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Abstract— Considering uncertainty in continuous production
processes is key to compute short-time optimal schedules
which can be trusted in practice. This paper proposes a two-
step stochastic approach to the robust scheduling of several
evaporation plants. This approach considers the possibility of
reacting in the future once the uncertainty materializes. Each
evaporator has different features (capacity, equipment, etc.) and
the individual performance is affected by external factors and
fouling effects. Moreover, a multi-objective analysis has been
carried out to provide a decision support for the operator
who must take the concrete decisions about load allocation
and cleaning tasks along a time horizon. The problem has
been solved by discretizing the time horizon and adapting the
general-precedence method to deal with an unknown number
of tasks. The nonlinear behavior of each plant is approximated
by surrogate linear models obtained experimentally, providing
thus solutions in acceptable time.

I. INTRODUCTION

Problems of short-term scheduling often appear in in-
dustry [2], which require computing real-valued quantities
(efficiency indicators, control set points, etc.) as well as
choosing between many different discrete options (assign-
ment of resources, task execution, etc.). Although, schedul-
ing is sometimes still done manually in industry, it can
be translated to optimization problems which involve both
binary/integer and real decision variables, and solved using
mixed-integer programming (MIP) [4]. There is specific
software to formulate and solve such problems (e.g. GAMS,
CPLEX, BONMIN, etc.) which can help operators to take
better decisions [7]. Nevertheless, although both algorithms
and computers are getting faster every day, in general still
only mixed-integer linear approaches (MILP) are able to give
solutions in reasonable time for large-scale problems (note
that the problem complexity increases exponentially with the
number of tasks) [8].

There exist several alternatives to formulate scheduling
problems via mixed-integer and disjunctive programming [6].
Their choice will define the future structure, the solver to
be used and the performance in obtaining a solution. If the
number and type of tasks are known a priori, a formula-
tion with time-variable slots is suitable [5]. However, for
continuous processes where the total number of tasks to be
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accomplished within a time horizon cannot be defined in
advance, this formulation is hard to be used. Another option
is the so-called precedence allocation, where the algorithm
has to order a finite number of tasks, but not all the tasks
must be realized [12].

In addition, long-term effects which reduce performance
are common in industrial processes (e.g., fouling in heat
exchangers, catalyst deactivation, etc.). These effects force
periodic stops to recover nominal performance, for instance,
to clean the exchangers. Indeed, several people has devoted
efforts to deal with such issue from the scheduling point of
view: [18], [15] proposed a nonlinear MIP approach while [3]
also proposed a time discretization to recast the problem as a
MILP one. Here, we adapt the general precedence approach
to deal with the scheduling of a continuous evaporation
network with several plants and products to be processed.

Moreover, uncertainty is always present when facing real
problems (mismodeling, failures, unplanned changes, distur-
bances, etc.). Therefore, considering uncertainty since the
design phase to search for robust solutions is key. In general,
robustness is understood as the ability of a system to tolerate
unexpected perturbations without adapting its initial stable
configuration. Hence, robustness can be provided by forcing
a schedule to fulfill a bunch of scenarios, sampled according
to expected realizations of the uncertainty. Searching for a
single schedule for all scenarios is often used in the robust
literature [9]. However, a less conservative option is using
a multi-stage stochastic optimization [16], which benefits
from the assumption that the uncertainty can be measured in
the short future, so decisions could be adapted accordingly.
Hence, we propose a two-step scheduling approach for the
evaporation network considering uncertainty in the outdoor
weather and production plan.

In consequence, several conflicting optimization criteria
such as the economic cost, robustness, production capacity
or resource efficiency, appear. Therefore, an offline multi-
objective optimization problem (MOOP) [19] is stated as a
first step. Then, the analysis of the Pareto front serves as a
decision-support guidance to advise the operator about the
expected performance of his/her decision [11].

The rest of the paper is as follows: next section describes
the case study, Section III presents a model for the evapora-
tors and the problem requirements, the problem formulation
into predicate logic is given in Section IV, whereas Section V
states the MOOP. Finally, an analysis of the obtained Pareto
front is given in Section VI for a case example and a last
section summarizes the conclusions.
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II. PROCESS DESCRIPTION

The scheduling problem to be approached takes place in a
human-made cellulose fiber factory, which uses wood as raw
material. The production process involves several mechanical
and chemical procedures that aim to obtain the final product.
In one part of the process, the spinning machines, a bath
of water mixed with chemicals is used to increase the
mechanical properties of the fibers. These chemicals have
a sensible economic value. Consequently, they cannot be
overlooked. In order to recover them, these mixtures go
through an evaporation process to extract as many water as
possible, and then enter into a crystallization process.

Each plant is composed by a series of heat exchangers,
evaporation chambers, condensers and cooling systems (typ-
ically cooling tower), achieving a multi-effect evaporation.
The reader is referred to [14] for a more detailed description
of the process. There are several mixtures (called products
on the following) to be concentrated. Each one may involve
several evaporation plants at the same time. Each evaporation
plant is able to be physically connected to different products,
but it can only be processing one product at a time. There-
fore, given a set of products and a set of plants, problems of
plant assignment to products and load allocation appear (see
Figure 1), where the production cost differs from one plant
to other due to the different efficiency between equipment.

Fig. 1. Plant and load assignment.

Inside the heat exchangers a dirt layer grows during nor-
mal operation, caused by the deposition of organic material
present in the products. This fouling reduces the efficiency of
the equipment, decreasing thus the heat-transmission coeffi-
cient. Consequently, the heat exchangers have to be cleaned
periodically. On the one hand, there are different options
for such a task, each one with an associated cost of people
and cleaning products, and each one achieving different
recoveries too. On the other hand, because of personnel
constraints, only one cleaning task can be performed at a
time. Therefore, a scheduling problem appears in the whole
network where, jointly with the plant-product assignment,
we have to decide for all plants the best (according to any
suitable objective) type and day to perform the cleaning.

The number of equipment that can be used for the evap-
oration operation is known, but the amount of tasks of any
type that have to be performed within a time horizon is not
fixed, as the process is continuous instead of batch.

III. SYSTEM MODELING

The optimal operation for a single plant was already
analyzed in previous works from the authors [13], [14].
In these, a nonlinear grey-box model was developed and
nonlinear programming (NLP) was used to identify optimal
control policies for reducing the specific steam consump-
tion. These policies were already implemented by a self-
optimizing control concept [14] in all plants. Suggested
cleaning policies for a plant operating in isolation were also
given in [14] using a relaxed NLP. However, although such
problem was still computationally tractable for one plant, it
became intractable to address the scheduling of the whole
interactive system via nonlinear MIP.

Therefore, as optimal operation is now ensured in each
plant, here we decided to replace the nonlinear model by
an approximated surrogate model [1] obtained in different
operating conditions, either from simulation with the non-
linear model or directly from process measurements: these
measurements allow to record a static map of the steam
consumption as a function of the outdoor temperature and
the evaporation flow (see Figure 2). Also, using experimental
data recorded from the plant in reference conditions, a linear
evolution of the fouling with the time the evaporator has been
in operation can be assumed. In the end, the expression of
the cost function for an evaporation plant v, processing a
product p at time instant t, reads as follows:

Steam(v, t, p) = KT · Tout(t) +Ke(v) ·Pvtp +KF (t) (1)

Where KT depends on the cooling towers, Ke(v) represents
the nominal efficiency of the evaporation plant v, and KF (t)
is the increase of cost due to the current state of fouling. As
illustrative example, Figure 2 shows three surfaces corre-
sponding to three different fouling states.

Fig. 2. Surrogate model for 3 different fouling states.

Remark 1: Note that this approach has not only the advan-
tage of sensibly reducing the computational cost required to
solve the optimization, but also allows an easier maintenance
of models by the plant engineers.

The operation of an evaporation plant can be represented
by three main stages: working, cleaning and standby. As
there may be several types of cleaning tasks, there will be
several cleaning stages too, one for each type. In addition,



after analyzing experimental data taking into account prices
for utilities, it was found that stopping a line for cleaning
is not worthwhile during the first days of operation after a
previous cleaning, because in such case the normalized cost
per time unit is huge (fixed cost associated to a cleaning task
is not amortized yet [14]).

The evaporation plants can be stopped because they have
been already cleaned and are not needed, or because it is
not profitable to keep working with them, but the cleaning
resources are not available yet. The option of stopping
the plant in the middle of an operation cycle to continue
operating later on without cleaning is not considered.

IV. PROBLEM FORMULATION

The proposed approach discretizes the prediction horizon
H in days (time to complete a cleaning task). This allows
obtaining optimal solutions in acceptable time.
Fouling. The underlying ideas of general precedence ap-
proaches are used here to force the operation accordingly to
the known time evolution of the fouling effects, which must
be followed by a cleaning stage. This approach, allows an
efficient formulation of scheduling problems for continuous
processes. Hence, different working stages will be defined,
related to the time that an evaporator has been in operation
(i.e., one evaporator that has started operation today will be
in a stage s0, and one evaporator that has been working for
two weeks will be in a stage s14). Using these stages, we are
able to indicate the performance degradation due to fouling,
i.e., each stage s will get an associated value KF (s).
Uncertainty. The evaporation plants are affected by external
factors: outdoor temperature and production demand, see
(1). These are modelled by stochastic variables that generate
an expected (probable up to some confidence level) convex
region of uncertainty. Thus, a bunch of scenarios sampled
from such region must be fulfilled by the schedule to provide
robustness.

A two-step stochastic approach is used here to deal with
uncertainty. The prediction horizon H is split in two: the first
“robust horizon” HR computes a non-anticipative solution
for all expected uncertainty realizations, whereas the remain-
ing horizon provides individual solutions for each scenario.
Hence, assuming HR = H and a linear formulation, the
whole region of uncertainty will be covered by considering
only the vertex realizations. At the beginning, predictions are
reliable, so only the nominal realization is considered for the
first week. Then, two realizations for the ambient temperature
(extreme values of an interval around the current prediction)
are introduced. Finally, uncertainty in the production plan is
also introduced from the day 14 onwards. Thus a new bunch
of realizations appear with all possible combinations between
the expected deviations in the demand for each product (see
Figure 3). In the end, 2 realizations on the weather times 2ρ

realizations on the production (assuming ρ products) make
a 2ρ+1 scenario tree.

Remark 2: Note that, as the weather forecast and produc-
tion plans will be more precisely known as time advances,

Fig. 3. Uncertainty introduced in the weather prediction (Tout) and in
production set points for ρ = 3 (SP).

the two-step approach allows reducing conservativeness by
providing individual schedules for each scenario within HR.
Five different sets have been defined for the problem:

• V denotes the set of all the evaporation plants.
• S is the set of possible stages where a plant can be. As

subsets it includes:
– SI as initial stages, where a stop for cleaning is not

worthwhile. In particular, s0 will be the first stage.
– SX as stages where a decision between “keep working”

or “make a cleaning task of type X” has to be made.
– SL as cleaning stages, where sLX denotes a cleaning of

type X.
– SP as the standby stages, where sPX denotes an evap-

orator in standby before a cleaning of type X and sPL
the standby stage after being already cleaned.

• M is set of days in which H is discretized. In particular:
– MU is the set of days belonging to HR.
– tF is the last day, i.e., the prediction horizon.

• P denotes the set of all products to be processed.
• Last, E denotes the set of the considered scenarios.

Three different types of variables will be used:

• Evtse: boolean variable which states that, in scenario e, an
evaporation plant v is in stage s at time t.

• Avtpe: boolean variable which, in scenario e, links a
product p to a plant v at time t.

• Pvtpe: real positive variable that assigns, in scenario e, the
evaporation flow of product p in plant v at time t.

Thus, the problem formulation is formed by the following
positive (i.e., true) logic statements for all e ∈ E :

• An evaporator must be in one stage and only in one
stage at each sample time.∨

s∈S

Evtse ∀v ∈ V, ∀t ∈M (2)

• An evaporator in a working stage must be necessarily
processing a single product.∨

p∈P

(Avtpe)
∨
s∈SL

(Evtse)
∨
s∈SP

(Evtse)
∀v ∈ V,
∀t ∈M (3)

• Only a single cleaning stage is allowed at a time.∨
s∈SL,v∈V

Evtse ∀t ∈M (4)



• Initial stages of operation (where stopping to clean is
not worthwhile) imply themselves.

Evtse ↔ Ev(t+1)(s+1)e ∀v ∈ V,∀t ∈M\{tF },∀s ∈ SI
(5)

• After a reasonable operation time, a choice can be made
between continue operating, perform a cleaning of a suitable
type, or go to standby until cleaning.

Evtse → Ev(t+1)(s+1)e ∨ Ev(t+1)sLXe ∨ Ev(t+1)sPXe

∀v ∈ V, ∀t ∈M\{tF }, ∀s ∈ SX (6)

• A stopped evaporator which has not been already
cleaned, must be cleaned or continue in standby.

EvtsPXe → Ev(t+1)sPXe∨Ev(t+1)sLXe ∀v ∈ V,∀t ∈M\{tF }
(7)

• A clean evaporator in standby can continue in such state
or begin to operate.

EvtsPLe → Ev(t+1)sPLe∨Ev(t+1)s0e ∀v ∈ V, ∀t ∈M\{tF }
(8)

• After a cleaning task, an evaporator can start operation
or go to standby.

Evtse → Ev(t+1)sPLe ∨ Ev(t+1)s0e

∀v ∈ V, ∀t ∈M\{tF }, ∀s ∈ SL (9)

• When an evaporator is associated to process a particular
product, it must continue operating without product changes
until it is cleaned.

Avtpe → Av(t+1)pe ∨ Ev(t+1)se

∀v ∈ V, ∀t ∈M\{tF }, ∀s ∈ {SL ∪ SP },∀p ∈ P (10)

• The network situation at tF cannot lead to infeasibility
in the future, i.e., point of no return. This is avoided by
forcing the plants to end up in: a) standby after cleaned, b)
a cleaning stage, or c) an initial stage of operation SI∨

s∈SI

(EvtF se)
∨
s∈SL

(EvtF se) ∨ EvtF sPLe ∀v ∈ V (11)

Production demands and equipment constraints must be
also accomplished:
• The evaporation flow in each plant must be between

limits (or zero if stopped). Upper limits depend on Tout.
Here True=1 and False=0 are assumed for Avtpe.

Pvtpe ≤ Uv(Tout) ·Avtpe, Pvtpe ≥ Lv ·Avtpe
∀v ∈ V, ∀t ∈M, ∀p ∈ P, ∀e ∈ E (12)

• A daily evaporation set point must be accomplished for
each product and scenario.∑

v∈V
(Pvtpe) ≥ SPpte ∀t ∈M, ∀p ∈ P, ∀e ∈ E (13)

The problem is also constrained by the available physical
conditions between products and plants, and by the current

state of the evaporators. Moreover, the non-anticipativity
requirement is enforced in HR by:

Evtse ≡ Evts, Avtpe ≡ Avtp, Pvtpe ≡ Pvtp,
∀t ∈M\MU , ∀v ∈ V, ∀p ∈ P, ∀e ∈ E (14)

V. MULTI-OBJECTIVE SETUP

The objective function may consider three goals to im-
prove: resource efficiency, productivity and robustness.

The two-step stochastic approach provides a tradeoff
between performance and robustness by definition. How-
ever, as the scheduling involves binary discrete decisions in
discretized time, there is a risk to assume: the suggested
schedule may not be fully applied when the uncertainty
realization is not considered in the scenario tree. A straight-
forward way to minimize such risk is either considering more
scenarios (increases the computational burden considerably)
or enlarging HR. In this last option, a straightforward index
to measure robustness could be J1 = HR/H . However, this
way may become conservative, as the worst-case combina-
tion of uncertainty may happen in an intermediate day, so
when HR covers such day many advantages of the two-step
approach vanish.

To overcome this issue, we introduce the concept of
similarity between schedules as a way to measure robustness,
without explicitly varying HR. Thus, the similarity index (SI)
will indicate schedules in between the more risky two-stage
approach, to the risk averse single schedule. The idea is in-
spired in the concept of minimum agreement index for fuzzy
duedate or fuzzy completion time [17] and is as follows.
First, discrete binary decisions taken for a particular day
are fuzzified along the surrounding days, e.g., the decision
takes a value of 100 at the current day but it also influences
the before and following days with a decreasing value,
proportional to the distance from the current day. Then, the
SI is defined as the intersection between the decisions of the
schedules for all the scenarios, see Figure 4.

Fig. 4. Fuzzy discrete decisions and similarity.

Using just the two closest days to the current one (t −
1, t+ 1), the SI index1 to optimize is:

J1 :=
∑
v∈V

∑
s∈S

∑
t∈MU\tF

min
(
100Evtse, 50Ev(t+1)se,

50Ev(t−1)se
)
/
(
nv(200(nu − 1) + 150)

)
∀e ∈ E (15)

1The SI as defined in (15) is nonlinear in decision variables, but a lower
bound for it can be computed introducing slack variables and additional
linear constraints. Details omitted for brevity.



Where nv is the number of evaporation plants and nu is the
number of days inMU . Hence, a J1 = 100% means that the
schedules coincide for all scenarios, so there is just a single
schedule: the risk-averse solution.

In order to measure efficiency with resources of different
nature (steam, manpower and cleaning products) with a
single indicator, an economic aggregation of such resources
using utility costs is used. Thus, the average normalized cost
per day of operation, according to model (1), is defined for
optimization:

J2 :=
∑
e∈E

∑
t∈M

∑
v∈V

(∑
s∈S

K(v, s)Evtse +
∑
s∈SW

KT ·

Tout(t)Evtse +
∑
p∈P

Ke(v)Pvtpe

)
/
(
tF · 2ρ+1

)
(16)

Where SW := S\{SL,SP } and K = [KF ,KsP ,KsL ] is a
lookup table containing the costs associated to the fouling
state, standby stages and cleaning tasks.

Last, the production plan of each product can be modified
by parameters SPpte in (13). So, the lowest demand δ for
all scenarios, products and time instants is:

J3 := δ = min
(
SPpte

)
∀e ∈ E , ∀t ∈M, ∀p ∈ P (17)

Hence, gaps ∆Ppte := SPpte − δ can be also computed.
Now, if δ becomes decision variable, a way to uniformly
vary the overall productivity via (13) is optimising J3, adding
constraints

SPpte = ∆Ppte + δ ∀e ∈ E , ∀t ∈M, ∀p ∈ P (18)

to compute new set points with the already fixed ∆Ppte.
In the end, our MOOP is formulated as follows.

optim J(Evtse, Avtpe, Pvtpe, δ) = [J1, J2, J3] ∈ R3

s.t.: (2)− (14), (18), (Pvtpe, δ) ∈ R+

(Evtse, Avtpe) ∈ {True, False}
(19)

To efficiently solve (19), we set additional constraints with
bounds in J1 and J3, denoted by J1 and J3, so that only J2
is in the objective function. In this way, the original MOOP
is cat as a set of single-objective optimizations, able to be
solved via MILP:

min J2(Evtse, Avtpe, Pvtpe) ∈ R
s.t.: (Pvtpe, δ) ∈ R+, (Evtse, Avtpe) ∈ {1, 0}

(2)− (14), (18), J1(Evtse) ≥ J1, J3(δ) ≥ J3

(20)

VI. EXAMPLE & RESULTS

An analysis has been performed in simulation by process-
ing three products (P1, P2 and P3) in nine evaporators (V1,
V2,..., V9) during a prediction horizon of H = 22 days (HR is
set to 7). The possible physical connections between products
and evaporators are listed in Table I.

The initial gaps to compute the evaporation set points per
product, using (18), are randomly set to ∆P1 = 5, ∆P2 = 9
and ∆P3 = 6 T/h (stochastic values for each scenario are
omitted for brevity). Each evaporator cannot operate under
Lv = 15 T/h and gets a maximum capacity about Uv =

30 + f(Tout) T/h, where f(·) is a known function. Also, the
evaporators get different efficiencies Ke(v), depending on
the type of equipment employed to build it. So, they have
been named from high to low efficiency2 as follows:

V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9

TABLE I
AVAILABLE LINKS PRODUCT-EVAPORATOR.

V1 V2 V3 V4 V5 V6 V7 V8 V9
P1 7 3 3 3 3 3 3 3 7
P2 3 3 7 7 3 3 3 3 3
P3 3 3 3 3 3 3 3 7 7

Two types of cleaning tasks have been defined, large (A)
and small (B), with their corresponding associated costs
KsLA

and KsLB
of manpower and chemical products. Also

it has been estimated that an evaporator should not be
operating more than 40 days without cleaning because it is
clearly suboptimal. Marginal costs KsPA

and KsPB
have

been added to the waiting stages before cleaning to avoid
situations where evaporators are not used but remain unclean,
which may lead to an overall loose of efficiency when they
will be needed (for instance against unexpected production
increments).

Expected largest deviations for the outdoor temperature
and production predictions are σTout

= 7°C and σp = 10
T/h respectively. Hence, with 3 products and using max/min
vertex values for the uncertainty, a 16-scenario tree arises.

Given these constraints, a solution is obtained by solving
(20) in about 12 min3 running CPLEX with GAMS in an
Intel i3-2310M CPU. Now, defining a well distributed grid
of points within the pertinency range for J1 and J3, optimal
solutions in the Pareto sense can be computed by solving
(20) offline. The found approximation of the Pareto front
is shown in Figure 5. Some interesting conclusions can be
extracted from its shape:
• Evidently, the absolute cost increases with the produc-

tion. However, note that the sensitivity is higher for low
productions, see Figure 6.
• Similarly happens with the sensitivity from robustness

(SI) to cost. Indeed, the amount of different solutions reduces
as production increases (see again Fig.6), tending to the
single one with SI=100%, which leads to an important
conclusion: the multi-stage stochastic approach is a waste
of computational resources for high productions.
• Finally, if we look to the specific cost per amount

of production (represented by the colormap) instead of the
absolute cost, the lowest overall efficiency is achieved for low
productions, which seems a kind of contradiction. However,
this result is easily explained by the fact that all plants
in operation must be cleaned after some time, despite of
whether they are working at low load, so the fixed costs of
cleaning tasks make the overall specific cost increase.

2Sensible values are not shown due to confidentiality agreements.
3Note that this value is just indicative, as it may vary depending on the

initial state of the network.



Fig. 5. Estimation of the Pareto front.

Fig. 6. 2D view from objectives J2 and J3.

For completeness, if (4) is relaxed to allow cleaning many
plants at a day, the optimization elapses around 25 min and
only a relative cost margin about 0.032% is achieved. So, hir-
ing more personnel for cleaning does not seem worthwhile.

VII. CONCLUSION

This paper has addressed a scheduling problem for an
industrial evaporation network under uncertainty. The main
feature which makes the problem singular is that the pro-
duction is continuous, so there is an infinite number of tasks
to schedule, but equipment cannot operate efficiently forever
without being stopped for maintenance. A modification of
the general precedence allocation method has been proposed
to efficiently tackle this problem.

Stochasticity has been introduced in the weather prediction
and in the production plan via a two-step optimization
approach. In this way, less conservative robust schedules are
obtained thanks to the possibility of measuring the uncer-
tainty and react. Also, a similarity index between scenario-
based solutions has been used as a measure of robustness
in order to give the scheduler the possibility of reducing the
risk, at the price of increasing conservativeness.

Finally, a multi-objective analysis is given by adding
other objectives of interest like maximizing the production
or minimizing the specific cost of operation. Although the
Pareto front depends on the current state of the system,
interesting conclusions can be derived from the analysis of its
shape, providing valuable information for decision support.
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