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Resumen del TFM
Este trabajo consiste en un estado del arte sobre la identificación de compuestos a

través de espectroscopı́a Raman. La espectroscopı́a Raman estudia la luz reflejada por
un sistema cuando se incide sobre ella una haz de luz monocromático, de esta manera
se conocen caracterı́sticas quı́micas y estructurales del sistema. También contiene una
propuesta de un algoritmo para identificar minerales a través de su espectro de Raman
con una base de datos y una comparación con otro algoritmo recientemente publicado.

Palabras clave
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Abstract
This work consist on a state of the art about compounds identification through raman

spectroscopy. Raman spectroscopy studies the light reflected by a system when it is irradi-
ated by a beam of monochromatic light, thus chemical and physical characteristics of the
system are obtained. Also it has a proposal of an algorithm to identify minerals through
its raman spectrum with a database and a comparison with another algorithm recently
published.
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Chapter 1

Introduction

1.1 Resumen
La espectroscopia Raman es una técnica fotónica que permite conocer información qumica
y estructural de casi cualquier material orgánico o inorgánico. El objetivo es analizar la
luz dispersada por un material cuando es iluminado con un haz de luz monocromático. La
mayor parte de la luz que incide sobre el material se dispersa en la misma frecuencia que
la luz irradiada, y no da ninguna información acerca del material, pero el resto se dispersa
en una frecuencia diferente de la luz irradiada y proporciona información sobre la com-
posición molecular de la muestra. El principal objetivo es identificar automáticamente
minerales a través de su espectro Raman. Este objetivo es aun más complicado cuando
se trata de reconocer mezclas de distintos materiales en diferentes proporciones. En este
trabajo se hará una descripción del estado del arte sobre la identificacin de distintos com-
puestos y se hará una propuesta de algoritmo para identificar minerales.

1.2 Importance of problem
The main problem is identify samples of minerals through its raman spectra. It is not an
easy task due to the variability between two spectra of the same sample taken in different
conditions, with different equipment... The problem is even harder when the spectrum
corresponds to a mixture of more than one mineral.

The search of coincidences between spectra may be a tedious task especially when it is
necessary make the comparison with a large database. This is a common task in the work
of a specialist. So, the possibility of developing a reliable tool that makes easier this task
is an important challenge. Besides, a tool of this kind, not only is useful for specialists,
also it can be used by non experts and can be included inside a portable spectrometer.

1.3 Brief description of Raman Spectroscopy
Raman spectroscopy is a spectroscopic technique used to study vibrational, rotational,
and other low-frequency modes in a system. It is widely used to provide information
on chemical structures and physical forms, to identify substances from the characteristic
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2 CHAPTER 1. INTRODUCTION

spectral patterns (fingerprinting), and to determine quantitatively or semi-quantitatively
the amount of a substance in a sample. So, thinking in raman spectra like a fingerprint it
is possible identify materials through the study of their raman spectra.

1.4 Aims
The main aims of this work are:

• Make a state of the art about recognition of different compounds through raman
spectroscopy.

• Make an initial purpose to recognition of minerals.

• Develop an initial tool that gives clues and makes easier the decision-making pro-
cess.

• Make initial tests with a large corpus.

• Make a comparison between our purpose and a method for identification that has
been published.

• Lay the basis for a more accurate algorithm and for an algorithm for portable de-
vices.



Chapter 2

Raman Spectroscopy

2.1 Resumen
La fascinación por el azul del mar Mediterráneo llevó a C.V. Raman a investigar la dis-
persión de la luz por los lı́quidos y ası́ descubrir experimentalmente la dispersión de luz
con cambio de frecuencia.

La espectroscopı́a Raman es una técnica fotónica que permite conocer información
quı́mica y estructural de casi cualquier material orgánico o inorgánico.

El objetivo es analizar la luz dispersada por un material cuando es iluminado con
un haz de luz monocromático. La mayor parte de la luz que incide sobre el material se
dispersa en la misma frecuencia que la luz irradiada, y no da ninguna información acerca
del material, pero el resto se dispersa en una frecuencia diferente de la luz irradiada y
proporciona información sobre la composición molecular de la muestra.

La espectroscopı́a Raman tiene como ventaja la mı́nima manipulación y preparación
de la muestra que se requiere.

2.2 Historical Background of Raman Spectroscopy
Curiosity about the explanation of the blue colour of the sky led Lord Rayleigh to formu-
late a classical theory of light scattering without change of frequency (Rayleigh, 1871)
[15]. Fascination with the marvellous blue of the Mediterranean sea caused C. V. Raman
to investigate the scattering of light by liquids and so to discover experimentally the scat-
tering of light with change of frequency (Raman and Krishnan, 1928). An independent
prediction of this phenomenon had been made a few years earlier (Smekal, 1923) using
classical quantum theory.

Shortly after Raman and Krishnans publication a report of light scattering with change
of frequency in quartz was reported by two Russian scientists, Landsberg and Mandelstam
(1928), and in France, Raman and Krishnans observations were soon confirmed by Ca-
bannes (1928) and Rocard (1928). The potential of the Raman effect in chemistry and
physics was realized very rapidly. By the end of 1928 some 70 papers on the Raman
effect had been published.

In 1928, when Sir Chandrasekhra Venkata Raman discovered the phenomenon that
bears his name, only crude instrumentation was available. Sir Raman used sunlight as

3



4 CHAPTER 2. RAMAN SPECTROSCOPY

the source and a telescope as the collector, the detector was his eyes. That such a feeble
phenomenon as the Raman scattering was detected was indeed remarkable. [11]

Gradually, improvements in the various components of Raman instrumentation took
place. Early research was concentrated on the development of better excitation sources.
Various lamps of elements were developed as helium, bismuth, lead, zinc, but these proved
to be unsatisfactory because of low light intensities.

In 1962 laser sources were developed for use with Raman spectroscopy . Eventually,
the Argon and the Krypton lasers became available, and more recently the Nd- YAG laser
has been used for Raman spectroscopy.

Progress occurred in the detection systems for Raman measurements. Whereas orig-
inal measurements were made using photographic plates with the cumbersome develop-
ment of photographic plates, photoelectric Raman instrumentation was developed after
World War II.

These developments in Raman instrumentation brought commercial Raman instru-
ments to the present state of the art of Raman measurements. Now, Raman spectra can
also be obtained by Fourier transform (FT) spectroscopy. FT-Raman instruments are be-
ing sold by all Fourier transform infrared (FT-IR) instrument makers, either as interfaced
units to the FT-IR spectrometer or as dedicated FT-Raman instruments.

2.3 Theory of Raman Scattering
The main spectroscopies employed to detect vibrations in molecules are based on the
processes of infrared absorption and Raman scattering. They are widely used to provide
information on chemical structures and physical forms, to identify substances from the
characteristic spectral patterns (fingerprinting), and to determine quantitatively or semi-
quantitatively the amount of a substance in a sample. Samples can be examined in a whole
range of physical states; for example, as solids, liquids or vapours, in hot or cold states, in
bulk, as microscopic particles, or as surface layers. The techniques are very wide ranging
and provide solutions to a host of interesting and challenging analytical problems. Ra-
man scattering is less widely used than infrared absorption, largely due to problems with
sample degradation and fluorescence. However, recent advances in instrument technology
have simplified the equipment and reduced the problems substantially. These advances,
together with the ability of Raman spectroscopy to examine aqueous solutions, samples
inside glass containers and samples without any preparation, have led to a rapid growth in
the application of the technique. [25]

Raman spectroscopy is a spectroscopic technique used to study vibrational, rotational,
and other low-frequency modes in a system [8]. It relies on inelastic scattering, or Raman
scattering, of monochromatic light, usually from a laser in the visible, near infrared, or
near ultraviolet range. The laser light interacts with molecular vibrations, phonons or
other excitations in the system, resulting in the energy of the laser photons being shifted
up or down. The shift in energy gives information about the vibrational modes in the
system.

When light interacts with matter, the photons which make up the light may be ab-
sorbed or scattered, or may not interact with the material and may pass straight through
it. If the energy of an incident photon corresponds to the energy gap between the ground
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state of a molecule and an excited state, the photon may be absorbed and the molecule
promoted to the higher energy excited state. It is this change which is measured in ab-
sorption spectroscopy by the detection of the loss of that energy of radiation from the
light. However, it is also possible for the photon to interact with the molecule and scatter
from it. In this case there is no need for the photon to have an energy which matches
the difference between two energy levels of the molecule. The scattered photons can be
observed by collecting light at an angle to the incident light beam, and provided there is
no absorption from any electronic transitions which have similar energies to that of the
incident light, the efficiency increases as the fourth power of the frequency of the incident
light.

Scattering is a commonly used technique. For example, it is widely used for mea-
suring particle size and size distribution down to sizes less than 1 µ m. One everyday
illustration of this is that the sky is blue because the higher energy blue light is scattered
from molecules and particles in the atmosphere more efficiently than the lower energy red
light. However, the main scattering technique used for molecular identification is Raman
scattering.

Raman spectroscopy uses a single frequency of radiation to irradiate the sample and it
is the radiation scattered from the molecule, one vibrational unit of energy different from
the incident beam, which is detected. Thus, Raman scattering does not require matching
of the incident radiation to the energy difference between the ground and excited states. In
Raman scattering, the light interacts with the molecule and distorts (polarizes) the cloud
of electrons round the nuclei to form a short-lived state called a virtual state., This state is
not stable and the photon is quickly re-radiated.

The energy changes we detect in vibrational spectroscopy are those required to cause
nuclear motion. If only electron cloud distortion is involved in scattering, the photons
will be scattered with very small frequency changes, as the electrons are comparatively
light. This scattering process is regarded as elastic scattering and is the dominant process.
For molecules it is called Rayleigh scattering. However, if nuclear motion is induced
during the scattering process, energy will be transferred either from the incident photon
to the molecule or from the molecule to the scattered photon. In these cases the process
is inelastic and the energy of the scattered photon is different from that of the incident
photon by one vibrational unit. This is Raman scattering. It is inherently a weak process
in that only one in every 106 - 108 photons which scatter is Raman scattered. In itself this
does not make the process insensitive since with modern lasers and microscopes, very
high power densities can be delivered to very small samples but it is does follow that
other processes such as sample degradation and fluorescence can readily occur.

Since the virtual states are not real states of the molecule but are created when the
laser interacts with the electrons and causes polarization, the energy of these states is de-
termined by the frequency of the light source used. The Rayleigh process will be the
most intense process since most photons scatter this way. It does not involve any energy
change and consequently the light returns to the same energy state. The Raman scattering
process from the ground vibrational state m leads to absorption of energy by the molecule
and its promotion to a higher energy excited vibrational state (n). This is called Stokes
scattering. Scattering from these states to the ground state m is called anti-Stokes scatter-
ing and involves transfer of energy to the scattered photon. The relative intensities of the
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Figure 2.1: Stokes and anti-Stokes scattering for cyclohexane. To show the weak anti-
Stokes spectrum, the y-axis has been extended in the inset.

two processes depend on the population of the various states of the molecule. Thus, com-
pared to Stokes scattering, anti-Stokes scattering will be weak and will become weaker
as the frequency of the vibration increases, due to decreased population of the excited vi-
brational states. Further, anti-Stokes scattering will increase relative to Stokes scattering
as the temperature rises. Figure 2.1 shows a typical spectrum of Stokes and anti-Stokes
scattering from cyclohexane separated by the intense Rayleigh scattering which should be
offscale close to the point where there is no energy shift. However there is practically no
signal close to the frequency of the exciting line along the x-axis. This is because filters
in front of the spectrometer remove almost all light within about 200 cm1 of the exciting
line. Some breakthrough of the laser light can be seen where there is no energy shift at
all.

The scattering is measured as light detected by the spectrometer and the maximum
amount of light detected is the highest point on the trace.

Strictly speaking, Raman scattering should be expressed as a shift in energy from that
of the exciting radiation and should be referred to as ∆cm−1 but it is often expressed
simply as cm−1.

In the spectrum of the scattered radiation, the new frequencies are termed Raman
lines, or bands, and collectively are said to constitute a Raman spectrum. Raman bands at
frequencies less than the incident frequency are referred to as Stokes bands, and those at
frequencies greater than the incident frequency as anti-Stokes bands.

2.3.1 Raman sample preparation and handling
Raman spectroscopy, as a scattering technique, is well known for the minimum of sample
handling and preparation that is required. Typical Raman accessories are powder sample
holders, cuvette holders, small liquid sample holders and clamps for irregularly shaped
objects.

Many organic, and inorganic, materials are suitable for Raman spectroscopic analysis.
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These can be solids, liquids, polymers or vapours. The majority of bulk, industrial labora-
tory samples are powders or liquids and can be examined directly by Raman spectroscopy
at room temperature. Accessories for examination of materials by Raman spectroscopy
are available across a wide range of temperature and physical forms. Sample presentation
is rarely an issue in Raman spectroscopy of bulk samples.

In practice, modern Raman spectroscopy is simple. Variable instrument parameters
are few, spectral manipulation is minimal and a simple interpretation of the data may be
sufficient.

2.4 Identification through Raman Spectroscopy

Raman spectroscopy is a photonic technique that allows to know chemical and structural
information of almost any organic or inorganic material.

The aim is analyze the scattered light by a material when it is illuminated with a beam
of monocromatic light. The major part of the light that impacts on the material is scattered
in the same frecuency as the irradiated light, and doesn’t give any information about the
material but the rest is scattered in a different frecuency than the irradiated light and
gives information about the molecular composition of the sample. This kind of scattered
light is produced when the molecule absorbs energy and the final state is more energetic
than the initial state, then the emitted photon of a higher wavelength generates a Stokes
line. In the other hand, when the molecule loses energy generates an anti-Stokes line
but this information isn’t taken into account to analyse the spectrum. The raman spectra
collects this phenomenon and represents the scattered intesity in a wavelenght which it is
produced.

Each material has one or more points of high intensity in a determinated wavelength.
The spectrum intensity also may be represented in Raman shift making a wave length
transformation. So, each material can be represented by a spectrum which has at least one
high intensity peak in a determinated wavelength or Raman shift. These high intensity
peaks are also known as Raman Bands. In the figure 2.2 is shown the calcite raman
spectrum and there is a table that contains the information about the intensity and the
raman shift of each representative peak. Through the raman characteristics peaks we
can identify materials using a database that contains information about the peaks of each
material. This information can be defined as the raman signature of the material.

Some of the great advantages of Raman spectroscopy are that is not destructive with
the material irradiated, doesn’t need contact with the studied material and doesn’t need
that the sample has been preparated, is a rapid method because a spectrum can be taken
in a few seconds. But also has an important disadvantage, with biological samples may
appear fluorescence that makes harder the analysis.

Before starting with the sample recognition through its raman spectrum probably it
would be necesary a previous processing. The common practices are the background and
fluorescence removal.
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Figure 2.2: Calcite raman spectrum.

Figure 2.3: Baseline removal of magnetite spectrum.

2.5 Baseline removal
Before further spectrum analysis once acquired it is necessary the background removal
because it can hinder the presentation, visualization and processing of relevant data ( Fig.
2.3). This removal can be done manually or automatic, in the case of automatic removal
it will be harder when appears random and systematic variations.

One important ratio to know how good a spectrum is can be the Signal-to-noise ratio
(SNR 2.1), as higher this ratio will be easier remove the background from the spectrum.

SNR =
MaximunIntensity

σ
(2.1)

To acquire spectra with better SNR it can be useful acquire it with more integration
time or increase accumulation number. Integration time is the time during the sample is
irradiated by the laser. Accumulation number is the number of spectra that have been
made consecutively.
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2.6 Fluorescence removal

As the background, the fluorescence must be removed. The presence of fluorescence
makes that the spectrum has a characteristic curvature. When it appears the spectral anal-
ysis of the sample can be severely compromised.

The fluorescence may be because of the presence of organic materials but also can
be observed in inorganic materials. In this cases can be attributed to the presence of
impurities or external pollutants, and even environmental factors like relative humidity,
temperature and sunlight.

In any case, the fluorescence must be removed during the preprocessing step before
start with searching of similar spectra in our database.

2.7 Some issues about material identification

Once we have a spectrum with the baseline and fluorescence correction, we are able to
start with the recognition of the sample.

All the materials have a unique spectrum which have one or more peaks with a known
raman shift and intensity. So we can say that the spectrum signature is a set of pairs
composed by raman shift and intensity for each characteristic peak.

The next step will be identify all the peaks in the spectrum. So, when we have a clean
spectrum and the peaks identificated it may seem easy to find a similiar spectrum in a
database, because we only have to search for spectrum with similar peaks. But isn’t as
easy as it may seem at the first sight.

Here there are some issues to take into account that makes hard the automatic recog-
nition:

• There are many aspects that may affect to the raman shift and intensity in a spectrum
like the integration time, the accumulation number, laser wavelength, irradiance,
temperature, preasure, status of the material...

• With a mixture of materials, exists the possibility that more than one raman signals
coincide, making hard the identification. Because a raman band can hide another
through a combination of both.

• Develop a generic method to identify spectrums is complicated because there is a
dependency in the characteristics of the equipment used to take the spectrum. Two
spectra taken with different spectrometers may have differences.

• Peaks automatic detection depends on the previous steps, baseline and fluorescence
removal. When more clean the spectrum be the more reliable the recognition be. So,
it is necessary to have a reliable spectrum processing made by hand or automatic.

• Depending on the characteristics of the material, probably it would be necesary
have several signatures under different conditions for the same material.
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2.7.1 An illustrative example of processing Raman spectra
In [26] is described the whole process of raman spectra analyzing under the Exomars
mission that ESA will launch in 2018 [10]. Most of all recently planned astrobiology
missions to Mars are focused on the exploration of the surface and near subsurface in the
search for biomarkers as indicators of exobiology. The search for signs of past and present
life on Mars is one of the main goals of the ESA ExoMars Rover Mission. The Raman
laser spectrometer (RLS), which will travel on the rover, has been ranked as Fundamental
nondestructive analytical instrumentation for the mission.

In this article is presented a Raman signal processing package to perform in-depth
processing of the spectra that aims to eliminate, insofar as possible, the noise and remove
the baseline from the spectra. The process described needs filtering of raw data, baseline
removal, peak finding and finally database search for sample identification.



Chapter 3

Raman Spectra Classification

3.1 Resumen
Hay muchos trabajos relacionados con la identificación de compuestos. Es posible clasi-
ficarlos teniendo en cuenta los diferentes métodos utilizados para reconocer un espectro
problema. Los principales métodos están relacionados con inteligencia artificial, análisis
de componentes principales y algoritmos basados en diversos coeficientes de correlación.

Hay un grupo de artı́culos publicados por un grupo de investigadores en el que han
trabajado en la identificación de pigmentos por espectroscopı́a Raman. Todos los artı́culos
tienen en común el uso de lógica difusa para identificar un espectro problema en una
colección de espectros de referencia de pigmentos

3.2 Introduction
There are many works related with the identification of different compounds and materi-
als. It is possible classify them taking into account the different methods used to recognize
a problem spectrum. So, the main methods are related with artificial intelligence, principal
component analysis, and various algorithms based on correlation coefficients.

In the next sections, some articles are commented grouped by the main technique
used, so the next subsections are the followings: Fuzzy Logic 3.3.1, Artificial Intelligence
3.3.2, Principal component Analysis 3.4, Other Algorithms 3.5 and a brief introducction
3.2.

The article [32] talks about many scientific and industrial disciplines where Raman
spectroscopy, and therefore recognition, find application. Some of these disciplines are:

• Chemistry: providing a chemical fingerprint for identification of a molecule, since
vibrational information is specific to the chemical bonds and symmetry of molecules.

• Forensic sciences and Criminology: is used for identification of trace amounts of
substances in evidential materials, etc. In-situ measurements can be realized, mean-
ing no contamination of evidences during taking samples. Also can be used in iden-
tification of unknown or hazardous substances, by instance detection of explosives
or drugs.

11
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• Medicine: prognosis and diagnosis of carcinomas and other diseases.

• Geology and Mineralogy: serves for identification of the principal mineral phases
or classification.

• Art and paints: examination of artworks and artefacts reveal worthy information for
conservators or those of general historical interest.

• Robotic exploration of Mars: as a part of the scientific laboratory, a raman spec-
trometer will be included in the Exomars mission of ESA. [17]

In [31] are presented some issues resolved at the present time using Raman recogni-
tion. These examples are detection of small hexavalent chromium concentrations, mon-
itoring of the curing process of epoxy resins, clasification of inks within the scope of
revealing ink document falsifications...

As stated in section 2.3, each material can be represented by a spectrum and therefore
each raman spectrum is like a fingerprint through a material can be identified. So, to
facilitate the material recognition it is neccesary have a spectral database or a model to
make possible the comparision between spectra.

In the past, databases were unreliable [20] owing to the variability in spectra obtained
(ratio signal - noise, background...) by the earlier low throughput multi-grating systems.
The first reliable Raman spectral databases have been produced for the new generation of
spectrometers.

An example of Raman database is in [6], where Raman spectra of 43 excipients com-
monly used in pharmaceutical formulations are presented and their Raman bands are iden-
tified.

There is an important project, called RRUFF [5], that is creating a large database of
Raman spectra from well characterized minerals. This is an open project and shares all the
spectra in the web. Because is an open project, anybody can contribute with their spectra.
One of their aims is allow users of Raman instruments compare their Raman patterns
to those from RRUFF with confidence. But through the online database is not possible
to make an spectra identification. On the other hand there is a free standalone program
(Crystal Sleuth) developed by RRUFF that has a functionality that permits compare a
problem spectrum with a large group of spectra obtained from the online database. In the
section 3.5 the identification method of Cristal Sleuth will be discussed. An example of
the use of RRUFF is in [16], where various raman spectra were acquired from 96 semi
precious gemstones with the aim of classify them with reference spectra from the RRUFF
database.

But for the material identification is not enough searching similarities between the
problem spectrum and a set of reference spectra. In many cases the problem spectrum
may belong to a mixture of more than one material and in this cases identify the materials
that have a contribution in the raman spectra is a harder task. In a first view, seems reason-
able that the contribution of each material is a lineal contribution taking into account the
proportion of each material in the mixture. But is not true in all the cases. The article [1]
talks about Principle of superposition in the Raman effect with mixtures. This concept can
be interpreted into two ways, first way qualitatively refers to the fact that the bands of each
individual material appear in the spectrum of the mixture, or second way, quantitatively
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Figure 3.1: Summary of the main methods.

that is, the mixture spectrum is the pondered sum of the individual spectra according to
the proportions in which they appear in the mixture. But, in some cases, the Principle of
superposition is not quantitatively verified and qualitatively. Specific properties of the ma-
terials, like reflectance, absorption, transmission and grain size and others are responsible
for the non-linear effect that does not agree with the principle of superposition.

For the identification of spectra, it is possible divide the methods into two main groups.
The first group is searching for similarities between whole spectrum and the reference
spectra and second group searching similarities between the main bands or peaks of the
problem spectrum and main bands of the reference spectra. In the next sections some
methods will be discussed always bearing in mind the difference between this kind of
methods.

In figure 3.1 it is shown a summary of the main methods found in the articles.

3.3 Artificial Intelligence

3.3.1 Fuzzy Logic
There are a group of articles published by a group of researchers in which they have
worked in the identification of pigments by raman spectroscopy. All the articles have in
common the use of fuzzy logic to identify a problem spectrum in a reference library spec-
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tra of pigments. They have experimented with the fuzzy logic in main methods to identify
raman spectra, taking into account the whole spectrum and only the main spectrum bands.
Besides they have supplemented the fuzzy logic with other interesting methods like Prin-
cipal Component Analysis (PCA).

The article [19] talks about a fuzzy logic system for band detection of Raman spectra.
The reasoning used looks for the peaks in the spectrum in a conventional visual way. This
is an important step when is intended to compare spectra by raman bands or peaks. They
make a formulation of input membership functions that transform the system inputs into
fuzzy variables. The input fuzzy variable is then mapped into a fuzzy output variable by
means of rules, which describe the relation between these variables. Both membership
functions and rules are problem dependent. In this article the location of Raman bands is
based on the quadratic coefficients of the parabolic approximation of the spectrum in con-
secutive segments. The quadratic coefficient is negative when the shape of the spectrum in
the segment is convex. Bearing in mind that the shape of a Raman band is always convex,
in a segment with a negative quadratic coefficient a Raman band can exist. In particular,
the general statement for detecting bands is: IF three consecutive quadratic coefficients
are negative and similar THEN there is a Raman band. The inference engine provides
the way in which rules are combined and evaluated in order to obtain the output fuzzy
sets and finally, the crisp output value is obtained using a centroid technique from output
fuzzy sets. The method is practically independent of the spectrum baseline and therefore
is not necessary to eliminate it previously.

The article [3] talks about identification of artistic pigments using fuzzy Logic and
principal component analysis (PCA) . They reduce each dimension spectra by means of
a data reduction tool called the principal component analysis (PCA). The most important
use of this chemometric technique is to represent the N-dimensional data in a smaller
number of dimensions, usually two or three, without loss of information. A correlation
coefficient is used to estimate the degree of similarity between problem spectra and refer-
ence spectra. The fuzzifier assigns to every numerical input value a degree of membership
to each input Fuzzy sets through the membership functions associated to them. The in-
ference engine provides the way in which rules are combined and by means of different
logical operators modifies the defined output fuzzy sets. Finally, the defuzzifier maps out-
put fuzzy sets into crisp numbers applying mathematicalmechanisms in order to obtain
the final result. If there is more than one candidate, a new library is made by mixing them.
This system can only identify binary mixtures that are the most common mixtures made
by artists in the pigments field.

The article [18] again uses fuzzy logic to identify spectra but now comparing only
raman bands. First, by means of a fuzzy system based on If Then rules, the system
selects as candidates all the pigments in a considered database that have bands in the
same positions as the unknown spectrum. Second step is calculate the similarity degree,
it numerically determines the coincidence in the wavenumber position of the bands in
the compared spectra. That is, the greater the coincidence between bands, the closer the
similarity degree value is to 1. And finally, the output variable called the matched bands
number provides the ratio of the number of matched bands between the unknown spectrum
and the candidate to the total number of candidate bands, expressed as a percentage. All
of these variables are input variables in the following stage (identification fuzzy system),
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which makes the decisions to the identity of the analyzed pigment by selecting it from
among the candidates and provides the identification reliability. Thus, the output of the
whole system is the pigment (or pigments) identified as the unknown pigment with a
certain confidence, which is expressed as a number from 0 to 10.

In the article [22] an algorithm was tested with a database of 32 pigments. The algo-
rithm was tested both pure pigments and mixtures. The system is designed as a software
complement in a portable micro-Raman instrument for studying pigments. The Raman
bands that will be used in the fuzzy system to perform the automatic identification. Be-
fore the fuzzy procedure is applied, a previous denoising process is necessary along with
a baseline correction to remove background signals usually caused by fluorescence. Peak
picking is performed manually. The user selects the Raman bands that are considered to
be characteristic of the compound. The algorithm first calculates the intersection between
the fuzzy set of the unknown spectrum with each of the crisp sets stored in the reference
library. As a result, a score is obtained for each band in the computed intersection. These
scores are then weighted using a factor that represents the probability of occurrence of the
Raman band. Finally, final result is weighted with a factor that is the number of reference
bands encountered in the unknown pigment spectra divided by the total number of bands
in the reference pigment spectrum. The value final is between [0, 1] and is classified using
three categories, present, possibly present, or not present.

The article [27] makes a comparison between two strategies based on fuzzy logic
to identify unknown Raman spectra. First one is compare the whole spectrum of the
analyzed sample with the spectra of standard materials or, once the wavenumber positions
of the raman bands of the unknown spectrum are localized, to compare them with those of
the reference spectra. The identification system comparing the whole spectrum is made by
estimating the degree of similarity between two spectra, that is the correlation coefficient.
To make the correlation independent of the Raman intensities each spectrum is normalized
between 0 and 1. The crisp inputs of the system are the correlation coefficients between
the unknown spectrum and each of those of the chosen library. The system has four
rules to make a decision. Then, for an obtained correlation coefficient, each of these four
rules is interpreted by implication, using the product operator. For each implication, a
fuzzy set is obtained and all of them are aggregated, by means of the sum, into a single
output fuzzy set. Finally, the output crisp value, the degree of similarity between problem
spectrum and reference spectrum, is calculated using the centroid method. In the other
hand, identification system locating the Raman bands needs only the wavenumber position
of the Raman bands. So the system only looks for the coincidence in the position of
all the bands of the two compared spectra. The input variables of the system are the
wavenumbers, on which the Raman bands of the spectrum under analysis are centred.
The fuzzy system for bands detection used in this article has been described in this section
[19] . The output variables are the pigments among those catalogued in the library with
which the unknown spectrum shares some bands. The higher the number of common
bands, the more similar are the compared spectra. The membership functions assign
the greatest degree of membership (value 1) to the exact position of the band, a smaller
degree of membership to the values of adjacent wavenumber positions in a spectral range
and a degree of membership zero for the wavenumber positions out of that range. The
output variables are, on one hand, the names of each pigment with which the system finds
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coincidences, and on the other hand, for each of those pigments, a degree of security
in their identification. One important result is that in cases of the mixture, the system
locating the bands identifies the presence of two or more pigments, whereas the other one
only recognizes one of them , the one in which the similarity degree is higher.

In [2] is presented a three-phase methodology that automates the spectral comparison
based on one of the most powerful paradigms in machine learning, the case-based reason-
ing (CBR). The spectra are processed in order to minimize the noise effects and eliminate
the fluorescence baseline before being used by the system. The first step is normalization,
interpolation and reduction of the number of data points of the spectra without loss infor-
mation with PCA. Once the spectra have been processed, the system has to capture among
all the spectral patterns those that are the most similar to the analyzed spectrum and it re-
turns an identification degree that may help the user to identify the unknown pigment. For
each unknown spectrum is proposed a solution taking into account previous knowledge.
The methodology works as a case-based reasoning system finding out the best solution
for in each case by following an inference strategy. Is composed of the following phases

• Retrieves the most similar cases from the case memory.

• Adapts them to propose a new solution.

• The user checks if this solution is valid.

In this article it is not the objective to work with large spectral libraries, actually, they use
some characteristics that can be used to exclude a large number of pigments. This system
make use of the complete spectra and not only their band positions, but to avoid handling
a large number of points for each spectrum they make use of principal component analysis
(PCA). The most similar pigments are retrieved using Pearson coefficients. Candidate by
candidate, the inference process deals independently with four rules and leads, for each
of them, to a fuzzy set output. Finally the user takes his final decision by evaluating the
solutions proposed by the system.

3.3.2 Neural networks and others
The article [7] describes application of artificial neural networks and statistical methods
to analyse a Raman spectra database and to use the results of the analysis in structure
elucidation process. A statistical algorithm is used to search a database of spectra for
reliable regularities required for determining the presence of spectrasubstructure correla-
tions. The database contains 156 Raman spectra of organic compounds. The spectra were
transformed into vectors encoded in the binary system and divided in intervals. Each in-
terval is assigned a 0 value or a 1 value. If the spectrum of a compound has at least one
significant peak in an interval, the interval code is 1. If no peak appeared in an interval,
the 0 value is given as the code. A set of vectors representing Raman spectra and coded
information about the presence or absence of a selected substructure was divided into a
training set and a testing set. With these sets, a correlation vector is created by rejecting
the components whose values are below a given threshold value. Then the generation of a
rule knowledge base consistent with the regularities represented by the correlation vector
is created. The fixed spectrumsubstructure correlations were automatically transformed
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into rules if - then. The user inputs into the computer the spectral parameters (band lo-
cations and intensities) of the Raman spectrum obtained for the investigated compound.
The inference engine utilizing the knowledgebase produces the list of substructures that
probably form a part of the molecule of the examinated substance. In the other hand,
in the neural network approach, designing and training of artificial neural networks was
carried out with the use of a commercial program Stastica Neural Networks. As a result,
the neural network method achieved more reliable results for almost all substructures.

In [23] an integrated software system for processing, analyzing, and classifying Ra-
man spectra is presented. The system is open source and extensible, allowing the commu-
nity of Raman researchers to make continual improvements to the software It has features
to subtract background and fluorescence. Implements several analysis and classification
techniques, such as principal component analysis and support vector machines (SVM).
For each of these techniques, a model is created by training the algorithm with selected
groups of spectra. The system currently supports three different algorithms for spec-
tral classification, one based on linear discriminant analysis (LDA), another implemented
an artificial neural network (ANN) and the last one employs support vector machines
(SVMs).

The article [24] says that identification of an unknown species based on spectroscopic
data is a common statistical problem. Most of these statistical methods can be separated
in two main groups, unsupervised or exploratory and supervised methods. Unsupervised
methods are used for studying experimental spectral data without a prior knowledge of
the object. Hierarchical cluster analysis (HCA), Density Based Spatial Clustering of Ap-
plications with Noise or PCA based methods of the dimensionality reduction are more
commonly used approaches. Supervised methods utilize a prior knowledge about the sys-
tem by developing classification models based on known spectra . These methods include
Linear DA (LDA), Direct LDA (DLDA), Kernel-based LDA , Multivariate Analysis of
Variance ... Each of these algorithms is most efficient for a certain type of data. In cases
when the data set characteristics are not known, selection of the algorithm is usually done
using trial and error.

An example of the use of support vector machines is in [21]. This method uti-
lizes the entire spectrum and determining the state of the cells based upon the similar-
ities/differences of the examined spectra versus an established database. The SVM tech-
nique is used to classify. The classification intends to identify the cell mortality type, by
distinguishing among apoptotic versus healthy cells and necrotic versus healthy cells.

In this experiment, the data is used in its raw form without any further processing be-
cause the baseline, fluorescence, and intensity range of the spectra are characteristics of
the cellular state. Therefore removing them will reduce the convoluted spectral informa-
tion.

3.4 PCA: Principal Component Analysis
Principal component analysis is a mathematical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. Normally is related
with identification made through the whole spectrum. Below are some works related to
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this technique.
In [30] is made an evaluation of a searching algorithm based on principal component

analysis for identification of organic pigments. Before processing the principal compo-
nents calculations a baseline-correction is performed to avoid background and fluores-
cence. The spectra are normalized. The training set of reference spectra is used for the
principal components analysis. 28 PCs are extracted from each spectrum. For the prob-
lem spectrum is made a similar pretreatment. Comparison between the unknown and the
references is made using the Euclidean distance between two data points as a measure of
their similarity. They obtained bad results when the spectra have low signal to noise ratio.

In [4] uses PCA and cluster analysis to classify glasses and glazes. With cluster analy-
sis creates a hierarchical tree diagram that assembles samples as a function of the shortest
distance. Clusters presented are built using a Euclidean distance.

In [12] is made an experiment to identify phylogenetically homogeneous Bacillus
subtilis-group. First normalize spectra and the first derivatives were calculated to min-
imize the influence of background signal caused by slight sample fluorescence. Then data
reduction is performed using principal component analysis. During internal evaluation
the complete dataset (219 experiments) was randomly splitted in a training set (3/4) and a
test set (1/4). To search similarities is used the euclidean distance. The identification was
regarded as reliable at the species level when at least three out of five matches pointed to
the same species. They say that this method should not be considered as a stand-alone
technique for taxonomic purposes.

In [13] spectra were reduced using principal component analysis and six linear dis-
criminant analysis models (LDA) were calculated to construct an identification scheme.
Taking conventional microbiological identification as the reference method, the accuracy
of this identification scheme was 90%.

3.5 Other algorithms
In [29] is presented an evaluation of a spectral searching algorithm for the comparison of
Raman band positions. The algorithm evaluates all reference spectra one after the other,
searching for coincidences in bands positions. Only reference products with at least one
corresponding band are included in the list of results. In order to be able to investigate
mixtures of compounds, combinations of the products with at least one identified Raman
band can be made and are treated like the reference spectra. Finally, the selected (combi-
nations of) reference products are evaluated and sorted, by using an appropriate measure
of similarity. Different measures of similarity or dissimilarity can be used, as the num-
ber of bands of the unknown that can be explained by the reference product, number of
bands of the unknown spectrum that are not present in the corresponding reference spec-
trum, bands that are present in the reference spectrum, but that cannot be observed in the
spectrum of the unknown, deviation between an identified Raman band position of the
unknown and the reference product and the root-mean-squared (RMS) deviation between
the Raman band position of the reference product and the band position of the unknown.
If not all Raman bands of the unknown product can be assigned to a single reference
product (i.e. the number of unidentified bands greater than 0), an iterative approach can
be used. In that case, combinations of reference products with at least one identified band
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are made (the lists of reference band positions are merged), and this combination is eval-
uated. The algorithm was thoroughly evaluated with different test samples, recorded on
a different spectrometer than the reference spectra. In general, the algorithm is able to
identify the pigments in the sample, even in a mixture. But when some reference products
have a very high number of Raman bands, accidentally they can quite easily give rise to a
certain number of identified bands, masking the presence of a compound with only a lim-
ited number of Raman bands. Also, in mixtures weak bands are not always detected and
the most intense features of a certain reference product may in a mixture only be present
as a band of minor intensity.

In [14] it is talked about the design of a portable spectrometer. For this, use a treatment
of three main stages. Initially, the background has to be removed from the spectrum. The
background of the spectrum is approximated by a first-degree polynomial and then the
background is subtracted from the measured spectrum. The second step of pre-processing
is spectrum smoothing and is performed to reduce its random component and acciden-
tal spikes. A Savitzky and Golay smoothing filter is chosen. Third, the pre-processed
spectrum is parameterized to establish a set of parameters (positions of the spectra peaks,
their relative amplitudes and their widths). To find positions of the spectral lines a deriva-
tive of the spectrum is examined. Chemicals are detected by comparing the registered
spectrum with the reference spectra available in the database. The spectra are compared
by summing up, according to different norms like absolute difference value search, first
derivative absolute value search or least squares search. For a portable device the data
processing time of each algorithm is a very important parameter so they conclude that the
algorithms based on the first derivative of Raman spectra are most efficient for chemicals
detection.
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Chapter 4

Solution Definition

4.1 Resumen

El algoritmo de nuestra propuesta se basa en la comparación de bandas raman. Este
algoritmo tiene dos fases principales, una búsqueda inicial y una búsqueda recursiva.

En la fase inicial se recuperan de las base de datos todos los espectros que tienen una
intensidad relativa igual a 1 con el mismo desplazamiento raman que la banda de mayor
intensidad del espectro problema. A continuación se buscará enlazar el resto de picos del
espectro problema con los del espectro referencia. Una vez se han encontrado todas las
coincidencias posibles entre los espectros, si aún quedan bandas por identificar se pasa a
la fase recursiva.

La fase recursiva renormaliza el espectro en intensidad y busca enlazar con otros es-
pectros referencia los que no se han podido identificar en las fases anteriores. Esto se
repetirá hasta que no queden bandas del espectro problema por identificar o hasta que no
haya candidatos.

4.2 Initial search

The algorithm of our proposal is based on bands comparisons. This algorithm has two
main phases, an initial search and a recursive search. In the two next sections both phases
will be explained.

The algorithm starts retrieving the spectra that have a band that matches with the band
with the maximum intensity in the problem spectrum. If, besides of the band with the
maximum intensity, all the bands of the problem spectrum have matched, the reference
spectrum contains all the bands of the problem spectrum and therefore the problem spec-
trum is a pure material. In the other hand, if after matching all the rest of bands of the
reference spectrum still there is one or more bands of the spectrum problem that have
not been matched, the problem spectrum probably belongs to a mixture of two or more
materials.

From the set of possible candidates, there will be discarded those whose characteristics
bands don’t match with the problem spectrum bands. We define characteristics bands as
the eighty per cent of the number of bands of the reference spectrum that has a normalized

21
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Figure 4.1: Initial search.

intensity greater than eight. This rule is not applicated to spectra of materials that have
less than five raman bands.

The next step is delete from the search those bands that have matched with the ref-
erence spectra, so, after this step, there only will be bands of the problem spectrum that
have not matched.

With this set of not matched bands, a new normalization is made without the intensities
of the matched bands. The aim of this renormalization is make possible new matches. The
reference bands spectra in the database are stored normalized and so, as we have deleted
from the search the bands that belongs to other spectra, without them, the next most
intense peak should have intesity equal to 1 to match it in the database.

Finally, the last step will be pruning of candidates. To save time with large databases,
when there are a big number of candidates we pruning those that don’t have a number of
matches greater or equal than the half of matches of the candidate with the maximum of
matches.

Once the initial phase has finalised, the rest of the bands that not matches are processed
in the recursive phase. One flow chart with a summary of the initial phase is in figure 4.1.

4.3 Recursive search
The recursive search starts retrieving all the spectra that have at least one coincidence
with the not matched bands from the previous phase or iteration. There is a summary flow
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Figure 4.2: Recursive search.

chart in figure 4.2.
When the rest of the not matched bands are matched, the reference spectrum is in-

cluded in the solution as a part of a mixture. But when still there are not matched bands,
a new recursive search is made. Before recursive search, a process similar to the initial
search is done with the remaining bands. First, the candidate spectra may be discarded
if don’t match with the characteristic bands ( the eighty per cent of the bands that has
intensity greater than 0.08). With this rule we avoid non representative matches.

After it, the matched bands are deleted from the next recursive search and like the
previous search, the rest of the spectrum is now renormalized with the same aim. Again
a pruning of results is made to avoid non representative mixtures composed by a high
number of materials. The pruning made is the same than in the initial search.

The recursive search will finish in one of two cases. When all the problem spectrum
bands are identified or when there is not more candidates for the not matched bands.

As a result of this recursive algorithm a tree is created with the reference spectra that
cover all the bands of the problem spectrum. Each tree level may have a set of reference
spectra that match with a diferents sets of bands.

With this algorithm a detailed information is given to the user. For each band of the
problem spectrum, a list of reference spectra is shown to help the user to identify the
material.
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Chapter 5

Experimental Results

5.1 Resumen

Se ha desarrollado una infraestructura tecnológica basada en una base de datos MySQL y
PHP para implementar la propuesta de algoritmo.

Se ha contado con un corpus de unos 2346 espectros raman para probar el algoritmo.
Este corpus se ha obtenido del proyecto RRUFF.

En primer lugar se ha probado el algoritmo de identificación con los espectros del
propio corpus. En todos los casos los espectros han sido identificados, sin embargo en el
21 por ciento de los casos, el número de resultados obtenido ha sido demasiado numeroso.

En segundo lugar se ha comparado el algoritmo propuesto con uno publicado reciente-
mente que también se basa en comparación de bandas raman. Sin embargo este algoritmo
no utiliza la intensidad de las bandas raman. Probando este algoritmo con el mismo cor-
pus, se ha observado que el número de resultados muy numerosos se ha incrementado
hasta el 45 por ciento.

5.2 Experimental Design

For testing the recognition algorithm, has been created an technological infrastructure
based on a web interface. The spectrum database has been mainly developed with MySQL
and the algorithm has been implemented with object-oriented PHP and Java.

With PHP has been implemented the algorithm and all the necessities of management
and treatment of the spectra, like normalization, baseline removal, automatic detection of
raman bands...

With Java has been developed the graphical interface to easily interact with the spectra.
Some examples of this functionalities are visualize Raman bands, plot baselines, make
zoom on the spectra, visualize results...

We have made tests in two different corpus. On the one hand we have a database
created at Unidad Asociada UVa-CSIC a traves del Centro de Astrobiologia [28] that
contains 224 raman spectra of 117 samples, on the other hand, we have used the set of
spectra that the program Crystal Sleuth, developed by the RRUFF project [5], contains to
make identifications.
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But the set of spectra that Crystal Sleuth contains does not have information about ra-
man bands, it only has raw spectra. So, to make possible the utilization of this corpus with
our algorithm, it was necesary process this set of spectra. Therefore we have developed
an automatic process that extracts the information about raman bands in the set of spectra
of Crystal Sleuth.

As this set of spectra has been obtained from the RRUFF database, it has a heteroge-
neous spectra set, so there are spectra with a good ratio signal-noise where it is easy to
automatize the automatic recognition of peaks but also there are a group of noisy spectra
where our automatic process does not work as wanted.

Taking this into mind, from the original set of 2643 spectra have been filtered 297
spectra that have not a good signal-noise ratio. So our corpus has 2346 spectra from 1571
samples.

5.2.1 Testing algorithm with the corpus
For testing our proposed algorithm we have randomly selected 100 spectra from the set of
Crystal Sleuth program which are part of the whole corpus.

For the automated identification process we have used a margin of error of 5 cm−1 for
raman shift and a margin of error of 0.05 over 1 for intensity. With the automatic process
we have evaluated the identifying this set of 100 spectra, getting the following results:

• All of them have been correctly identified. All results lists have the original spec-
trum as a suggestion that matches with the raman bands of the spectrum problem.

• In 55 of the 100 spectra there is only one suggestion to identify the problem spec-
trum . So, in these cases the problem spectrum is identified unequivocally.

• In 21 cases the number of results is too large taking values from 28 to 628 sugges-
tions, so for this cases the result may be unacceptable.

In 5.1 it is shown an example recognition of jarosita in the system with 5 cm−1 of
margin of error for raman shift, 5 percent of error for intensity and 3 times the varianze to
search peaks in the problem spectrum.

In conclusion, this algorithm is able to identify the spectra from the corpus but it seems
reasonable find a way to make more accurate the threshold that decides when a problem
spectrum matches with a reference spectrum.

5.2.2 Comparison between propolsals
As discussed in section 3.5 in [29] is presented an algorithm for the comparison of Raman
band positions. As the algorithm presented in this work, this solution is based in compar-
isons between raman bands , an iterative comparison and a measure to know the similarity
between two spectrums. But between these two proposals there are two main differences:

• Algorithm in [29] evaluates all reference spectra one after the other while the al-
gorithm presented here only evaluates those which have matched with the highest
intensity band and with the derivates that still have matched with the remaining
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Figure 5.1: Example identification of a jarosite spectrum through the developed system.

bands that have not matched with the first reference spectrum. This way of evaluate
the reference spectra searching for matches saves time and is an important issue
when there are more than 2000 spectra, like in the used corpus.

• As the article itself mentions, the main disadvantage of this approach is that the
intensity of the bands is not taken into account. The reason of not using intensities
for looking for matches is that the intensity of a spectrum may change depending
on the spectrometer used. But in the other hand, the intensity is a very powerful
threshold to reduce the number of candidates for a spectrum problem, even more
when there is a big database of reference spectra. To prove it , the same experiment
(5.2.1) than in the previous section has been performed but for this time the raman
bands matches have been searched only taking into account raman shift. The re-
sults are the followings, in figure 5.2 there is a summary with the results of both
experiments:

– Like in the previous experiment, all of them have been correctly identified.
All results lists have the original spectrum as a suggestion that matches with
the raman bands of the spectrum problem.

– None of them has only one suggestion to identify the problem spectrum. The
minimum of suggestions is three.

– In 45 cases the number of results is too large taking values from 26 to 153
suggestions, so for this cases the result may be unacceptable.



28 CHAPTER 5. EXPERIMENTAL RESULTS

With Intensity Without Intensity
Identified 100% 100%
Only one suggestion 55% 0%
Too large results 21 % 45 %

Figure 5.2: Comparison between searching raman bands with and without intensity

Figure 5.3: Mixture of calcite and gypsum.

With this results, make the searches of raman bands with coincidence in intensity
seems necessary when there is a large amount of spectra to compare at least in the first
iteration of the search. The problem of having spectra from different spectrometers and
therefore probably with different intensities of the raman bands can be avoided in part
through normalizing the spectra and with definition of tolerance margins.

5.2.3 Identification of mixtures of compounds
The algorithm proposed here has been developed bearing in mind the possibility of iden-
tify samples compounded of more than one mineral. These mixtures can be compounded
of minerals in different proportion that can modify the absolute intesity of a raman band.
So to achieve identify more than a compound in one spectrum the recursive search was
developped as is described in section 4.3.

In the case of tests made with different real samples of calcite and gypsum with differ-
ent proportions, the algorithm is able to identify both minerals but also gives as a solution
around other sixty spectra. The result of recognition the mixture can be seen in figure 5.3.

Also, with mixtures can occur that with a low proportion of a compound not all raman
bands appear in the spectrum and so the rule used in the algorithm of having at least 80
per cent of number of raman bands can leave out from suggestion the real compound.
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Conclusions and future work

6.1 Resumen

Este trabajo hace un estado del arte de los principales artı́culos sobre identificación de
minerales a través de espectros raman.

Se ha hecho una propuesta de algoritmo de identificación capaz de identificar min-
erales a través de su espectro raman pero que necesita de alguna mejora para reducir el
número de resultados para un espectro problema en un 21 por ciento de los casos. No ob-
stante, lo desarrollado puede ser una potente herramienta para espectroscopistas expertos.

Este trabajo será presentado en el congreso European Planetary Science Congress
2012 en Septiembre de 2012.

Como trabajo futuro se buscará mejorar el algoritmo e incluir en el procesado de los
espectros la eliminación automática de la linea de base de los espectros y la detección
automática de bandas raman.

6.2 Conclusions

This work makes a compilation of some articles related with the identification of different
materials or compounds through its raman spectrum. Also, taking into account the ideas
found in the articles an algorithm has been developped to identify single minerals and
mixtures. Beside the algorithm, an technological infrastructure has been created to test
the algorithm and to help user to processing raman spectra. This algorithm always takes
as a precondition that the baseline has been correctly removed from the problem spectrum
and its raman bands has been correctly plotted.

As the results showed, this algorithm is able to identify minerals through its raman
spectrum but seems necessary make a improvement that makes a more strict threshold
that decreased the number of suggestions in some cases.

Although the algorithm with the technological infrastructure developed can be a pow-
erful tool with a combination of it and some ideas from the articles presented here can
make more reliable and a better usability.

This work will be presented at European Planetary Science Congress 2012 [9] as Ra-
man spectra processing algorithms and database for RLS-ExoMars. The poster also will
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include a study and an proposal of an algorithm to automatic baseline removal and auto-
matic peak detection. It will be presented during the session Planetary in situ measure-
ments

6.3 Future work
• Develop an algorithm to automatic background removal. To do it, the starting point

will be [33].

• Improve algorithm automatic raman bands detection.

• Develop an algorithm and a database for a portable device.

• Develop an online database with mineral identification capabilities.
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