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Abstract— An Energy Management System (EMS) to 

balance the production of renewable sources with the 

consumption by a set of electrolization units is proposed 

here based on Model Predictive Control ideas (MPC). 

This EMS regulates the operating point of each 

electrolyzer and its connections or disconnections using 

a Mixed-Integer-Quadratic-Programming algorithm. A 

case study is given for an installation composed of wave 

and wind energy sources and a set of 3 alkaline 

electrolyzers. Validation using measured data at the 

target location of the installation shows the adequate 

performance of the proposed EMS.  
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I. INTRODUCTION 

Hydrogen might offer great advantages over traditional 

energy carriers [1], as long as it is produced from renewable 

energy sources [2]. Different renewable energy sources 

have already been studied for electrolyzation, such as wind 

[3], waves [4] and solar energy [5,6]; the feasibility of these 

sources to produce hydrogen has been demonstrated, with 

the main drawback their variability [6, 7]. Hybrid sources 

have been proposed to partially overcome this variability 

[8]. 

Electrolyzation is a mature, market-available technique 

that can operate intermittently, producing large volumes of 

hydrogen, without greenhouse gases emissions, if electricity 

is provided by renewable sources. There exist several 

promising electrolysis technologies [2], such as polymer 

electrolysis (PEMEC), alkaline cells and solid oxide 

electrolysis (SOEC) [9]. All of them are capable to generate 

hydrogen with a purity better than 99.97%, which is the 

quality used in the automotive industry [10]. The 

electrolyzers considered here are Alkaline Electrolyzers as 

they are available at the required power levels (about MW) 

to make the technology cost-efficient for this application 

(see [7,11] for details). 

In the proposed Energy Management System, power 

consumption adapts to the available power by connecting or 

disconnecting electrolyzation units and regulating the 

operating points of the ones that are connected, thus 

following a smart grid approach for the local microgrid [2]. 

Compared with previous proposals [2,4], this paper 

concentrates on using an advanced control system to 

maximize the production and reduce the number of 

connection/disconnections (in order to improve the state of 

health of the electrolyzers). The proposed EMS is based on 

Model Predictive Control ideas. Model predictive control 

(MPC) is popular in industry since the 1990s and there is a 

steadily increasing attention from control practitioners and 

theoreticians [12]. The proposed approach makes possible 

for system operators to know in advance the expected 

production and, therefore, schedule preventive-predictive 

maintenance operations on the electrolyzer units. For 

simplicity, in this work the produced energy is fully used 

(no storage or external sources are considered), but the 

results can be easily extended to the most common situation 

of using only the excess of energy from renewable sources 

[7,13].  

A preliminary version of this proposal was presented in 

[8] and it is fully developed and refined here. Moreover, a 

non-linear model with discrete and continuous variables is 

proposed here which is then modified into a MIQP (Mixed-

Integer Quadratic Programming). 

The rest paper is organized as follows: Section II 

presents the installation and summarizes MPC ideas. The 

proposed EMS is presented in Section III. Section IV 

presents the case study used and its validation using 

measured data from the target location. Some conclusions 

are presented at the end of the paper. 
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II. PROCESS DESCRIPTION 

Fig. 1 presents the components of the proposed 

sustainable hydrogen plant [8]. Renewable energy sources 

(wind and wave) provide energy to the process. The EMS 

has as objective to adapt the production of hydrogen to the 

available power using the degrees of freedom of the control 

system in such way that production is maximized without 

degrading the electrolyzation units.  

 

 

 

 

 

 

 

 

 

 
 

Figure 1. General scheme of the electrolysis plant.  

 

A. Manipulated variables 

 

 The manipulated variables are the operating points for 

each electrolyzer. They are defined by αi(k) where: 

a) It is 0 if the electrolyzer is disconnected. 

b) Takes values inside [ αi   α̅i] if it is connected, αi 

> 0 and α̅i < 1. 

 In addition, binary variables δi(k) ϵ {0,1} are used, 

where 0 corresponds to electrolyzer disconnection and 

1 to electrolyzer connection.  

 

B. Model and controled variables 

 Electrolyzer models are represented by the following 

equations: 

Ĥi(k)  =  
α̂i(k)∙δ̂i(k)

a∙α̂i(k)+b
 ⋅  P̅i     

P̂i(k) = P̅i ∙ α̂i(k) ∙ δ̂i(k)  

 where equations P̂i(k) and Ĥi(k)  are the controlled 

variables of electrolyzer i: P̂i(k) is the predicted power 

consumption of each device at time k and P̅i is its maximum 

power, while Ĥi(k) is the predicted hydrogen production at 

the same sample. Parameters ai, bi and P̅i  are used to define 

the device performance, that is, the relationship between 

consumed power and production. Note that electrolyzer 

models are static, because the time required for the devices 

to change the operation point from min to max power is less 

than 5 minutes in the worst case, therefore, these dynamics 

can be neglected as the usual sampling time for the Energy 

Management System is 1 hour. Fig. 2 depicts the hydrogen 

production of the electrolyzers as a function of the operating 

point for the two types of electrolyzers that will be 

presented in the case studies of Section 4. 

 

 

 

 

 

 

 

Figure 2. Hydrogen production of the electrolyzers.  

 

C. Model Predictive Control 

The main advantage of MPC is the fact that it takes 

explicitly into account performance specifications and 

constraints [14]. The main elements in MPC are depicted in 

Fig. 3 [12]: the optimization block receives information 

from the model block which is responsible for computing 

the predictions of the output of the plant in a defined 

horizon. This model uses the current and past measured 

process outputs and inputs in order to update the predictions 

at each sample time along a prediction horizon named N. In 

the optimization block, a set of constraints are considered as 

well as the future references for the process outputs.  

 

 

 

 

 

 

 

 

 

Figure 3. Model Predictive Control scheme.  

 

MPC uses a receding horizon strategy, thus, although a set 

of future control moves are computed in the optimization 

block, only the first control action of the sequence is applied 

and the procedure is repeated at the next sampling time [12]. 
 

III. PROPOSED ENERGY MANAGEMENT SYSTEM 

 

As it was mentioned in Section 1, alkaline electrolyzers 

were selected. Different alkaline electrolyzers  are assumed 

in this paper being n the number of devices the suffix and i 

is used to identify each device. In the rest of the paper, k 

represents the discrete time in samples (a sample time of 1 

hour is typically used).  
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A. Control objectives 

The MPC proposed aims to maximize the hydrogen 

production taking into account the limitation in the available 

power and the operational constraints. The three objectives 

can be defined as: 

O1 To maximize the hydrogen production, the 

difference between the value of the prediction for each 

electrolyzer production and its maximum value is 

minimized for all the electrolyzers along the prediction 

horizon. 

O2 To maximize the operation of the electrolyzers, the 

binary variables which defines the ON-OFF condition must 

be, when possible, equal to 1 (ON condition) along the 

prediction horizon. 

O3 Power consumed by the set of electrolyzers must 

be always smaller than the power provided from the 

renewable energies but will try to be equal. 

B. Cost function and optimization problem 

The following quadratic cost function, solved each 

sample time, is considered in the optimization problem: 

J = ∑ ∑ [(Ĥi(k + j) − H̅i(k + j))2QHi 
N
j=1

n
i=1            

+∑ ∑ (δ̂i(k + j) − δ̂i(k + j − 1))2Qδi] 
Nu

j=1
n
i=1                   (3)

which takes into account, in a prediction and control 

horizons of N and Nu samples respectively, the error 

between the predictions of produced hydrogen (Ĥi) and its 

desired values (H̅i) and also penalizes the number of 

connections and disconnections. Moreover, QHi and Qδi are 

the weighting factors for the error and control action 

respectively. The first term of (3) is used for objective O1 

of section 3.1 while the second term of this equation tries to 

achieve objective O2.   

To solve this problem, the future predictions of the 

hydrogen production are expressed as a function of the 

future control actions  and the past values of the input and 

outputs using the electrolyzers model (1) and (2).  

 Thus, using equation (3), all the system constraints and 

the electrolyzer models, the optimization problem to be 

solved at each sample time is (4).  

            Min J (αi,δi)                         (4) 

   st:    δ ∈ [0, 1] 

αi  ≤ αi  ≤ α̅i 

                                     P̂i(k) = P̅i ∙ α̂i(k) ∙ δ̂i(k)

Ĥi(k) =  
α̂i(k)∙δ̂i(k)

a∙α̂i(k)+b
⋅  P̅i            

                                        ∑ P̂i(k) ≤ P̂available(k)n
i=1  

 As it can be seen, because of the non-linear model of the 

electrolyzer and the use of binary and real decision 

variables, the MPC problem to be solved by the algorithm is 

a NLMIQP (Non-Linear Mixed Integer Quadratic Problem) 

which is very difficult to solve. Thus, in the next section a 

simple solution is proposed. 

C. Approximation to a MIQP 

Here, we transform problem (4) into a mixed-integer 
quadratic problem with linear constraints (MIQP). To do it, 
first each electrolyzer model is modified using the following 
change of variable: 

zi(k) ≐ αi(k) ∙ δi(k)   

where zi∈ ℝ. The hydrogen production model is now: 

       Ĥi(k)  =  
ẑi(k)

a∙α̂i(k)+b
 ⋅  P̅i        

P̂i(k) = P̅i ∙ ẑi(k)   

As a static model is considered, the predictions of the 

produced hydrogen do not depend on past values. In 

equation (6) it can be seen that H = 0 when  δ = 0, so it can 

be rewritten as (8) to remove the dependence between Hi 

and αi: 

Ĥi(k)  ≐  
ẑi(k)

a∙ẑi(k)+b
  ⋅  P̅i                     

 Hi is now a real function of the real variable zi, and as zi 

is in the [0,1] interval, a > 0 and b > 0, Hi (zi) is continuous 

and differentiable in the interval [0,1].  Despite the change 

made in equation (8), this equation is not linear in variable z 

yet and it must be approximated. If H is not linear in z, the 

relationship between H (k+j) and z (k+j) will not be linear 

either. It is necessary to make another approximation in the 

predictions to change the problem into a MIQP. To linearize 

future predictions of the hydrogen production, an 

approximation has been done using a first order truncation 

Taylor series: 

Hi(zi(k) + Δzi(k + 1)) = Hi(zi (k)) +
∂Hi

∂zi
∙ Δzi (k + 1) 

 

Therefore, simplifying the notation and applying the 

same procedure for the N predictions of the hydrogen 

production, gives: 

Ĥi (k+1) = Hi(k) + 
bi

(ai∙zi(k)+bi)
2
∙ Δẑi(k + 1) 

 

Ĥi (k+2) = Hi(k) + 
bi

(ai∙zi(k)+bi)
2
∙ (Δẑi(k + 1)+ Δẑi(k + 2)) 

 

⋯ ⋯ ⋯ 
 

Ĥi (k+N) = Hi(k) + 
bi

(ai∙zi(k)+bi)
2
∙ (Δẑi(k + 1) + Δẑi(k + 2) +

⋯   Δẑi(k + Nu))     

Defining gi ≐
bi

(ai∙zi(k)+bi)
2 , vector 1 ≐ [1 1 … 1]T (dimension 

1xN) and matrix T∈ℝNxNu is:   

 

 



 

 

              Nu 

       𝐓 ≐

[
 
 
 
 
1 0 ⋯ ⋯
1 1 0 ⋯
1 1 1 0
1 1 1 1
1 1 1 1 ]

 
 
 
 

  N          

The vector of predictions for each i is given by: 

Ĥi ≐ [Ĥi(k+1) ……Ĥi(k+N)]T    

𝐇̂𝐢 = 1∙ Hi(k) + gi ∙T∙ 𝚫𝐳̂𝐢       

where:  

𝚫𝐳̂𝐢 ≐ [Δẑi(k+1) ……Δẑi(k+Nu)]
T     

The manipulated variables are Δzi(k), αi(k) and δi(k). 
Therefore, the relationship between prediction and 

manipulated variables can be written using the vector of 

future control movements which is given by (15):  

𝚫𝐮𝐢 ≐  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Δzi(k + 1)
Δzi(k + 2)

⋯
Δzi(k + Nu)

αi(k + 1)
αi(k + 1)

⋯
αi(k + Nu)

δi(k + 1)
δi(k + 2)

⋯
δi(k + Nu) ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
𝚫𝐳𝐢

𝛂𝐢

𝛅𝐢 ]
 
 
 
 

     

 

where 𝚫𝐮𝐢 ∈ ℝ3Nu. Gi ∈ ℝ Nx3Nu is: 

Gi = [gi∙T   0    0]   

Thus: 

Hi = fi + Gi ∙ 𝚫𝐮𝐢    (17) 

In (17) fi is the free response, computed using the nonlinear 

model (8) for Hi(k) and Gi. 𝚫𝐮𝐢 is the linealized forced 

response [12,15]. Considering now the set of n electrolyzers: 

H ≐ [H1 H2 … Hn]
T    

f ≐ [f1 f2 … fn]
T     

ΔU ≐ [ΔU1 ΔU2 … ΔUn]
T  

where H and f are a N∙nx1 vectors and ΔU is a Nu∙nx1 vector, 

follows: 

H = f + G∙ΔU     

where: 

G≐ [

𝐆𝟏 0 0 0
0 𝐆𝟐 0 0
0 0 ⋯ 0
0 0 0 𝐆𝐧

]               

D. Constraints 

 As it was said in the previous section, a new variable z 

was added to solve the problem. The constraints were 

changed into a MLD (Mixed Logical System, [16,17]) to 

associate the behavior of the plant with the continuous 

variable α and the binary variable δ and to linearize them. 

The following constraints (23-28) show this idea for all the 

cases where the binary variable could be 0 or 1: 

zi(k) + ∑ Δzi(k + l)
Nu

l=1 ≤ α̅i∙δi (k+Nu)            

 

zi(k) + ∑ Δzi(k + l)
Nu

l=1 ≥ αi∙δi (k+Nu)  

 

zi(k)+ ∑ Δzi(k + l)
Nu

l=1  ≤ αi(k + 1) − αi(1-δi(k+Nu))             

 

zi(k)+ ∑ Δzi(k + l) 
Nu

l=1 ≥ αi(k + 1) − α̅i(1-δi(k+Nu))      
  

αi(k) ≤ α̅i               
 

αi(k) ≥ αi              
 

 In addition to the constraints before, the following 

constraint is considered to fulfill the objective O3: The total 

power consumed at each sample (k) should be smaller than 

the predicted power available from the renewable energies 

(P̂available (k)). Taking into account model predictive control 

ideas, the vector of predictions of available power, 

P̂available (k), is calculated over the prediction horizon using 

meteorological data. Thus, the constraint in the consumed 

powers is: 

 ∑ P̂i(k) ∙ ẑi(k) ≤ P̂available(k)n
i=1  k = 1, 2, .., N 

As can be seen, all the defined constraints in equations (23-

29) are linear in the decision variables Δz, α and δ. This 

allows to solve the problem as a MIQP. 

E. Optimization  

 The MPC problem of minimizing the cost function (4) 

subject to (23-29) can be transformed into a quadratic 

Mixed-Integer Quadratic Programming (MIQP): 

Min (
𝟏

𝟐
𝚫𝐔𝐓 ∙ 𝐌 ∙ 𝚫𝐔 + 𝐥𝐓 ∙ 𝚫𝐔)  

                       𝚫𝐔 

s.t 𝐀 ∙ 𝚫𝐔 ≤ 𝐁            

to be solved at each sample time (𝐀 and B are the 

constraints matrices of the problem). 

Using equation (3) in the original cost function gives: 

 

 



 

 

 𝐉 = [(𝐟 + 𝐆 𝚫𝐔 − 𝐇̅)𝐓𝐐𝐇(𝐟 + 𝐆 𝚫𝐔 − 𝐇̅)           

                            +(𝛅̂ − 𝟏)𝐓𝐐𝛅(𝛅̂ − 𝟏)]                               

And considering the relationship between 𝚫𝐔 and 𝛅̂ , and 

manipulating (31) gives the cost function to be minimized: 

𝐉 ≐
𝟏

𝟐
𝚫𝐔𝐓 ∙ 𝐌 ∙ 𝚫𝐔 + 𝐥𝐓 ∙ 𝚫𝐔          

Matrices 𝐌, 𝐥 are the quadratic and the linear part of the 

quadratic problem respectively and are given by: 

 

𝐌 ≐ [𝐆𝐓𝐐𝐇 𝐆 + 𝐐𝛅]   

 

𝐥 ≐  [𝟐𝐟𝐓𝐐𝐇𝐆 − 𝟐𝐇̅
𝐓
𝐐𝐇𝐆 + 𝟐(𝟏𝐓𝐐𝛅)] 

 

Finally the constraints (23-29) can be written in the compact 

form 𝐀 ∙ 𝚫𝐔 ≤ 𝐁. Note that the dimensions of the matrices 

depend on the prediction and control horizons (N and Nu) 

and the number of electrolyzers (n). 

 

IV. CASE STUDY 

A. Components 

The sources considered in this case study are wind and 

wave: wind energy as it is a mature technology [18] and 

wave energy as it provides lower variability in the energy 

production [19]. One vertical axis wind turbine (VAWT) of 

5.0 MW peak power and one wave energy converter (WEC) 

of 1.6 MW peak power were selected accordingly to the 

studies developed in the H2Ocean* project [20]. To produce 

hydrogen, different NEL A485 electrolyzers (NEL-

Hydrogen, 2014) were chosen. 

B. EMS implementation of the electrolysis 

 An MIQP solver in the Matlab® CPLEX was used to 

carry out the optimization in (23). To validate the EMS a 

sampling time of one hour was used. In this proposal the 

current available power at each time k is different for the 

one predicted in the previous step. The values of  αi and αi  
were defined using data from the electrolyzer manufactures.  

C. Results and discussion of the case study 

To validate the proposed EMS, meteorological data in a 

specific location in the Atlantic Ocean was used. A 

simulation was developed using three electrolyzers (two 

high production and one small production), thus n=3. A 

prediction horizon of three hours and a control horizon of 

one hour where chosen. Thus N=3 and Nu=1. The 

parameters of the platform are: 

 

P = [2134 2134 220]T 
 

a = [0.875 0.875 0.778]T 
 

b = [3.525 3.525 3.625]T 

 

H = [485 485 50]T 
 

           α = [1 1 1]T                 α = [0.2   0.2   0.1]T 

 

QH  = [1 1 50]T            Qδ = [1   1  1]T 
 

 

Some results for 140 hours of operation are shown in Fig. 4-

8.  The results confirm the correct operation of the advanced 

control system for the parameters considered in this case 

study. Fig. 4 shows the power provided by the renewable 

energy sources (black line) and the consumed power (red 

line). As can be appreciated in the simulations, the 

controller tries to maintain the consumed power very near 

the available one and as consequence obtaining a hydrogen 

production near the achievable maximum. 

In this case, consumed power could have a maximum 

value of 4488 kW (2134 kW for each high production 

electrolyzer and 220 kW for the small production 

electrolyzer) if all the electrolyzers worked at a 100%.  

 

 

 
 

 

 

 

 

 

Figure 4. Power available and consumed. 

 

Fig. 5 shows the performance of the electrolyzer i = 1 

(maximum power: 485 Nm3/h). As expected, it is not 

switched on/off very frequently and the operating point is 

always between α and α. 

 

 

 

 

 

 

 

 
Figure 5. Operation of electrolyzer 1. 

 

Fig. 6 shows the operation of the second electrolyzer i = 

2 that also produces an amount of 485 Nm3/h. As in the case 

before, the values of α are between the minimum and 

maximum bounds. 

 

 

 

 

 

 

 
 

Figure 6. Performance of electrolyzer 2. 
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Electrolyzer i = 3 (Fig. 7) is more connected because its 

performance is better than the other electrolyzers, so the 

operation of this electrolyzer can be considered correct. In 

all cases, the values are between the minimum and 

maximum values that were defined. 

 

 

 

 

 

 
 

 

Figure 7. Performance of electrolyzer 3. 

 

Finally, Fig. 8 depicts the evolution of the total hydrogen 

production by the three electrolyzers in this case study: 

 

 

 

 

 

 

 
 

Figure 8. Hydrogen production by the electrolyzers. 

 

V. CONCLUSIONS 

 A solution to the energy management of an 

electrolyzation plant powered by variable renewable energy 

sources has been presented and evaluated. Using Smart Grid 

ideas, a model predictive control strategy has been 

proposed, where the characteristics of each electrolyzer is 

taken into account to maximize the production and improve 

the state-of-health of the units. Validation using data 

measured from the target location is carried out to show the 

correct operation of the plant with the developed controller.  
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