la tendencia que siguen para así poder sacar un factor de capacidad aproximativo.

Factor de capacidad de la energía hidráulica.

Representamos los factores de capacidad desde el año 2006 hasta el año 2015 y establecemos una línea de tendencia lineal.
La línea de tendencia tiene la siguiente ecuación:

\[CF = 0,004 \cdot Año - 7,913 \quad \text{Ec. 5.4} \]

Estimamos que para el año 2050 el coeficiente de capacidad será:

\[CF = 0,004 \cdot 2050 - 7,913 = 0,287 \]

Factor de capacidad de la energía eólica.

Representamos los factores de capacidad desde el año 2006 hasta el año 2015 y aceptamos también que los coeficientes evolucionaran siguiendo una línea de tendencia lineal.
La línea de tendencia tiene la siguiente ecuación:

\[CF = 0,0028 \cdot \text{Año} - 5,3289 \]

Estimamos que para el año 2050 el coeficiente de capacidad será:

\[CF = 0,0028 \cdot \text{Año} - 5,3289 = 0,41 \]

Este aumento del factor de capacidad se puede deber a una mejora en la tecnología, materiales, optimización de las paradas para la realización de mantenimientos, etc.

Factor de capacidad de la energía solar.

Los factores de capacidad para la energía solar se representan en la ilustración 5.6.
Para ajustar la línea de tendencia a los datos que tenemos, despreciamos las medidas de los tres primeros años medidos por ser demasiado bajas. La línea de tendencia que representa los datos será:

\[
y = 0,0051 \cdot Año - 10,1391 \quad \text{Ec. 5.6}
\]

Para el año 2050 tendremos un factor de capacidad de:

\[
y = 0,0051 \cdot 2050 - 10,1391 = 0,32
\]

5.3. Producción anual

Sabiendo la potencia instalada en un año y el factor capacidad de ese año podemos calcular la producción anual de ese año, sabiendo que un año tiene 8760 horas. Por tanto, la producción anual que hemos calculado para la tecnología eólica será:

\[
P_E = P_{IE} \cdot 8760 \cdot CF_E \quad \text{Ec. 5.7}
\]
Para la energía hidráulica:

\[P_H = P_{I_H} \cdot 8760 \cdot C_{F_H} \] \hspace{1cm} \text{Ec. 5.8}

Para la energía solar:

\[P_S = P_{I_S} \cdot 8760 \cdot C_{F_S} \] \hspace{1cm} \text{Ec. 5.9}

Particularizando para el año 2050 tenemos que:

\[P_E = 5.1114 \cdot 10^7 \text{ MWh} \]
\[P_H = 2.5591 \cdot 10^8 \text{ MWh} \]
\[P_S = 9.6900 \cdot 10^7 \text{ MWh} \]

5.4. Demanda anual

La evolución de la demanda en estos diez años ha sido muy desigual centrándose en torno a la cantidad de unos 253 TWh aproximadamente. Esto nos indica que la demanda no sigue una tendencia clara de aumento o disminución de la misma. En la ilustración 5.7 vemos la variación de la demanda en los últimos años.

![Ilustración 5.7. Variación de la demanda. Fuente: Elaboración propia](image-url)
Para poder averiguar la tendencia que seguirá la demanda en un futuro atendemos al estudio de tres variables: el PIB, la intensidad energética y la población en España.

El PIB

El PIB o Producto Interior Bruto es la suma producción de bienes y servicios de demanda final de un país o región en un período determinado de tiempo, normalmente un año, y se expresa en unidades monetarias. De este concepto podemos deducir que a mayor PIB la producción será menor y por tanto la demanda tiende a aumentar. En la ilustración 5.8 representamos el cambio del PIB desde el 2006 hasta el 2015.

En estos últimos años el PIB ha variado debido a los grandes cambios económicos que estamos sufriendo, por lo que no podemos aproximar ninguna línea de tendencia.

Intensidad energética

La intensidad energética es la cantidad de energía usada por cada mil unidades monetarias producidos en nuestro caso, Kep/1000 € del PBI, es un indicador utilizado para medir la eficiencia en el uso de la energía. En la ilustración 5.9 representamos la intensidad energética referida al PIB de 2010, por lo tanto veremos la tendencia histórica de la intensidad energética sabiendo el PIB de todos los años a estudiar.
Vemos una tendencia de disminución de la intensidad energética, lo que sería lógico debido a que queremos producir de manera más eficiente, empleando menor cantidad de energía para obtener el mismo resultado.

La población

Al aumentar la población, el consumo aumentará y por tanto la demanda de energía eléctrica será mayor. En la ilustración 5.10 mostramos la evolución de la población en España en los últimos años.
Con los resultados obtenidos del estudio de estas tres últimas variables asociándolas a la evolución de la demanda no podemos sacar ninguna tendencia clara de la misma. Por lo que para el estudio de una demanda anual futura supondremos que no variará mucho respecto a la actual y el valor elegido será la media de los valores de la demanda estudiados del 2007 al 2016. El valor medio horarios (anual dividido por 8760) será 28961,1872 MW, tabla 13.

<table>
<thead>
<tr>
<th>Año</th>
<th>Demanda anual (TWh)</th>
<th>Demanda media en una hora (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>262</td>
<td>29008,6758</td>
</tr>
<tr>
<td>2008</td>
<td>265</td>
<td>30251,1416</td>
</tr>
<tr>
<td>2009</td>
<td>253</td>
<td>28881,2785</td>
</tr>
<tr>
<td>2010</td>
<td>261</td>
<td>29794,5205</td>
</tr>
<tr>
<td>2011</td>
<td>256</td>
<td>29223,7443</td>
</tr>
<tr>
<td>2012</td>
<td>252</td>
<td>28767,1233</td>
</tr>
<tr>
<td>2013</td>
<td>246</td>
<td>28082,1918</td>
</tr>
<tr>
<td>2014</td>
<td>244</td>
<td>27853,8813</td>
</tr>
<tr>
<td>2015</td>
<td>248</td>
<td>28310,5023</td>
</tr>
<tr>
<td>2016</td>
<td>250</td>
<td>28538,8128</td>
</tr>
<tr>
<td>Promedio demanda en horas</td>
<td>28961,1872</td>
<td></td>
</tr>
</tbody>
</table>

La demanda anual que hemos supuesto será por tanto:

\[D_{year} = 28961,19 \cdot 8760 = 253700024 \text{ MW h} \]

5.5. Producción y demanda

Una vez que tenemos calculada la producción y demanda anual vamos a estudiar estos dos datos por horas, días y estaciones. Para lo cual proporcionaremos al programa las tablas que contienen la media y la desviación del conjunto de datos de probabilidad de demanda y producción de cada hora, tipo de día y estación. Estos datos los guardaremos en una matriz de 3 columnas. En la primera columna está la media, en la segunda columna la desviación estándar y en la tercera columna el número de horas que se ajustan a esa función estadística.
Una vez guardadas todas las tablas de funciones de la producción de las distintas tecnologías y de la demanda eléctrica calcularemos todos los datos propuestos al principio de este capítulo.

1. **Número de horas totales deficitarias y excedentarias ese año**

Para el cálculo de horas totales deficitarias podemos diferenciar tres pasos: el cálculo de la producción, el cálculo de la demanda y la diferencia entre ambos datos.

Para el cálculo de la producción de cada hora correspondiente a un tipo de día y a una estación deberemos multiplicar la producción media de cada tecnología para un año concreto por la media de la función estadística que le corresponde a esa probabilidad de hora. Esta función hace referencia a varios días a la misma hora por lo que hay que multiplicar el producto anterior por el número de días que producirían lo mismo a la misma hora.

Este cálculo lo realizamos para las tres tecnologías (eólica, solar e hidráulica) y a continuación las sumamos para saber la producción total.

Para el cálculo de la demanda tendremos que realizar el mismo procedimiento, se multiplica la demanda horaria media por la media de la función estadística por el número de horas al que corresponde dicha demanda.

Una vez calculados estos dos términos solo tendremos que restar la producción de energía eléctrica menos su demanda. Sabiendo que si el valor es negativo, no tendremos la suficiente energía para abastecer la demanda.

Mediante condiciones if tendremos un contador que nos acumulará el número de horas correspondientes a la diferencia si esta es negativa (h_{falta1}).

Todo este proceso estará incluido dentro de un bucle for que recorrerá todas las horas del año e irá acumulandolas en sus correspondientes variables.

Las horas deficitarias en 2050 donde necesitaremos una mayor producción de energía eléctrica serán: 237 horas.

Para el caso de la energía en exceso tendremos otra condición if que permitirá el paso de la variable si la diferencia es positiva, acumulando el número de horas en exceso ($h_{sobrante1}$). En este caso, para el 2050, las horas excedentarias serán 8523.
2. Energía total acumulada deficitaria y excedentaria

Si la diferencia entre producción y demanda es negativa almacenaremos esta diferencia en un acumulador de energía deficitaria ($En_{falta}1$). Este contador estará dentro del bucle for anterior y recorrerá todas las horas del año. Al finalizar el bucle habremos almacenado toda la energía deficitaria en este contador.

La energía deficitaria almacenada en el 2050 será: $5,377 \cdot 10^5$ MW.

Y almacenaremos energía sobrante si el valor de la diferencia es positivo ($En_{sobrante}1$). La energía sobrante almacenada para el 2050 será: $1,5068 \cdot 10^8$ MW.

3. Máxima energía deficitaria en una hora

Acumulamos la máxima energía deficitaria que se da en una hora para el año estudiado.

Si el valor de la energía deficitaria es mayor que la hora anterior se guarda éste último en la variable $Maximo_{falta}_{dia}$, dentro de un bucle for que recorre todas las horas.

El máximo valor de la energía horaria deficitaria para el 2050 es $1,9700 \cdot 10^5$ MW. Este valor se da en verano, en día no festivo a las 8:00h de la mañana.

4. Suma diaria acumulada de energía deficitaria y excedentaria

Sabemos el número de filas que corresponden a cada estación de ambos tipos de días por lo que sumaremos las diferencias entre la producción y la demanda eléctrica para el rango de filas de una misma estación. En el caso de que esta diferencia sea negativa la sumaremos a las horas deficitarias de ese día y para diferencias positivas las sumaremos a las horas excedentarias.

En la tabla 14 se representan los valores de la energía deficitaria diaria para 2050.

<table>
<thead>
<tr>
<th></th>
<th>INVIERNO</th>
<th>PRIMAVERA</th>
<th>VERANO</th>
<th>OTOÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESTIVO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$5,3774 \cdot 10^5$</td>
</tr>
</tbody>
</table>

En la tabla 15 vemos los valores de energía excedentaria en el 2050.
Tabla 15. Energía excedentaria diaria en el 2050 en MWh. Fuente: Elaboración propia

<table>
<thead>
<tr>
<th></th>
<th>INVIERNO</th>
<th>PRIMAVERA</th>
<th>VERANO</th>
<th>OTOÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESTIVO</td>
<td>1,0571·10^7</td>
<td>9,9988·10^6</td>
<td>6,1829·10^6</td>
<td>4,2447·10^6</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>3,9799·10^7</td>
<td>4,3009·10^7</td>
<td>2,3641·10^7</td>
<td>1,3231·10^7</td>
</tr>
</tbody>
</table>

5. Suma semanal acumulada de energía deficitaria y excedentaria

Para la suma semanal de cada estación hemos sumado 6 días no festivos más un día festivo, ya que esto sería lo más normal en la mayoría de las semanas. Aunque para casos especiales podríamos calcular la energía eléctrica acumulada sabiendo el número de días festivos que contiene dicha semana.

En la tabla 16 se encuentra la cantidad de energía semanal excedentaria o deficitaria por estaciones en el 2050.

Tabla 16. Cantidad de energía deficitaria y excedentaria en el 2050 en MWh. Fuente: Elaboración propia

<table>
<thead>
<tr>
<th></th>
<th>INVIERO</th>
<th>PRIMAVERA</th>
<th>VERANO</th>
<th>OTOÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA DEFICITARIA</td>
<td>0</td>
<td>0</td>
<td>3,2264·10^8</td>
<td>0</td>
</tr>
<tr>
<td>ENERGÍA EXCEDENTARIA</td>
<td>2,4936·10^8</td>
<td>2,6806·10^8</td>
<td>1,4803·10^8</td>
<td>8,3628·10^8</td>
</tr>
</tbody>
</table>

6. Simulación del 2017 al 2050

Una vez fijados todos los parámetros que queremos calcular, realizamos N simulaciones para obtener los datos desde 2017 a 2050 y ver así la evolución que experimentan. Representaremos la evolución de los datos más representativos en cuatro gráﬁcas.

En la ilustración 5.11 se representan las horas deficitarias y observamos que desde el 2017 hasta el 2023 no podremos mantener ninguna hora solo con energías renovables por lo que tendremos que aportar energía eléctrica perteneciente de centrales convencionales. A partir del 2030 vemos una clara caída de las horas en las que dependeremos de energía no renovable, llegando al 2050 con un total de 237 horas deficitarias. De estas 237 horas podría estudiarse la capacidad de almacenamiento de las horas excedentarias y su cantidad.
En la ilustración 5.12 se representan las horas excedentarias, en este caso ocurre de manera inversa a la ilustración anterior ya que hasta el 2023 no empezamos a tener horas con energía para acumular.

En la ilustración 5.13 representamos la energía deficitaria. En 2050 aún existe una cierta cantidad de energía deficitaria repartida en 237 horas.
La evolución de la energía excedentaria se representa en la ilustración 5.14 donde empezamos a tener una energía excedentaria razonable a partir del año 2026 y alcanzando en 2050 los 1.5×10^8 MWh.
7. **Porcentaje horario de la demanda cubierto por cada tecnología.**

En este apartado hemos hecho un estudio diario del porcentaje de energía cubierta por cada tecnología. La evolución del porcentaje cubierto por cada tecnología va aumentando a medida que nos alejamos en el horizonte temporal. Esto está directamente relacionado con el estudio anterior de las horas deficitarias y excedentarias. Complementariamente con este apartado podremos ver que tecnología necesita mayor impulso para poder cubrir un mayor rango de energía eléctrica producida. Por lo general, la energía eólica es la que más cobertura tiene de las tres y se ve una clara evolución a lo largo de los años.

Vamos a graficar un ejemplo de estos datos obtenidos donde veremos el porcentaje cubierto de la demanda por cada tecnología para las diferentes estaciones y tipo de días a las 11:00 horas.

En la ilustración 5.15 representamos el porcentaje cubierto de la demanda en invierno en día festivo a las 11:00h.

En la ilustración 5.16 representamos el porcentaje cubierto de la demanda en otoño en día festivo a las 11:00h.
En la ilustración 5.17 representamos el porcentaje cubierto de la demanda en primavera en día festivo a las 11:00h.

En la ilustración 5.18 representamos el porcentaje cubierto de la demanda en verano en día festivo a las 11:00h.
Ahora se representan las mismas gráficas a las anteriores pero para los días no festivos. En la ilustración 5.19 se representan estos porcentajes para invierno.

Vemos que en 2020 la producción de energías renovables está en torno al 50% y en 2030 pasamos a más del 90% de producción de estas energías y en
algunas estaciones sobrepasando el 100%, siendo la eólica la más predominante a excepción de los meses de verano. A partir del 2040 la energía solar toma importancia, necesitando una potencia instalada bastante alta para su participación en el mercado eléctrico. En este caso la energía hidráulica tiene una participación similar en estos años, estando esta tecnología sujeta siempre a las precipitaciones que tienen lugar en ese año.

En la ilustración 5.20 representamos el porcentaje cubierto de la demanda en otoño en día no festivo a las 11:00h.

Ilustración 5.20. Porcentaje cubierto de la demanda en otoño en día no festivo a las 11:00h. Fuente: Elaboración propia

En otoño ocurre algo parecido al invierno pero sin llegar en el 2030 al 100% de cubrición de la demanda.

En la ilustración 5.21 representamos el porcentaje cubierto de la demanda en primavera en día no festivo a las 11:00h.
En la ilustración 5.22 representamos el porcentaje cubierto de la demanda en verano en día no festivo a las 11:00h.

En la mayoría de los casos en 2040 el porcentaje de energías renovables es muy importante, sobrepasando el 90% de cubrición de la demanda y en el 2050 sobrepasamos el 100% de la demanda establecida para ese año.
pudiendo dar margen a que la demanda crezca y aun así podríamos cubrirla según estas estimaciones.

Estas gráficas las hemos particularizado para las 11:00h teniendo para cada hora una tendencia de producción de cada energía renovable diferente.

En el ANEXO III se encuentran las tablas del porcentaje de producción de cada tecnología para las diferentes horas de cada día, pudiendo ver las horas más críticas y más favorables para la producción de cada energía renovable.

Vamos a representar también la hora más crítica para la cobertura de la demanda. Como ya se dijo anteriormente la hora más crítica son las 8:00 horas de verano en día no festivo. En la ilustración 5.23 se representa el porcentaje de cobertura de la demanda con las tecnologías estudiadas para esta hora.

![Porcentaje de cubrición de la demanda en verano, día no festivo a las 8:00 h.](image)

En este caso en ninguno de los años estudiados llegamos a alcanzar el 100% de la demanda, estando en 2050 escasamente en el 90% de esta.
6. CONCLUSIONES

Hemos supuesto que la evolución de la potencia instalada sigue una tendencia lineal. Si bien es cierto, que dicha evolución está marcada por las inversiones y ayudas que el gobierno concede debido a la menor rentabilidad económica de estas energías respecto a las convencionales.

La producción de energía hidráulica está más desarrollada que las otras dos tecnologías por lo que se espera que esta tecnología sea la que menor desarrollo tenga. En este trabajo hemos supuesto que no existen mayores instalaciones de energía hidráulica en un futuro y hemos restringido la implantación de mayor potencia para dar un carácter más crítico a este estudio.

Los parques eólicos, sin embargo, también necesitan una orografía especial para su implantación pero en este caso no hemos considerado el agotamiento de los emplazamientos adecuados para este tipo de tecnología.

La energía eólica junto con la solar tienen un grado de mejora bastante amplio, pudiendo aprovechar de manera más eficiente la energía primaria que éstos utilizan para la producción de energía eléctrica, así como las pérdidas que se producen en la transformación de la energía cinética/térmica en energía eléctrica. El estudio de los mantenimientos predictivos también facilitará la mayor disponibilidad y fiabilidad de estos. Debido a estas mejoras el factor de capacidad aumentará y por consecuencia su producción.

Para este estudio solo hemos tenido en cuenta estas tres energías renovables, pudiendo existir en un futuro un desarrollo elevado de otras energías renovables como pueden ser la oceánica, la mareomotriz, la geotérmica, los parques eólicos off-shore, etc.

Por otro lado, el estudio de la demanda no nos ha arrojado grandes resultados por lo que hemos basado nuestra hipótesis en datos recientes. A medida que el país crezca social y económicamente tenderemos a una mayor demanda de energía eléctrica. Un claro ejemplo es el desarrollo de la competitividad de la industria y su tendencia a la automatización de los procesos que implica una mayor demanda de electricidad. También afecta a la variación de la demanda la concienciación sobre el ahorro y eficiencia energética debido a las emisiones que las centrales convencionales producen.
actualmente en su generación y al gran gasto económico que conlleva el aumento del consumo de la electricidad.

En este estudio hemos podido ver la evolución que presenta la demanda eléctrica solo cubierta con energías renovables del 2017 hasta el 2050 haciendo varias suposiciones.

En 2030 las horas cubiertas con energía renovable no llegan ni a un cuarto de las horas totales que tiene un año, teniendo una energía excedentaria cercana al cero. Tenemos la certeza de que si todo sigue la misma evolución que hasta ahora, en 2030 no podremos abastecernos solo con energía renovable.

El otro horizonte histórico propuesto es el año 2050, para este año sabemos que las horas deficitarias son 237 y la energía deficitaria total en estas horas es $5,377 \times 10^5$ MW frente a los 1.5068×10^8 MW de energía excedentaria.

Para decidir si en el 2050 sería posible un abastecimiento eléctrico con energías renovables únicamente dependemos en gran medida de la evolución de los sistemas de almacenamiento de la energía eléctrica. Estos sistemas tienen que permitir almacenar grandes cantidades de energía para después liberarla en las horas deficitarias. Sabiendo que la cantidad de energía excedentaria en este año sería mucho mayor que la deficitaria podríamos suponer que en las horas de falta de energía podríamos optar por los sistemas de almacenamiento de energía que nos ayuden a suplir la falta de la misma. Uno de los sistemas con más perspectiva de futuro unido al almacenamiento de energía es la fabricación de Hidrógeno. El estudio de este tema puede ser una ampliación de este trabajo y nos aportaría muchos datos acerca de la posibilidad de autoabastecernos con energía renovable.

Un análisis opcional a realizar en posibles trabajos futuros sería la comparación del gasto de operación y mantenimiento de las energías renovables frente a las actuales centrales convencionales.
7. BIBLIOGRAFÍA

ANEXOS I

Tablas de la media y desviación estándar de los conjuntos de datos de la demanda eléctrica:

<table>
<thead>
<tr>
<th>Demanda eléctrica</th>
<th>Media</th>
<th>Desviación Estándar</th>
<th>Número de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESTIVO</td>
<td>0,8637959</td>
<td>0,10914021</td>
<td>4370</td>
</tr>
<tr>
<td>INVIERNO</td>
<td>0,89823096</td>
<td>0,12379499</td>
<td>1129</td>
</tr>
<tr>
<td>0</td>
<td>0,92271672</td>
<td>0,05067898</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>0,85006451</td>
<td>0,03897193</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>0,79299373</td>
<td>0,03383121</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>0,75634585</td>
<td>0,03448336</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>0,73782961</td>
<td>0,03809284</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>0,73486243</td>
<td>0,04164664</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>0,74489478</td>
<td>0,04411069</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>0,76284436</td>
<td>0,04819545</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>0,78095236</td>
<td>0,05099128</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>0,83809569</td>
<td>0,07028978</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>0,90828998</td>
<td>0,08045113</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>0,94852614</td>
<td>0,07319026</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>0,95428575</td>
<td>0,06326296</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>0,96307063</td>
<td>0,06324969</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>0,96064583</td>
<td>0,06378263</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>0,92136948</td>
<td>0,06294131</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>0,8951285</td>
<td>0,06377774</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>0,89069721</td>
<td>0,06206416</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>0,94151981</td>
<td>0,07340688</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>1,02362886</td>
<td>0,07437405</td>
<td>47</td>
</tr>
<tr>
<td>20</td>
<td>1,07575551</td>
<td>0,07396354</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>1,09288056</td>
<td>0,07085651</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>1,06598052</td>
<td>0,06116584</td>
<td>47</td>
</tr>
<tr>
<td>23</td>
<td>0,99364331</td>
<td>0,05217575</td>
<td>47</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>FESTIVO</td>
<td>0,863795901</td>
<td>0,109140214</td>
<td>4370</td>
</tr>
<tr>
<td>OTOÑO</td>
<td>0,858190438</td>
<td>0,110469265</td>
<td>1107</td>
</tr>
<tr>
<td>0</td>
<td>0,880256482</td>
<td>0,069900843</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>0,821493518</td>
<td>0,059318424</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>0,771135107</td>
<td>0,045374733</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>0,7387419</td>
<td>0,035476792</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>0,720794559</td>
<td>0,031236407</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>0,714677097</td>
<td>0,030467837</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>0,72024783</td>
<td>0,032842002</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>0,738216109</td>
<td>0,038688782</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>0,754437314</td>
<td>0,04451941</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>0,791766651</td>
<td>0,05491483</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>0,854738941</td>
<td>0,058480244</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>0,899157807</td>
<td>0,058617809</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>0,915393017</td>
<td>0,057432297</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>0,922241291</td>
<td>0,055971779</td>
<td>46</td>
</tr>
<tr>
<td>14</td>
<td>0,925718742</td>
<td>0,056983431</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>0,901312491</td>
<td>0,062957812</td>
<td>46</td>
</tr>
<tr>
<td>16</td>
<td>0,868798015</td>
<td>0,06016259</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>0,85781084</td>
<td>0,062442531</td>
<td>46</td>
</tr>
<tr>
<td>18</td>
<td>0,883099622</td>
<td>0,083983503</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>0,944996303</td>
<td>0,086239428</td>
<td>46</td>
</tr>
<tr>
<td>20</td>
<td>1,003180834</td>
<td>0,06430189</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>1,023203983</td>
<td>0,063097451</td>
<td>46</td>
</tr>
<tr>
<td>22</td>
<td>1,000205926</td>
<td>0,074401106</td>
<td>46</td>
</tr>
<tr>
<td>23</td>
<td>0,942161276</td>
<td>0,079834973</td>
<td>47</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>FESTIVO</td>
<td>0,863795901</td>
<td>0,109140214</td>
<td>4370</td>
</tr>
<tr>
<td>PRIMAVERA</td>
<td>0,82239541</td>
<td>0,086516702</td>
<td>1078</td>
</tr>
<tr>
<td>0</td>
<td>0,850636743</td>
<td>0,033974972</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>0,793632821</td>
<td>0,028822039</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>0,749132478</td>
<td>0,027045897</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>0,725246421</td>
<td>0,025882312</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>0,712224458</td>
<td>0,025297556</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>0,707860039</td>
<td>0,025020733</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>0,710726802</td>
<td>0,027842731</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>0,706201123</td>
<td>0,034958906</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>0,733108314</td>
<td>0,038277309</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>0,796332942</td>
<td>0,040231134</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>0,85266702</td>
<td>0,040209308</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>0,880450878</td>
<td>0,038529956</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>0,887164673</td>
<td>0,039014357</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>0,896272756</td>
<td>0,039969517</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>0,889800058</td>
<td>0,040826174</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>0,849477877</td>
<td>0,039334948</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>0,824079243</td>
<td>0,039226691</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>0,81197216</td>
<td>0,039506746</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>0,816955081</td>
<td>0,040425616</td>
<td>45</td>
</tr>
<tr>
<td>19</td>
<td>0,839193991</td>
<td>0,050792453</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>0,884933354</td>
<td>0,069398711</td>
<td>45</td>
</tr>
<tr>
<td>21</td>
<td>0,955789676</td>
<td>0,05213212</td>
<td>45</td>
</tr>
<tr>
<td>22</td>
<td>0,961231415</td>
<td>0,038393411</td>
<td>45</td>
</tr>
<tr>
<td>23</td>
<td>0,90255272</td>
<td>0,037824203</td>
<td>44</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>FESTIVO</td>
<td>0,863795901</td>
<td>0,109140214</td>
<td>4370</td>
</tr>
<tr>
<td>VERANO</td>
<td>0,875119569</td>
<td>0,096575259</td>
<td>1056</td>
</tr>
<tr>
<td>0</td>
<td>0,90602869</td>
<td>0,049351673</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>0,848021597</td>
<td>0,040602363</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>0,803414074</td>
<td>0,036786235</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>0,775520654</td>
<td>0,034144754</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>0,758993497</td>
<td>0,032138829</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>0,751034306</td>
<td>0,03652139</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>0,749488909</td>
<td>0,028905694</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>0,740318332</td>
<td>0,028284293</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>0,755476031</td>
<td>0,030156191</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>0,809123052</td>
<td>0,032207405</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>0,862883967</td>
<td>0,033906288</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>0,899199908</td>
<td>0,037291656</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>0,921498097</td>
<td>0,042287799</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>0,946568113</td>
<td>0,047840315</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>0,959002869</td>
<td>0,054161333</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>0,936363691</td>
<td>0,061497209</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>0,919167443</td>
<td>0,06496551</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>0,908940954</td>
<td>0,064702181</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>0,910476587</td>
<td>0,061981602</td>
<td>44</td>
</tr>
<tr>
<td>19</td>
<td>0,917090218</td>
<td>0,058519598</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>0,941264718</td>
<td>0,052724967</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>0,998703184</td>
<td>0,05195664</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>1,018633789</td>
<td>0,055594422</td>
<td>44</td>
</tr>
<tr>
<td>23</td>
<td>0,965648864</td>
<td>0,059501669</td>
<td>44</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>1,027140208</td>
<td>0,155263488</td>
<td>21931</td>
</tr>
<tr>
<td>INVIERTO</td>
<td>1,074984849</td>
<td>0,168777994</td>
<td>5399</td>
</tr>
<tr>
<td>0</td>
<td>0,97187557</td>
<td>0,051031797</td>
<td>224</td>
</tr>
<tr>
<td>1</td>
<td>0,89439276</td>
<td>0,046146747</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>0,843969246</td>
<td>0,044729978</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>0,819714297</td>
<td>0,046759177</td>
<td>225</td>
</tr>
<tr>
<td>4</td>
<td>0,811806887</td>
<td>0,048674295</td>
<td>225</td>
</tr>
<tr>
<td>5</td>
<td>0,825662444</td>
<td>0,0523345</td>
<td>225</td>
</tr>
<tr>
<td>6</td>
<td>0,893779986</td>
<td>0,072920543</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>1,0196099</td>
<td>0,116790889</td>
<td>225</td>
</tr>
<tr>
<td>8</td>
<td>1,117957089</td>
<td>0,134778712</td>
<td>225</td>
</tr>
<tr>
<td>9</td>
<td>1,175224746</td>
<td>0,116685471</td>
<td>225</td>
</tr>
<tr>
<td>10</td>
<td>1,21132199</td>
<td>0,097290078</td>
<td>225</td>
</tr>
<tr>
<td>11</td>
<td>1,215242956</td>
<td>0,086207617</td>
<td>225</td>
</tr>
<tr>
<td>12</td>
<td>1,20354235</td>
<td>0,084208653</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>1,197124801</td>
<td>0,084875333</td>
<td>225</td>
</tr>
<tr>
<td>14</td>
<td>1,159726032</td>
<td>0,076464478</td>
<td>225</td>
</tr>
<tr>
<td>15</td>
<td>1,129874865</td>
<td>0,082278485</td>
<td>225</td>
</tr>
<tr>
<td>16</td>
<td>1,11622847</td>
<td>0,08994661</td>
<td>225</td>
</tr>
<tr>
<td>17</td>
<td>1,118177937</td>
<td>0,095372985</td>
<td>225</td>
</tr>
<tr>
<td>18</td>
<td>1,151227386</td>
<td>0,102497775</td>
<td>225</td>
</tr>
<tr>
<td>19</td>
<td>1,223561305</td>
<td>0,099845963</td>
<td>225</td>
</tr>
<tr>
<td>20</td>
<td>1,25037274</td>
<td>0,090823673</td>
<td>225</td>
</tr>
<tr>
<td>21</td>
<td>1,232099975</td>
<td>0,083797789</td>
<td>225</td>
</tr>
<tr>
<td>22</td>
<td>1,156480004</td>
<td>0,06925001</td>
<td>225</td>
</tr>
<tr>
<td>23</td>
<td>1,060204378</td>
<td>0,05712133</td>
<td>225</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>1,027140208</td>
<td>0,155263488</td>
<td>21931</td>
</tr>
<tr>
<td>OTONO</td>
<td>1,007997532</td>
<td>0,151005445</td>
<td>5277</td>
</tr>
<tr>
<td>0</td>
<td>0,926192342</td>
<td>0,07311698</td>
<td>218</td>
</tr>
<tr>
<td>1</td>
<td>0,862808516</td>
<td>0,060170833</td>
<td>220</td>
</tr>
<tr>
<td>2</td>
<td>0,816210121</td>
<td>0,046236878</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>0,790572361</td>
<td>0,03762956</td>
<td>220</td>
</tr>
<tr>
<td>4</td>
<td>0,780033985</td>
<td>0,034659443</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>0,784677025</td>
<td>0,035923081</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>0,826444091</td>
<td>0,053235137</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>0,922645749</td>
<td>0,088419595</td>
<td>220</td>
</tr>
<tr>
<td>8</td>
<td>1,01612594</td>
<td>0,100731724</td>
<td>220</td>
</tr>
<tr>
<td>9</td>
<td>1,071812479</td>
<td>0,100403116</td>
<td>220</td>
</tr>
<tr>
<td>10</td>
<td>1,107067097</td>
<td>0,086690959</td>
<td>220</td>
</tr>
<tr>
<td>11</td>
<td>1,123986119</td>
<td>0,079918484</td>
<td>220</td>
</tr>
<tr>
<td>12</td>
<td>1,12874428</td>
<td>0,075490329</td>
<td>220</td>
</tr>
<tr>
<td>13</td>
<td>1,127600684</td>
<td>0,072170542</td>
<td>220</td>
</tr>
<tr>
<td>14</td>
<td>1,106027987</td>
<td>0,072169823</td>
<td>220</td>
</tr>
<tr>
<td>15</td>
<td>1,073741975</td>
<td>0,072899236</td>
<td>220</td>
</tr>
<tr>
<td>16</td>
<td>1,056804447</td>
<td>0,078138644</td>
<td>220</td>
</tr>
<tr>
<td>17</td>
<td>1,056222066</td>
<td>0,084838951</td>
<td>220</td>
</tr>
<tr>
<td>18</td>
<td>1,074538055</td>
<td>0,100421845</td>
<td>220</td>
</tr>
<tr>
<td>19</td>
<td>1,121778407</td>
<td>0,105499373</td>
<td>220</td>
</tr>
<tr>
<td>20</td>
<td>1,165579186</td>
<td>0,086729259</td>
<td>220</td>
</tr>
<tr>
<td>21</td>
<td>1,156871703</td>
<td>0,082976475</td>
<td>220</td>
</tr>
<tr>
<td>22</td>
<td>1,090633544</td>
<td>0,096289298</td>
<td>220</td>
</tr>
<tr>
<td>23</td>
<td>1,004061029</td>
<td>0,090481047</td>
<td>219</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>1,027140208</td>
<td>0,155263488</td>
<td>21931</td>
</tr>
<tr>
<td>PRIMAVERA</td>
<td>0,977876667</td>
<td>0,131662136</td>
<td>5543</td>
</tr>
<tr>
<td>0</td>
<td>0,895982695</td>
<td>0,044337005</td>
<td>231</td>
</tr>
<tr>
<td>1</td>
<td>0,838824534</td>
<td>0,043027079</td>
<td>231</td>
</tr>
<tr>
<td>2</td>
<td>0,802075391</td>
<td>0,039875595</td>
<td>229</td>
</tr>
<tr>
<td>3</td>
<td>0,784319898</td>
<td>0,039549907</td>
<td>231</td>
</tr>
<tr>
<td>4</td>
<td>0,777442151</td>
<td>0,038835894</td>
<td>231</td>
</tr>
<tr>
<td>5</td>
<td>0,787277145</td>
<td>0,039165694</td>
<td>231</td>
</tr>
<tr>
<td>6</td>
<td>0,840545013</td>
<td>0,050208843</td>
<td>231</td>
</tr>
<tr>
<td>7</td>
<td>0,920365047</td>
<td>0,081203844</td>
<td>231</td>
</tr>
<tr>
<td>8</td>
<td>0,998067583</td>
<td>0,094904932</td>
<td>231</td>
</tr>
<tr>
<td>9</td>
<td>1,054080861</td>
<td>0,084217903</td>
<td>231</td>
</tr>
<tr>
<td>10</td>
<td>1,088529157</td>
<td>0,074659779</td>
<td>231</td>
</tr>
<tr>
<td>11</td>
<td>1,101469949</td>
<td>0,071850735</td>
<td>231</td>
</tr>
<tr>
<td>12</td>
<td>1,110109975</td>
<td>0,074146096</td>
<td>231</td>
</tr>
<tr>
<td>13</td>
<td>1,110366503</td>
<td>0,073306589</td>
<td>231</td>
</tr>
<tr>
<td>14</td>
<td>1,074976953</td>
<td>0,067530979</td>
<td>231</td>
</tr>
<tr>
<td>15</td>
<td>1,044027941</td>
<td>0,073825012</td>
<td>231</td>
</tr>
<tr>
<td>16</td>
<td>1,033582199</td>
<td>0,081392229</td>
<td>231</td>
</tr>
<tr>
<td>17</td>
<td>1,030552763</td>
<td>0,085286498</td>
<td>231</td>
</tr>
<tr>
<td>18</td>
<td>1,021626713</td>
<td>0,082801896</td>
<td>231</td>
</tr>
<tr>
<td>19</td>
<td>1,022178497</td>
<td>0,080592957</td>
<td>231</td>
</tr>
<tr>
<td>20</td>
<td>1,044221079</td>
<td>0,083729856</td>
<td>231</td>
</tr>
<tr>
<td>21</td>
<td>1,08440214</td>
<td>0,071867487</td>
<td>231</td>
</tr>
<tr>
<td>22</td>
<td>1,043072464</td>
<td>0,051957794</td>
<td>231</td>
</tr>
<tr>
<td>23</td>
<td>0,959500805</td>
<td>0,043769866</td>
<td>232</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>NO FESTIVO</td>
<td>1.027140208</td>
<td>0,155263488</td>
<td>21931</td>
</tr>
<tr>
<td>VERANO</td>
<td>1,047408154</td>
<td>0,149957884</td>
<td>5712</td>
</tr>
<tr>
<td>0</td>
<td>0,968008959</td>
<td>0,062962622</td>
<td>238</td>
</tr>
<tr>
<td>1</td>
<td>0,909157905</td>
<td>0,05820856</td>
<td>238</td>
</tr>
<tr>
<td>2</td>
<td>0,865213363</td>
<td>0,053036601</td>
<td>238</td>
</tr>
<tr>
<td>3</td>
<td>0,842904281</td>
<td>0,0500291</td>
<td>238</td>
</tr>
<tr>
<td>4</td>
<td>0,831794294</td>
<td>0,047821111</td>
<td>238</td>
</tr>
<tr>
<td>5</td>
<td>0,835986343</td>
<td>0,046828801</td>
<td>238</td>
</tr>
<tr>
<td>6</td>
<td>0,879965271</td>
<td>0,052809998</td>
<td>238</td>
</tr>
<tr>
<td>7</td>
<td>0,941506462</td>
<td>0,071511537</td>
<td>238</td>
</tr>
<tr>
<td>8</td>
<td>1,009876665</td>
<td>0,083112719</td>
<td>238</td>
</tr>
<tr>
<td>9</td>
<td>1,081975472</td>
<td>0,086065977</td>
<td>238</td>
</tr>
<tr>
<td>10</td>
<td>1,136310736</td>
<td>0,085441278</td>
<td>238</td>
</tr>
<tr>
<td>11</td>
<td>1,164580291</td>
<td>0,086789206</td>
<td>238</td>
</tr>
<tr>
<td>12</td>
<td>1,190084527</td>
<td>0,093754427</td>
<td>238</td>
</tr>
<tr>
<td>13</td>
<td>1,207243598</td>
<td>0,09799212</td>
<td>238</td>
</tr>
<tr>
<td>14</td>
<td>1,185036981</td>
<td>0,098366465</td>
<td>238</td>
</tr>
<tr>
<td>15</td>
<td>1,157250519</td>
<td>0,103267333</td>
<td>238</td>
</tr>
<tr>
<td>16</td>
<td>1,149760827</td>
<td>0,108772822</td>
<td>238</td>
</tr>
<tr>
<td>17</td>
<td>1,148767308</td>
<td>0,109906635</td>
<td>238</td>
</tr>
<tr>
<td>18</td>
<td>1,137132268</td>
<td>0,103967939</td>
<td>238</td>
</tr>
<tr>
<td>19</td>
<td>1,121642081</td>
<td>0,095019016</td>
<td>238</td>
</tr>
<tr>
<td>20</td>
<td>1,116478438</td>
<td>0,081959609</td>
<td>238</td>
</tr>
<tr>
<td>21</td>
<td>1,134761501</td>
<td>0,074037235</td>
<td>238</td>
</tr>
<tr>
<td>22</td>
<td>1,100608323</td>
<td>0,06868156</td>
<td>238</td>
</tr>
<tr>
<td>23</td>
<td>1,02463827</td>
<td>0,0660419</td>
<td>238</td>
</tr>
</tbody>
</table>
Tablas de la media y desviación estándar de los conjuntos de datos de la generación eléctrica:

Generación eólica

<table>
<thead>
<tr>
<th>Demanda eléctrica</th>
<th>Media</th>
<th>Desviación Estándar</th>
<th>Número de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVIERNO</td>
<td>1,32209944</td>
<td>0,7061923</td>
<td>2161</td>
</tr>
<tr>
<td>0</td>
<td>1,34735133</td>
<td>0,68381217</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>1,32434019</td>
<td>0,6626424</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1,2876652</td>
<td>0,6309657</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>1,25558634</td>
<td>0,60671526</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>1,2389712</td>
<td>0,59478792</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1,23760475</td>
<td>0,60066107</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>1,25486418</td>
<td>0,61976024</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>1,27683285</td>
<td>0,64246134</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>1,27880174</td>
<td>0,65433508</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>1,26442695</td>
<td>0,67123854</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>1,25820588</td>
<td>0,696184</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>1,27953267</td>
<td>0,72844129</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>1,31778944</td>
<td>0,75634246</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>1,35725364</td>
<td>0,77836066</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>1,38325376</td>
<td>0,78882114</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>1,3920621</td>
<td>0,79085119</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>1,38765803</td>
<td>0,78866124</td>
<td>90</td>
</tr>
<tr>
<td>17</td>
<td>1,36903502</td>
<td>0,77760715</td>
<td>90</td>
</tr>
<tr>
<td>18</td>
<td>1,35039455</td>
<td>0,75381796</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>1,36205271</td>
<td>0,74108517</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>1,38090228</td>
<td>0,73606623</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>1,38648015</td>
<td>0,73101188</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>1,38113036</td>
<td>0,72302837</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>1,35779756</td>
<td>0,70354486</td>
<td>91</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>OTOÑO</td>
<td>0,8772201</td>
<td>0,55564602</td>
<td>2136</td>
</tr>
<tr>
<td>0</td>
<td>0,92372032</td>
<td>0,54406588</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>0,92104011</td>
<td>0,54614144</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>0,91016267</td>
<td>0,54052489</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0,90335195</td>
<td>0,53858667</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>0,89397606</td>
<td>0,53716915</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>0,8879767</td>
<td>0,53612637</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>0,88396032</td>
<td>0,53742053</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>0,87703477</td>
<td>0,5360214</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>0,86961085</td>
<td>0,5362843</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>0,84125565</td>
<td>0,53905891</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>0,81290506</td>
<td>0,54944878</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>0,81375377</td>
<td>0,56703037</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>0,82561303</td>
<td>0,57942233</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>0,84155413</td>
<td>0,59228129</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>0,8529586</td>
<td>0,59988409</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>0,85993873</td>
<td>0,59934249</td>
<td>89</td>
</tr>
<tr>
<td>16</td>
<td>0,85899872</td>
<td>0,58849325</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>0,85468465</td>
<td>0,56883814</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>0,86870701</td>
<td>0,55516498</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>0,88398761</td>
<td>0,55154242</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>0,90201522</td>
<td>0,54909912</td>
<td>89</td>
</tr>
<tr>
<td>21</td>
<td>0,91519695</td>
<td>0,54375965</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>0,92282276</td>
<td>0,54136371</td>
<td>89</td>
</tr>
<tr>
<td>23</td>
<td>0,92826092</td>
<td>0,54469439</td>
<td>88</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>PRIMAVERA</td>
<td>1,04317853</td>
<td>0,52858292</td>
<td>2207</td>
</tr>
<tr>
<td>0</td>
<td>1,09150811</td>
<td>0,49650434</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>1,06610299</td>
<td>0,49196006</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>1,03542469</td>
<td>0,48393941</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>1,01544578</td>
<td>0,47670872</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>0,99093123</td>
<td>0,47465425</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>0,97369672</td>
<td>0,47497426</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>0,96345502</td>
<td>0,48141609</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>0,94906995</td>
<td>0,48668336</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>0,90618942</td>
<td>0,49226986</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>0,87504342</td>
<td>0,51302076</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>0,88997351</td>
<td>0,54065218</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>0,92231008</td>
<td>0,56085406</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>0,95946576</td>
<td>0,57278962</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>1,00025746</td>
<td>0,57487555</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>1,0459264</td>
<td>0,57303543</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td>1,0941081</td>
<td>0,56797409</td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td>1,1417268</td>
<td>0,56118374</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>1,18065769</td>
<td>0,55049416</td>
<td>92</td>
</tr>
<tr>
<td>18</td>
<td>1,20153849</td>
<td>0,53547391</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>1,19802055</td>
<td>0,52439168</td>
<td>92</td>
</tr>
<tr>
<td>20</td>
<td>1,16193001</td>
<td>0,51572746</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>1,1351408</td>
<td>0,50663489</td>
<td>92</td>
</tr>
<tr>
<td>22</td>
<td>1,1258531</td>
<td>0,50040326</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>1,11242441</td>
<td>0,49856151</td>
<td>92</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>VERANO</td>
<td>0,76275206</td>
<td>0,40152767</td>
<td>2256</td>
</tr>
<tr>
<td>0</td>
<td>0,88887734</td>
<td>0,3645692</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>0,85589439</td>
<td>0,36595013</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>0,81980825</td>
<td>0,36510255</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>0,78348622</td>
<td>0,36226328</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>0,74914926</td>
<td>0,35862291</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>0,72143178</td>
<td>0,35884222</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>0,69829562</td>
<td>0,36007821</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>0,67234216</td>
<td>0,35659055</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>0,61877915</td>
<td>0,34859713</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>0,55841216</td>
<td>0,35925797</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>0,54057632</td>
<td>0,3780236</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>0,5463607</td>
<td>0,38806989</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>0,57430772</td>
<td>0,39937876</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>0,61888306</td>
<td>0,40423689</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td>0,67521042</td>
<td>0,40520587</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>0,74049811</td>
<td>0,40622732</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>0,80481408</td>
<td>0,40852433</td>
<td>94</td>
</tr>
<tr>
<td>17</td>
<td>0,8644357</td>
<td>0,40661079</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>0,9171936</td>
<td>0,40176702</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>0,94686661</td>
<td>0,39166875</td>
<td>94</td>
</tr>
<tr>
<td>20</td>
<td>0,94684108</td>
<td>0,38409892</td>
<td>94</td>
</tr>
<tr>
<td>21</td>
<td>0,92768102</td>
<td>0,368012</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>0,92326249</td>
<td>0,36254267</td>
<td>94</td>
</tr>
<tr>
<td>23</td>
<td>0,91264215</td>
<td>0,3648009</td>
<td>94</td>
</tr>
</tbody>
</table>
Generación hidráulica

<table>
<thead>
<tr>
<th>Demanda eléctrica</th>
<th>Media</th>
<th>Desviación Estándar</th>
<th>Número de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVIERNO</td>
<td>1,33922568</td>
<td>0,85475482</td>
<td>2161</td>
</tr>
<tr>
<td>0</td>
<td>1,06777822</td>
<td>0,58751425</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>0,73490085</td>
<td>0,58320307</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>0,52545699</td>
<td>0,58800061</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0,40931124</td>
<td>0,59323207</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>0,37023496</td>
<td>0,60074671</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>0,40896554</td>
<td>0,61160861</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>0,6652017</td>
<td>0,68116286</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>1,11995211</td>
<td>0,81641103</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>1,48321514</td>
<td>0,89656224</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>1,70531226</td>
<td>0,8491179</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>1,81594617</td>
<td>0,76148709</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>1,7714968</td>
<td>0,68834811</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>1,64080873</td>
<td>0,66077724</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>1,54810767</td>
<td>0,65574087</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>1,37363994</td>
<td>0,6141026</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>1,25424667</td>
<td>0,6234191</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>1,25179979</td>
<td>0,62090619</td>
<td>90</td>
</tr>
<tr>
<td>17</td>
<td>1,38793959</td>
<td>0,59170497</td>
<td>90</td>
</tr>
<tr>
<td>18</td>
<td>1,74026523</td>
<td>0,50440171</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>2,13611832</td>
<td>0,52132575</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>2,21202656</td>
<td>0,5533161</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>2,12965967</td>
<td>0,56983261</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>1,87407975</td>
<td>0,6027856</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>1,51302847</td>
<td>0,60348314</td>
<td>91</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>OTOÑO</td>
<td>0,69039946</td>
<td>0,63904372</td>
<td>2136</td>
</tr>
<tr>
<td>0</td>
<td>0,39456411</td>
<td>0,32510633</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>0,18594122</td>
<td>0,29610088</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>0,01482787</td>
<td>0,2908518</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0,08400574</td>
<td>0,29348819</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>0,11982859</td>
<td>0,2962984</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>0,07565012</td>
<td>0,30318839</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>0,17177322</td>
<td>0,37544691</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>0,5726319</td>
<td>0,54173794</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>0,81262887</td>
<td>0,63036939</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>0,96302781</td>
<td>0,58886187</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>1,04515602</td>
<td>0,54222713</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>1,00447824</td>
<td>0,51267645</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>0,94253419</td>
<td>0,48956423</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>0,88655625</td>
<td>0,48141243</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>0,75629429</td>
<td>0,44147583</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>0,6705434</td>
<td>0,44042501</td>
<td>89</td>
</tr>
<tr>
<td>16</td>
<td>0,67847746</td>
<td>0,4507476</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>0,85926756</td>
<td>0,49637762</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>1,16910601</td>
<td>0,56090561</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>1,36603906</td>
<td>0,47018263</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>1,43920654</td>
<td>0,39618114</td>
<td>89</td>
</tr>
<tr>
<td>21</td>
<td>1,30680512</td>
<td>0,40369585</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>0,97203967</td>
<td>0,39831062</td>
<td>89</td>
</tr>
<tr>
<td>23</td>
<td>0,64424492</td>
<td>0,35782229</td>
<td>88</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>PRIMAVERA</td>
<td>1,24840758</td>
<td>0,76995863</td>
<td>2207</td>
</tr>
<tr>
<td>0</td>
<td>1,10544578</td>
<td>0,57461163</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>0,85588499</td>
<td>0,57028105</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>0,66776547</td>
<td>0,55309551</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>0,55311762</td>
<td>0,53786173</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>0,51120063</td>
<td>0,53000808</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>0,54558511</td>
<td>0,54212648</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>0,78257123</td>
<td>0,61358381</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>1,12664404</td>
<td>0,75225274</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>1,45385322</td>
<td>0,80586764</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>1,66906317</td>
<td>0,79057666</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>1,71418277</td>
<td>0,73002433</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>1,69734794</td>
<td>0,6867445</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>1,64525047</td>
<td>0,66565007</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>1,56545448</td>
<td>0,64861215</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>1,34448605</td>
<td>0,61529959</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td>1,16211423</td>
<td>0,61982873</td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td>1,09353769</td>
<td>0,63510083</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>1,09232791</td>
<td>0,64666462</td>
<td>92</td>
</tr>
<tr>
<td>18</td>
<td>1,13660373</td>
<td>0,65686652</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>1,29940785</td>
<td>0,67913038</td>
<td>92</td>
</tr>
<tr>
<td>20</td>
<td>1,62727657</td>
<td>0,67525775</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>1,95286562</td>
<td>0,63649362</td>
<td>92</td>
</tr>
<tr>
<td>22</td>
<td>1,86402259</td>
<td>0,57959208</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>1,48950162</td>
<td>0,60073474</td>
<td>92</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>VERANO</td>
<td>0.72397638</td>
<td>0.48067491</td>
<td>2256</td>
</tr>
<tr>
<td>0</td>
<td>0.6061269</td>
<td>0.22786867</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>0.43949277</td>
<td>0.22364484</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>0.28229422</td>
<td>0.21041674</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>0.19506071</td>
<td>0.2097562</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>0.15881807</td>
<td>0.21456515</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>0.16417842</td>
<td>0.2248247</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>0.30546337</td>
<td>0.26484385</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>0.48768567</td>
<td>0.34760845</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>0.67691927</td>
<td>0.41479407</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>0.93290276</td>
<td>0.46196813</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>1.04446637</td>
<td>0.47270193</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>1.11032624</td>
<td>0.45761033</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>1.15683234</td>
<td>0.46768514</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>1.15457332</td>
<td>0.46523369</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td>1.00913176</td>
<td>0.42981451</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>0.83394982</td>
<td>0.41128684</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>0.75256787</td>
<td>0.41474504</td>
<td>94</td>
</tr>
<tr>
<td>17</td>
<td>0.71878095</td>
<td>0.40883828</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>0.6926484</td>
<td>0.37218568</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>0.7266597</td>
<td>0.33202305</td>
<td>94</td>
</tr>
<tr>
<td>20</td>
<td>0.89501545</td>
<td>0.29302213</td>
<td>94</td>
</tr>
<tr>
<td>21</td>
<td>1.14839665</td>
<td>0.28498936</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>1.08991786</td>
<td>0.30502857</td>
<td>94</td>
</tr>
<tr>
<td>23</td>
<td>0.7932241</td>
<td>0.27279688</td>
<td>94</td>
</tr>
</tbody>
</table>
Generación solar

<table>
<thead>
<tr>
<th>Demanda eléctrica</th>
<th>Media</th>
<th>Desviación Estándar</th>
<th>Número de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERNO</td>
<td>0,64200372</td>
<td>0,92410728</td>
<td>2161</td>
</tr>
<tr>
<td>0</td>
<td>0,06619169</td>
<td>0,10349635</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>0,05734776</td>
<td>0,09206232</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>0,04711253</td>
<td>0,06973387</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0,03669566</td>
<td>0,04375272</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>0,03013933</td>
<td>0,02977637</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>0,02716185</td>
<td>0,02591201</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>0,02616466</td>
<td>0,02284246</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>0,03028208</td>
<td>0,02114073</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>0,13435212</td>
<td>0,16680742</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>0,58293483</td>
<td>0,45382526</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>1,22727457</td>
<td>0,73616631</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>1,72422477</td>
<td>0,86177364</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>1,98547891</td>
<td>0,88950771</td>
<td>90</td>
</tr>
<tr>
<td>13</td>
<td>2,04941677</td>
<td>0,8924876</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>1,9995315</td>
<td>0,89853822</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>1,84655756</td>
<td>0,89521136</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>1,5376382</td>
<td>0,86105404</td>
<td>90</td>
</tr>
<tr>
<td>17</td>
<td>1,00826753</td>
<td>0,76160304</td>
<td>90</td>
</tr>
<tr>
<td>18</td>
<td>0,43346881</td>
<td>0,46546189</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>0,1703763</td>
<td>0,1934077</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>0,12420024</td>
<td>0,13978931</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>0,1021543</td>
<td>0,12781551</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>0,08994821</td>
<td>0,1213586</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>0,07739626</td>
<td>0,11206565</td>
<td>91</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>OTOÑO</td>
<td>0,63136921</td>
<td>0,90568764</td>
<td>2136</td>
</tr>
<tr>
<td>0</td>
<td>0,05030812</td>
<td>0,06588723</td>
<td>89</td>
</tr>
<tr>
<td>1</td>
<td>0,04143034</td>
<td>0,05187678</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>0,03421005</td>
<td>0,03634356</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>0,03047605</td>
<td>0,02599397</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>0,02843318</td>
<td>0,01917069</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>0,02760887</td>
<td>0,01509607</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>0,02715214</td>
<td>0,0136815</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>0,0301089</td>
<td>0,01360514</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>0,0995817</td>
<td>0,08896298</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>0,52772067</td>
<td>0,29193032</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>1,1484495</td>
<td>0,53878889</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>1,70116055</td>
<td>0,76653992</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>1,96014843</td>
<td>0,83151975</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>2,0260049</td>
<td>0,8447228</td>
<td>89</td>
</tr>
<tr>
<td>14</td>
<td>1,97947918</td>
<td>0,86014827</td>
<td>89</td>
</tr>
<tr>
<td>15</td>
<td>1,8351773</td>
<td>0,8728729</td>
<td>89</td>
</tr>
<tr>
<td>16</td>
<td>1,51797339</td>
<td>0,8675876</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>0,97959912</td>
<td>0,8285799</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>0,53381169</td>
<td>0,65628431</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>0,23276495</td>
<td>0,29938434</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>0,12104099</td>
<td>0,14136753</td>
<td>89</td>
</tr>
<tr>
<td>21</td>
<td>0,08650936</td>
<td>0,10729341</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>0,07326744</td>
<td>0,0962296</td>
<td>89</td>
</tr>
<tr>
<td>23</td>
<td>0,06074338</td>
<td>0,08039863</td>
<td>88</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>PRIMAVERA</td>
<td>1,25109921</td>
<td>1,24045081</td>
<td>2207</td>
</tr>
<tr>
<td>0</td>
<td>0,28115262</td>
<td>0,18070601</td>
<td>92</td>
</tr>
<tr>
<td>1</td>
<td>0,26355934</td>
<td>0,18159167</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>0,24752766</td>
<td>0,18064087</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>0,22543466</td>
<td>0,17853058</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>0,20605744</td>
<td>0,1756769</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>0,17632502</td>
<td>0,1621431</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>0,12560248</td>
<td>0,11977415</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>0,13059158</td>
<td>0,10348055</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>0,4594031</td>
<td>0,24157083</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>1,28275881</td>
<td>0,58334377</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>2,1247415</td>
<td>0,79731077</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>2,60211911</td>
<td>0,84048788</td>
<td>92</td>
</tr>
<tr>
<td>12</td>
<td>2,84632777</td>
<td>0,85289277</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>2,94956901</td>
<td>0,86234121</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>2,94178585</td>
<td>0,86201587</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td>2,83537273</td>
<td>0,86083762</td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td>2,64314356</td>
<td>0,85324093</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>2,36287596</td>
<td>0,83488933</td>
<td>92</td>
</tr>
<tr>
<td>18</td>
<td>1,97274236</td>
<td>0,80414841</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>1,44918396</td>
<td>0,71663342</td>
<td>92</td>
</tr>
<tr>
<td>20</td>
<td>0,82931533</td>
<td>0,48375876</td>
<td>92</td>
</tr>
<tr>
<td>21</td>
<td>0,42871489</td>
<td>0,24136931</td>
<td>92</td>
</tr>
<tr>
<td>22</td>
<td>0,32712111</td>
<td>0,17855215</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>0,30404672</td>
<td>0,17707363</td>
<td>92</td>
</tr>
<tr>
<td>Demanda eléctrica</td>
<td>Media</td>
<td>Desviación Estándar</td>
<td>Número de la muestra</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>VERANO</td>
<td>1,44753027</td>
<td>1,30086741</td>
<td>2256</td>
</tr>
<tr>
<td>0</td>
<td>0,36819533</td>
<td>0,15974053</td>
<td>94</td>
</tr>
<tr>
<td>1</td>
<td>0,3497709</td>
<td>0,1678463</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>0,330801</td>
<td>0,17439916</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>0,30619083</td>
<td>0,17988639</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>0,27884358</td>
<td>0,18184521</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>0,24434176</td>
<td>0,17928015</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>0,18537406</td>
<td>0,14552923</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>0,15536394</td>
<td>0,11465057</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>0,41975244</td>
<td>0,21554385</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>1,27079145</td>
<td>0,47280881</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td>2,31636728</td>
<td>0,59003256</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>2,88476941</td>
<td>0,55382511</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>3,16401701</td>
<td>0,53250017</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>3,30125747</td>
<td>0,51584947</td>
<td>94</td>
</tr>
<tr>
<td>14</td>
<td>3,32414559</td>
<td>0,513795</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>3,25429226</td>
<td>0,52545179</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>3,086636</td>
<td>0,54753754</td>
<td>94</td>
</tr>
<tr>
<td>17</td>
<td>2,81416903</td>
<td>0,56191754</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>2,41850525</td>
<td>0,56170208</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>1,83670841</td>
<td>0,55814423</td>
<td>94</td>
</tr>
<tr>
<td>20</td>
<td>1,07671515</td>
<td>0,45077531</td>
<td>94</td>
</tr>
<tr>
<td>21</td>
<td>0,55555078</td>
<td>0,21580122</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>0,41353001</td>
<td>0,14853341</td>
<td>94</td>
</tr>
<tr>
<td>23</td>
<td>0,38463757</td>
<td>0,15175648</td>
<td>94</td>
</tr>
</tbody>
</table>
Código Matlab:

%ESTIMACION DE LA DEMANDA Y PRODUCCION ELECTRICA PARA UN CIERTO AÑO
clear all;
clc;
year= input('Ingrese el año a estudiar ');

%POTENCIA INSTALADA EN ESE AÑO

PI_H= 20352; % Potencia instalada hidráulica en MW (La misma que en 2015)
PI_E= 1315.05*year-2624789.56; % Potencia instalada eólica en MW
PI_S= 777.13*year-1558100.38; % Potencia instalada solar en MW

% FACTOR DE CAPACIDAD (CF)
CF_H= 0.004*year-7.9133; % CF Hidráulico
CF_E= 0.0028*year-5.3289; % CF Eólico
CF_S= 0.0051*year-10.1391; % CF solar

% PRODUCCION ANUAL

P_H= PI_H*8760*CF_H; % Producción hidráulica
P_E= PI_E*8760*CF_E; % Producción eólica
P_S= PI_S*8760*CF_S; % Producción solar

%DEMANDA ANUAL

D_year=28961.19*8760; % Demanda por hora en MW
% Suponemos un promedio de los últimos 10 años
% Exportar datos desde excel. Media y desviación por horas

% PRODUCCIÓN y DEMANDA

datos_Peolica=xlsread('Distribuciones_normales','P_eolica','B3:D101'); % Tabla dinámica de producción eólica

datos_Phidraulica=xlsread('Distribuciones_normales','P_hidraulica','B3:D101'); % Tabla dinámica de producción hidráulica

datos_Psolar=xlsread('Distribuciones_normales','P_solar','B3:D101'); % Tabla dinámica de producción solar

demanda_festivo=xlsread('Distribuciones_normales','DemandaFestivo','B4:D102'); % Tabla dinámica de demanda de energía en días festivos

demanda_nofestivo=xlsread('Distribuciones_normales','DemandaNoFestivo','B4:D102'); % Tabla dinámica de demanda de energía en días no festivos

% BUCLE PARA FESTIVO
En_sobrante0=0;
h_sobrante0=0;
En_falta0=0;
h_falta0=0;
suma_dia_invierno_sobra_festivo=0;
suma_dia_otonno_sobra_festivo=0;
suma_dia_primavera_sobra_festivo=0;
suma_dia_verano_sobra_festivo=0;
suma_dia_invierno_falta_festivo=0;
suma_dia_otonno_falta_festivo=0;
suma_dia_primavera_falta_festivo=0;
suma_dia_verano_falta_festivo=0;
suma_dia_invierno_sobra_nofestivo=0;
suma_dia_otonno_sobra_nofestivo=0;
suma_dia_primavera_sobra_nofestivo=0;
suma_dia_verano_sobra_nofestivo=0;
suma_dia_invierno_falta_nofestivo=0;
suma_dia_otonno_falta_nofestivo=0;
suma_dia_primavera_falta_nofestivo=0;
suma_dia_verano_falta_nofestivo=0;
Maximo_falta_dia=0; %Máxima energía deficitaria en un día
Dia=0; %Día en el que se produce el máximo deficit de energía
for i=1:99

prod_eolica=
datos_Peolica(i,1)*(P_E/8760)*demanda_festivo(i,3); % Producción
eólica en una estación y a una hora determinada
prod_solar=
datos_Psolar(i,1)*(P_S/8760)*demanda_festivo(i,3); % Producción
solar en una estación y a una hora determinada
prod_hidraulica=
datos_Phidraulica(i,1)*(P_H/8760)*demanda_festivo(i,3); % Producción
hidraulica en una estación y a una hora determinada
% Podemos meter en que estación es cada dato sabiendo el
valor de i
% Hacemos los mismo con la demanda. Valor Almacenado=
% Produccion-demanda
%Si el valor es positivo lo metemos en Valor sobrante
%Si el valor es negativo lo metemos en valor deficitario
%Metemos un contador para saber el número de horas que
tendremos de
%cada

Demanda_festivo=demanda_festivo(i,1)*(D_year/8760)*demanda_festivo(i
,3); % Demanda en una hora, día y estación determinada
Prod_total= Prod_eolica + Prod_solar + Prod_hidraulica;
Dif= Prod_total -Demanda_festivo;
%Cálculo del porcentaje de producción de cada tecnología a
cada hora
Porcent_eolica= Prod_eolica;
Porcent_solar= Prod_solar;
Porcent_hidraulica= Prod_hidraulica;
Matriz_Porcentaje_festivo (i,1)=Demanda_festivo;
Matriz_Porcentaje_festivo (i,2)=Porcent_eolica;
Matriz_Porcentaje_festivo(i,3)=Porcent_solar;
Matriz_Porcentaje_festivo (i,4)=Porcent_hidraulica;

if Dif >= 0
 En_sobrante1= En_sobrante0 + Dif; %Acumulación energia sobrante en ese año
 En_sobrante0=En_sobrante1;
 h_sobrante1= h_sobrante0 + demanda_festivo(i,3); %Acumulación horas de energía sobrante en ese año
 h_sobrante0= h_sobrante1;

 %Energía que sobra en un día en cada estación
 if i>=1
 if i<=24

 suma_dia_invierno_sobra_festivo= suma_dia_invierno_sobra_festivo + Dif; % Suma de las horas en un día en invierno

 end
 end
 if i>=26
 if i<=49

 suma_dia_otonno_sobra_festivo= suma_dia_otonno_sobra_festivo + Dif; % Suma de las horas en un día en otoño

 end
 end
 if i>=51
 if i<=74

 suma_dia_primavera_sobra_festivo= suma_dia_primavera_sobra_festivo + Dif; % Suma de las horas en un día en primavera

 end
 end
 if i>=76
 if i<=99

 suma_dia_verano_sobra_festivo= suma_dia_verano_sobra_festivo + Dif; % Suma de las horas en un día en verano

 end
 end

end
if Dif < 0
 En_falta0 = En_falta0 - Dif; % Acumulación de energía que falta
 En_falta0 = En_falta1;
 h_falta0 = h_falta0 + demanda_festivo(i,3); % Acumulación horas deficitarias
 h_falta0 = h_falta1;
end

En_falta_hora(i) = Dif; % Vector que contiene las horas deficitarias de energía

if i > 1
 if En_falta_hora(i-1) < En_falta_hora(i)
 Maximo_falta_dia = Dif; % Busco el máximo de energía deficitaria en una hora
 Dia = i;
 end
end

% Energía que falta en un día en cada estación
if i >= 1
 if i <= 24
 suma_dia_invierno_falta_festivo = suma_dia_invierno_falta_festivo - Dif; % Suma de las horas en un día en invierno
 end
 end
endif

if i >= 26
 if i <= 49
 suma_dia_ootono_falta_festivo = suma_dia_ootono_falta_festivo - Dif; % Suma de las horas en un día en otoño
 end
 end
 endif

if i >= 51
 if i <= 74
 suma_dia_primavera_falta_festivo = suma_dia_primavera_falta_festivo - Dif; % Suma de las horas en un día en primavera
if i>=76
if i<=99

suma_dia_verano_falta_festivo= suma_dia_verano_falta_festivo - Dif; % Suma de las horas en un día en verano

end
end
end

%BUCLE PARA NO FESTIVO

for i=1:99

Prod_eolica=
datos_Peolica(i,1)*(P_E/8760)*demanda_nofestivo(i,3); % Producción eólica en una estación y a una hora determinada
Prod_solar=
datos_Psolar(i,1)*(P_S/8760)*demanda_nofestivo(i,3); % Producción solar en una estación y a una hora determinada
Prod_hidraulica=
datos_Phidraulica(i,1)*(P_H/8760)*demanda_nofestivo(i,3); % Producción hidráulica en una estación y a una hora determinada

Deman_nofestivo=demanda_nofestivo(i,1)*(D_year/8760)*demanda_nofestivo(i,3); % Demanda en una hora, día y estación determinada

Prod_total= Prod_eolica + Prod_solar + Prod_hidraulica;
Dif= Prod_total - Deman_nofestivo;
Porcent_eolica= Prod_eolica;
Porcent_solar= Prod_solar;
Porcent_hidraulica= Prod_hidraulica;

Matriz_Porcentaje_nofestivo (i,1)=Deman_nofestivo;
Matriz_Porcentaje_nofestivo (i,2)=Porcent_eolica;
Matriz_Porcentaje_nofestivo(i,3)=Porcent_solar;
Matriz_Porcentaje_nofestivo (i,4)=Porcent_hidraulica;

if Dif > 0

end
\text{En}_{\text{sobrante}1} = \text{En}_{\text{sobrante}0} + \text{Dif}; \quad \% \text{Accumulación} \ \text{energía sobrante en ese año} \\
\text{En}_{\text{sobrante}0} = \text{En}_{\text{sobrante}1}; \\
\text{h}_{\text{sobrante}1} = \text{h}_{\text{sobrante}0} + \text{demanda}_{\text{nofestivo}}(i, 3); \quad \% \text{Accumulación} \ \text{horas de energía sobrante en ese año} \\
\text{h}_{\text{sobrante}0} = \text{h}_{\text{sobrante}1}; \\
\text{if} \ i \geq 1 \\
\text{if} \ i \leq 24 \\
\text{suma}_{\text{dia inverno sobrante nofestivo}} = \text{suma}_{\text{dia inverno sobrante nofestivo}} + \text{Dif}; \quad \% \text{Suma de las horas en un día en invierno} \\
\text{end} \\
\text{end} \\
\text{if} \ i \geq 26 \\
\text{if} \ i \leq 49 \\
\text{suma}_{\text{dia otonno sobrante nofestivo}} = \text{suma}_{\text{dia otonno sobrante nofestivo}} + \text{Dif}; \quad \% \text{Suma de las horas en un día en otoño} \\
\text{end} \\
\text{end} \\
\text{if} \ i \geq 51 \\
\text{if} \ i \leq 74 \\
\text{suma}_{\text{dia primavera sobrante nofestivo}} = \text{suma}_{\text{dia primavera sobrante nofestivo}} + \text{Dif}; \quad \% \text{Suma de las horas en un día en primavera} \\
\text{end} \\
\text{end} \\
\text{if} \ i \geq 76 \\
\text{if} \ i \leq 99 \\
\text{suma}_{\text{dia verano sobrante nofestivo}} = \text{suma}_{\text{dia verano sobrante nofestivo}} + \text{Dif}; \quad \% \text{Suma de las horas en un día en verano} \\
\text{end} \\
\text{end} \\
\text{end} \\
\text{if} \ \text{Dif} < 0
En_falta1 = En_falta0 - Dif; % Acumulación de energía que falta en ese año

En_falta0 = En_falta1;

h_falta1 = h_falta0 + demanda_nofestivo(i,3); % Acumulación horas en ese año

h_falta0 = h_falta1;

En_falta_hora(i+99) = Dif;

if i > 1
 if En_falta_hora(i+98) < En_falta_hora(i+99) % Para no festivo
 Maximo_falta_dia = Dif; % Busco el máximo de energía deficitaria en una hora
 Dia = i + 99; % Casilla de la tabla en la que se produce el máximo
 end
end

% Energía que falta en un día en cada estación
if i >= 1
 if i <= 24
 suma_dia_invierno_falta_nofestivo = suma_dia_invierno_falta_nofestivo - Dif; % Suma de las horas en un día en invierno
 end
end

if i >= 26
 if i <= 49
 suma_dia_otonno_falta_nofestivo = suma_dia_otonno_falta_nofestivo - Dif; % Suma de las horas en un día en otoño
 end
end

if i >= 51
 if i <= 74
 suma_dia_primavera_falta_nofestivo = suma_dia_primavera_falta_nofestivo - Dif; % Suma de las horas en un día en primavera
 end
end

if i >= 76
 if i <= 99

115
suma_dia_verano_falta_nofestivo=
suma_dia_verano_falta_nofestivo - Dif; % Suma de las horas en un día en verano
end
end
end

h_falta0 % Número de horas que falta energía en ese año
En_falta0% Cantidad de energía que falta en ese año
h_sobrante0% Número de horas que sobra energía en ese año
En_sobrante0% Cantidad de energía que sobra en ese año
Maximo_falta_dia %Máxima energía que falta en un día en ese año
Dia % Día en el que se produce esa falta de energía en ese año

%suma de energía que sobra y falta en un día de cada estación
suma_dia_invierno_sobra_festivo;
suma_dia_otonno_sobra_festivo;
suma_dia_primavera_sobra_festivo;
suma_dia_verano_sobra_festivo;
suma_dia_invierno_falta_festivo;
suma_dia_otonno_falta_festivo;
suma_dia_primavera_falta_festivo;
suma_dia_verano_falta_festivo;
suma_dia_invierno_sobra_nofestivo;
suma_dia_otonno_sobra_nofestivo;
suma_dia_primavera_sobra_nofestivo;
suma_dia_verano_sobra_nofestivo;
suma_dia_invierno_falta_nofestivo;
suma_dia_otonno_falta_nofestivo;
suma_dia_primavera_falta_nofestivo;
suma_dia_verano_falta_nofestivo;

%Suma semana acumulada de energía deficitaria y excedentaria

%INVIERO
suma_semana_invierno_sobra= suma_dia_invierno_sobra_festivo +
6*suma_dia_invierno_sobra_nofestivo;
suma_semana_invierno_falta= suma_dia_invierno_falta_festivo +
6*suma_dia_invierno_falta_nofestivo;

%OTOÑO
suma_semana_otonno_sobra= suma_dia_otonno_sobra_festivo +
6*suma_dia_otonno_sobra_nofestivo;
suma_semana_otonno_falta= suma_dia_otonno_falta_festivo +
6*suma_dia_otonno_falta_nofestivo;

%PRIMAVERA
suma_semana_primavera_sobra= suma_dia_primavera_sobra_festivo +
6*suma_dia_primavera_sobra_nofestivo;
suma_semana_primavera_falta = suma_dia_primavera_falta_festivo
+ 6*suma_dia_primavera_falta_nofestivo;

%VERANO
suma_semana_verano_sobra = suma_dia_verano_sobra_festivo
+ 6*suma_dia_verano_sobra_nofestivo;
suma_semana_verano_falta = suma_dia_verano_falta_festivo
+ 6*suma_dia_verano_falta_nofestivo;

%Matrices porcentajes por horas
Matriz_Porcentaje_festivo;
Matriz_Porcentaje_nofestivo;
Tablas del porcentaje de cobertura de la demanda de energía con la producción de energía eólica, solar e hidráulica.

Año 2020
Invierno-Festivo.

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>52,13</td>
<td>0,47</td>
<td>13,56</td>
</tr>
<tr>
<td>1:00</td>
<td>55,62</td>
<td>0,44</td>
<td>10,13</td>
</tr>
<tr>
<td>2:00</td>
<td>57,97</td>
<td>0,39</td>
<td>7,76</td>
</tr>
<tr>
<td>3:00</td>
<td>59,27</td>
<td>0,32</td>
<td>6,34</td>
</tr>
<tr>
<td>4:00</td>
<td>59,95</td>
<td>0,27</td>
<td>5,88</td>
</tr>
<tr>
<td>5:00</td>
<td>60,13</td>
<td>0,24</td>
<td>6,52</td>
</tr>
<tr>
<td>6:00</td>
<td>60,15</td>
<td>0,23</td>
<td>10,46</td>
</tr>
<tr>
<td>7:00</td>
<td>59,76</td>
<td>0,26</td>
<td>17,20</td>
</tr>
<tr>
<td>8:00</td>
<td>58,46</td>
<td>1,13</td>
<td>22,25</td>
</tr>
<tr>
<td>9:00</td>
<td>53,86</td>
<td>4,58</td>
<td>23,84</td>
</tr>
<tr>
<td>10:00</td>
<td>49,46</td>
<td>8,89</td>
<td>23,42</td>
</tr>
<tr>
<td>11:00</td>
<td>48,16</td>
<td>11,97</td>
<td>21,88</td>
</tr>
<tr>
<td>12:00</td>
<td>49,30</td>
<td>13,70</td>
<td>20,14</td>
</tr>
<tr>
<td>13:00</td>
<td>50,32</td>
<td>14,01</td>
<td>18,83</td>
</tr>
<tr>
<td>14:00</td>
<td>51,41</td>
<td>13,70</td>
<td>16,75</td>
</tr>
<tr>
<td>15:00</td>
<td>53,94</td>
<td>13,19</td>
<td>15,95</td>
</tr>
<tr>
<td>16:00</td>
<td>55,35</td>
<td>11,31</td>
<td>16,38</td>
</tr>
<tr>
<td>17:00</td>
<td>54,88</td>
<td>7,45</td>
<td>18,25</td>
</tr>
<tr>
<td>18:00</td>
<td>51,21</td>
<td>3,03</td>
<td>21,65</td>
</tr>
<tr>
<td>19:00</td>
<td>47,51</td>
<td>1,10</td>
<td>24,45</td>
</tr>
<tr>
<td>20:00</td>
<td>45,83</td>
<td>0,76</td>
<td>24,09</td>
</tr>
<tr>
<td>21:00</td>
<td>45,29</td>
<td>0,62</td>
<td>22,83</td>
</tr>
<tr>
<td>22:00</td>
<td>46,26</td>
<td>0,55</td>
<td>20,60</td>
</tr>
<tr>
<td>23:00</td>
<td>48,79</td>
<td>0,51</td>
<td>17,84</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>37,47</td>
<td>0,38</td>
<td>5,25</td>
</tr>
<tr>
<td>1:00</td>
<td>40,03</td>
<td>0,33</td>
<td>2,65</td>
</tr>
<tr>
<td>2:00</td>
<td>42,14</td>
<td>0,29</td>
<td>0,22</td>
</tr>
<tr>
<td>3:00</td>
<td>43,66</td>
<td>0,27</td>
<td>-1,33</td>
</tr>
<tr>
<td>4:00</td>
<td>44,28</td>
<td>0,26</td>
<td>-1,95</td>
</tr>
<tr>
<td>5:00</td>
<td>44,36</td>
<td>0,25</td>
<td>-1,24</td>
</tr>
<tr>
<td>6:00</td>
<td>43,82</td>
<td>0,25</td>
<td>2,79</td>
</tr>
<tr>
<td>7:00</td>
<td>42,42</td>
<td>0,27</td>
<td>9,09</td>
</tr>
<tr>
<td>8:00</td>
<td>41,15</td>
<td>0,87</td>
<td>12,62</td>
</tr>
<tr>
<td>9:00</td>
<td>37,93</td>
<td>4,39</td>
<td>14,25</td>
</tr>
<tr>
<td>10:00</td>
<td>33,96</td>
<td>8,84</td>
<td>14,32</td>
</tr>
<tr>
<td>11:00</td>
<td>32,31</td>
<td>12,45</td>
<td>13,09</td>
</tr>
<tr>
<td>12:00</td>
<td>32,20</td>
<td>14,09</td>
<td>12,06</td>
</tr>
<tr>
<td>13:00</td>
<td>32,58</td>
<td>14,46</td>
<td>11,26</td>
</tr>
<tr>
<td>14:00</td>
<td>32,90</td>
<td>14,07</td>
<td>9,57</td>
</tr>
<tr>
<td>15:00</td>
<td>34,06</td>
<td>13,40</td>
<td>8,71</td>
</tr>
<tr>
<td>16:00</td>
<td>35,30</td>
<td>11,50</td>
<td>9,15</td>
</tr>
<tr>
<td>17:00</td>
<td>35,75</td>
<td>7,52</td>
<td>11,73</td>
</tr>
<tr>
<td>18:00</td>
<td>35,12</td>
<td>3,98</td>
<td>15,51</td>
</tr>
<tr>
<td>19:00</td>
<td>33,40</td>
<td>1,62</td>
<td>16,93</td>
</tr>
<tr>
<td>20:00</td>
<td>32,10</td>
<td>0,79</td>
<td>16,81</td>
</tr>
<tr>
<td>21:00</td>
<td>31,93</td>
<td>0,56</td>
<td>14,96</td>
</tr>
<tr>
<td>22:00</td>
<td>32,94</td>
<td>0,48</td>
<td>11,39</td>
</tr>
<tr>
<td>23:00</td>
<td>35,18</td>
<td>0,43</td>
<td>8,01</td>
</tr>
</tbody>
</table>
Primavera-Festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>45,81</td>
<td>2,18</td>
<td>15,22</td>
</tr>
<tr>
<td>1:00</td>
<td>47,96</td>
<td>2,19</td>
<td>12,63</td>
</tr>
<tr>
<td>2:00</td>
<td>49,35</td>
<td>2,18</td>
<td>10,44</td>
</tr>
<tr>
<td>3:00</td>
<td>49,99</td>
<td>2,05</td>
<td>8,93</td>
</tr>
<tr>
<td>4:00</td>
<td>49,67</td>
<td>1,90</td>
<td>8,41</td>
</tr>
<tr>
<td>5:00</td>
<td>49,11</td>
<td>1,64</td>
<td>9,03</td>
</tr>
<tr>
<td>6:00</td>
<td>48,40</td>
<td>1,16</td>
<td>12,90</td>
</tr>
<tr>
<td>7:00</td>
<td>47,98</td>
<td>1,22</td>
<td>18,69</td>
</tr>
<tr>
<td>8:00</td>
<td>44,13</td>
<td>4,13</td>
<td>23,23</td>
</tr>
<tr>
<td>9:00</td>
<td>39,23</td>
<td>10,60</td>
<td>24,55</td>
</tr>
<tr>
<td>10:00</td>
<td>37,27</td>
<td>16,40</td>
<td>23,55</td>
</tr>
<tr>
<td>11:00</td>
<td>37,40</td>
<td>19,45</td>
<td>22,58</td>
</tr>
<tr>
<td>12:00</td>
<td>38,61</td>
<td>21,12</td>
<td>21,73</td>
</tr>
<tr>
<td>13:00</td>
<td>39,84</td>
<td>21,66</td>
<td>20,46</td>
</tr>
<tr>
<td>14:00</td>
<td>41,97</td>
<td>21,76</td>
<td>17,70</td>
</tr>
<tr>
<td>15:00</td>
<td>45,99</td>
<td>21,97</td>
<td>16,03</td>
</tr>
<tr>
<td>16:00</td>
<td>49,47</td>
<td>21,11</td>
<td>15,55</td>
</tr>
<tr>
<td>17:00</td>
<td>51,91</td>
<td>19,15</td>
<td>15,76</td>
</tr>
<tr>
<td>18:00</td>
<td>52,51</td>
<td>15,89</td>
<td>16,30</td>
</tr>
<tr>
<td>19:00</td>
<td>50,97</td>
<td>11,37</td>
<td>18,14</td>
</tr>
<tr>
<td>20:00</td>
<td>46,88</td>
<td>6,17</td>
<td>21,54</td>
</tr>
<tr>
<td>21:00</td>
<td>42,40</td>
<td>2,95</td>
<td>23,93</td>
</tr>
<tr>
<td>22:00</td>
<td>41,82</td>
<td>2,24</td>
<td>22,72</td>
</tr>
<tr>
<td>23:00</td>
<td>44,01</td>
<td>2,22</td>
<td>19,33</td>
</tr>
</tbody>
</table>
Verano-Festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% ÉOLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>35,03</td>
<td>2,68</td>
<td>7,84</td>
</tr>
<tr>
<td>1:00</td>
<td>36,03</td>
<td>2,71</td>
<td>6,07</td>
</tr>
<tr>
<td>2:00</td>
<td>36,43</td>
<td>2,71</td>
<td>4,12</td>
</tr>
<tr>
<td>3:00</td>
<td>36,07</td>
<td>2,60</td>
<td>2,95</td>
</tr>
<tr>
<td>4:00</td>
<td>35,24</td>
<td>2,42</td>
<td>2,45</td>
</tr>
<tr>
<td>5:00</td>
<td>34,30</td>
<td>2,14</td>
<td>2,56</td>
</tr>
<tr>
<td>6:00</td>
<td>33,27</td>
<td>1,63</td>
<td>4,78</td>
</tr>
<tr>
<td>7:00</td>
<td>32,42</td>
<td>1,38</td>
<td>7,72</td>
</tr>
<tr>
<td>8:00</td>
<td>29,24</td>
<td>3,66</td>
<td>10,50</td>
</tr>
<tr>
<td>9:00</td>
<td>24,64</td>
<td>10,34</td>
<td>13,51</td>
</tr>
<tr>
<td>10:00</td>
<td>22,37</td>
<td>17,67</td>
<td>14,18</td>
</tr>
<tr>
<td>11:00</td>
<td>21,69</td>
<td>21,12</td>
<td>14,46</td>
</tr>
<tr>
<td>12:00</td>
<td>22,25</td>
<td>22,60</td>
<td>14,71</td>
</tr>
<tr>
<td>13:00</td>
<td>23,34</td>
<td>22,96</td>
<td>14,29</td>
</tr>
<tr>
<td>14:00</td>
<td>25,14</td>
<td>22,82</td>
<td>12,33</td>
</tr>
<tr>
<td>15:00</td>
<td>28,23</td>
<td>22,88</td>
<td>10,43</td>
</tr>
<tr>
<td>16:00</td>
<td>31,26</td>
<td>22,10</td>
<td>9,59</td>
</tr>
<tr>
<td>17:00</td>
<td>33,96</td>
<td>20,38</td>
<td>9,26</td>
</tr>
<tr>
<td>18:00</td>
<td>35,97</td>
<td>17,49</td>
<td>8,91</td>
</tr>
<tr>
<td>19:00</td>
<td>36,86</td>
<td>13,18</td>
<td>9,28</td>
</tr>
<tr>
<td>20:00</td>
<td>35,92</td>
<td>7,53</td>
<td>11,14</td>
</tr>
<tr>
<td>21:00</td>
<td>33,16</td>
<td>3,66</td>
<td>13,47</td>
</tr>
<tr>
<td>22:00</td>
<td>32,36</td>
<td>2,67</td>
<td>12,54</td>
</tr>
<tr>
<td>23:00</td>
<td>33,74</td>
<td>2,62</td>
<td>9,62</td>
</tr>
</tbody>
</table>
Invierno-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>49,49</td>
<td>0,45</td>
<td>12,87</td>
</tr>
<tr>
<td>1:00</td>
<td>52,86</td>
<td>0,42</td>
<td>9,63</td>
</tr>
<tr>
<td>2:00</td>
<td>54,48</td>
<td>0,36</td>
<td>7,29</td>
</tr>
<tr>
<td>3:00</td>
<td>54,68</td>
<td>0,30</td>
<td>5,85</td>
</tr>
<tr>
<td>4:00</td>
<td>54,49</td>
<td>0,25</td>
<td>5,35</td>
</tr>
<tr>
<td>5:00</td>
<td>53,52</td>
<td>0,21</td>
<td>5,80</td>
</tr>
<tr>
<td>6:00</td>
<td>50,13</td>
<td>0,19</td>
<td>8,72</td>
</tr>
<tr>
<td>7:00</td>
<td>44,71</td>
<td>0,20</td>
<td>12,87</td>
</tr>
<tr>
<td>8:00</td>
<td>40,84</td>
<td>0,79</td>
<td>15,54</td>
</tr>
<tr>
<td>9:00</td>
<td>38,41</td>
<td>3,26</td>
<td>17,00</td>
</tr>
<tr>
<td>10:00</td>
<td>37,08</td>
<td>6,67</td>
<td>17,56</td>
</tr>
<tr>
<td>11:00</td>
<td>37,59</td>
<td>9,34</td>
<td>17,07</td>
</tr>
<tr>
<td>12:00</td>
<td>39,09</td>
<td>10,86</td>
<td>15,97</td>
</tr>
<tr>
<td>13:00</td>
<td>40,48</td>
<td>11,27</td>
<td>15,15</td>
</tr>
<tr>
<td>14:00</td>
<td>42,58</td>
<td>11,35</td>
<td>13,88</td>
</tr>
<tr>
<td>15:00</td>
<td>43,99</td>
<td>10,76</td>
<td>13,00</td>
</tr>
<tr>
<td>16:00</td>
<td>44,39</td>
<td>9,07</td>
<td>13,14</td>
</tr>
<tr>
<td>17:00</td>
<td>43,71</td>
<td>5,93</td>
<td>14,54</td>
</tr>
<tr>
<td>18:00</td>
<td>41,88</td>
<td>2,48</td>
<td>17,71</td>
</tr>
<tr>
<td>19:00</td>
<td>39,75</td>
<td>0,92</td>
<td>20,45</td>
</tr>
<tr>
<td>20:00</td>
<td>39,43</td>
<td>0,65</td>
<td>20,72</td>
</tr>
<tr>
<td>21:00</td>
<td>40,18</td>
<td>0,55</td>
<td>20,25</td>
</tr>
<tr>
<td>22:00</td>
<td>42,64</td>
<td>0,51</td>
<td>18,98</td>
</tr>
<tr>
<td>23:00</td>
<td>45,72</td>
<td>0,48</td>
<td>16,72</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>35,61</td>
<td>0,36</td>
<td>4,99</td>
</tr>
<tr>
<td>1:00</td>
<td>38,12</td>
<td>0,31</td>
<td>2,53</td>
</tr>
<tr>
<td>2:00</td>
<td>39,81</td>
<td>0,27</td>
<td>0,21</td>
</tr>
<tr>
<td>3:00</td>
<td>40,80</td>
<td>0,25</td>
<td>-1,25</td>
</tr>
<tr>
<td>4:00</td>
<td>40,92</td>
<td>0,24</td>
<td>-1,80</td>
</tr>
<tr>
<td>5:00</td>
<td>40,41</td>
<td>0,23</td>
<td>-1,13</td>
</tr>
<tr>
<td>6:00</td>
<td>38,19</td>
<td>0,21</td>
<td>2,43</td>
</tr>
<tr>
<td>7:00</td>
<td>33,94</td>
<td>0,21</td>
<td>7,27</td>
</tr>
<tr>
<td>8:00</td>
<td>30,56</td>
<td>0,64</td>
<td>9,37</td>
</tr>
<tr>
<td>9:00</td>
<td>28,02</td>
<td>3,24</td>
<td>10,53</td>
</tr>
<tr>
<td>10:00</td>
<td>26,22</td>
<td>6,83</td>
<td>11,06</td>
</tr>
<tr>
<td>11:00</td>
<td>25,85</td>
<td>9,96</td>
<td>10,47</td>
</tr>
<tr>
<td>12:00</td>
<td>26,11</td>
<td>11,43</td>
<td>9,78</td>
</tr>
<tr>
<td>13:00</td>
<td>26,64</td>
<td>11,83</td>
<td>9,21</td>
</tr>
<tr>
<td>14:00</td>
<td>27,54</td>
<td>11,78</td>
<td>8,01</td>
</tr>
<tr>
<td>15:00</td>
<td>28,59</td>
<td>11,25</td>
<td>7,31</td>
</tr>
<tr>
<td>16:00</td>
<td>29,02</td>
<td>9,45</td>
<td>7,52</td>
</tr>
<tr>
<td>17:00</td>
<td>28,89</td>
<td>6,11</td>
<td>9,53</td>
</tr>
<tr>
<td>18:00</td>
<td>28,86</td>
<td>3,27</td>
<td>12,74</td>
</tr>
<tr>
<td>19:00</td>
<td>28,14</td>
<td>1,36</td>
<td>14,27</td>
</tr>
<tr>
<td>20:00</td>
<td>27,63</td>
<td>0,68</td>
<td>14,46</td>
</tr>
<tr>
<td>21:00</td>
<td>28,25</td>
<td>0,49</td>
<td>13,23</td>
</tr>
<tr>
<td>22:00</td>
<td>30,21</td>
<td>0,44</td>
<td>10,44</td>
</tr>
<tr>
<td>23:00</td>
<td>33,01</td>
<td>0,40</td>
<td>7,51</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>43,49</td>
<td>2,07</td>
<td>14,45</td>
</tr>
<tr>
<td>1:00</td>
<td>45,38</td>
<td>2,07</td>
<td>11,95</td>
</tr>
<tr>
<td>2:00</td>
<td>46,09</td>
<td>2,03</td>
<td>9,75</td>
</tr>
<tr>
<td>3:00</td>
<td>46,23</td>
<td>1,89</td>
<td>8,26</td>
</tr>
<tr>
<td>4:00</td>
<td>45,51</td>
<td>1,74</td>
<td>7,70</td>
</tr>
<tr>
<td>5:00</td>
<td>44,16</td>
<td>1,48</td>
<td>8,12</td>
</tr>
<tr>
<td>6:00</td>
<td>40,93</td>
<td>0,98</td>
<td>10,90</td>
</tr>
<tr>
<td>7:00</td>
<td>36,82</td>
<td>0,94</td>
<td>14,34</td>
</tr>
<tr>
<td>8:00</td>
<td>32,42</td>
<td>3,03</td>
<td>17,06</td>
</tr>
<tr>
<td>9:00</td>
<td>29,64</td>
<td>8,01</td>
<td>18,55</td>
</tr>
<tr>
<td>10:00</td>
<td>29,19</td>
<td>12,85</td>
<td>18,45</td>
</tr>
<tr>
<td>11:00</td>
<td>29,89</td>
<td>15,55</td>
<td>18,05</td>
</tr>
<tr>
<td>12:00</td>
<td>30,86</td>
<td>16,88</td>
<td>17,36</td>
</tr>
<tr>
<td>13:00</td>
<td>32,16</td>
<td>17,49</td>
<td>16,52</td>
</tr>
<tr>
<td>14:00</td>
<td>34,74</td>
<td>18,01</td>
<td>14,65</td>
</tr>
<tr>
<td>15:00</td>
<td>37,42</td>
<td>17,88</td>
<td>13,04</td>
</tr>
<tr>
<td>16:00</td>
<td>39,44</td>
<td>16,83</td>
<td>12,40</td>
</tr>
<tr>
<td>17:00</td>
<td>40,90</td>
<td>15,09</td>
<td>12,42</td>
</tr>
<tr>
<td>18:00</td>
<td>41,99</td>
<td>12,71</td>
<td>13,03</td>
</tr>
<tr>
<td>19:00</td>
<td>41,84</td>
<td>9,33</td>
<td>14,89</td>
</tr>
<tr>
<td>20:00</td>
<td>39,73</td>
<td>5,23</td>
<td>18,26</td>
</tr>
<tr>
<td>21:00</td>
<td>37,37</td>
<td>2,60</td>
<td>21,10</td>
</tr>
<tr>
<td>22:00</td>
<td>38,54</td>
<td>2,06</td>
<td>20,94</td>
</tr>
<tr>
<td>23:00</td>
<td>41,39</td>
<td>2,08</td>
<td>18,18</td>
</tr>
</tbody>
</table>
Verano-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>32,79</td>
<td>2,50</td>
<td>7.34</td>
</tr>
<tr>
<td>1:00</td>
<td>33,61</td>
<td>2,53</td>
<td>5.66</td>
</tr>
<tr>
<td>2:00</td>
<td>33,83</td>
<td>2,52</td>
<td>3.82</td>
</tr>
<tr>
<td>3:00</td>
<td>33,19</td>
<td>2,39</td>
<td>2.71</td>
</tr>
<tr>
<td>4:00</td>
<td>32,16</td>
<td>2,21</td>
<td>2.24</td>
</tr>
<tr>
<td>5:00</td>
<td>30,81</td>
<td>1,92</td>
<td>2.30</td>
</tr>
<tr>
<td>6:00</td>
<td>28,33</td>
<td>1,39</td>
<td>4.07</td>
</tr>
<tr>
<td>7:00</td>
<td>25,50</td>
<td>1,09</td>
<td>6.07</td>
</tr>
<tr>
<td>8:00</td>
<td>21,94</td>
<td>2,74</td>
<td>7.87</td>
</tr>
<tr>
<td>9:00</td>
<td>18,42</td>
<td>7,73</td>
<td>10.10</td>
</tr>
<tr>
<td>10:00</td>
<td>16,99</td>
<td>13,42</td>
<td>10.77</td>
</tr>
<tr>
<td>11:00</td>
<td>16,75</td>
<td>16,30</td>
<td>11.17</td>
</tr>
<tr>
<td>12:00</td>
<td>17,23</td>
<td>17,50</td>
<td>11.39</td>
</tr>
<tr>
<td>13:00</td>
<td>18,30</td>
<td>18,00</td>
<td>11.21</td>
</tr>
<tr>
<td>14:00</td>
<td>20,34</td>
<td>18,46</td>
<td>9.98</td>
</tr>
<tr>
<td>15:00</td>
<td>22,85</td>
<td>18,51</td>
<td>8.44</td>
</tr>
<tr>
<td>16:00</td>
<td>24,99</td>
<td>17,67</td>
<td>7.67</td>
</tr>
<tr>
<td>17:00</td>
<td>26,87</td>
<td>16,12</td>
<td>7.33</td>
</tr>
<tr>
<td>18:00</td>
<td>28,80</td>
<td>14,00</td>
<td>7.13</td>
</tr>
<tr>
<td>19:00</td>
<td>30,14</td>
<td>10,78</td>
<td>7.59</td>
</tr>
<tr>
<td>20:00</td>
<td>30,28</td>
<td>6,35</td>
<td>9.39</td>
</tr>
<tr>
<td>21:00</td>
<td>29,19</td>
<td>3,22</td>
<td>11.86</td>
</tr>
<tr>
<td>22:00</td>
<td>29,95</td>
<td>2,47</td>
<td>11.60</td>
</tr>
<tr>
<td>23:00</td>
<td>31,80</td>
<td>2,47</td>
<td>9.07</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>80,14</td>
<td>1,03</td>
<td>16,81</td>
</tr>
<tr>
<td>1:00</td>
<td>85,51</td>
<td>0,97</td>
<td>12,56</td>
</tr>
<tr>
<td>2:00</td>
<td>89,12</td>
<td>0,85</td>
<td>9,63</td>
</tr>
<tr>
<td>3:00</td>
<td>91,11</td>
<td>0,70</td>
<td>7,86</td>
</tr>
<tr>
<td>4:00</td>
<td>92,16</td>
<td>0,59</td>
<td>7,29</td>
</tr>
<tr>
<td>5:00</td>
<td>92,43</td>
<td>0,53</td>
<td>8,08</td>
</tr>
<tr>
<td>6:00</td>
<td>92,46</td>
<td>0,50</td>
<td>12,97</td>
</tr>
<tr>
<td>7:00</td>
<td>91,86</td>
<td>0,57</td>
<td>21,32</td>
</tr>
<tr>
<td>8:00</td>
<td>89,87</td>
<td>2,47</td>
<td>27,59</td>
</tr>
<tr>
<td>9:00</td>
<td>82,80</td>
<td>10,00</td>
<td>29,56</td>
</tr>
<tr>
<td>10:00</td>
<td>76,03</td>
<td>19,43</td>
<td>29,04</td>
</tr>
<tr>
<td>11:00</td>
<td>74,04</td>
<td>26,14</td>
<td>27,13</td>
</tr>
<tr>
<td>12:00</td>
<td>75,79</td>
<td>29,92</td>
<td>24,98</td>
</tr>
<tr>
<td>13:00</td>
<td>77,35</td>
<td>30,61</td>
<td>23,35</td>
</tr>
<tr>
<td>14:00</td>
<td>79,03</td>
<td>29,94</td>
<td>20,77</td>
</tr>
<tr>
<td>15:00</td>
<td>82,92</td>
<td>28,83</td>
<td>19,77</td>
</tr>
<tr>
<td>16:00</td>
<td>85,08</td>
<td>24,71</td>
<td>20,31</td>
</tr>
<tr>
<td>17:00</td>
<td>84,36</td>
<td>16,28</td>
<td>22,63</td>
</tr>
<tr>
<td>18:00</td>
<td>78,72</td>
<td>6,62</td>
<td>26,85</td>
</tr>
<tr>
<td>19:00</td>
<td>73,03</td>
<td>2,39</td>
<td>30,31</td>
</tr>
<tr>
<td>20:00</td>
<td>70,45</td>
<td>1,66</td>
<td>29,87</td>
</tr>
<tr>
<td>21:00</td>
<td>69,63</td>
<td>1,34</td>
<td>28,30</td>
</tr>
<tr>
<td>22:00</td>
<td>71,11</td>
<td>1,21</td>
<td>25,54</td>
</tr>
<tr>
<td>23:00</td>
<td>75,00</td>
<td>1,12</td>
<td>22,12</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>57,59</td>
<td>0,82</td>
<td>6,51</td>
</tr>
<tr>
<td>1:00</td>
<td>61,54</td>
<td>0,73</td>
<td>3,29</td>
</tr>
<tr>
<td>2:00</td>
<td>64,78</td>
<td>0,64</td>
<td>0,28</td>
</tr>
<tr>
<td>3:00</td>
<td>67,11</td>
<td>0,59</td>
<td>-1,65</td>
</tr>
<tr>
<td>4:00</td>
<td>68,07</td>
<td>0,57</td>
<td>-2,41</td>
</tr>
<tr>
<td>5:00</td>
<td>68,19</td>
<td>0,56</td>
<td>-1,54</td>
</tr>
<tr>
<td>6:00</td>
<td>67,36</td>
<td>0,54</td>
<td>3,46</td>
</tr>
<tr>
<td>7:00</td>
<td>65,21</td>
<td>0,59</td>
<td>11,27</td>
</tr>
<tr>
<td>8:00</td>
<td>63,26</td>
<td>1,90</td>
<td>15,65</td>
</tr>
<tr>
<td>9:00</td>
<td>58,31</td>
<td>9,59</td>
<td>17,67</td>
</tr>
<tr>
<td>10:00</td>
<td>52,20</td>
<td>19,33</td>
<td>17,76</td>
</tr>
<tr>
<td>11:00</td>
<td>49,67</td>
<td>27,21</td>
<td>16,23</td>
</tr>
<tr>
<td>12:00</td>
<td>49,50</td>
<td>30,80</td>
<td>14,96</td>
</tr>
<tr>
<td>13:00</td>
<td>50,08</td>
<td>31,60</td>
<td>13,96</td>
</tr>
<tr>
<td>14:00</td>
<td>50,57</td>
<td>30,75</td>
<td>11,87</td>
</tr>
<tr>
<td>15:00</td>
<td>52,36</td>
<td>29,28</td>
<td>10,81</td>
</tr>
<tr>
<td>16:00</td>
<td>54,27</td>
<td>25,13</td>
<td>11,34</td>
</tr>
<tr>
<td>17:00</td>
<td>54,68</td>
<td>16,43</td>
<td>14,55</td>
</tr>
<tr>
<td>18:00</td>
<td>53,99</td>
<td>8,69</td>
<td>19,23</td>
</tr>
<tr>
<td>19:00</td>
<td>51,34</td>
<td>3,54</td>
<td>21,00</td>
</tr>
<tr>
<td>20:00</td>
<td>49,35</td>
<td>1,73</td>
<td>20,84</td>
</tr>
<tr>
<td>21:00</td>
<td>49,09</td>
<td>1,22</td>
<td>18,55</td>
</tr>
<tr>
<td>22:00</td>
<td>50,64</td>
<td>1,05</td>
<td>14,12</td>
</tr>
<tr>
<td>23:00</td>
<td>54,07</td>
<td>0,93</td>
<td>9,93</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>70,42</td>
<td>4,75</td>
<td>18,88</td>
</tr>
<tr>
<td>1:00</td>
<td>73,73</td>
<td>4,78</td>
<td>15,67</td>
</tr>
<tr>
<td>2:00</td>
<td>75,86</td>
<td>4,75</td>
<td>12,95</td>
</tr>
<tr>
<td>3:00</td>
<td>76,85</td>
<td>4,47</td>
<td>11,08</td>
</tr>
<tr>
<td>4:00</td>
<td>76,36</td>
<td>4,16</td>
<td>10,43</td>
</tr>
<tr>
<td>5:00</td>
<td>75,49</td>
<td>3,58</td>
<td>11,20</td>
</tr>
<tr>
<td>6:00</td>
<td>74,40</td>
<td>2,54</td>
<td>15,99</td>
</tr>
<tr>
<td>7:00</td>
<td>73,76</td>
<td>2,66</td>
<td>23,17</td>
</tr>
<tr>
<td>8:00</td>
<td>67,84</td>
<td>9,01</td>
<td>28,81</td>
</tr>
<tr>
<td>9:00</td>
<td>60,31</td>
<td>23,17</td>
<td>30,44</td>
</tr>
<tr>
<td>10:00</td>
<td>57,29</td>
<td>35,84</td>
<td>29,20</td>
</tr>
<tr>
<td>11:00</td>
<td>57,49</td>
<td>42,51</td>
<td>28,00</td>
</tr>
<tr>
<td>12:00</td>
<td>59,36</td>
<td>46,14</td>
<td>26,94</td>
</tr>
<tr>
<td>13:00</td>
<td>61,25</td>
<td>47,33</td>
<td>25,37</td>
</tr>
<tr>
<td>14:00</td>
<td>64,51</td>
<td>47,55</td>
<td>21,95</td>
</tr>
<tr>
<td>15:00</td>
<td>70,69</td>
<td>48,01</td>
<td>19,87</td>
</tr>
<tr>
<td>16:00</td>
<td>76,04</td>
<td>46,13</td>
<td>19,27</td>
</tr>
<tr>
<td>17:00</td>
<td>79,80</td>
<td>41,85</td>
<td>19,54</td>
</tr>
<tr>
<td>18:00</td>
<td>80,72</td>
<td>34,73</td>
<td>20,21</td>
</tr>
<tr>
<td>19:00</td>
<td>78,35</td>
<td>24,84</td>
<td>22,49</td>
</tr>
<tr>
<td>20:00</td>
<td>72,06</td>
<td>13,48</td>
<td>26,71</td>
</tr>
<tr>
<td>21:00</td>
<td>65,18</td>
<td>6,45</td>
<td>29,68</td>
</tr>
<tr>
<td>22:00</td>
<td>64,28</td>
<td>4,89</td>
<td>28,17</td>
</tr>
<tr>
<td>23:00</td>
<td>67,65</td>
<td>4,85</td>
<td>23,97</td>
</tr>
</tbody>
</table>
Verano-Festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>53,84</td>
<td>5,85</td>
<td>9,72</td>
</tr>
<tr>
<td>1:00</td>
<td>55,39</td>
<td>5,93</td>
<td>7,53</td>
</tr>
<tr>
<td>2:00</td>
<td>56,00</td>
<td>5,92</td>
<td>5,10</td>
</tr>
<tr>
<td>3:00</td>
<td>55,45</td>
<td>5,68</td>
<td>3,65</td>
</tr>
<tr>
<td>4:00</td>
<td>54,17</td>
<td>5,28</td>
<td>3,04</td>
</tr>
<tr>
<td>5:00</td>
<td>52,72</td>
<td>4,68</td>
<td>3,18</td>
</tr>
<tr>
<td>6:00</td>
<td>51,13</td>
<td>3,56</td>
<td>5,92</td>
</tr>
<tr>
<td>7:00</td>
<td>49,84</td>
<td>3,02</td>
<td>9,57</td>
</tr>
<tr>
<td>8:00</td>
<td>44,95</td>
<td>7,99</td>
<td>13,01</td>
</tr>
<tr>
<td>9:00</td>
<td>37,88</td>
<td>22,59</td>
<td>16,75</td>
</tr>
<tr>
<td>10:00</td>
<td>34,38</td>
<td>38,61</td>
<td>17,58</td>
</tr>
<tr>
<td>11:00</td>
<td>33,35</td>
<td>46,14</td>
<td>17,94</td>
</tr>
<tr>
<td>12:00</td>
<td>34,21</td>
<td>49,38</td>
<td>18,24</td>
</tr>
<tr>
<td>13:00</td>
<td>35,88</td>
<td>50,16</td>
<td>17,72</td>
</tr>
<tr>
<td>14:00</td>
<td>38,64</td>
<td>49,85</td>
<td>15,29</td>
</tr>
<tr>
<td>15:00</td>
<td>43,40</td>
<td>49,99</td>
<td>12,94</td>
</tr>
<tr>
<td>16:00</td>
<td>48,06</td>
<td>48,30</td>
<td>11,89</td>
</tr>
<tr>
<td>17:00</td>
<td>52,20</td>
<td>44,53</td>
<td>11,49</td>
</tr>
<tr>
<td>18:00</td>
<td>55,29</td>
<td>38,20</td>
<td>11,05</td>
</tr>
<tr>
<td>19:00</td>
<td>56,67</td>
<td>28,81</td>
<td>11,51</td>
</tr>
<tr>
<td>20:00</td>
<td>55,21</td>
<td>16,45</td>
<td>13,81</td>
</tr>
<tr>
<td>21:00</td>
<td>50,98</td>
<td>8,00</td>
<td>16,70</td>
</tr>
<tr>
<td>22:00</td>
<td>49,75</td>
<td>5,84</td>
<td>15,54</td>
</tr>
<tr>
<td>23:00</td>
<td>51,87</td>
<td>5,73</td>
<td>11,93</td>
</tr>
</tbody>
</table>
Invierno-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>76,09</td>
<td>0,98</td>
<td>15,96</td>
</tr>
<tr>
<td>1:00</td>
<td>81,27</td>
<td>0,92</td>
<td>11,94</td>
</tr>
<tr>
<td>2:00</td>
<td>83,74</td>
<td>0,80</td>
<td>9,05</td>
</tr>
<tr>
<td>3:00</td>
<td>84,07</td>
<td>0,64</td>
<td>7,25</td>
</tr>
<tr>
<td>4:00</td>
<td>83,76</td>
<td>0,53</td>
<td>6,63</td>
</tr>
<tr>
<td>5:00</td>
<td>82,27</td>
<td>0,47</td>
<td>7,19</td>
</tr>
<tr>
<td>6:00</td>
<td>77,06</td>
<td>0,42</td>
<td>10,81</td>
</tr>
<tr>
<td>7:00</td>
<td>68,73</td>
<td>0,43</td>
<td>15,95</td>
</tr>
<tr>
<td>8:00</td>
<td>62,78</td>
<td>1,73</td>
<td>19,27</td>
</tr>
<tr>
<td>9:00</td>
<td>59,05</td>
<td>7,13</td>
<td>21,08</td>
</tr>
<tr>
<td>10:00</td>
<td>57,01</td>
<td>14,57</td>
<td>21,78</td>
</tr>
<tr>
<td>11:00</td>
<td>57,79</td>
<td>20,41</td>
<td>21,18</td>
</tr>
<tr>
<td>12:00</td>
<td>60,09</td>
<td>23,73</td>
<td>19,80</td>
</tr>
<tr>
<td>13:00</td>
<td>62,22</td>
<td>24,62</td>
<td>18,78</td>
</tr>
<tr>
<td>14:00</td>
<td>65,46</td>
<td>24,80</td>
<td>17,20</td>
</tr>
<tr>
<td>15:00</td>
<td>67,62</td>
<td>23,51</td>
<td>16,12</td>
</tr>
<tr>
<td>16:00</td>
<td>68,23</td>
<td>19,81</td>
<td>16,29</td>
</tr>
<tr>
<td>17:00</td>
<td>67,20</td>
<td>12,97</td>
<td>18,03</td>
</tr>
<tr>
<td>18:00</td>
<td>64,38</td>
<td>5,42</td>
<td>21,96</td>
</tr>
<tr>
<td>19:00</td>
<td>61,10</td>
<td>2,00</td>
<td>25,36</td>
</tr>
<tr>
<td>20:00</td>
<td>60,61</td>
<td>1,43</td>
<td>25,70</td>
</tr>
<tr>
<td>21:00</td>
<td>61,76</td>
<td>1,19</td>
<td>25,11</td>
</tr>
<tr>
<td>22:00</td>
<td>65,54</td>
<td>1,12</td>
<td>23,54</td>
</tr>
<tr>
<td>23:00</td>
<td>70,29</td>
<td>1,05</td>
<td>20,73</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>54,74</td>
<td>0,78</td>
<td>6,19</td>
</tr>
<tr>
<td>1:00</td>
<td>58,59</td>
<td>0,69</td>
<td>3,13</td>
</tr>
<tr>
<td>2:00</td>
<td>61,21</td>
<td>0,60</td>
<td>0,26</td>
</tr>
<tr>
<td>3:00</td>
<td>62,71</td>
<td>0,55</td>
<td>-1,55</td>
</tr>
<tr>
<td>4:00</td>
<td>62,90</td>
<td>0,53</td>
<td>-2,23</td>
</tr>
<tr>
<td>5:00</td>
<td>62,11</td>
<td>0,51</td>
<td>-1,40</td>
</tr>
<tr>
<td>6:00</td>
<td>58,70</td>
<td>0,47</td>
<td>3,02</td>
</tr>
<tr>
<td>7:00</td>
<td>52,17</td>
<td>0,47</td>
<td>9,02</td>
</tr>
<tr>
<td>8:00</td>
<td>46,97</td>
<td>1,41</td>
<td>11,62</td>
</tr>
<tr>
<td>9:00</td>
<td>43,08</td>
<td>7,08</td>
<td>13,05</td>
</tr>
<tr>
<td>10:00</td>
<td>40,30</td>
<td>14,92</td>
<td>13,71</td>
</tr>
<tr>
<td>11:00</td>
<td>39,74</td>
<td>21,77</td>
<td>12,98</td>
</tr>
<tr>
<td>12:00</td>
<td>40,14</td>
<td>24,98</td>
<td>12,13</td>
</tr>
<tr>
<td>13:00</td>
<td>40,96</td>
<td>25,84</td>
<td>11,42</td>
</tr>
<tr>
<td>14:00</td>
<td>42,33</td>
<td>25,74</td>
<td>9,93</td>
</tr>
<tr>
<td>15:00</td>
<td>43,96</td>
<td>24,58</td>
<td>9,07</td>
</tr>
<tr>
<td>16:00</td>
<td>44,61</td>
<td>20,66</td>
<td>9,32</td>
</tr>
<tr>
<td>17:00</td>
<td>44,41</td>
<td>13,34</td>
<td>11,82</td>
</tr>
<tr>
<td>18:00</td>
<td>44,37</td>
<td>7,14</td>
<td>15,80</td>
</tr>
<tr>
<td>19:00</td>
<td>43,25</td>
<td>2,98</td>
<td>17,69</td>
</tr>
<tr>
<td>20:00</td>
<td>42,47</td>
<td>1,49</td>
<td>17,93</td>
</tr>
<tr>
<td>21:00</td>
<td>43,42</td>
<td>1,08</td>
<td>16,41</td>
</tr>
<tr>
<td>22:00</td>
<td>46,44</td>
<td>0,97</td>
<td>12,95</td>
</tr>
<tr>
<td>23:00</td>
<td>50,74</td>
<td>0,87</td>
<td>9,32</td>
</tr>
</tbody>
</table>
Primavera-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>66,86</td>
<td>4,51</td>
<td>17,92</td>
</tr>
<tr>
<td>1:00</td>
<td>69,75</td>
<td>4,52</td>
<td>14,82</td>
</tr>
<tr>
<td>2:00</td>
<td>70,85</td>
<td>4,44</td>
<td>12,09</td>
</tr>
<tr>
<td>3:00</td>
<td>71,06</td>
<td>4,13</td>
<td>10,25</td>
</tr>
<tr>
<td>4:00</td>
<td>69,95</td>
<td>3,81</td>
<td>9,55</td>
</tr>
<tr>
<td>5:00</td>
<td>67,88</td>
<td>3,22</td>
<td>10,06</td>
</tr>
<tr>
<td>6:00</td>
<td>62,91</td>
<td>2,15</td>
<td>13,52</td>
</tr>
<tr>
<td>7:00</td>
<td>56,60</td>
<td>2,04</td>
<td>17,78</td>
</tr>
<tr>
<td>8:00</td>
<td>49,83</td>
<td>6,62</td>
<td>21,16</td>
</tr>
<tr>
<td>9:00</td>
<td>45,56</td>
<td>17,50</td>
<td>23,00</td>
</tr>
<tr>
<td>10:00</td>
<td>44,87</td>
<td>28,08</td>
<td>22,88</td>
</tr>
<tr>
<td>11:00</td>
<td>45,96</td>
<td>33,98</td>
<td>22,38</td>
</tr>
<tr>
<td>12:00</td>
<td>47,43</td>
<td>36,88</td>
<td>21,53</td>
</tr>
<tr>
<td>13:00</td>
<td>49,44</td>
<td>38,21</td>
<td>20,48</td>
</tr>
<tr>
<td>14:00</td>
<td>53,40</td>
<td>39,36</td>
<td>18,17</td>
</tr>
<tr>
<td>15:00</td>
<td>57,52</td>
<td>39,06</td>
<td>16,17</td>
</tr>
<tr>
<td>16:00</td>
<td>60,63</td>
<td>36,78</td>
<td>15,37</td>
</tr>
<tr>
<td>17:00</td>
<td>62,88</td>
<td>32,98</td>
<td>15,40</td>
</tr>
<tr>
<td>18:00</td>
<td>64,55</td>
<td>27,77</td>
<td>16,16</td>
</tr>
<tr>
<td>19:00</td>
<td>64,33</td>
<td>20,39</td>
<td>18,46</td>
</tr>
<tr>
<td>20:00</td>
<td>61,07</td>
<td>11,42</td>
<td>22,64</td>
</tr>
<tr>
<td>21:00</td>
<td>57,45</td>
<td>5,69</td>
<td>26,16</td>
</tr>
<tr>
<td>22:00</td>
<td>59,24</td>
<td>4,51</td>
<td>25,96</td>
</tr>
<tr>
<td>23:00</td>
<td>63,63</td>
<td>4,56</td>
<td>22,55</td>
</tr>
</tbody>
</table>
Verano-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>50,40</td>
<td>5,47</td>
<td>9,09</td>
</tr>
<tr>
<td>1:00</td>
<td>51,67</td>
<td>5,53</td>
<td>7,02</td>
</tr>
<tr>
<td>2:00</td>
<td>52,00</td>
<td>5,50</td>
<td>4,74</td>
</tr>
<tr>
<td>3:00</td>
<td>51,01</td>
<td>5,23</td>
<td>3,36</td>
</tr>
<tr>
<td>4:00</td>
<td>49,43</td>
<td>4,82</td>
<td>2,77</td>
</tr>
<tr>
<td>5:00</td>
<td>47,36</td>
<td>4,20</td>
<td>2,85</td>
</tr>
<tr>
<td>6:00</td>
<td>43,56</td>
<td>3,03</td>
<td>5,04</td>
</tr>
<tr>
<td>7:00</td>
<td>39,20</td>
<td>2,37</td>
<td>7,53</td>
</tr>
<tr>
<td>8:00</td>
<td>33,73</td>
<td>5,99</td>
<td>9,77</td>
</tr>
<tr>
<td>9:00</td>
<td>28,33</td>
<td>16,89</td>
<td>12,52</td>
</tr>
<tr>
<td>10:00</td>
<td>26,11</td>
<td>29,32</td>
<td>13,35</td>
</tr>
<tr>
<td>11:00</td>
<td>25,75</td>
<td>35,63</td>
<td>13,85</td>
</tr>
<tr>
<td>12:00</td>
<td>26,49</td>
<td>38,24</td>
<td>14,12</td>
</tr>
<tr>
<td>13:00</td>
<td>28,13</td>
<td>39,33</td>
<td>13,89</td>
</tr>
<tr>
<td>14:00</td>
<td>31,27</td>
<td>40,35</td>
<td>12,37</td>
</tr>
<tr>
<td>15:00</td>
<td>35,12</td>
<td>40,45</td>
<td>10,47</td>
</tr>
<tr>
<td>16:00</td>
<td>38,42</td>
<td>38,61</td>
<td>9,51</td>
</tr>
<tr>
<td>17:00</td>
<td>41,30</td>
<td>35,23</td>
<td>9,09</td>
</tr>
<tr>
<td>18:00</td>
<td>44,27</td>
<td>30,59</td>
<td>8,85</td>
</tr>
<tr>
<td>19:00</td>
<td>46,33</td>
<td>23,55</td>
<td>9,41</td>
</tr>
<tr>
<td>20:00</td>
<td>46,55</td>
<td>13,87</td>
<td>11,64</td>
</tr>
<tr>
<td>21:00</td>
<td>44,87</td>
<td>7,04</td>
<td>14,70</td>
</tr>
<tr>
<td>22:00</td>
<td>46,04</td>
<td>5,40</td>
<td>14,38</td>
</tr>
<tr>
<td>23:00</td>
<td>48,88</td>
<td>5,40</td>
<td>11,24</td>
</tr>
</tbody>
</table>
Año 2040

Invierno-Festivo.

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>111,86</td>
<td>1,79</td>
<td>20,06</td>
</tr>
<tr>
<td>1:00</td>
<td>119,35</td>
<td>1,68</td>
<td>14,99</td>
</tr>
<tr>
<td>2:00</td>
<td>124,39</td>
<td>1,48</td>
<td>11,49</td>
</tr>
<tr>
<td>3:00</td>
<td>127,17</td>
<td>1,21</td>
<td>9,38</td>
</tr>
<tr>
<td>4:00</td>
<td>128,64</td>
<td>1,02</td>
<td>8,70</td>
</tr>
<tr>
<td>5:00</td>
<td>129,02</td>
<td>0,92</td>
<td>9,65</td>
</tr>
<tr>
<td>6:00</td>
<td>129,05</td>
<td>0,87</td>
<td>15,48</td>
</tr>
<tr>
<td>7:00</td>
<td>128,22</td>
<td>0,99</td>
<td>25,45</td>
</tr>
<tr>
<td>8:00</td>
<td>125,44</td>
<td>4,29</td>
<td>32,93</td>
</tr>
<tr>
<td>9:00</td>
<td>115,58</td>
<td>17,33</td>
<td>35,27</td>
</tr>
<tr>
<td>10:00</td>
<td>106,12</td>
<td>33,67</td>
<td>34,66</td>
</tr>
<tr>
<td>11:00</td>
<td>103,34</td>
<td>45,30</td>
<td>32,83</td>
</tr>
<tr>
<td>12:00</td>
<td>105,79</td>
<td>51,85</td>
<td>29,81</td>
</tr>
<tr>
<td>13:00</td>
<td>107,96</td>
<td>53,03</td>
<td>27,87</td>
</tr>
<tr>
<td>14:00</td>
<td>110,31</td>
<td>51,87</td>
<td>24,79</td>
</tr>
<tr>
<td>15:00</td>
<td>115,74</td>
<td>49,94</td>
<td>23,60</td>
</tr>
<tr>
<td>16:00</td>
<td>118,76</td>
<td>42,81</td>
<td>24,24</td>
</tr>
<tr>
<td>17:00</td>
<td>117,75</td>
<td>28,21</td>
<td>27,02</td>
</tr>
<tr>
<td>18:00</td>
<td>109,87</td>
<td>11,47</td>
<td>32,04</td>
</tr>
<tr>
<td>19:00</td>
<td>101,93</td>
<td>4,15</td>
<td>36,18</td>
</tr>
<tr>
<td>20:00</td>
<td>98,34</td>
<td>2,88</td>
<td>35,65</td>
</tr>
<tr>
<td>21:00</td>
<td>97,19</td>
<td>2,33</td>
<td>33,78</td>
</tr>
<tr>
<td>22:00</td>
<td>99,25</td>
<td>2,10</td>
<td>30,48</td>
</tr>
<tr>
<td>23:00</td>
<td>104,68</td>
<td>1,94</td>
<td>26,40</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>80,39</td>
<td>1,43</td>
<td>7,77</td>
</tr>
<tr>
<td>1:00</td>
<td>85,89</td>
<td>1,26</td>
<td>3,92</td>
</tr>
<tr>
<td>2:00</td>
<td>90,42</td>
<td>1,10</td>
<td>0,33</td>
</tr>
<tr>
<td>3:00</td>
<td>93,68</td>
<td>1,03</td>
<td>-1,97</td>
</tr>
<tr>
<td>4:00</td>
<td>95,01</td>
<td>0,98</td>
<td>-2,88</td>
</tr>
<tr>
<td>5:00</td>
<td>95,18</td>
<td>0,96</td>
<td>-1,84</td>
</tr>
<tr>
<td>6:00</td>
<td>94,02</td>
<td>0,94</td>
<td>4,14</td>
</tr>
<tr>
<td>7:00</td>
<td>91,01</td>
<td>1,02</td>
<td>13,45</td>
</tr>
<tr>
<td>8:00</td>
<td>88,30</td>
<td>3,29</td>
<td>18,67</td>
</tr>
<tr>
<td>9:00</td>
<td>81,39</td>
<td>16,61</td>
<td>21,09</td>
</tr>
<tr>
<td>10:00</td>
<td>72,86</td>
<td>33,48</td>
<td>21,20</td>
</tr>
<tr>
<td>11:00</td>
<td>69,33</td>
<td>47,15</td>
<td>19,37</td>
</tr>
<tr>
<td>12:00</td>
<td>69,09</td>
<td>53,36</td>
<td>17,85</td>
</tr>
<tr>
<td>13:00</td>
<td>69,90</td>
<td>54,74</td>
<td>16,67</td>
</tr>
<tr>
<td>14:00</td>
<td>70,59</td>
<td>53,29</td>
<td>14,16</td>
</tr>
<tr>
<td>15:00</td>
<td>73,09</td>
<td>50,74</td>
<td>12,90</td>
</tr>
<tr>
<td>16:00</td>
<td>75,74</td>
<td>43,54</td>
<td>13,54</td>
</tr>
<tr>
<td>17:00</td>
<td>76,33</td>
<td>28,46</td>
<td>17,36</td>
</tr>
<tr>
<td>18:00</td>
<td>75,36</td>
<td>15,06</td>
<td>22,95</td>
</tr>
<tr>
<td>19:00</td>
<td>71,66</td>
<td>6,14</td>
<td>25,06</td>
</tr>
<tr>
<td>20:00</td>
<td>68,88</td>
<td>3,01</td>
<td>24,87</td>
</tr>
<tr>
<td>21:00</td>
<td>68,52</td>
<td>2,11</td>
<td>22,14</td>
</tr>
<tr>
<td>22:00</td>
<td>70,68</td>
<td>1,83</td>
<td>16,85</td>
</tr>
<tr>
<td>23:00</td>
<td>75,48</td>
<td>1,61</td>
<td>11,85</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>98,30</td>
<td>8,24</td>
<td>22,53</td>
</tr>
<tr>
<td>1:00</td>
<td>102,91</td>
<td>8,28</td>
<td>18,70</td>
</tr>
<tr>
<td>2:00</td>
<td>105,88</td>
<td>8,24</td>
<td>15,45</td>
</tr>
<tr>
<td>3:00</td>
<td>107,26</td>
<td>7,74</td>
<td>13,22</td>
</tr>
<tr>
<td>4:00</td>
<td>106,59</td>
<td>7,21</td>
<td>12,44</td>
</tr>
<tr>
<td>5:00</td>
<td>105,38</td>
<td>6,21</td>
<td>13,36</td>
</tr>
<tr>
<td>6:00</td>
<td>103,85</td>
<td>4,40</td>
<td>19,09</td>
</tr>
<tr>
<td>7:00</td>
<td>102,95</td>
<td>4,61</td>
<td>27,66</td>
</tr>
<tr>
<td>8:00</td>
<td>94,69</td>
<td>15,61</td>
<td>34,38</td>
</tr>
<tr>
<td>9:00</td>
<td>84,18</td>
<td>40,14</td>
<td>36,34</td>
</tr>
<tr>
<td>10:00</td>
<td>79,96</td>
<td>62,10</td>
<td>34,85</td>
</tr>
<tr>
<td>11:00</td>
<td>80,25</td>
<td>73,65</td>
<td>33,42</td>
</tr>
<tr>
<td>12:00</td>
<td>82,85</td>
<td>79,95</td>
<td>32,15</td>
</tr>
<tr>
<td>13:00</td>
<td>85,49</td>
<td>82,01</td>
<td>30,28</td>
</tr>
<tr>
<td>14:00</td>
<td>90,05</td>
<td>82,39</td>
<td>26,19</td>
</tr>
<tr>
<td>15:00</td>
<td>98,67</td>
<td>83,18</td>
<td>23,72</td>
</tr>
<tr>
<td>16:00</td>
<td>106,14</td>
<td>79,93</td>
<td>23,01</td>
</tr>
<tr>
<td>17:00</td>
<td>111,39</td>
<td>72,52</td>
<td>23,32</td>
</tr>
<tr>
<td>18:00</td>
<td>112,67</td>
<td>60,17</td>
<td>24,12</td>
</tr>
<tr>
<td>19:00</td>
<td>109,36</td>
<td>43,03</td>
<td>26,84</td>
</tr>
<tr>
<td>20:00</td>
<td>100,59</td>
<td>23,35</td>
<td>31,88</td>
</tr>
<tr>
<td>21:00</td>
<td>90,98</td>
<td>11,18</td>
<td>35,42</td>
</tr>
<tr>
<td>22:00</td>
<td>89,73</td>
<td>8,48</td>
<td>33,62</td>
</tr>
<tr>
<td>23:00</td>
<td>94,42</td>
<td>8,40</td>
<td>28,61</td>
</tr>
</tbody>
</table>
Verano-Festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>75,15</td>
<td>10,13</td>
<td>11,60</td>
</tr>
<tr>
<td>1:00</td>
<td>77,32</td>
<td>10,28</td>
<td>8,98</td>
</tr>
<tr>
<td>2:00</td>
<td>78,17</td>
<td>10,26</td>
<td>6,09</td>
</tr>
<tr>
<td>3:00</td>
<td>77,39</td>
<td>9,84</td>
<td>4,36</td>
</tr>
<tr>
<td>4:00</td>
<td>75,61</td>
<td>9,16</td>
<td>3,63</td>
</tr>
<tr>
<td>5:00</td>
<td>73,59</td>
<td>8,11</td>
<td>3,79</td>
</tr>
<tr>
<td>6:00</td>
<td>71,38</td>
<td>6,16</td>
<td>7,07</td>
</tr>
<tr>
<td>7:00</td>
<td>69,57</td>
<td>5,23</td>
<td>11,42</td>
</tr>
<tr>
<td>8:00</td>
<td>62,75</td>
<td>13,85</td>
<td>15,53</td>
</tr>
<tr>
<td>9:00</td>
<td>52,87</td>
<td>39,14</td>
<td>19,99</td>
</tr>
<tr>
<td>10:00</td>
<td>47,99</td>
<td>66,90</td>
<td>20,98</td>
</tr>
<tr>
<td>11:00</td>
<td>46,55</td>
<td>79,95</td>
<td>21,41</td>
</tr>
<tr>
<td>12:00</td>
<td>47,74</td>
<td>85,56</td>
<td>21,76</td>
</tr>
<tr>
<td>13:00</td>
<td>50,09</td>
<td>86,91</td>
<td>21,14</td>
</tr>
<tr>
<td>14:00</td>
<td>53,94</td>
<td>86,38</td>
<td>18,24</td>
</tr>
<tr>
<td>15:00</td>
<td>60,58</td>
<td>86,61</td>
<td>15,44</td>
</tr>
<tr>
<td>16:00</td>
<td>67,08</td>
<td>83,68</td>
<td>14,19</td>
</tr>
<tr>
<td>17:00</td>
<td>72,86</td>
<td>77,15</td>
<td>13,71</td>
</tr>
<tr>
<td>18:00</td>
<td>77,17</td>
<td>66,19</td>
<td>13,19</td>
</tr>
<tr>
<td>19:00</td>
<td>79,09</td>
<td>49,91</td>
<td>13,74</td>
</tr>
<tr>
<td>20:00</td>
<td>77,06</td>
<td>28,51</td>
<td>16,49</td>
</tr>
<tr>
<td>21:00</td>
<td>71,16</td>
<td>13,86</td>
<td>19,94</td>
</tr>
<tr>
<td>22:00</td>
<td>69,44</td>
<td>10,12</td>
<td>18,55</td>
</tr>
<tr>
<td>23:00</td>
<td>72,40</td>
<td>9,93</td>
<td>14,24</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>106,20</td>
<td>1,70</td>
<td>19,05</td>
</tr>
<tr>
<td>1:00</td>
<td>113,43</td>
<td>1,60</td>
<td>14,24</td>
</tr>
<tr>
<td>2:00</td>
<td>116,89</td>
<td>1,39</td>
<td>10,79</td>
</tr>
<tr>
<td>3:00</td>
<td>117,34</td>
<td>1,12</td>
<td>8,66</td>
</tr>
<tr>
<td>4:00</td>
<td>116,92</td>
<td>0,93</td>
<td>7,91</td>
</tr>
<tr>
<td>5:00</td>
<td>114,83</td>
<td>0,82</td>
<td>8,58</td>
</tr>
<tr>
<td>6:00</td>
<td>107,55</td>
<td>0,73</td>
<td>12,91</td>
</tr>
<tr>
<td>7:00</td>
<td>95,93</td>
<td>0,74</td>
<td>19,04</td>
</tr>
<tr>
<td>8:00</td>
<td>87,63</td>
<td>3,00</td>
<td>23,00</td>
</tr>
<tr>
<td>9:00</td>
<td>82,42</td>
<td>12,36</td>
<td>25,16</td>
</tr>
<tr>
<td>10:00</td>
<td>79,57</td>
<td>25,25</td>
<td>25,99</td>
</tr>
<tr>
<td>11:00</td>
<td>80,66</td>
<td>35,36</td>
<td>25,27</td>
</tr>
<tr>
<td>12:00</td>
<td>83,88</td>
<td>41,11</td>
<td>23,63</td>
</tr>
<tr>
<td>13:00</td>
<td>86,85</td>
<td>42,66</td>
<td>22,42</td>
</tr>
<tr>
<td>14:00</td>
<td>91,37</td>
<td>42,97</td>
<td>20,54</td>
</tr>
<tr>
<td>15:00</td>
<td>94,38</td>
<td>40,73</td>
<td>19,24</td>
</tr>
<tr>
<td>16:00</td>
<td>95,23</td>
<td>34,33</td>
<td>19,44</td>
</tr>
<tr>
<td>17:00</td>
<td>93,79</td>
<td>22,47</td>
<td>21,52</td>
</tr>
<tr>
<td>18:00</td>
<td>89,86</td>
<td>9,38</td>
<td>26,21</td>
</tr>
<tr>
<td>19:00</td>
<td>85,28</td>
<td>3,47</td>
<td>30,27</td>
</tr>
<tr>
<td>20:00</td>
<td>84,60</td>
<td>2,47</td>
<td>30,67</td>
</tr>
<tr>
<td>21:00</td>
<td>86,21</td>
<td>2,07</td>
<td>29,97</td>
</tr>
<tr>
<td>22:00</td>
<td>91,49</td>
<td>1,94</td>
<td>28,09</td>
</tr>
<tr>
<td>23:00</td>
<td>98,11</td>
<td>1,82</td>
<td>24,74</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>76,40</td>
<td>1,36</td>
<td>7,39</td>
</tr>
<tr>
<td>1:00</td>
<td>81,77</td>
<td>1,20</td>
<td>3,74</td>
</tr>
<tr>
<td>2:00</td>
<td>85,43</td>
<td>1,05</td>
<td>0,31</td>
</tr>
<tr>
<td>3:00</td>
<td>87,53</td>
<td>0,96</td>
<td>-1,84</td>
</tr>
<tr>
<td>4:00</td>
<td>87,80</td>
<td>0,91</td>
<td>-2,66</td>
</tr>
<tr>
<td>5:00</td>
<td>86,69</td>
<td>0,87</td>
<td>-1,67</td>
</tr>
<tr>
<td>6:00</td>
<td>81,94</td>
<td>0,82</td>
<td>3,60</td>
</tr>
<tr>
<td>7:00</td>
<td>72,82</td>
<td>0,81</td>
<td>10,76</td>
</tr>
<tr>
<td>8:00</td>
<td>65,56</td>
<td>2,44</td>
<td>13,86</td>
</tr>
<tr>
<td>9:00</td>
<td>60,13</td>
<td>12,27</td>
<td>15,58</td>
</tr>
<tr>
<td>10:00</td>
<td>56,25</td>
<td>25,85</td>
<td>16,37</td>
</tr>
<tr>
<td>11:00</td>
<td>55,46</td>
<td>37,72</td>
<td>15,49</td>
</tr>
<tr>
<td>12:00</td>
<td>56,04</td>
<td>43,28</td>
<td>14,48</td>
</tr>
<tr>
<td>13:00</td>
<td>57,17</td>
<td>44,77</td>
<td>13,63</td>
</tr>
<tr>
<td>14:00</td>
<td>59,08</td>
<td>44,60</td>
<td>11,85</td>
</tr>
<tr>
<td>15:00</td>
<td>61,35</td>
<td>42,59</td>
<td>10,82</td>
</tr>
<tr>
<td>16:00</td>
<td>62,27</td>
<td>35,79</td>
<td>11,13</td>
</tr>
<tr>
<td>17:00</td>
<td>61,99</td>
<td>23,11</td>
<td>14,11</td>
</tr>
<tr>
<td>18:00</td>
<td>61,93</td>
<td>12,38</td>
<td>18,86</td>
</tr>
<tr>
<td>19:00</td>
<td>60,37</td>
<td>5,17</td>
<td>21,11</td>
</tr>
<tr>
<td>20:00</td>
<td>59,28</td>
<td>2,59</td>
<td>21,41</td>
</tr>
<tr>
<td>21:00</td>
<td>60,61</td>
<td>1,86</td>
<td>19,58</td>
</tr>
<tr>
<td>22:00</td>
<td>64,82</td>
<td>1,67</td>
<td>15,45</td>
</tr>
<tr>
<td>23:00</td>
<td>70,82</td>
<td>1,51</td>
<td>11,13</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>93,32</td>
<td>7,82</td>
<td>21,39</td>
</tr>
<tr>
<td>1:00</td>
<td>97,36</td>
<td>7,83</td>
<td>17,69</td>
</tr>
<tr>
<td>2:00</td>
<td>98,90</td>
<td>7,69</td>
<td>14,44</td>
</tr>
<tr>
<td>3:00</td>
<td>99,18</td>
<td>7,16</td>
<td>12,22</td>
</tr>
<tr>
<td>4:00</td>
<td>97,64</td>
<td>6,60</td>
<td>11,40</td>
</tr>
<tr>
<td>5:00</td>
<td>94,75</td>
<td>5,58</td>
<td>12,01</td>
</tr>
<tr>
<td>6:00</td>
<td>87,81</td>
<td>3,72</td>
<td>16,14</td>
</tr>
<tr>
<td>7:00</td>
<td>79,00</td>
<td>3,54</td>
<td>21,22</td>
</tr>
<tr>
<td>8:00</td>
<td>69,56</td>
<td>11,47</td>
<td>25,25</td>
</tr>
<tr>
<td>9:00</td>
<td>63,60</td>
<td>30,33</td>
<td>27,45</td>
</tr>
<tr>
<td>10:00</td>
<td>62,63</td>
<td>48,64</td>
<td>27,30</td>
</tr>
<tr>
<td>11:00</td>
<td>64,15</td>
<td>58,87</td>
<td>26,71</td>
</tr>
<tr>
<td>12:00</td>
<td>66,21</td>
<td>63,90</td>
<td>25,69</td>
</tr>
<tr>
<td>13:00</td>
<td>69,01</td>
<td>66,20</td>
<td>24,44</td>
</tr>
<tr>
<td>14:00</td>
<td>74,54</td>
<td>68,20</td>
<td>21,68</td>
</tr>
<tr>
<td>15:00</td>
<td>80,28</td>
<td>67,68</td>
<td>19,30</td>
</tr>
<tr>
<td>16:00</td>
<td>84,62</td>
<td>63,73</td>
<td>18,34</td>
</tr>
<tr>
<td>17:00</td>
<td>87,77</td>
<td>57,14</td>
<td>18,38</td>
</tr>
<tr>
<td>18:00</td>
<td>90,10</td>
<td>48,12</td>
<td>19,29</td>
</tr>
<tr>
<td>19:00</td>
<td>89,78</td>
<td>35,33</td>
<td>22,04</td>
</tr>
<tr>
<td>20:00</td>
<td>85,24</td>
<td>19,79</td>
<td>27,02</td>
</tr>
<tr>
<td>21:00</td>
<td>80,19</td>
<td>9,85</td>
<td>31,22</td>
</tr>
<tr>
<td>22:00</td>
<td>82,68</td>
<td>7,82</td>
<td>30,98</td>
</tr>
<tr>
<td>23:00</td>
<td>88,82</td>
<td>7,90</td>
<td>26,91</td>
</tr>
</tbody>
</table>
Verano-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>70,34</td>
<td>9,48</td>
<td>10,85</td>
</tr>
<tr>
<td>1:00</td>
<td>72,12</td>
<td>9,59</td>
<td>8,38</td>
</tr>
<tr>
<td>2:00</td>
<td>72,59</td>
<td>9,53</td>
<td>5,66</td>
</tr>
<tr>
<td>3:00</td>
<td>71,21</td>
<td>9,05</td>
<td>4,01</td>
</tr>
<tr>
<td>4:00</td>
<td>68,99</td>
<td>8,35</td>
<td>3,31</td>
</tr>
<tr>
<td>5:00</td>
<td>66,11</td>
<td>7,28</td>
<td>3,40</td>
</tr>
<tr>
<td>6:00</td>
<td>60,79</td>
<td>5,25</td>
<td>6,02</td>
</tr>
<tr>
<td>7:00</td>
<td>54,70</td>
<td>4,11</td>
<td>8,98</td>
</tr>
<tr>
<td>8:00</td>
<td>47,07</td>
<td>10,39</td>
<td>11,65</td>
</tr>
<tr>
<td>9:00</td>
<td>39,54</td>
<td>29,27</td>
<td>14,95</td>
</tr>
<tr>
<td>10:00</td>
<td>36,45</td>
<td>50,80</td>
<td>15,94</td>
</tr>
<tr>
<td>11:00</td>
<td>35,94</td>
<td>61,73</td>
<td>16,53</td>
</tr>
<tr>
<td>12:00</td>
<td>36,97</td>
<td>66,26</td>
<td>16,85</td>
</tr>
<tr>
<td>13:00</td>
<td>39,27</td>
<td>68,14</td>
<td>16,58</td>
</tr>
<tr>
<td>14:00</td>
<td>43,65</td>
<td>69,90</td>
<td>14,76</td>
</tr>
<tr>
<td>15:00</td>
<td>49,02</td>
<td>70,08</td>
<td>12,49</td>
</tr>
<tr>
<td>16:00</td>
<td>53,62</td>
<td>66,90</td>
<td>11,35</td>
</tr>
<tr>
<td>17:00</td>
<td>57,65</td>
<td>61,05</td>
<td>10,85</td>
</tr>
<tr>
<td>18:00</td>
<td>61,79</td>
<td>53,00</td>
<td>10,56</td>
</tr>
<tr>
<td>19:00</td>
<td>64,67</td>
<td>40,81</td>
<td>11,23</td>
</tr>
<tr>
<td>20:00</td>
<td>64,97</td>
<td>24,03</td>
<td>13,90</td>
</tr>
<tr>
<td>21:00</td>
<td>62,63</td>
<td>12,20</td>
<td>17,54</td>
</tr>
<tr>
<td>22:00</td>
<td>64,26</td>
<td>9,36</td>
<td>17,17</td>
</tr>
<tr>
<td>23:00</td>
<td>68,23</td>
<td>9,35</td>
<td>13,42</td>
</tr>
</tbody>
</table>
Año 2050
Invierno-Festivo.

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>147,29</td>
<td>2,74</td>
<td>23,32</td>
</tr>
<tr>
<td>1:00</td>
<td>157,15</td>
<td>2,58</td>
<td>17,42</td>
</tr>
<tr>
<td>2:00</td>
<td>163,80</td>
<td>2,27</td>
<td>13,35</td>
</tr>
<tr>
<td>3:00</td>
<td>167,46</td>
<td>1,85</td>
<td>10,90</td>
</tr>
<tr>
<td>4:00</td>
<td>169,39</td>
<td>1,56</td>
<td>10,11</td>
</tr>
<tr>
<td>5:00</td>
<td>169,88</td>
<td>1,41</td>
<td>11,21</td>
</tr>
<tr>
<td>6:00</td>
<td>169,93</td>
<td>1,34</td>
<td>17,99</td>
</tr>
<tr>
<td>7:00</td>
<td>168,84</td>
<td>1,52</td>
<td>29,58</td>
</tr>
<tr>
<td>8:00</td>
<td>165,18</td>
<td>6,57</td>
<td>38,26</td>
</tr>
<tr>
<td>9:00</td>
<td>152,18</td>
<td>26,57</td>
<td>41,00</td>
</tr>
<tr>
<td>10:00</td>
<td>139,74</td>
<td>51,61</td>
<td>40,28</td>
</tr>
<tr>
<td>11:00</td>
<td>136,07</td>
<td>69,43</td>
<td>37,63</td>
</tr>
<tr>
<td>12:00</td>
<td>139,30</td>
<td>79,47</td>
<td>34,64</td>
</tr>
<tr>
<td>13:00</td>
<td>142,16</td>
<td>81,28</td>
<td>32,39</td>
</tr>
<tr>
<td>14:00</td>
<td>145,25</td>
<td>79,50</td>
<td>28,81</td>
</tr>
<tr>
<td>15:00</td>
<td>152,41</td>
<td>76,55</td>
<td>27,43</td>
</tr>
<tr>
<td>16:00</td>
<td>156,38</td>
<td>65,61</td>
<td>28,18</td>
</tr>
<tr>
<td>17:00</td>
<td>155,05</td>
<td>43,24</td>
<td>31,40</td>
</tr>
<tr>
<td>18:00</td>
<td>144,68</td>
<td>17,59</td>
<td>37,24</td>
</tr>
<tr>
<td>19:00</td>
<td>134,22</td>
<td>6,36</td>
<td>42,04</td>
</tr>
<tr>
<td>20:00</td>
<td>129,49</td>
<td>4,41</td>
<td>41,43</td>
</tr>
<tr>
<td>21:00</td>
<td>127,97</td>
<td>3,57</td>
<td>39,26</td>
</tr>
<tr>
<td>22:00</td>
<td>130,70</td>
<td>3,22</td>
<td>35,42</td>
</tr>
<tr>
<td>23:00</td>
<td>137,84</td>
<td>2,98</td>
<td>30,68</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>105,85</td>
<td>2,18</td>
<td>9,03</td>
</tr>
<tr>
<td>1:00</td>
<td>113,10</td>
<td>1,93</td>
<td>4,56</td>
</tr>
<tr>
<td>2:00</td>
<td>119,06</td>
<td>1,70</td>
<td>0,39</td>
</tr>
<tr>
<td>3:00</td>
<td>123,35</td>
<td>1,58</td>
<td>-2,29</td>
</tr>
<tr>
<td>4:00</td>
<td>125,11</td>
<td>1,51</td>
<td>-3,35</td>
</tr>
<tr>
<td>5:00</td>
<td>125,33</td>
<td>1,48</td>
<td>-2,13</td>
</tr>
<tr>
<td>6:00</td>
<td>123,80</td>
<td>1,44</td>
<td>4,80</td>
</tr>
<tr>
<td>7:00</td>
<td>119,84</td>
<td>1,56</td>
<td>15,63</td>
</tr>
<tr>
<td>8:00</td>
<td>116,27</td>
<td>5,04</td>
<td>21,70</td>
</tr>
<tr>
<td>9:00</td>
<td>107,18</td>
<td>25,46</td>
<td>24,51</td>
</tr>
<tr>
<td>10:00</td>
<td>95,94</td>
<td>51,32</td>
<td>24,64</td>
</tr>
<tr>
<td>11:00</td>
<td>91,29</td>
<td>72,26</td>
<td>22,51</td>
</tr>
<tr>
<td>12:00</td>
<td>90,98</td>
<td>81,79</td>
<td>20,74</td>
</tr>
<tr>
<td>13:00</td>
<td>92,05</td>
<td>83,91</td>
<td>19,37</td>
</tr>
<tr>
<td>14:00</td>
<td>92,94</td>
<td>81,67</td>
<td>16,46</td>
</tr>
<tr>
<td>15:00</td>
<td>96,24</td>
<td>77,77</td>
<td>14,99</td>
</tr>
<tr>
<td>16:00</td>
<td>99,74</td>
<td>66,73</td>
<td>15,73</td>
</tr>
<tr>
<td>17:00</td>
<td>100,50</td>
<td>43,62</td>
<td>20,18</td>
</tr>
<tr>
<td>18:00</td>
<td>99,23</td>
<td>23,09</td>
<td>26,67</td>
</tr>
<tr>
<td>19:00</td>
<td>94,36</td>
<td>9,41</td>
<td>29,12</td>
</tr>
<tr>
<td>20:00</td>
<td>90,70</td>
<td>4,61</td>
<td>28,90</td>
</tr>
<tr>
<td>21:00</td>
<td>90,22</td>
<td>3,23</td>
<td>25,73</td>
</tr>
<tr>
<td>22:00</td>
<td>93,07</td>
<td>2,80</td>
<td>19,58</td>
</tr>
<tr>
<td>23:00</td>
<td>99,38</td>
<td>2,46</td>
<td>13,78</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>129,44</td>
<td>12,62</td>
<td>26,18</td>
</tr>
<tr>
<td>1:00</td>
<td>135,50</td>
<td>12,68</td>
<td>21,73</td>
</tr>
<tr>
<td>2:00</td>
<td>139,42</td>
<td>12,62</td>
<td>17,96</td>
</tr>
<tr>
<td>3:00</td>
<td>141,24</td>
<td>11,87</td>
<td>15,37</td>
</tr>
<tr>
<td>4:00</td>
<td>140,35</td>
<td>11,05</td>
<td>14,46</td>
</tr>
<tr>
<td>5:00</td>
<td>138,75</td>
<td>9,52</td>
<td>15,53</td>
</tr>
<tr>
<td>6:00</td>
<td>136,74</td>
<td>6,75</td>
<td>22,18</td>
</tr>
<tr>
<td>7:00</td>
<td>135,56</td>
<td>7,06</td>
<td>32,14</td>
</tr>
<tr>
<td>8:00</td>
<td>124,69</td>
<td>23,94</td>
<td>39,96</td>
</tr>
<tr>
<td>9:00</td>
<td>110,84</td>
<td>61,53</td>
<td>42,23</td>
</tr>
<tr>
<td>10:00</td>
<td>105,29</td>
<td>95,18</td>
<td>40,50</td>
</tr>
<tr>
<td>11:00</td>
<td>105,67</td>
<td>112,88</td>
<td>38,84</td>
</tr>
<tr>
<td>12:00</td>
<td>109,09</td>
<td>122,54</td>
<td>37,36</td>
</tr>
<tr>
<td>13:00</td>
<td>112,57</td>
<td>125,69</td>
<td>35,19</td>
</tr>
<tr>
<td>14:00</td>
<td>118,57</td>
<td>126,27</td>
<td>30,44</td>
</tr>
<tr>
<td>15:00</td>
<td>129,92</td>
<td>127,49</td>
<td>27,56</td>
</tr>
<tr>
<td>16:00</td>
<td>139,76</td>
<td>122,51</td>
<td>26,74</td>
</tr>
<tr>
<td>17:00</td>
<td>146,67</td>
<td>111,15</td>
<td>27,10</td>
</tr>
<tr>
<td>18:00</td>
<td>148,36</td>
<td>92,23</td>
<td>28,03</td>
</tr>
<tr>
<td>19:00</td>
<td>144,00</td>
<td>65,96</td>
<td>31,20</td>
</tr>
<tr>
<td>20:00</td>
<td>132,45</td>
<td>35,79</td>
<td>37,05</td>
</tr>
<tr>
<td>21:00</td>
<td>119,80</td>
<td>17,13</td>
<td>41,16</td>
</tr>
<tr>
<td>22:00</td>
<td>118,15</td>
<td>13,00</td>
<td>39,07</td>
</tr>
<tr>
<td>23:00</td>
<td>124,33</td>
<td>12,87</td>
<td>33,25</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>98,96</td>
<td>15,52</td>
<td>13,48</td>
</tr>
<tr>
<td>1:00</td>
<td>101,81</td>
<td>15,75</td>
<td>10,44</td>
</tr>
<tr>
<td>2:00</td>
<td>102,93</td>
<td>15,73</td>
<td>7,08</td>
</tr>
<tr>
<td>3:00</td>
<td>101,91</td>
<td>15,08</td>
<td>5,07</td>
</tr>
<tr>
<td>4:00</td>
<td>99,56</td>
<td>14,03</td>
<td>4,22</td>
</tr>
<tr>
<td>5:00</td>
<td>96,90</td>
<td>12,43</td>
<td>4,40</td>
</tr>
<tr>
<td>6:00</td>
<td>93,98</td>
<td>9,45</td>
<td>8,21</td>
</tr>
<tr>
<td>7:00</td>
<td>91,61</td>
<td>8,02</td>
<td>13,27</td>
</tr>
<tr>
<td>8:00</td>
<td>82,62</td>
<td>21,22</td>
<td>18,05</td>
</tr>
<tr>
<td>9:00</td>
<td>69,62</td>
<td>59,99</td>
<td>23,23</td>
</tr>
<tr>
<td>10:00</td>
<td>63,20</td>
<td>102,53</td>
<td>24,39</td>
</tr>
<tr>
<td>11:00</td>
<td>61,29</td>
<td>122,53</td>
<td>24,88</td>
</tr>
<tr>
<td>12:00</td>
<td>62,87</td>
<td>131,14</td>
<td>25,29</td>
</tr>
<tr>
<td>13:00</td>
<td>65,95</td>
<td>133,21</td>
<td>24,57</td>
</tr>
<tr>
<td>14:00</td>
<td>71,02</td>
<td>132,39</td>
<td>21,20</td>
</tr>
<tr>
<td>15:00</td>
<td>79,77</td>
<td>132,74</td>
<td>17,94</td>
</tr>
<tr>
<td>16:00</td>
<td>88,32</td>
<td>128,26</td>
<td>16,50</td>
</tr>
<tr>
<td>17:00</td>
<td>95,93</td>
<td>118,25</td>
<td>15,93</td>
</tr>
<tr>
<td>18:00</td>
<td>101,62</td>
<td>101,46</td>
<td>15,33</td>
</tr>
<tr>
<td>19:00</td>
<td>104,15</td>
<td>76,49</td>
<td>15,96</td>
</tr>
<tr>
<td>20:00</td>
<td>101,47</td>
<td>43,69</td>
<td>19,16</td>
</tr>
<tr>
<td>21:00</td>
<td>93,70</td>
<td>21,25</td>
<td>23,17</td>
</tr>
<tr>
<td>22:00</td>
<td>91,43</td>
<td>15,50</td>
<td>21,56</td>
</tr>
<tr>
<td>23:00</td>
<td>95,33</td>
<td>15,21</td>
<td>16,55</td>
</tr>
</tbody>
</table>
Invierno-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>139,84</td>
<td>2,60</td>
<td>22,13</td>
</tr>
<tr>
<td>1:00</td>
<td>149,36</td>
<td>2,45</td>
<td>16,55</td>
</tr>
<tr>
<td>2:00</td>
<td>153,91</td>
<td>2,13</td>
<td>12,54</td>
</tr>
<tr>
<td>3:00</td>
<td>154,51</td>
<td>1,71</td>
<td>10,06</td>
</tr>
<tr>
<td>4:00</td>
<td>153,95</td>
<td>1,42</td>
<td>9,19</td>
</tr>
<tr>
<td>5:00</td>
<td>151,20</td>
<td>1,25</td>
<td>9,98</td>
</tr>
<tr>
<td>6:00</td>
<td>141,62</td>
<td>1,12</td>
<td>14,99</td>
</tr>
<tr>
<td>7:00</td>
<td>126,32</td>
<td>1,13</td>
<td>22,13</td>
</tr>
<tr>
<td>8:00</td>
<td>115,39</td>
<td>4,59</td>
<td>26,73</td>
</tr>
<tr>
<td>9:00</td>
<td>108,53</td>
<td>18,95</td>
<td>29,23</td>
</tr>
<tr>
<td>10:00</td>
<td>104,78</td>
<td>38,70</td>
<td>30,20</td>
</tr>
<tr>
<td>11:00</td>
<td>106,21</td>
<td>54,19</td>
<td>29,37</td>
</tr>
<tr>
<td>12:00</td>
<td>110,45</td>
<td>63,01</td>
<td>27,47</td>
</tr>
<tr>
<td>13:00</td>
<td>114,37</td>
<td>65,39</td>
<td>26,05</td>
</tr>
<tr>
<td>14:00</td>
<td>120,52</td>
<td>65,85</td>
<td>23,86</td>
</tr>
<tr>
<td>15:00</td>
<td>124,28</td>
<td>62,42</td>
<td>22,37</td>
</tr>
<tr>
<td>16:00</td>
<td>125,40</td>
<td>52,61</td>
<td>22,59</td>
</tr>
<tr>
<td>17:00</td>
<td>123,50</td>
<td>34,44</td>
<td>25,01</td>
</tr>
<tr>
<td>18:00</td>
<td>118,32</td>
<td>14,38</td>
<td>30,46</td>
</tr>
<tr>
<td>19:00</td>
<td>112,29</td>
<td>5,32</td>
<td>35,17</td>
</tr>
<tr>
<td>20:00</td>
<td>111,40</td>
<td>3,80</td>
<td>35,64</td>
</tr>
<tr>
<td>21:00</td>
<td>113,51</td>
<td>3,17</td>
<td>34,83</td>
</tr>
<tr>
<td>22:00</td>
<td>120,47</td>
<td>2,97</td>
<td>32,65</td>
</tr>
<tr>
<td>23:00</td>
<td>129,18</td>
<td>2,79</td>
<td>28,75</td>
</tr>
<tr>
<td>HORA (h)</td>
<td>% EÓLICA</td>
<td>% SOLAR</td>
<td>% HIDRAULICA</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>0:00</td>
<td>100,60</td>
<td>2,08</td>
<td>8,58</td>
</tr>
<tr>
<td>1:00</td>
<td>107,68</td>
<td>1,83</td>
<td>4,34</td>
</tr>
<tr>
<td>2:00</td>
<td>112,49</td>
<td>1,60</td>
<td>0,37</td>
</tr>
<tr>
<td>3:00</td>
<td>115,26</td>
<td>1,47</td>
<td>-2,14</td>
</tr>
<tr>
<td>4:00</td>
<td>115,61</td>
<td>1,39</td>
<td>-3,09</td>
</tr>
<tr>
<td>5:00</td>
<td>114,15</td>
<td>1,34</td>
<td>-1,94</td>
</tr>
<tr>
<td>6:00</td>
<td>107,89</td>
<td>1,25</td>
<td>4,19</td>
</tr>
<tr>
<td>7:00</td>
<td>95,89</td>
<td>1,24</td>
<td>12,51</td>
</tr>
<tr>
<td>8:00</td>
<td>86,33</td>
<td>3,74</td>
<td>16,11</td>
</tr>
<tr>
<td>9:00</td>
<td>79,18</td>
<td>18,81</td>
<td>18,10</td>
</tr>
<tr>
<td>10:00</td>
<td>74,07</td>
<td>39,62</td>
<td>19,02</td>
</tr>
<tr>
<td>11:00</td>
<td>73,03</td>
<td>57,81</td>
<td>18,00</td>
</tr>
<tr>
<td>12:00</td>
<td>73,78</td>
<td>66,33</td>
<td>16,83</td>
</tr>
<tr>
<td>13:00</td>
<td>75,28</td>
<td>68,63</td>
<td>15,84</td>
</tr>
<tr>
<td>14:00</td>
<td>77,79</td>
<td>68,36</td>
<td>13,78</td>
</tr>
<tr>
<td>15:00</td>
<td>80,78</td>
<td>65,28</td>
<td>12,58</td>
</tr>
<tr>
<td>16:00</td>
<td>81,99</td>
<td>54,86</td>
<td>12,94</td>
</tr>
<tr>
<td>17:00</td>
<td>81,63</td>
<td>35,43</td>
<td>16,39</td>
</tr>
<tr>
<td>18:00</td>
<td>81,55</td>
<td>18,98</td>
<td>21,92</td>
</tr>
<tr>
<td>19:00</td>
<td>79,49</td>
<td>7,92</td>
<td>24,53</td>
</tr>
<tr>
<td>20:00</td>
<td>78,06</td>
<td>3,97</td>
<td>24,88</td>
</tr>
<tr>
<td>21:00</td>
<td>79,80</td>
<td>2,86</td>
<td>22,76</td>
</tr>
<tr>
<td>22:00</td>
<td>85,35</td>
<td>2,57</td>
<td>17,96</td>
</tr>
<tr>
<td>23:00</td>
<td>93,26</td>
<td>2,31</td>
<td>12,93</td>
</tr>
</tbody>
</table>
Primavera-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>122,88</td>
<td>11,99</td>
<td>24,86</td>
</tr>
<tr>
<td>1:00</td>
<td>128,20</td>
<td>12,00</td>
<td>20,55</td>
</tr>
<tr>
<td>2:00</td>
<td>130,22</td>
<td>11,79</td>
<td>16,77</td>
</tr>
<tr>
<td>3:00</td>
<td>130,60</td>
<td>10,98</td>
<td>14,21</td>
</tr>
<tr>
<td>4:00</td>
<td>128,57</td>
<td>10,12</td>
<td>13,25</td>
</tr>
<tr>
<td>5:00</td>
<td>124,76</td>
<td>8,56</td>
<td>13,96</td>
</tr>
<tr>
<td>6:00</td>
<td>115,63</td>
<td>5,71</td>
<td>18,76</td>
</tr>
<tr>
<td>7:00</td>
<td>104,02</td>
<td>5,42</td>
<td>24,66</td>
</tr>
<tr>
<td>8:00</td>
<td>91,59</td>
<td>17,58</td>
<td>29,35</td>
</tr>
<tr>
<td>9:00</td>
<td>83,74</td>
<td>46,48</td>
<td>31,90</td>
</tr>
<tr>
<td>10:00</td>
<td>82,48</td>
<td>74,55</td>
<td>31,73</td>
</tr>
<tr>
<td>11:00</td>
<td>84,46</td>
<td>90,23</td>
<td>31,05</td>
</tr>
<tr>
<td>12:00</td>
<td>87,18</td>
<td>97,93</td>
<td>29,86</td>
</tr>
<tr>
<td>13:00</td>
<td>90,87</td>
<td>101,46</td>
<td>28,40</td>
</tr>
<tr>
<td>14:00</td>
<td>98,15</td>
<td>104,52</td>
<td>25,20</td>
</tr>
<tr>
<td>15:00</td>
<td>105,71</td>
<td>103,73</td>
<td>22,43</td>
</tr>
<tr>
<td>16:00</td>
<td>111,43</td>
<td>97,67</td>
<td>21,32</td>
</tr>
<tr>
<td>17:00</td>
<td>115,57</td>
<td>87,58</td>
<td>21,36</td>
</tr>
<tr>
<td>18:00</td>
<td>118,64</td>
<td>73,76</td>
<td>22,42</td>
</tr>
<tr>
<td>19:00</td>
<td>118,22</td>
<td>54,15</td>
<td>25,61</td>
</tr>
<tr>
<td>20:00</td>
<td>112,24</td>
<td>30,34</td>
<td>31,40</td>
</tr>
<tr>
<td>21:00</td>
<td>105,60</td>
<td>15,10</td>
<td>36,28</td>
</tr>
<tr>
<td>22:00</td>
<td>108,88</td>
<td>11,98</td>
<td>36,00</td>
</tr>
<tr>
<td>23:00</td>
<td>116,95</td>
<td>12,10</td>
<td>31,28</td>
</tr>
</tbody>
</table>
Verano-No festivo

<table>
<thead>
<tr>
<th>HORA (h)</th>
<th>% EÓLICA</th>
<th>% SOLAR</th>
<th>% HIDRAULICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>92,63</td>
<td>14,53</td>
<td>12,62</td>
</tr>
<tr>
<td>1:00</td>
<td>94,96</td>
<td>14,70</td>
<td>9,74</td>
</tr>
<tr>
<td>2:00</td>
<td>95,57</td>
<td>14,60</td>
<td>6,57</td>
</tr>
<tr>
<td>3:00</td>
<td>93,76</td>
<td>13,88</td>
<td>4,66</td>
</tr>
<tr>
<td>4:00</td>
<td>90,85</td>
<td>12,81</td>
<td>3,85</td>
</tr>
<tr>
<td>5:00</td>
<td>87,05</td>
<td>11,16</td>
<td>3,96</td>
</tr>
<tr>
<td>6:00</td>
<td>80,05</td>
<td>8,05</td>
<td>6,99</td>
</tr>
<tr>
<td>7:00</td>
<td>72,03</td>
<td>6,30</td>
<td>10,44</td>
</tr>
<tr>
<td>8:00</td>
<td>61,99</td>
<td>15,92</td>
<td>13,54</td>
</tr>
<tr>
<td>9:00</td>
<td>52,06</td>
<td>44,86</td>
<td>17,37</td>
</tr>
<tr>
<td>10:00</td>
<td>47,99</td>
<td>77,86</td>
<td>18,52</td>
</tr>
<tr>
<td>11:00</td>
<td>47,32</td>
<td>94,61</td>
<td>19,21</td>
</tr>
<tr>
<td>12:00</td>
<td>48,68</td>
<td>101,55</td>
<td>19,59</td>
</tr>
<tr>
<td>13:00</td>
<td>51,71</td>
<td>104,45</td>
<td>19,27</td>
</tr>
<tr>
<td>14:00</td>
<td>57,47</td>
<td>107,14</td>
<td>17,16</td>
</tr>
<tr>
<td>15:00</td>
<td>64,55</td>
<td>107,41</td>
<td>14,52</td>
</tr>
<tr>
<td>16:00</td>
<td>70,61</td>
<td>102,54</td>
<td>13,19</td>
</tr>
<tr>
<td>17:00</td>
<td>75,90</td>
<td>93,57</td>
<td>12,61</td>
</tr>
<tr>
<td>18:00</td>
<td>81,36</td>
<td>81,23</td>
<td>12,27</td>
</tr>
<tr>
<td>19:00</td>
<td>85,16</td>
<td>62,54</td>
<td>13,05</td>
</tr>
<tr>
<td>20:00</td>
<td>85,55</td>
<td>36,83</td>
<td>16,15</td>
</tr>
<tr>
<td>21:00</td>
<td>82,46</td>
<td>18,70</td>
<td>20,39</td>
</tr>
<tr>
<td>22:00</td>
<td>84,62</td>
<td>14,35</td>
<td>19,95</td>
</tr>
<tr>
<td>23:00</td>
<td>89,85</td>
<td>14,34</td>
<td>15,60</td>
</tr>
</tbody>
</table>