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Abstract
Aim of study: TTo review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area.
Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged 

vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), 
afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area.

Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest 
management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and 
provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain 
gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to 
achieve sustainable management aimed at mitigating climate change.

Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by 
forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as 
regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, 
given that the current high climatic variability together with historical human exploitation and disturbance events make this area more 
vulnerable to the effects of climate change.
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Introduction 

Carbon sequestration in forests, which perform a key 
role as CO2 sinks, can help mitigate the effects of climate 
change. CO2 from the atmosphere is removed by plant 
photosynthesis and stored as carbon in biomass. Hence, 
biomass and soil (from the decomposition of biomass 
from litterfall and rhizodeposition) are the two main 
forest compartments in which carbon is stored. The 
deadwood compartment can account for a high quantity 
of carbon in some forests and should also be considered, 
particularly as biodiversity policies encourage an 
increase in the amount of deadwood. In turn, this would 
result in greater soil carbon sequestration (Magnússon 

et al., 2016), although in the case of managed forests, 
deadwood usually comprises small branches, twigs and 
stumps, with few large logs or snags (Christensen et 
al., 2005).

The world forest carbon stock was estimated to be 
861 Pg C in 2011 (Pan et al., 2011), with soil to a depth 
of 1m being the main pool (44%), followed by biomass 
(42%), deadwood (8%) and litter (5%). The potential 
carbon sink of world forests has been addressed by 
several authors. For example, Pan et al. (2011) reported 
that the gross sink in established forests is 2.4 Pg C/yr 
and that there are tropical land use change emissions 
of 1.3 Pg C/yr, resulting in a net forest sink of 1.1 Pg 
C/yr. Other authors, such as Le Quere et al. (2015) 
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quote a figure of between 2.3 and 3.0 Pg C/yr as the 
net forest sink. Emissions from fossil-fuel combustion 
and industrial processes reached 9.7 Pg C/yr in 2015 
(35.7 Pg CO2/yr) (Olivier et al., 2015), the net effect 
of forests being to remove 11% of the annual CO2 
emissions.

In order to increase this annual sink, forest 
stakeholders (managers, owners, policy makers, etc.) 
should improve management with the aim of expanding 
growth and providing better timber products such as 
building material or substitution of other materials. 
Conservation must also be promoted, reducing 
deforestation and degradation of forest land. This 
needs to be addressed in the short term since the global 
forested area decreased by 3.1% over the period 1990 
to 2015 (FAO, 2015). However the worldwide demand 
for wood is increasing. The quantity of wood harvested 
over the period 2010-2014 has increased from 3.5 to 
3.7·106 m3/yr (FAO, 2016). According to the FAO data, 
the forested area under management plans accounts for 
2100·106 ha (taking into consideration both production 
and conservation functions) and certified forests cover 
438·106 ha. These figures provide important indicators, 
revealing that sustainable forest management is being 
applied and that mitigation and adaptation to global 
change can be considered among the main objectives 
of forestry.

The main forestry strategies aimed at mitigating 
climate change (Dixon et al., 1994; Nabuurs et al., 
2007; Canadell & Raupach, 2008; Bravo et al., 
2008b) are to: (i) maintain the forest area or increase 
it through reforestation; (ii) avoid deforestation and 
degradation; III) to maintain or increase the carbon 
density of existing forests; (iii) encourage the use 
of forest products (mainly wood products, thereby 
improving off-site carbon storage), promoting them as 
alternatives to products with high manufacturing costs, 
and increasing the use of bioenergy to substitute fossil 
fuels. These forestry strategies should be assessed 
within the framework of sustainable forest management 
(Nabuurs et al., 2007). It has been observed that 
unmanaged forests may hold larger amounts of carbon 
than managed forests, depending on site conditions, 
forest structure, development stage, etc. Hence, some 
authors have suggested that old-growth forests should 
be left intact as they continue removing huge amounts 
of carbon from the atmosphere and storing into 
biomass and soil (Luyssaert et al., 2008; Stephenson 
et al., 2014). Harmon & Marks (2002) reported that 
the old-growth forest strategy was best when carbon 
sequestration was the only concern. Nevertheless, this 
strategy is discussed as it presents some disadvantages, 
for example it is known such forests do not fulfill the 
needs of society with regard to the supply of wood 

products. Furthermore, die-off processes in old-growth 
forests would tend to reduce the balance with growth 
or take it towards zero. Carbon sequestration, however, 
is frequently not the only objective that managers must 
consider. They must also take into consideration all the 
possible ecosystem services provided by forest systems, 
from environmental, economic and social perspectives. 
As regards carbon sequestration, more benefits can be 
obtained from managed forests, such as higher forest 
growth rates, lower mortality rates, better provision of 
wood and non-wood forest products, enhanced stand 
health, or decreased risk of forest fire and therefore 
a reduced vulnerability to extreme climatic events. 
Therefore, given the benefits of forest management 
on stand growth and development along with the 
ecosystem services previously mentioned, we consider 
that sustainable forest management provides the most 
appropriate approach to addressing global change. 
Hence, a greater understanding of the impact of forestry 
on the carbon cycle is needed in order to develop and 
improve management strategies to mitigate climate 
change.

Mediterranean areas are characterized by high 
annual climatic variability, with hot, dry summers 
and irregular precipitation. Climate change scenarios 
point to increasing temperatures and changes in the 
precipitation regime in this area (Lindner & Calama, 
2013). Furthermore, forests in the Mediterranean area 
have a long history of human exploitation. These key 
characteristics, together with the frequent occurrence 
of disturbances such as fire or pests, have influenced 
the composition, structure and functioning of these 
forest ecosystems. Hence, in order to maintain the level 
of ecosystem services in this area, forest management 
is required, particularly in the light of reports that 
climate change is causing a reduction in the carbon sink 
capacity of unmanaged Spanish forests due to lower 
water availability (Vayreda et al., 2012).

Data regarding carbon stocks (living biomass, 
deadwood and soil) in this area are therefore essential. 
Due to the lower productivity of Mediterranean systems 
in comparison to other northern- or central-European 
ecosystems, most of the national or regional biomass 
carbon accounting has only recently been conducted, 
mainly for the development of biomass models and 
sampling procedures. Identifying soil carbon stocks 
is crucial, both with regard to mitigating the effects 
of climate change (carbon can be stored in the soil for 
years) and as a source of organic matter (indicator of 
soil quality). Mediterranean soils are characterized by 
variability of soil properties, reduced water holding 
capacity, shallow soil horizons, great amounts of stony 
materials on the soil surface, different soil processes such 
as carbonate loss and high risk of erosion (Rodeghiero 
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et al., 2011). Hence, determining the forest floor (litter) 
and mineral soil organic carbon stocks as well as the 
influence of forest management on soil carbon stocks 
forms a critical part of decision-making processes 
(Jandl et al., 2007; Tonon et al., 2011). Deadwood is 
recognized as an essential component in forest stands, 
particularly with regard to biodiversity conservation 
and ecosystem functioning, and it represents an 
important forest carbon pool (Rondeux et al., 2012). 
Forest inventories provide data to estimate this carbon 
pool (e.g., Harmon & Marks, 2002) and although 
deadwood estimates for Mediterranean forests are 
scarce, the importance of deadwood in carbon storage 
and the influence of forest management have gained 
prominence in recent years (e.g., Lombardi et al., 2008; 
Herrero et al., 2010; Paletto et al., 2014).

The main effects of forest management on carbon 
stocks usually occur in the living biomass compartment 
due to a reduction in stocking density as a consequence 
of harvesting, thinning, regeneration cuttings, etc. 
(D’Amato et al., 2011). Stocking density reduction also 
affects litterfall by decreasing input after cuttings (e.g., 
Roig et al., 2005; Jiménez & Navarro, 2016). In the short-
term, the soil carbon stock (particularly in the forest 
floor, which may receive more litter and deadwood such 
as logging residues from harvesting operations), might 
also be strongly affected by silvicultural operations as a 
result of soil compaction by machinery along with litter 
removal and mixing with the mineral soil. The new 
microclimatic conditions of the soil caused by opening 
of the canopy cover through thinning or regeneration 
cuttings may lead to more light/temperature on the soil 
surface, which may in turn modify the decomposition 
rate of the organic matter (e.g., Montero et al., 1999; 
Roig et al., 2005; Blanco et al., 2011; Bravo-Oviedo et 
al., 2017).

Improving carbon estimation and our understanding 
of the effects of forest management poses important 
challenges but also provides opportunities for forest 
managers to include carbon sequestration among the 
different objectives pursued in the management of large 
areas of forest land.

The main objective of this review was to compile 
the most relevant information with regard to forest 
management strategies aimed at mitigating climate 
change through carbon sequestration, focusing on the 
Mediterranean region. Firstly, we review the effect 
of different management options on carbon storage, 
embracing different forest systems, silviculture, 
afforestation and the impact of disturbances. Finally, 
we discuss the main challenges for research on carbon 
sequestration in Mediterranean forests.

In order to help forest managers in making decisions 
as regards silviculture aimed at carbon sequestration, 

the different management systems commonly employed 
in the Mediterranean region and their implications for 
carbon are presented in the first section. The second part 
addresses the impact of common silvicultural activities 
on soil carbon to determine how carbon stocks could be 
maximized. The effects of major disturbance events in 
the Mediterranean area, which managers should attempt 
to minimize to reduce the risk of carbon loss, are also 
assessed. 

Silviculture system 

Even-aged vs. uneven-aged systems

According to the silvicultural system used, the age 
structure of the resultant stand can vary from even- to 
uneven-aged. Forest stands are frequently managed 
as even-aged stands for economic reasons, with 
timber being the most important product. However, if 
other ecosystem services are considered such as soil 
protection, biodiversity conservation or non-wood forest 
products (cones, mushrooms, berries….), then uneven-
aged stands might sometimes be more appropriate 
(Pukkala et al., 2011; Pukkala, 2016). As regards carbon 
sequestration, uneven-aged systems may be the better 
alternative and should be taken into consideration. The 
main advantage of uneven-aged stands with regard to 
carbon stocks is that tree cover and therefore continuous 
litter input is always present, ensuring permanent soil 
and watershed protection, whereas in even-aged stands 
there will be periods with no soil cover or only partial 
soil cover, which could lead to carbon losses. Long-
term studies have reported that uneven-aged forests 
may present higher carbon stocks than even-aged 
forests (e.g., Powers et al., 2011; Nilsen & Strand, 2013; 
Puhlick et al., 2016). Model simulations also support 
these assertions. In stand simulations in Austria, Seidl 
et al. (2008) concluded that uneven-aged structures 
have significant potential to increase carbon storage 
and achieve multiple management objectives. Taylor 
et al. (2008), through a simulation which compared the 
management effects of clear-fellings and partial-felling 
systems in Canada, also found that total ecosystem 
carbon increased in uneven-aged stands. Similarly, 
based on simulations for northeastern USA, Nunery 
& Keeton (2010) reported the same pattern, indicating 
that carbon sequestration was greater in uneven-aged 
systems. Higher soil carbon stocks were also found by 
Jonard et al. (2017) in uneven-aged stands in France. 
When other management objectives (e.g., timber, berries 
and carbon) were considered in the simulation, Pukkala 
et al.(2011) found that uneven-aged management was 
more profitable than even-aged plantation forestry 
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in Finland. This general trend, pointing to greater 
carbon stocks in uneven-aged structures, has also been 
reported for Mediterranean environments. Río et al. 
(2017), in a simulation for Stone pine stands in Spain 
observed that an uneven-aged structure favors the joint 
production of cones and timber, resulting in a higher 
carbon sequestration rate while maintaining a minimum 
carbon stock on-site, which is never extracted from the 
forest. This uneven-aged structure implies greater soil 
protection along with other advantages of particular 
relevance in Mediterranean systems. Although more 
complex structures, such as uneven-aged stands, may 
be more appropriate in terms of carbon sequestration, 
the risk of disturbances should also be taken into 
consideration (Jactel et al., 2009). In this regard, 
uneven-aged structures can be more susceptible to 
fire, facilitating the transition from surface to crown 
due to the vertical continuity of fuel associated with 
these structures. González et al. (2007) reported that 
the degree of expected fire damage is lower in mature 
even-aged stands in comparison to uneven-aged stands 
or young even-aged stands. However, more research 
is required to confirm such differences between stand 
structures in terms of carbon sequestration, particularly 
as most of the examples mentioned above were 
obtained through forest modeling. Our understanding 
of the effects of structure is still limited in the case of 
Mediterranean areas.

Coppice systems

Although the coppice system was widely employed 
until the middle of the last century due to the demand 
for firewood and charcoal in Europe, the importance of 
this system began to decrease over the second half of 
the century. By the beginning of the XXI century, most 
coppice stands were no longer managed (Serrada et al., 
1992; Buckley & Mills, 2015). Today, coppice stands 
are again gaining prominence due to their potential role 
in the production of bioenergy, which is currently being 
promoted as part of a strategy to reduce emissions from 
fossil fuels, as well as the increasing revenues from 
firewood. The production of high quality wood can 
also be a valuable output in the case of species suited 
to coppice systems (ash, chestnut, oaks…). However, 
these systems could be enhanced through management 
aimed at achieving higher carbon sequestration rates 
while maintaining the provision of ecosystem services.

Coppice stands account for a large area. In the 
Mediterranean area of Europe, coppice stands cover 
more than 15·106 ha (Bravo-Fernández et al., 2008; 
Stajic et al., 2009), with more than 3.5·106 ha in 
Italy (INFC, 2005) and more than 2.2·106 ha in Spain 
(Bravo-Fernández et al., 2008). However, due to lack 

of management, coppice forests currently present 
the following problems of vitality and stability, as 
described by Bravo-Fernández et al. (2008): (i) The 
age of these forests tends to be greater than the length 
of their rotation period, hence, older stools may have 
lost their regeneration ability, (ii) sexual regeneration 
is scarce, (iii) stocking density is often excessive and 
competition is intense, leading to reduced vitality, a 
large accumulation of biomass and therefore a high risk 
of forest fire. According to these authors, strategies that 
should be considered in order to recover these coppice 
forests include conversion to high forest, conversion 
to coppice with standards, or maintenance of the 
present coppice system. Appropriate strategies are 
important not only as regards the conservation of these 
forests but also to improve the provision of ecosystem 
services, including fuelwood production for bioenergy 
purposes (Chatziphilippidis & Spyroglou, 2004; Bravo-
Fernández et al., 2008; Cotillas et al., 2016; Mairota et 
al., 2016).

The soil carbon pool has been identified as the 
main compartment in these coppice systems (Gallardo 
Lancho & González, 2004a,b; Makineci et al., 2015), 
with high potential for carbon sequestration (Turrión 
et al., 2009). However, the biomass carbon sink is also 
relevant, as has been evidenced in studies conducted in 
the Mediterranean region (e.g., Montero et al., 2004; 
Cañellas et al., 2008; Cotillas et al., 2016). Hence, in the 
Mediterranean area, coppice management for biomass 
production using medium rotation periods could 
also provide an important source of raw material for 
bioenergy purposes, providing an alternative to fossil 
fuels and therefore reducing the emissions associated 
with the latter (Cañellas et al., 2004; Laina et al., 2013; 
Spinelli et al., 2014).

Agroforestry systems

In areas where natural pastures and shrub formations 
are important for livestock or for hunting, in which 
trees are scarce or have completely disappeared due 
to either natural disturbance such as fires or human 
activities, conversion to agroforestry systems by 
incorporating trees into the landscape could help to 
maintain the current land uses and also improve the 
functioning of the ecosystem. This strategy could also 
be employed on agricultural land, where trees could 
be used as windbreaks, buffers or for shade provision 
(Nair et al., 2010). Soil fertility will be improved as a 
result of the increase in soil organic matter by litterfall 
and rhizodeposition in agroforestry systems and the 
employment of this strategy will also contribute to 
reducing soil erosion and improve water quality (Buresh 
& Tian, 1998; Moreno et al., 2007; Jose, 2009). This 
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positive effect would be greater if N-fixing tree species 
were used. This kind of restoration could be important in 
dry areas, where trees can also be a source of fuelwood, 
fodder, fruits and/or other non-wood forest products. 
Carbon stocks would be higher in agroforestry systems 
in comparison to traditional management systems 
without tree species as a consequence of tree biomass 
growth and the resultant effect on the soil (Jose, 2009; 
Jose & Bardhan, 2012). The carbon sequestration rate 
in this system will depend on the species composition, 
age of the component species, geographic location, 
environmental factors and management practices 
adopted (Nerlich et al., 2013) as well as on the soil 
type and legacy effect of historical management.

In the south of Europe, agroforestry systems offer 
great potential for carbon sequestration given the large 
area covered by these systems in the Iberian peninsula, 
covering more than 5.5·106 ha (Marañón, 1988). The 
restoration and management of the tree and shrub 
layers in these systems will also have a substantial 
effect on soils. Studies focusing on soil carbon stock 
distribution (Howlett et al., 2011a,b; Simón et al., 
2013), land management (Pulido-Fernández et al., 
2013; Seddaiu et al., 2013, López-Díaz et al., 2017), 
fine root distribution (Moreno et al., 2005) or shrub 
biomass (Castro & Freitas, 2009; Ruiz-Peinado et 
al., 2013b) could help forest managers to maximize 
carbon sequestration, avoid degradation and guarantee 
sustainability.

Shrub layer importance

Shrublands account for a large part of forest land 
throughout the world, around 22.7·106 km2 in total 
(Friedl et al., 2010). In 1981, shrublands covered 
more than 450,000 km2 in the Mediterranean basin 
(Di Castri, 1981). This area may now be greater as 
pastures, abandoned agricultural land and open forests 
are increasingly being encroached by woody species. 
Several factors have contributed to this situation, 
ranging from climate change to anthropogenic factors 
related to land management or disturbances (e.g., Van 
Auken, 2000; Eldridge et al., 2011) such as those 
associated with the reduction of agricultural cultivation 
on marginal land; the decrease in forest livestock; the 
effect of recurrent forest fires; and in some instances, 
as a consequence of forest management. The effect 
of the encroachment of woody species is positive in 
terms of carbon sequestration due to the increase in 
soil organic carbon as well as aboveground biomass 
(Maestre et al., 2009; Eldridge et al., 2011; Li et al., 
2016). Among other positive effects of shrub cover 
is the role of shrubs as nurse plants (facilitation) for 
the establishment of tree regeneration. In this regard 

they help reduce abiotic and biotic stress during the 
seedling stages (Castro et al., 2002; Gómez-Aparicio 
et al., 2004). However, dense shrub layers can hamper 
the regeneration process due to competition which 
can interfere with seedling development. Shrub 
clearing (particularly strip clearing) can be applied 
in Mediterranean areas to provide space for tree 
regeneration, either natural or human-induced, in 
semiarid ecosystems (Pérez-Devesa et al., 2008). This 
operation also serves to reduce forest fire risk or to 
improve pastures for livestock, although a certain level 
of shrub cover, which may be beneficial to improve 
pasture productivity (López-Díaz et al., 2015) is 
retained. Shrubland management aimed at facilitating 
tree establishment and stand development, even where 
tree stocking density is low, can lead to increased 
carbon stock. This is due to the higher tree biomass 
growth and litter inputs to soil from litterfall and 
rhizodeposition, as well as to soil protection by tree 
canopies. In fact, the soil carbon stock under the adult 
tree canopy can be double that of areas with lower tree 
incidence (Howlett et al., 2011a; Rossetti et al., 2015).

The carbon stock associated with shrubs is 
frequently neglected, even though it could play 
an important role as a carbon sink (Daryanto et al., 
2013). An increasing amount of research in recent 
years has been focused on estimating the carbon 
stocks in Mediterranean shrublands, mainly through 
the development of estimation tools (e.g., Navarro & 
Blanco, 2006; Corona et al., 2012; Ruiz-Peinado et 
al., 2013b; Botequim et al., 2014; Pasalodos-Tato et 
al., 2015). The importance of shrub layer will depend 
on the ecosystem considered, the shrub species and 
tree density among other factors. For example, in a 
Pinus sylvestris L. stand in Central Spain, the mean 
shrub carbon stock was between 1-2% of the total 
aboveground carbon biomass (García del Barrio, 
2000). However, in open woodlands of Quercus ilex 
L. (dehesas in western Spain), because of the lesser 
magnitude of the tree layer, the contribution of the 
shrub layer to the total biomass carbon stock ranges 
from 20% to 29% (Ruiz-Peinado et al., 2013b).

In Spain, shrublands account for 11·106 ha of 
forest area, more than 7.8·106 ha of which is either 
treeless or with a scattering of trees (San Miguel et 
al., 2008). National carbon estimations for Spanish 
shrublands have been conducted by Montero et al. 
(2016) using models for different shrub associations 
(Pasalodos-Tato et al., 2015). The results suggest that 
aboveground shrub biomass accounts for more than 91 
Tg C. This figure represents 8.2% of the tree carbon 
stock in Spanish forests (Montero & Serrada, 2013), 
highlighting the importance of including shrubland in 
carbon accounts. The shrub layer in the Mediterranean 
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area is also highly important with regard to soil 
conservation which, in turn, is also vital to carbon 
sequestration and to the nutrient cycle, thereby 
improving the sink capacity of the system.

Silvicultural options

Thinning

Although thinning will result in lower carbon storage 
on-site in comparison with unthinned stands due to 
a reduction in the number of trees and therefore the 
litterfall input, thinning is essential to achieve certain 
forest management objectives, particularly as regards 
controlling species composition, improving the health 
of the stand and obtaining production in the early 
stages. Furthermore, thinning leads to increased tree 
size and therefore value of future products (Río, 1999). 
When harvested products (off-site carbon) are taken 
into account, the total carbon stock of thinned stands 
is greater or at least similar to that of unthinned stands, 
with the economic advantage that some of the carbon 
is stored outside the forest as wood products. It could 
also be an appropriate strategy in areas where there is 

significant risk of forest disturbances (fire, pests and 
diseases, windstorms, droughts, etc.). Moreover, carbon 
stocks under heavier thinning regimes have been found 
to be similar to those of lighter regimes (Powers et al., 
2011; Ruiz-Peinado et al., 2013a; 2016; Bravo-Oviedo 
et al., 2015). From a management perspective, this 
implies greater flexibility, allowing the forest manager 
to put greater emphasis on other environmental services. 
In the Mediterranean area of Spain, using inventory 
data from long term experimental plots belonging to 
the Spanish Forest Research Center (INIA-CIFOR) and 
biomass equations for P. sylvestris (Ruiz-Peinado et al., 
2011), it was concluded that lightly-thinned stands had 
higher on-site carbon biomass stocks (151 Mg C/ha) 
than either unthinned stands (145 Mg C/ha) or heavily 
thinned stands (116 Mg C/ha) (Fig. 1). When the off-
site carbon stock (harvested biomass) is included in 
this balance, managed stands always present higher 
accumulated carbon stocks. Lightly- thinned stands 
reached 181 Mg C/ha, heavily thinned stands 174 Mg 
C/ha while unthinned stands were found to have 161 
Mg C/ha. The loss of production in heavily thinned 
P. sylvestris in comparison with lightly thinned stands 
has previously been reported across Europe, both in 
terms of volume production (e.g., Mäkinen & Isomäki, 

Species (stand 
origin)

Thinning 
grade[1] Stand age

Biomass Soil[2] C 
off-site Total C stock

Reference
(Mg C/ha)

Picea abies 
(planted)

Unthinned 58 185.2   87.9 nc 273.1 Skovsgaard et 
al. (2006)Thinning B 161.1   91.1 nc 252.2

Thinning C 135.1   89.3 nc 224.4

Thinning D   94.7   90.1 nc 184.8

Picea abies 
(planted)

N2070 50 112.6    114.2[3] nc 226.8 Nilsen & Strand 
(2008)N1100   90.4    118.4[3] nc 208.8

N820   86.6    108.8[3] nc 195.4

Pinus pinaster 
(planted)

Unthinned 59  196.9 120.5   6.7  324.1 Ruiz-Peinado et 
al. (2013a)Thinning D 139.3 117.2 56.2 312.7

Thinning E 126.8 107.6 68.5 302.9

Pinus sylvestris 
(planted)

Unthinned 52 206.8 105.6   3.1 315.5 Ruiz-Peinado et 
al. (2016)Thinning D 164.0 106.6 33.7 304.3

Thinning E 148.8 102.1 43.9 294.8

Pinus sylvestris 
(natural)

Unthinned 90  129.2 149.1 19.4 297.7 Bravo-Oviedo et 
al. (2015)Thinning C 106.0 135.6 36.6 284.2

Thinning D   93.3 153.2 48.2 301.8

Table 1. Effect of thinning on carbon sequestration based on several long-term studies.

[1] Thinning grade intensities are explained in each reference. [2] Soil: Forest floor+ Mineral soil 0-30 cm.[3] Soil carbon stock until a 1-m 
depth. nc: off-site carbon stock was not reported by the authors
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2004; Río et al., 2008b) and of carbon stocks in the 
Mediterranean region (Bravo-Oviedo et al., 2015; Ruiz-
Peinado et al., 2016).

Although addressing carbon sequestration issues was 
not envisaged when the long-term experiments were 
established, these trials contribute valuable information 
in terms of identifying trends, providing pertinent 
information for planning purposes (Table 1).

Regarding the distribution of carbon in different 
forest compartments, empirical studies focused on 
thinning and conducted in the Mediterranean area for 
Pinus pinaster Ait. (Ruiz-Peinado et al., 2013a) and 
P. sylvestris stands (Bravo-Oviedo et al., 2015; Ruiz-
Peinado et al., 2016) found that on-site biomass carbon 
stocks were higher in unmanaged stands and decreased 
as the thinning intensity increased. The amount of 
deadwood was higher in unmanaged forests when a 
whole-tree harvesting method was applied and was 
lower when stem-only harvesting was used. Forest floor 
carbon stocks generally showed a decreasing trend as 
the thinning intensity increased, although differences 
were not statistically significant. These authors also 
found no differences between thinning intensities as 
regards the mineral soil carbon stock.

Besides the thinning intensity, the type of thinning 
also affects the carbon sequestration rates and mean 
residence time of the products. Thinning from below 
presented the highest carbon sequestration rate, while 
mixed thinning and thinning from above resulted in 
lower carbon storage rates than in unthinned stands 
(Hoover & Stout, 2007; D’Amato et al., 2011). 
However, the products obtained using the latter type of 
thinning presented the longest lifespan (long-lived wood 
products) due to the greater dimensions of the wood 

harvested in the intermediate cuttings. Nevertheless, 
the products obtained at the final harvest might be of 
smaller size than those obtained where thinning from 
below is employed, which could affect the lifespan of 
the product and the substitution effect (avoiding carbon 
fossil fuel emissions). Hence, thinning regimes and 
product lifespan should be taken into account in order 
to determine the most suitable forest management for 
carbon sequestration (Perez-García et al., 2007; Fortin 
et al., 2012; Prada et al., 2016).

Simulation of thinning regimes has been developed 
to evaluate carbon sequestration in the biomass 
compartment. Garcia-Gonzalo et al. (2007), using 
a modeling approach, found that an increase in the 
thinning intensity also led to an increase in the total 
carbon stock, the pattern being similar for the different 
species considered. Scenarios in which no thinning 
was performed always showed the highest amounts of 
carbon as the carbon stock was mainly in the standing 
tree biomass. However, the lack of intermediate cuttings 
resulted in a temporary absence of wood products. Río et 
al. (2008a), using a growth model to compare different 
thinning regimes (simulations), found that in the case 
of Mediterranean maritime pine (P. pinaster) in central 
Spain (rotation period of 80 years), the best carbon 
sequestration strategy was to adopt an early (20 years), 
heavy thinning regime. However the opposite tendency 
has also been reported. For example, Balboa-Murias et 
al. (2006) found the highest biomass stocks under light 
thinning regimes (rotation period 30 years) in the case 
of maritime pine plantations on the Atlantic coast of 
Spain when the harvested wood is used for chipboard 
or panelboard. Coletta et al. (2016) also observed that 
for Douglas-fir plantations in Italy, a selective light 
thinning regime was the best treatment (rotation period 
30 years) in terms of biomass carbon stock, without 
taking into account the harvested biomass. Under 
other simulations for P. pinaster in Spain (rotation 
period of 80 years), using a hybrid modeling approach 
with different climate predictions, Río et al. (2017) 
obtained the same pattern (heavy thinning regime) for 
the reference climate (current mean climate) as well 
as under a climate change scenario (+ 1.1 ºC annual 
temperature and -2% annual precipitation).

If the productivity of the stand is not very high, 
as is often the case in Mediterranean areas, timber 
production may not be the main management 
objective of the stand. Although thinning should be 
performed in order to improve stand conditions (fire 
risk reduction, avoiding growth stagnation, etc.), 
thinning may also be appropriate where biomass is 
grown for bioenergy purposes since the use of biomass 
in energy production would lead to a reduction in 
fossil fuel emissions.

Figure 1. Effect of forest management on live biomass 
carbon stock in low quality sites of Pinus sylvestris 
stands in Central Spain for different thinning regimes.
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Carbon losses in forests resulting from episodes of 
extreme heat and drought have been widely documented. 
The severe heat and drought that occurred in Europe 
in 2003 led to a 30% reduction in gross primary 
productivity and net carbon source of 0.5 Pg C/yr (Ciais 
et al., 2005). The same pattern was reported for drought 
episodes in the Amazon region in 2005 and 2010 
(Phillips et al., 2009; Feldpausch et al., 2016). These 
carbon losses reflect a decline in tree growth, reduction 
in net primary production and tree mortality (Ma et 
al., 2012). Thinning to increase drought tolerance is 
considered a short-term adaptation strategy in the face 
of climate change, as stocking reduction will lead to 
increased soil water availability per tree in comparison 
to unthinned stands (D’Amato et al., 2013; Bradford & 
Bell, 2017). As thinning from below will focus growth 
on the stronger, remaining trees, mortality will decrease 
and carbon stocks will be maintained and/or increase. 
Sohn et al. (2016) in a meta-analysis reported that 
thinned stands maintained higher growth levels before, 
during and after drought events and that the benefits 
increased with thinning intensity. These authors also 
reported that the benefits of thinning decreased with 
time the elapsed since the treatment was performed. 
These important findings are supported by recent 
studies in Mediterranean areas in which authors report 
that thinning enhances drought tolerance, with thinned 
stands showing higher growth than unthinned stands 
(Fernández-de-Uña et al., 2015; Aldea et al., 2017). 
The results obtained by Ruiz-Benito et al. (2013) also 
point to thinning as a suitable climate change adaptation 
strategy, leading to lower tree mortality. The trade-offs 
between mitigation and adaptation could be of particular 
importance in Mediterranean areas. For example, heavy 
thinning leads to greater water availability per tree but 
could reduce carbon sequestration rates. Conversely, 
light thinning maintains high carbon stocks in-situ but 
may increase their vulnerability in areas with high risk 
of disturbance (D’Amato et al., 2011).

Rotation period

Extending the rotation period has been identified as 
a suitable management approach with regard to carbon 
storage both for tree biomass and soil carbon (Liski 
et al., 2001; Bravo et al., 2008a; Sohngen & Brown, 
2008; Roberge et al., 2016). Optimal rotations have 
traditionally been defined by economic objectives, 
subject to temporal burdens, neglecting the potential that 
mature stands still possess in terms of tree growth. Litter 
production could also be greater beyond the rotation 
period, which would have a positive influence on the 
soil carbon stock. Furthermore, the products obtained 
using a longer rotation would be of larger dimensions; 

hence, carbon could be stored in manufactured products 
with a longer lifespan. However, if the rotation period 
were prolonged excessively, the decrease in net primary 
production, along with an increase in the mortality rate, 
could offset the abovementioned beneficial effects. 
Another risk associated with a longer rotation period 
is that timber rot may attack certain trees, such as the 
Mediterranean species Phellinus pini (Brot.) Bondartsev 
and Singer attacks Pinus pinea L. (García-Güemes & 
Montero, 1998), leading to a loss in the value of the 
wood. Certain net carbon effects cited in the literature 
are presented in Table 2.

Longer rotation lengths have been simulated 
using models such as CO2fix (Nabuurs & Schelhass, 
2002; Masera et al., 2003), which have pointed to 
the effectiveness of this strategy in achieving higher 
amounts of carbon (e.g., Kaipainen et al., 2004; 
Kaul et al., 2010; Nizami et al., 2014; Prada et al., 
2016). However, the existing literature on this subject 
contains scarce real examples of extended rotation 
periods, which would be necessary to confirm the 
model predictions. For example, Moreno-Fernández 
et al. (2015) studied a chronosequence in two Scots 
pine stands in a Mediterranean mountain area where 
regeneration is achieved using the shelterwood system. 
Thinning intensities were similar between stands, but 
there were distinct rotations periods due to differences 
in the regeneration system (for more details see the cited 
paper). One of the main conclusions of the authors was 
that longer rotation periods were more advantageous as 
regards carbon sequestration. In addition, they highlight 
the role of longer rotation periods to improve structural 
biodiversity, achieve natural regeneration and lower the 
susceptibility to drought.

Shorter rotation periods could also be considered 
which approximate the age of the maximum mean annual 
increment in order to maximize biomass productivity 
and biomass carbon sequestration. However, longer 
rotations yielded a higher proportion of stem carbon 
storage (Bravo et al., 2008a, 2017; Tonon et al., 2011). 
Thus, wood products with longer lifespans may result 
from longer rotations, which is of particular importance 
for off-site carbon storage.

Species composition

Silvicultural techniques could be used to convert 
existing stands to more suitable stand compositions, 
which may imply changing the main species or mixtures 
as a strategy to increase carbon sequestration as well as 
to mitigate and adapt to the effects of global change. In 
the same way, forest managers can also select the most 
appropriate combination of species in plantations with 
this objective in mind.
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Few studies have focused on the importance of 
the species admixture in carbon sequestration (e.g., 
Gamfeldt et al., 2013; Ruiz-Benito et al., 2014), although 
some have addressed the increase in stand productivity 
in mixed stands (e.g., Forrester et al., 2006; Pretzsch et 
al., 2013, 2015; Liang et al., 2016). Therefore, we might 
hypothesize that the carbon stock in living biomass in 
mixed stands of complementary species will also be 
higher than in monocultures. Higher productivity in 
mixed stands as opposed to monospecific stands has 
also been reported for Mediterranean forests (e.g., Río 
& Sterba, 2009; Nunes et al., 2013; Riofrío et al., 2017), 
although it is important to state that the effect of mixing 
on productivity varies with stand development stage, 
stand density and site conditions (Forrester, 2014). 
A less known effect of mixing, which is important to 
consider in the context of carbon sequestration, is its 
effect on wood quality (Pretzsch & Rais, 2016), which 
can have a significant influence on the lifespan of off-
site carbon stocks.

Tree species richness has an impact on soil carbon 
stock through litter quality, nitrogen fixation and rooting 
pattern, as well as on the water balance, soil microclimate 
and nutrient availability (Böttcher & Lindner, 2010). 
Gamfeldt et al. (2013) concluded that soil carbon 
storage in organic soil (forest floor) increased with tree 
species richness. The results of a study by Dawud et al. 
(2016) revealed that forests with greater diversity had 
higher soil carbon stocks in samples taken from deeper 
layers (from 20 to 40 cm depth), which may be related 
to the stratification of roots of different tree species 
(niche complementarity).

A review of the existing literature suggests that the 
impact on forest floor or mineral soil depends on the 
identity of the species, species richness and typology 
of the admixture. Díaz-Pinés et al. (2011) observed that 
forest floor in Mediterranean mixed stands of Scots 
pine and Pyrenean oak (Quercus pyrenaica Willd.) 
presented intermediate soil carbon stocks between pure 
pine (highest) and pure oak stands (lowest). However, 

Table 2. Effects of extending the rotation period in different species.

Reference Species Extending length period proposed 
(rotation period)

Long-term effect
(% C/ha or Mg C/ha)

Liski et al. (2001) coniferous
Pinus sylvestris
Picea abies

+ 30 years
(from 90 to 120 in Finland)
(from 90 to 120 in Finland)

Total C increases
Total C decreases

Kaipainen et al. (2004) pine
Pinus sylvestris

Pinus pinaster

+ 20 years
(from 90 to 110 in Finland)
(from 120 to 140 in Germany)
(from 100 to 120 in Spain)
(from 80 to 100)

+ 6-13% C/ha

Kaipainen et al. (2004) spruce
Picea abies

Picea sitchensis

+ 20 years
(from 90 to 110 in Finland)
(from 100 to 120 in Germany)
(from 40 to 60 in UK)

+ 14-37% C/ha

Bravo et al. (2008a)
Pinus sylvestris

Pinus pinaster

+ ~40-50 years
(from 70-80 to 120-140 in Spain)
+ ~50 years
(from 80-100 to 130-150 in 
Spain)

+ 13-42% C/ha
+ 22-28% C/ha

González-Benecke et al. 
(2010)

Pinus elliotti + 13 years
(from 22 to 35 in USA)

+ 21-28 Mg C/ha

Kaul et al. (2010) Shorea robusta + 30 years
(from 120 to 150 in India)

+ 18% C/ha

Nizami et al. (2014) Hevea brasilensis + 5 years
(from 35 to 40 in China)

González-Benecke et al. 
(2015)

Pinus pallustris + 25 years
(from 75 to 100 in USA)

+ 10 Mg C/ha

Prada et al. (2016) Castanea sativa + 20 years
(from 40 to 60 in Spain)

+ 10% C/ha
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as regards mineral soil, they found no differences 
between pinewoods and mixtures (oak stands had lower 
carbon stocks). González-González et al. (2012) found 
that mixtures with Q. ilex (Holm oak) in Spain showed 
lower soil carbon stocks than pure stands, although the 
differences were not statistically significant. Cavard 
et al. (2010) found that the mixture effect can be 
unfavorable when two species are mixed in a highly 
competitive environment (competing at the same level 
for the light, water and nutrient resources) in the absence 
of complementarity. Forrester et al. (2013) found that 
soil organic carbon in mixed plantations of Eucalyptus 
and N-fixing Acacia in Australia was higher than in pure 
plantations due to the increase in productivity resulting 
from the inclusion of the latter species.

Harvesting operations

Harvesting operations modify the stand conditions 
since biomass, and therefore stored carbon, is removed 
from the forest. During these processes, the soil is 
also affected as the forest floor and mineral top layer 
may be mixed by the machinery used in harvesting. 
Compaction processes could also affect the mineral 
soil depending on the harvesting intensity and the 
type of machinery employed (e.g., Ampoorter et al., 
2012; Cambi et al., 2015). Tree cover reduction and 
the effects of harvesting on the soil could lead to 
soil erosion. As previously mentioned, decreasing 
tree cover will reduce litterfall, although there may 
be an accumulation of logging residue at the time of 
harvesting. The soil microclimate will also be affected 
as more radiation reaches the soil, photodegradation 
being one of the main drivers of litter decomposition 
and leading to a possible increase in soil temperature 
and reduced moisture. In turn, these effects could 
have a notable influence on the decomposition 
rate of organic matter, with an intensification of 
decomposition in moist climates (Son et al., 2004; 
Kunhamu et al., 2009) although the opposite could 
occur in drier climates (Blanco et al., 2011; Lado-
Monserrat et al., 2015; Bravo-Oviedo et al., 2017). 
All these processes can modify soil carbon content 
and this can be especially significant in the case of the 
forest floor. The meta-analysis conducted by Nave et 
al. (2010) found that harvesting (in general) involves 
a small reduction (-8%) in total soil carbon stock. But 
the effects were different depending on the considered 
compartment: a considerable reduction was found for 
the forest floor carbon stock (-30%) and no significant 
effects were reported for mineral soil carbon stock. 
The same general tendency was reported by James 
& Harrison (2016) with a mean soil carbon stock 
reduction of 14.4%.

Harvesting methods influence the soil carbon stock 
in several ways depending on the residue management 
approach employed. Johnson & Curtis (2001) reported 
that whole-tree harvesting resulted in slight decreases in 
soil organic carbon stock (-6%) while sawlog harvesting 
increases (18%) the soil carbon stock in the A horizon. 
Achat et al. (2015) stated that conventional harvesting 
of tree stems (sawlog) reduced the forest floor carbon 
stock by 22% in comparison to unharvested stands, but 
no effects were found in the mineral soil organic carbon 
stock. When intensive harvesting was considered 
(whole-tree harvesting), the forest floor carbon stock 
was reduced by 37% and mineral soil carbon stock was 
mainly affected in the deeper layers (-7%).

Some of the abovementioned processes in forest 
soils will vary according to the climate. Hence, specific 
studies focusing on Mediterranean areas are required to 
determine the impact of harvesting on carbon stocks. 
Such studies could help to enhance our understanding 
of the carbon and nutrient cycle in these areas and allow 
policy makers to develop sustainable management 
policies (e.g., Blanco et al., 2005; Merino et al., 2008; 
Ruiz-Peinado et al., 2013a; 2016; Bravo-Oviedo et al., 
2015). Special care must be taken under fast-growing 
species with intensive harvesting as productivity could 
be negatively affected in the long term (Merino et al., 
1998; 2005; Edeso et al., 1999; Gartzia-Bengoetxea et 
al., 2009).

Fires

Two main types of forest fires exist: wildfires and 
prescribed or controlled burnings (Certini, 2005). 
According to this author, wildfires are very severe fires 
with low recurrence and which affect all fuel loads. 
Prescribed burnings are low severity, standard operations 
to decrease fuel levels and which can be applied with 
high frequency. These prescribed burnings affect mainly 
forest floor or slash, with the main objective of reducing 
the extent and severity of wildfires. 

In the Mediterranean area, wildfires are the most 
important disturbance agents and fire risk has to be taken 
into account in forest management. Hence, prescribed 
fires could be used to reduce wildfire risk by decreasing 
fuel load. In this area, many species show adaptation 
strategies to the fire regime in order to increase their 
resilience to this disturbance: resprouting, serotiny, fire-
stimulated germination, enhanced flammability, thick 
bark, etc. (e.g., Keely et al., 2011; Pausas, 2015).

Wildfires

Although the most evident impact of wildfires 
on forest carbon stocks is the total or partial loss of 
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aboveground biomass, in terms of long-term carbon 
sequestration in stable compartments, litter and soil 
organic carbon are severely affected by fires. The 
overall effect of wildfires on soil organic carbon 
stock depends on factors such as fire intensity (energy 
release), severity (impact on ecosystem components) 
and soil characteristics (porosity, moisture, etc.). In this 
regard, Johnson & Curtis (2001) reported no significant 
overall impact of fires in A horizons or whole soils. 
They also found that there was an increase in soil 
carbon stocks where fires had occurred more than 10 
years previously, which could reflect the incorporation 
of unburnt residues; the transformation of fresh 
materials to more recalcitrant forms; the emergence of 
N-fixing species that enhance soil carbon sequestration 
or a decline in the mineralization rate (Certini, 2005). 
In contrast, a meta-analysis by Nave et al. (2011) 
found that wildfires in temperate forests led to a mean 
reduction in soil carbon stock of 35% and it was 
estimated that the recovery period could be between 
100 and 130 years. These authors also observed that the 
impact of fire on soil carbon stock differs according to 
the soil layer considered, with a carbon stock reduction 
of 59% in the forest floor and no significant decline in 
the mineral soil.

In the case of Mediterranean ecosystems, Caon et al. 
(2014) stated that, as a general pattern, the forest floor 
carbon stock was reduced after wildfire and the mineral 
soil carbon stock declined in the short-term as well as 

long-term. The severe impact of fire on the forest floor is 
clearly the result of almost all the fresh litterfall material 
being burned. However, as regards the first layer of 
mineral soil, some studies have reported higher carbon 
stocks in burned areas in comparison to unburned areas, 
although differences are often not significant (Certini 
et al., 2011; Santana et al., 2016). Different impacts 
of wildfires as regards forest floor and mineral soil 
concentration and stock are shown in Table 3.

To maintain or recover soil carbon stocks, forestry 
strategies should firstly focus on minimizing the risk of 
wildfire and secondly, if a wildfire has already occurred, 
on restoring the forest cover in order to maintain and 
recover soil carbon stocks. In Mediterranean areas, 
carbon loss from mineral soil could be severe in the 
post-fire period due to soil erosion as the tree layer and 
forest floor could be greatly reduced (Novara et al., 
2011; Caon et al., 2014).

Forest managers must take into account the 
wildfire risk, bearing in mind that the fire regime in 
the Mediterranean Basin has changed over the last 50 
years with an increase in frequency and especially in 
size (Pausas & Fernández-Muñoz, 2012). Therefore, 
fire-smart forest management could involve changes to 
rotation lengths as well as to the timings and intensity 
of thinning treatments (González-Olabarría et al., 2008; 
García-Gonzalo et al., 2014) together with the removal 
of surface fuels through prescribed burning or the use 
of mechanical tools. 

Table 3. Tendencies in soil carbon stock and content in Mediterranean forests and shrublands after fire.

Fire type Reference
Forest floor Mineral soil Mineral soil

C stock C stock C concentration
Wildfires Hernández et al. (1997) ↓

González-Pérez et al. (2004) ↑
Tinoco et al. (2006) ↓
Certini et al. (2011) ↓ NE (↑) NE
Vergnoux et al. (2011) NE (↓)
Rovira et al. (2012) ↓
Badía et al. (2014) NE (long-term)
Caon et al. (2014) ↓ (long-term)
Santana et al. (2016) ↓ ↑ ↑

Prescribed burnings De Marco et al. (2005) ↑
Campo et al. (2008) NE
Granged et al. (2011) ↓
Meira-Castro et al. (2015) NE
Alcañiz et al. (2016) NE (long-term)
Armas-Herrera et al. (2016) ↓

↑ soil carbon stock/concentration increased; ↓ soil carbon stock/concentration decreased; NE: no significant effect with tendency in 
brackets if reported.
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Prescribed burnings

As described above, prescribed burning is a valuable 
forest management tool used to reduce fire risk by 
decreasing fuel load. The effects of prescribed fires 
on soil carbon stocks vary considerably, although the 
impact is generally lower than that of wildfires. These 
effects will depend on frequency and severity, due to 
the limited soil heating and the protective effect of the 
remaining surface cover (Fernandes et al., 2013). As 
regards differences between low or high frequency 
fire occurrence, Benett et al. (2014) identified a slight, 
although not significant, decreasing tendency in soil 
carbon stocks both for forest floor and mineral soil to 
a 30-cm depth. The interval between prescribed fires 
should be as long as possible in order to minimize the 
potential carbon loss associated with high fire frequency 
regimes. Temporary effects on soil carbon stocks may 
be observed after a prescribed fire. In a study conducted 
in a Mediterranean forest, Alcañiz et al. (2016) found 
an increase in the carbon concentration one year after 
the fire and then a progressive decrease over time to 
lower values than those registered previous to the fire, 
although differences were not statistically significant. 
Other studies of prescribed burning in Mediterranean 
areas which describe tendencies in soil carbon stock are 
presented in Table 3.

The severity of prescribed burning should also be 
taken into account as regards carbon stocks. Less severe 
fires should be established as the most sustainable 
regime (Fernandes et al., 2013) in order to maintain 
the soil carbon stocks as high as possible. There may 
also be a notable loss of carbon through soil erosion 
following a prescribed fire, reaching similar levels to 
those of direct carbon loss through fire.

Although the use of mechanical tools both to reduce 
the fuel load and use of wood chips for energy purposes 
may be preferred to prescribed burning (Madrigal et 
al., 2017), the latter is a more cost-effective operation 
(Fernandes et al., 2013) which could also have a 
positive influence on tree growth as long as it is of low 
intensity (Valor et al., 2013).

Afforestation

Even in the Mediterranean area where productivity 
is not particularly high, afforestation offers a high 
potential for carbon sequestration as tree biomass 
develops quickly, rapidly exceeding that of areas with 
no afforestation or that of natural stand development. 
The effects on soil carbon stocks are also significant 
(e.g., Novara et al., 2012; Pérez-Cruzado et al., 2012), 
with mean ratios of mineral soil carbon sequestration 
of 0.46 Mg C/ha·yr in temperate areas for land-use 

change from cropland to forest (0.80 Mg C/ha·yr 
including forest floor and mineral soil) (Poeplau et al., 
2011). However, soil carbon sequestration processes 
are very slow and changes are difficult to determinate 
in the short-term due to the high spatial variability. Soil 
preparation techniques could also cause a temporary 
reduction in soil carbon stock in the short- or medium-
term and the net effects on the soil of afforestation may 
be delayed due to the mixing of forest floor and mineral 
soil along with the exposure of the latter, which leads to 
an increase in decomposition rates (Jandl et al., 2007). 
Carbon losses are higher as the intensity of the soil 
disturbance increases (e.g., Johansson, 1994; Gartzia-
Bengoetxea et al., 2011; Fonseca et al., 2014; Wang 
et al., 2016). Intense soil preparation techniques, e.g. 
mechanical terracing, which has been used in some 
areas of Spain, is not thought to increase soil organic 
carbon (Garcia-Franco et al., 2014). Segura et al. 
(2016) compared different soil-preparation techniques 
at a semi-arid site, reporting that they had a similar 
effect on carbon stocks in the medium-term. These 
authors suggest that because both soil carbon dynamics 
and input of organic matter take place very slowly in 
Mediterranean areas, evidence of changes may be 
difficult to detect in the short or medium-term. Hence, 
any increase in soil organic carbon stocks resulting 
from litter inputs and soil protection may only become 
apparent after a long time period (Fernández-Ondoño 
et al., 2010).

The main improvement in soil carbon sequestration 
and soil fertility (Jandl et al., 2007) associated with 
afforestation results from increased litterfall and 
rhizodeposition inputs, improved soil protection due 
to the soil cover, greater nutrient availability and 
increased water-retention capacity (e.g., Fernández-
Ondoño et al., 2010; Tesfaye et al., 2016). The amounts 
of soil carbon sequestered will depend on the species 
used (e.g., Pérez-Cruzado et al., 2012; Vesterdal et al., 
2013; Gómez de la Bárcena et al., 2014). The use of 
N-fixing species could provide an optimal strategy as 
these species stimulate the humification of the litter, 
increasing the soil carbon sequestration (Prescott, 
2010).

The previous land use, as previously mentioned, is 
considered the main factor when assessing soil carbon 
pools as this is the reference level for accounting 
soil carbon stock. According to results of a study by 
Laganière et al. (2010), afforestation in croplands 
results in a mean increase of 26% in soil organic carbon 
stocks, with slight improvements in pastures (3%) 
and natural grasslands (9%), although not statistically 
different from zero. These authors also support the 
observation that clay soils have a greater carbon 
storage potential (+25%) than coarse-textured soils. 
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Table 4. Main effects (both positive and negative) of forest management on forest carbon stocks in the Mediterranean 
area.

Decision 
about Treatment Advantages Handicaps

Structure Even-aged Simple management Stages with reduced or no soil cover that 
could finish in soil erosion, increase in 
decomposition rates of organic matter 
and soil carbon stock reduction

Uneven-aged Higher carbon stocks (Observed & Modelled) 
than even-aged stand
Soil protection (higher soil carbon stock)

Complex management
Higher forest fire risk (vertical canopy 
structure)

Coppice 
systems

Recovery of coppice systems (now mainly 
unmanaged)
Firewood production (bioenergy)

Intensive management could reduce soil 
carbon and nutrient stocks

Agroforestry 
systems

Incorporation of a tree layer (multiple products)
Higher carbon stocks

Complex management

Shrub layer Higher carbon stocks (biomass and soil)
Soil cover (reduced erosion)
Tree regeneration could be enhanced (nurse 
effect)

Higher forest fire risk (more biomass and 
continuous structure)
Tree regeneration could be difficult to 
obtain (competition processes)

Stocking 
reduction

Unthinned Higher carbon stock on-site Higher carbon stocks on-site could not be 
a good strategy in areas with high risk of 
disturbances

Thinned Carbon storage off-site
Flexibility of thinning intensities for carbon 
storage
No significant effect in forest floor and mineral 
soil carbon stock in medium-long rotations

Intensive management could reduce soil 
carbon and nutrient stocks

Rotation period Extending ro-
tation period

Higher biomass and soil carbon stocks
Higher sizes of wood products
Enhancement of biodiversity

Higher risk of timber rot attacks

Shorter rota-
tion period Maximum annual carbon increment Wood products are not showing the max-

imum lifespan
Species com-
position

Pure stands Simple management Higher fire risk or disturbance effects

Mixed stands Higher productivity in case of complementary 
species
More diverse ecosystem services (adaptation to 
climate change)
Higher impact of species richness in soil carbon 
stock
Soil carbon stock depends on species identity

Complex management

Harvesting Wood products
Competition control
Reduction of fire risk (on-site carbon protection)

Reduced litter inputs and soil cover
Potential increase of decomposition rates
Compaction could impact soil carbon 
storage

Fires Wildfires Aboveground biomass losses (total or 
partial)
A general reduction of soil carbon stocks

Prescribed 
burning

Planned reduction of fire risk (by biomass 
reduction)
Complex management

Partial reduction of aboveground biomass 
and forest floor (depends on fire intensity)
Temporal effect on soil carbon stock 
(reduction)

Afforestation Improve in biomass and soil carbon stock (de-
pending on previous land use)
Improve on soil fertility (higher litterfall inputs, 
depending on previous land use)

Soil carbon sequestration is a very slow 
process in poor soils under Mediterranean 
climate
Site preparation techniques could impact 
soil carbon stocks
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Furthermore, the tree species planted is important; the 
soil carbon stock increments approximating 25% when 
broadleaf species are employed whereas the percentage 
drops to 12% in the case of Pinus spp. or Eucalyptus 
spp.  However, processes that stabilize carbon in 
soils are slow, perhaps taking more than a century. 
Therefore, any increment may not be detected in the 
short or medium-term (Poeplau et al., 2011). Their 
results revealed that in the temperate area, afforestation 
of croplands led to an increase of 22% in the soil carbon 
stock in the first 20 years and 117% after 100 years, 
considering forest floor and mineral soil to a depth 
of 30 cm. These authors reported that almost 30% of 
this stock is present in the forest floor in a labile form 
that could be affected by disturbances. Conversion of 
grassland to forest resulted in a reduction of 4% in 
the soil carbon stock 20 years after the afforestation. 
Additionally, they reported that the soil carbon stock 
could be temporarily reduced in the short- or medium-
term due to the soil preparation techniques (as it has 
been mentioned in a previous section), with an increase 
of 30% after 100 years (including forest floor), mainly 
due to the forest floor carbon accumulation. Nave et al. 
(2013) reported that afforestation increases soil carbon 
stocks by 21% and that this increase can be observed 
between 15 and 30 years after the afforestation. This 
time span may not be sufficient in arid or semi-arid 
areas in the Mediterranean region due to the poor soil 
conditions and slow soil dynamics under this climate. 
Hence, soil organic carbon stocks in a semi-arid area 
under a different land use may not differ significantly 
(Albaladejo et al., 2013).

Perspectives and challenges

Carbon sequestration potential and human 
intervention in forests was identified as a research 
priority at the beginning of this century for Mediterranean 
forests (Scarascia-Mugnozza et al., 2000). An 
important research effort has been undertaken over 
the last decade to improve forest carbon estimations 
and to determine the effects of management on carbon 
sequestration in the Mediterranean area, as described 
this review and summarized in Table 4. Most of this 
research has been done in the northern and western 
areas of the Mediterranean region, but more research 
along these lines is currently in progress in southern 
and eastern areas (e.g., Durkaya et al., 2013; Makineci 
et al., 2015; Oubrahim et al., 2015; Zribi et al., 2016). 
In spite of this effort, there are still certain gaps in our 
knowledge that need to be addressed in order to fulfill 
the requirements of our society. Most of these gaps in 
our knowledge are not specific to Mediterranean forests, 

such as the need for better estimation of belowground 
biomass or the need to develop biomass equations for 
mixed forests. Others, however, are more pronounced 
in this region, such as the role of afforestations for 
carbon sequestration.

Many of the studies focusing on different 
management alternatives, such as extending rotation 
period, different age structures or thinning schedules, 
have been based on forest model simulations (e.g., 
Liski et al., 2001; Bravo et al., 2008a; Rio et al., 
2017). Although this approach can help to identify 
the best management alternatives in terms of carbon 
accounts, empirical studies which consider all forest 
carbon compartments are needed to test the simulation 
results. This fact is even more patent for Mediterranean 
forest, since there are scarce empirical studies dealing 
with management alternatives (e.g., de las Heras et 
al., 2013; Ruiz-Peinado et al., 2013a; 2016; Bravo-
Oviedo et al., 2015). For instance, only a few studies 
have addressed the effect of silvicultural treatments on 
carbon sequestration in Mediterranean coppices (e.g., 
López-Serrano et al., 2010; Makineci et al., 2015) or 
the effect of longer rotation periods in this area (Bravo 
et al., 2008a; Moreno-Fernández et al., 2015).

Mixed forests display huge potential benefits in 
terms of ecosystem services (depending on site and 
species) so interest in this kind of forest is currently 
increasing (Bravo-Oviedo et al., 2014). Most of the 
tree biomass models developed to estimate forest 
carbon have been fitted as species-specific models. 
However, tree allometry depends on several factors 
such as site conditions or species composition (e.g., 
Barbeito et al., 2014; Pretzsch, 2014). The applicability 
of species-specific biomass models developed in pure 
stands should be tested in mixed stands, and specific 
models for mixed stands or generalized equations for 
admixtures should also be developed in order to obtain 
accurate carbon estimations.

The belowground biomass stock is the least studied 
compartment due to the difficulty involved in sampling, 
measuring and estimating this stock. Nevertheless, 
the importance of this carbon compartment is 
unquestionable, particularly in Mediterranean areas 
where woody species are mainly resprouters. Root 
systems could account for more than 50% of total 
biomass in Quercus spp. coppices (e.g., Canadell et 
al., 1999; Serrada et al., 2013; Cotillas et al., 2016) 
with higher values in shrublands (e.g, Cañellas & San 
Miguel, 2000; Marziliano et al., 2015). Belowground 
biomass in broadleaf stands was found to be 25% 
higher than in conifer stands (Montero et al., 2005). 
High variability can be found depending on water and 
nutrient availability. Moreover, root loss in sampling 
procedures can account for up to 35% in the case of 
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Fagus sylvatica (Le Goff & Ottorini 2001), 15% in 
maritime pine (Danjon et al., 2013) or 23% in some 
tropical forests (Niiyama et al., 2010). It has been 
suggested that the degree of loss is dependent on tree 
size (the larger the tree, the greater the root biomass loss) 
and that losses are greater in stony soils and/or when 
the species shows a deeper rooting pattern (Danjon et 
al., 2013). Accurate estimation is necessary in order to 
determine belowground biomass carbon stocks. Hence, 
more research is needed to identify a suitable sampling 
approach; comparing different methods to find the most 
accurate, cheapest and easiest method to perform this 
estimation on larger samples.

In the Mediterranean area, forest stands and soils have 
historically suffered profound, permanent alterations as 
a consequence of deforestation, cultivation, grazing, 
fires, etc., which are associated with degradation 
processes such as soil erosion and land use changes. 
These processes, together with the spatial and temporal 
variability of the Mediterranean climate have led to 
poor conditions for forest restoration and the evolution 
of soils may be unknown. Within the context of 
international agreements aimed at the reduction of 
CO2 emissions (Kyoto Protocol, Paris Agreements, 
European Climate Policy), which refer to the role of 
afforestation in sequestering carbon, more studies 
focusing on soil carbon sequestration are needed to 
determine the response of the soil to afforestation, 
placing special emphasis on Mediterranean areas and 
on the way in which these processes take place in 
naturally regenerated areas of former agricultural land 
(Merino et al., 2016).

Using forest management strategies to mitigate the 
effect of climate change, the timeframe for becoming 
a low-carbon economy may be lengthened. However, 
climate change influences the functioning of forests so 
management strategies should also aim to adapt forest 
ecosystems to change. The better forests are adapted 
to climate change the lower the impact will be. Thus, 
by furthering our understanding of forest drought 
adaptation, the effects of soil degradation and fertility 
loss or productivity reduction in the Mediterranean area 
due to global change, etc., it may be possible to develop 
suitable forest management strategies which combine 
both adaptation and mitigation (e.g., Verchot et al., 
2007; D’Amato et al., 2011; 2013; Sohn et al., 2016).

Besides the trade-offs between adaptation 
and mitigation, in order to correctly address the 
abovementioned gaps in our knowledge as regards the 
impact of forest management on carbon sequestration, 
multidisciplinary studies must be undertaken which 
consider all the forest carbon components (biomass of 
trees and understory vegetation, soils, and off-site carbon 
storage), as well as the short and long-term effects of 

management. Therefore, a major challenge in the case 
of Mediterranean forests is to undertake new holistic 
experimental studies to compare forest management 
alternatives based on long-term monitoring.
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