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Abstract

Fuzzy rule-based systems (FRBSs) are a common alternative for applying
fuzzy logic in different areas and real-world problems. The schemes and algo-
rithms used to generate these types of systems imply that their performance
can be analyzed from different points of view, not only model accuracy. Any
model, including fuzzy models, needs to be sufficiently accurate, but other
perspectives, such as interpretability, are also possible for the FRBSs. Thus,
the Accuracy-Interpretability trade-off arises as a challenge for fuzzy systems,
as approaches are currently able to generate FRBSs with different trade-offs.

Here, rule Relevance is added to Accuracy and Interpretability for a better
trade-off in FRBSs. These three factors are involved in this approach to make
a rule selection using a multi-objective evolutionary algorithm.

The proposal has been tested and compared with nine datasets, two lin-
guistic and two scatter fuzzy algorithms, four measures of interpretability
and two rule relevance formulations. The results have been analyzed for dif-
ferent views of Interpretability, Accuracy and Relevance, and the statistical
tests have shown that significant improvements have been achieved. On the
other hand, the Relevance-based role of fuzzy rules has been checked, and it
has been shown that low Relevance rules have a relevant role for trade-off,
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while some rules with high Relevance must sometimes be removed to reach
an adequate trade-off.

Keywords:
Fuzzy Rule-Based Systems, Interpretability, Rule Relevance, Orthogonal
Transformations

1. Introduction

Fuzzy rule-based systems (FRBSs) are a common approach for applying
fuzzy logic in many areas of activity, both in research areas and for solving
real-world problems. In fact, the FRBS based approaches are used by scien-
tists and practitioners for modeling, control, decision making, etc (Kacprzyk
and Pedrycz, 2015; Konar, 2005; Karray and De Silva, 2004). In order to
generate these FRBSs, many different algorithms and approaches are avail-
able in the scientific literature (Alcalá-Fdez and Alonso, 2016; Magdalena,
2015), each considering their performance from different points of view. On
this point, linguistic and precise approaches appear as two major ways to
address FRBS generation (Fernández et al., 2015; Casillas et al., 2003a,b).

FRBS performance has been an open and debatable issue for a long time
in research domains. Accuracy is a basic goal for any model, including FRBS
models. However, other views of the performance are possible, especially
when fuzzy logic is involved; views such as Interpretability, which is intrin-
sically connected with some of the foundations of fuzzy logic, for instance,
the capability to express, represent and understand knowledge in linguistic
terms as humans do.

This type of performance can be essential, or even compulsory, in some
application areas, as well as in theoretical developments, in which the be-
havior of the FRBS, when modeling a reality, must be clearly defined and
understood. So, to obtain FRBSs with an adequate Interpretability is an
interesting goal to reach. Yet, on the other hand, FRBSs must be accurate
enough because an insufficiently accurate model is useless.

Keeping all this in mind, the challenge to obtain a performance based on
several views, such as Accuracy and Interpretability, arises. The goal is to
reach an Accuracy and Interpretability trade-off or balance between these
views which are considered mutually contradictory, since an improvement on
one side could imply a worsening of the performance from the other point of
view (Alonso et al., 2015; Casillas et al., 2003a).
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This Accuracy-Interpretability trade-off is an open issue and many ap-
proaches are available in the literature that focus on different views, such
as genetic fuzzy systems or rule selection (Fernández et al., 2015; Fazzolari
et al., 2013a; Cordón, 2011), considering several metrics regarding complex-
ity or semantics, (Gacto et al., 2011; Alonso et al., 2009; Mencar and Fanelli,
2008; Zhou and Gan, 2008), etc.

In this context, our proposal deals with the FRBS Accuracy-Interpretabi-
lity trade-off addressed by a multi-objective evolutionary-based rule selection,
choosing the most adequate and significant rules according to the metrics of
Accuracy, Interpretability and Relevance. In most cases, Relevance has been
used to reduce complexity in the FRBS (Zhou et al., 2009; Setnes, 2003), but
here, rule Relevance is as important a factor as accuracy or interpretability
for the trade-off. In Rey et al. (2012), early ideas connected with this proposal
were introduced.

The rest of the paper is organized as follows: Section 2 introduces the
idea of Relevance in different fields. Section 3 describes the main works
connected with the Accuracy-Interpretability trade-off challenge, considering
different points of view and approaches, and also describes rule relevance as a
metric to be considered in this analysis. Section 4 introduces the theoretical
principles to be taken into account in this work, that is, FRBS modeling
algorithms in Section 4.1, orthogonal transformations in Section 4.2, and
MOEAs in Section 4.3. The proposal of this work is explained in Section 5,
and the experimentation is described in Section 6, including the methodology
in Section 6.1 and the most valuable results in Section 6.2. Finally, in Sections
7 and 8, the main conclusions of this proposal are set out.

2. Relevance

Relevance is an idea managed and understood as “something that is or
is considered as worthwhile”. In our daily activities, this concept is present
from music or book recommendations to any type of decision-making. A
relevant idea, concept, issue, etc. acquires its meaning when it is compared
to others. The idea of Relevance has been used in different areas of human
knowledge, from philosophy (Keynes, 2013), psychology (Horn and Ward,
2008), pattern recognition (Devroye et al., 2013), or feature selection and
extraction (Liu and Motoda, 2012), to machine learning (Yu and Liu, 2004).
The challenge is how to evaluate this relevance.
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In information sciences, several ideas of Relevance are managed in or-
der to make a selection from competing sources, geared toward maximizing
results and/or minimizing effort in dealing with results. Here, System or
algorithmic relevance is managed as the relation between a query and the
information objects in a system, as retrieved or as failed to be retrieved by a
given procedure or algorithm (Hjørland, 2010). In other linked fields such as
Information Retrieval (IR), the concept of Relevance is separated into two
major classes : (1) objective or system-based relevance; and (2) subjective or
human (user)-based relevance, corresponding to the system-driven and the
cognitive user-oriented approaches.

This is connected with Relevance Feedback, a human computer interac-
tion technique to capture and re-use the knowledge of a user. It has been
extensively used in text-based document retrieval systems (Okabe and Ya-
mada, 2005), interactive content-based image retrieval systems (Kundu et al.,
2015), or fingerprint identification systems (Kwan et al., 2015).

Focusing on the rules of an FRBS, there are some metrics about Rele-
vance: the Probabilistic Test, based on the available learning data, in which
a fuzzy IF-THEN statement represents a locally relevant aspect of the de-
pendency of the input and output variables; a Relevance factor, based on the
computation of confidence intervals, is computed for each fuzzy rule in the
FRBSs in order to subsequently select the most relevant ones (Krone and
Taeger, 2001). Ratios between membership, resulting in three definitions of
Relevance: Relevance of a rule on a region, Relevance of a rule of the fuzzy
system, and Relevance of the fuzzy system (Salgado, 2008). The Relevance
Vector Learning Mechanism, where relevant fuzzy rules are obtained using
the Relevance Vector Machine (RVM), acquires relevance vectors and weights
by maximizing a marginal likelihood (Kim et al., 2006).

On the other hand, we have Relevance as a factor to improve the Inter-
pretability of the rules, involved in Pedrycz (2003), quantified in terms of
the data covered by the antecedent and conclusion, or Relevance as an au-
tomatic method of rule reduction, where the relevance of a rule or rule base
involves accuracy, statistical significance, and clearness (Mikut et al., 2005).
In this field, the Relevance of rules based on the Orthogonal Transformation
based Ranking to make a rule selection is carried out by Setnes (2003), and
based on the variability of each rule, using Forward Stepwise and Backward
Elimination procedures in Zhou et al. (2009). This view is considered in this
work and is used with the Accuracy-Interpretability trade-off in the following
section.
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3. Accuracy-Interpretability Trade-Off

FRBSs are a very popular approach for modeling in different areas as
solutions to a wide range of problems (Magdalena, 2015; Konar, 2005; Kar-
ray and De Silva, 2004). A major dilemma for these FRBS based models is
the evaluation of their performance. On the one hand, Accuracy is essen-
tial for any type of model, fuzzy or not fuzzy, that is targeted by Precise
Fuzzy Modeling. On the other hand, fuzzy logic permits the evaluation of
these FRBSs from other points of view, such as the Interpretability that is
targeted by Linguistic Fuzzy Modeling. This double view has usually been
considered as contradictory, bringing about a major challenge for FRBSs:
the Accuracy-Interpretability trade-off, which means to find a balance or
compromise between the necessary accuracy and the desired interpretability.
Nowadays, the way to reach this trade-off is an area of discussion and debate
concerning the different approaches (Ishibuchi and Nojima, 2015; Casillas
et al., 2003a,b).

A review of the literature focused on this challenge shows that Accuracy is
a well-defined performance based on the model error. However, the definition
of Interpretability, and thus the way to measure this concept going from
complexity to semantic issues, has been an open issue for a long time (Alonso
et al., 2015; Gacto et al., 2011; Alonso et al., 2009; Zhou and Gan, 2008;
Mencar and Fanelli, 2008). Several classifications and taxonomies about
Interpretability, its definitions, views, measurements and methodologies to
reach the trade-off, are available in such specialized literature as Zhou and
Gan (2008), in which two levels of interpretability are established according to
the FRBS components: Low level for fuzzy set issues and High level for fuzzy
rules. In Alonso et al. (2009), the previous taxonomy about interpretability
is generalized. Another point of view was introduced in Mencar and Fanelli
(2008), where the constraints to be applied to obtain interpretable FRBSs
are defined. Finally, in Gacto et al. (2011), a taxonomy based on complexity
and semantic issues for the rule and fuzzy set is introduced, reviewing most
measures based on complexity and semantic issues in this scheme.

These taxonomies, and other works, show there is a wide set of indexes
or measurements about interpretability, each representing its own view re-
garding Interpretability. First of all there is the number of rules, perhaps
the most popular measurement (Fazzolari et al., 2013b; Márquez et al., 2012;
Alonso and Magdalena, 2011; Gacto et al., 2010; Casillas et al., 2009; Mikut
et al., 2005; Ishibuchi et al., 1997). Then we have the number of conditions in
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the antecedent (Nguyena et al., 2015; Antonelli et al., 2011; Pulkkinen et al.,
2008; Ishibuchi et al., 2001), the number of variables (Alonso and Magdalena,
2011; Mikut et al., 2005) or the number of membership functions (Guillaume
and Charnomordic, 2003; Roubos and Setnes, 2001), where the idea of com-
plexity is managed. Secondly, we have those involving semantic issues such
as: the distinguishability of the fuzzy sets (Oliveira, 1999), consistence and
similarity of the fuzzy rule base (Alonso and Magdalena, 2011; Pulkkinen
et al., 2008), the number of rules simultaneously fired (Pancho et al., 2013;
Márquez et al., 2012), etc.; or those defining more complex indexes to ob-
tain some semantic restrictions, such as GM3M (Gacto et al., 2010), RBC
(Alonso and Magdalena, 2011), Integrity I (Antonelli et al., 2011), Trans-
parency (Pulkkinen et al., 2008), Cointension (Mencar et al., 2011) or RMI
(Galende et al., 2014).

All these accuracy and interpretability indexes permit the FRBS Ac-
curacy and Interpretability to be evaluated, but how can the trade-off be
reached? This question, again, has had different approaches: rule genera-
tion, rule selection and tuning of rule fuzzy sets from existing FRBSs have
been some options. The most popular way to carry out these tasks has been
addressed as a genetic based optimization problem, but other options have
also been used.

A general compilation of methods based on genetic algorithms can be
found in Fernández et al. (2015). MOEA based rule generation from data is
in Nguyena et al. (2015); Antonelli et al. (2011); Casillas et al. (2009) and
Ishibuchi and Nojima (2007). Decision trees and pruning strategies are used
in Mikut et al. (2005) for rule generation. Meanwhile, this goal is guided by
user preferences in Guillaume and Charnomordic (2003), decision trees and
MOEA in Pulkkinen et al. (2008), and true tables are involved in Mencar
et al. (2011).

Another view is based on an existing, improved FRBS: approaches based
on rule selection and MOEA are developed in Galende et al. (2012); Márquez
et al. (2012); Pulkkinen et al. (2008); Ishibuchi and Nojima (2007); Ishibuchi
et al. (2001) and Ishibuchi et al. (1997). A GA tuning based approach can
be found in Roubos and Setnes (2001), while MOEA based rule selection and
tuning is used by Galende et al. (2014); Fazzolari et al. (2013b); Alcalá et al.
(2011) and Gacto et al. (2010). This view is used in this approach.

Another view is found in Pancho et al. (2013), where the FRBS is analyzed
as a social network based on goodness and relative coverage of the rules, where
these rules and their links are pruned and graphically represented.
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A further approach to the Accuracy-Interpretability trade-off, involving
reduction of complexity by rule selection, is based on the Relevance of FRBS
and the ranking of its rules. The concept of Relevance is very popular with
other domains, such as Feature Selection and Extraction (Liu and Motoda,
2012), and it is usually based on orthogonal transformations. In the FRBS
domain, approaches using orthogonal transformations are based on obtained
values from fired rule matrices, such as: eigen values, R-values, variances,
c-values, α-values, w1-values, w2-values and L-values for each rule, which
allows a ranking of rules to be generated. So here, the challenge is to define
which rules should be preserved and which should be removed, based on this
ranking.

This idea of Relevance, as commented in the previous section, has been
used in different ways, such as in Zhou et al. (2009); Destercke et al. (2007);
Setnes (2003) and Yen and Wang (1999) to reduce the complexity of the
FRBSs by rule selection, thus reaching a better interpretability. The target
is to preserve the most relevant rules, selecting relevant rules or removing
non relevant rules. Specifically, a relevance ranking based sequential (forward
stepwise and backward elimination) selection of rules is used in Zhou et al.
(2009) to make groups of rules. All of the relevant rules are taken into
account and some of the lower relevant rules may be considered. Meanwhile,
in Setnes (2003), a “gap” is searched through the relevance value of the
rules to select the rules to be preserved; while in Zhou and Gan (2007), a
threshold for relevance is defined and then the selection is carried out. On
the other hand, in Alonso and Magdalena (2011), a rule ranking based on an
interpretability index is used; while in Rey et al. (2012), a MOEA approach
based on accuracy and interpretability, which includes Relevance, is carried
out. The latter was an early approach of this current work.

The role of (fuzzy) rules with low relevance has also been discussed in
the specialized literature (Zhou et al., 2009; Setnes, 2003). In general, in
most cases, this type of rule has been considered as the right candidate to
be removed when a reduction of the complexity of FRBS (and other views
of interpretability) was involved. In this way, rules with low relevance do
not seem very interesting under the almost ordinary view of rule relevance
and Accuracy-Interpretability trade-off. On the other hand, rules with high
relevance seem to be the right rules to be preserved through any selection of
rules. In this way, the idea of looking for a Gap to make rule selection has
been one of the most popular approaches.

In this context, this proposal to address the Accuracy-Interpretability
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trade-off challenge is based on the use of Relevance, Accuracy and Interpre-
tability to carry out a rule selection in a multi-objective evolutionary way.
Rule relevance is evaluated by orthogonal transformations as in Zhou et al.
(2009), Destercke et al. (2007), etc., which permits a better evaluation of
relevance because it does not depend on parameters/threshold values or it-
erative estimations. Here, rule relevance allows the most meaningful rules
for each FRBS based model to be considered, so that the model contains
the most adequate variability regarding each input/output space in compar-
ison with other approaches that only consider accuracy and interpretability
for the trade-off. The rule selection based on these three objectives and an
evolutionary strategy permits a more efficient selection of rules, avoiding the
difficulties of finding a “gap” between relevant and non-relevant rules, and
the failure to consider the latter, in Setnes (2003), or regarding the ineffi-
ciencies of the sequential selection of the rules with high and low relevance,
such as in Zhou et al. (2009).

On the other hand, the proposal allows the effect of Relevance on the
Accuracy-Interpretability trade-off and the role of rules to be checked ac-
cording to their own Relevance.

4. Theoretical Issues

4.1. Fuzzy Rule-Based Systems

A fuzzy rule-based system (FRBS) can be seen as a knowledge base that
includes a rule base with information described by IF-THEN fuzzy rules and
a data base with the correspondence of the fuzzy values, an inference engine
containing a fuzzification interface, an inference system, and a defuzzification
interface (Fernández et al., 2015). Based on these components, FRBS can
be classified under different views, perhaps the most usual way being based
on the rule type of their knowledge base, then the FRBS can be classified as
(Herrera, 2008):

Scatter FRBS, rule antecedents and consequents are defined by fuzzy sets,
each with their own semantics.

Linguistic FRBS, usually contains (Mamdani) rules: rule antecedents and
consequents are defined by fuzzy sets associated with linguistic terms.
These fuzzy sets share the semantics for all rules.
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TSK FRBS (Takagi-Sugeno-Kang), rule antecedents are defined using
fuzzy sets, and rule consequents are functions of the rule antecedents.

These different types of FRBS rules can be generated using different fuzzy
modeling algorithms. Fuzzy neural networks and fuzzy genetic systems are
the major approaches to generate FRBSs, so in this work, two fuzzy neural
networks are used: FasArt and NefProx, and two fuzzy genetic systems:
S-IRL and L-IRL. Two of them are scatter-based algorithms: FasArt and
S-IRL, and two linguistic-based algorithms: NefProx and L-IRL.

FasArt (Fuzzy Adaptive System ART based) is a Neuro-Fuzzy system based
on the Adaptative Resonance Theory (ART) that it is able to gen-
erate scatter systems. It is characterized by single point fuzzifica-
tion, product inference, and average of fuzzy set center defuzzification
(Cano Izquierdo et al., 2001).

S-IRL (Scatter Iterative Rule Learning), guided by a genetic algorithm, is
able to generate scatter systems. It is characterized by center of grav-
ity weighted by the matching defuzzification and minimum t-norm as
implication and conjunctive operators (Cordón and Herrera, 2001) 1.

NefProx (Neuro-Fuzzy Function Approximation) is a Neuro-Fuzzy algo-
rithm based on supervised learning able to generate linguistic systems.
It is characterized by max-min inference and mean of maximum de-
fuzzification (Nauck and Kruse, 1999) 2.

L-IRL (Linguistic Iterative Rule Learning) that, following a similar strategy
to S-IRL, is able to generate linguistic systems (Cordón and Herrera,
1997) 3.

All these algorithms generate FRBSs with different Accuracy-Interpretability
trade-offs, according to their nature.

1S-IRL available in the KEEL software tool as MOGUL-IRLHC-R
2NefProx available at http://fuzzy.cs.uni-magdeburg.de/nefprox/
3L-IRL available in the KEEL software tool as MOGUL-IRLSC-R
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4.2. Orthogonal Transformations

Orthogonal transformations (Golub and Van Loan, 2012) are one of the
most useful and powerful tools of numerical linear algebra, and they are used
in many areas such as control, signal processing, feature selection, etc. The
target of these transformations is to discover the intrinsic dimensionality of
data, and this is done through matrix decompositions involving orthogonal
matrices. Thus, given a matrix M , it can be decomposed using different
orthogonal transformations as follows:

SVD (Singular Value Decomposition) M = UΣV T , where U and V are
orthogonal matrices and Σ is a non-negative diagonal matrix with the
singular values σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0 in decreasing order as diagonal.

P-QR (Pivored QR Decomposition) MΠ = QR, where Π is a permutation
matrix, Q is an orthogonal matrix and R is an upper triangular matrix
whose diagonal values are called R-values.

OLS (Orthogonal Least Square) M = WA, where W is an orthogonal matrix
and A is an upper-triangular matrix with unity diagonal values.

Then, in this case, an FRBS can be formulated as a linear regression
problem according to (Setnes, 2003; Yen and Wang, 1999):

y = Pθ + e (1)

where y = [y1, y2, · · · , yN ]T are the system outputs, θ = [c1, c2, · · · , cM ]T

are the consequents of the M rules, e = [e1, e2, · · · , eN ]T are the approxi-
mation errors and P = [p1, p2, · · · , pM ] ∈ RN×M contains the firing strength
of all M rules for the N inputs, with pi = [pi1, pi2, · · · , piN ]T . Also, x =
[x1, · · · , xN ]T are the inputs and {Ai1, · · · , AiN} the fuzzy sets defined for the
antecedent, so pi can be expressed as:

pi(x) =
∏N

j=1 Aij(xj)∑M
k=1

∏N
j=1 Akj(xj)

(2)

These orthogonal decompositions applied on this firing strength matrix
P permit the relevance of the rules of an FRBS to be evaluated (Zhou et al.,
2009; Destercke et al., 2007; Setnes, 2003; Yen and Wang, 1999):

• Using SVD, the most relevant rules are those associated with higher
singular values.
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• Applying P-QR, the most active and least redundant rules are those
whose R-values are higher.

• OLS, higher values of the explained output variance [xV ar]i =
g2iw

T
i wi

yty

(g = Aθ) are assigned to relevant rules.

The OLS approach takes into account not only the rule antecedents but
also the rule consequents in comparison with the SVD and P-QR approaches.

4.3. Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are computational
algorithms inspired by genetic foundations to find solution sets to problems
subject to several objectives, to be simultaneously optimized. Their strategy
is to evolve from candidate solutions towards a best non-dominated solutions
set of the Pareto Front. In this proposal, a well-known MOEA has been taken
into account: SPEA2 (Strength Pareto Evolutionary Algorithm 2 ) (Zitzler
et al., 2001). This MOEA ensures an effective balance between exploitation
and exploration in the search space. In this algorithm, each individual is
evaluated taking into account the number of individuals it dominates and the
number of individuals by which it is dominated, a nearest neighbor density
estimation technique is used and an enhanced truncation method is applied.

5. Accuracy-Interpretability-Relevance Trade-Off: A Proposal

The target of this proposal is to improve the well-known Accuracy-Inter-
pretability trade-off for FRBSs, while preserving the most relevant rules for
each FRBS under the trade-off view. This goal is carried out by a multi-
objective optimization-based rule selection involving: Accuracy, Interpreta-
bility and Relevance concepts. This proposal is not dependent on the type
of FRBS (scatter or linguistic) and is carried out in two stages (Fig. 1):

1. Generation of an FRBS based on data and/or expert knowledge.

2. Improvement of the Accuracy-Interpretability trade-off of this FRBS
through a selection of its rules based on MOEA, involving rule accuracy,
interpretability and relevance issues.

The involvement of such issues as accuracy, interpretability and relevance
implies their definition and formulation in order to be evaluated as objectives
through a MOEA based rule selection. The rule selection of this proposal
has three goals:
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Figure 1: Improvement of FRBS Accuracy-Interpretability trade-off based on rule selection
involving accuracy, interpretability and relevance concepts.

X Maximize Accuracy.

X Maximize Interpretability.

X Maximize Relevance.

Once the objectives have been established, the indexes or metrics to mea-
sure them have to be defined:

1. Accuracy of an FRBS is usually measured by its Mean Squared Error
(MSE) (Eq. 3), where |N | is the size of the dataset, F (xi) is the FRBS
output when the input is the i-th sample, and yi is the known desired
output. MSE must be minimized in order to maximize accuracy.

MSE =
1

|N |

|N |∑
i=1

(F (xi)− yi)2 (3)

2. Interpretability of the FRBS can be evaluated in different ways, as
described in Section 3. Here, the indexes have been selected according
to the taxonomy proposed by Gacto et al. (2011). In all cases, these
indexes must be minimized in order to maximize interpretability:

(a) The number of rules measured by Eq. 4 as an index of complexity-
based interpretability at the rule base level.

NR = Number of rules (4)
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(b) The number of membership functions measured by Eq. 5 as an
index of complexity-based interpretability at the fuzzy partition
level.

NMF = Number of membership functions (5)

(c) The incoherence of the rule base evaluated by Eq. 6 as an index of
semantic-based interpretability at the rule base level, considering
the consistency of a rule base as the absence of contradictory rules
(same antecedents but different consequents).

Incoherence = Inc =
|(SkA(Ri,Rj)>(1−βI) AND SkC(Ri,Rj)<βI)|

(RuleNumber−1)!
∀1 ≤ i < j ≤ RuleNumber
∀1 ≤ kA ≤ AntecedentNumber
∀1 ≤ kC ≤ ConsequentNumber

(6)

A threshold for incoherence, βI , is defined to evaluate the averaged
non similarity of the consequents (SkC) and averaged similarity
of the antecedents (SkA). | · | is the cardinality of the set, and
similarity of the fuzzy sets (A,B) is measured as in Setnes et al.
(1998).

(d) The distinguishability of the fuzzy sets evaluated by Eq. 7 as
an index of semantic-based interpretability at the fuzzy partition
level. This distinguishability of the fuzzy sets gets worse when
membership functions are more similar for each fuzzy partition.

Similarity = Sim = FkA(Fl,m(S(MFkA.l,MFkA.m)))
F ⇒ ArithmeticMean
∀1 ≤ l < m ≤MembershipFunctionNumber
∀1 ≤ kA ≤ AntecedentNumber

(7)

3. Rule Relevance of the FRBS, the idea is to estimate the relevance
of each rule in order to rate the relevance of all the rules contained in
the FRBS. Here, rule relevance is based on orthogonal transformations
(singular values in SVD, R-values in P-QR and variances in OLS) to
approach each rule’s own variability regarding the input/output data.
Using this local evaluation of each rule relevance, the relevance con-
tained in the rule set of an FRBS is defined by Eq. 8, in such a way
that

∑n
i=1RelevanceRulei = 1 in the initial FRBS.
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Relevance = RelFS =

∑n
i=1RelevanceRulei

n
(8)

Two strategies have been taken into account to maximize the relevance
preserved by the FRBS rules in the tradeoff:

(a) Preserving the most k relevant rules in the FRBS, minimizing Eq.
9. This strategy is based on the relevance of every rule:

RelRH = 1−RelFS = 1−
∑k

i=1RelevanceRulei
k

(9)

(b) Removing the lesser j relevant rules in the FRBS, minimizing Eq.
10. This is formulated as:

RelRL = k

√√√√ k∏
i=1

(1−RelevanceRulei) (10)

In order to reach the Accuracy-Interpretability-Relevance trade-off, a
post-processing rule selection is performed with SPEA2. A multi-objective
strategy for this challenge is an effective approach, since accuracy and inter-
pretability are contradictory objectives. However, when semantic interpreta-
bility is managed by MOEAs, it does not perform as well as when complexity
based interpretability is used.

6. Experimental Work

In order to evaluate this proposal, exhaustive experimental work has been
carried out focusing on two targeted objectives:

1. To improve the Accuracy-Interpretability-Relevance trade-off for FRBSs.
The Accuracy-Interpretability trade-off is the major and ordinary point
for FRBS literature on this area, but here rule Relevance plays a
key role for this procedure. The Accuracy-Relevance and Relevance-
Interpretability views are also analyzed.

2. To check rule relevance for the achievement of a good Accuracy-Interpretability
trade-off: Should rules with low relevance always be removed? Must
rules with high relevance always be preserved?
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In order to carry out this experimental work, checking its soundness, sev-
eral alternatives for the FRBS model, rule relevance, interpretability indexes,
MOEA and datasets have been used throughout the experiments:

• FasArt and S-IRL as scatter algorithms, and NefProx and L-IRL as
linguistic algorithms, to obtain the initial FRBSs.

• SVD, P-QR and OLS as orthogonal transformations to evaluate rule
relevance. The two rule relevance strategies: RelRH (Eq.9) and RelRL
(Eq.10), have been used in experiments.

• NR, NMF , Sim and Inc as four different measurements of interpre-
tability, according to Section 5.

• SPEA2 as MOEA approaches to guide the rule selection.

• Nine datasets describing real-world problems from the KEEL dataset
repository (Alcalá-Fdez et al., 2009), whose main characteristics are
summarized in Table 1.

Table 1: Datasets considered for experimental work
Datasets Name Variables Patterns

Plastic Strength PLA 3 1650
Quake QUA 4 2178
Electrical Maintenance ELE 5 1056
Abalone ABA 9 4177
Stock prices STP 10 950
Weather Izmir WIZ 10 1461
Weather Ankara WAN 10 1609
Mortgage MOR 16 1049
Treasury TRE 16 1049

Section 6.1 describes in detail the experimental methodologies for both
major objectives (Accuracy-Interpretability-Relevance trade-off and the role
of rule relevance); while Section 6.2 analyzes and discusses the results ob-
tained when the algorithm SPEA2 is used.
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6.1. Methodologies

Two methodologies have been developed for this experimental work ac-
cording to the major objectives:

1. To improve the Accuracy-Interpretability trade-off for FRBSs, adding
rule relevance as a factor to be taken into account.

2. To check the role of rule Relevance for reaching a good Accuracy-
Interpretability trade-off, as well as other views: Accuracy-Relevance
and Relevance-Interpretability trade-off.

6.1.1. FRBS Improvement: Accuracy, Interpretability and Relevance based
on MOEA Rule Selection

Methodology 1 shows the experimental procedure used to carry out the
experimental work, focusing on the improvement of the linguistic or scatter
FRBSs, through a MOEA based rule selection, taking into account: the
Accuracy, Interpretability and Relevance of the rule system. The results of
applying this methodology are shown and discussed in Sections 6.2.1 and
6.2.2.

First, FRBSs are generated using the algorithms described in Subsection
4.1 and tuned according to the parameters shown in Table 2. A brief de-
scription of them can be seen in Section 4.1. All experiments are based on
5-fold cross-validation4 and, in order to be able to use the Interpretability
index Inc, the threshold for incoherence is tuned as βI = 0.2.

Next, the rule selection based on SPEA2 is run six times. Traditional
genetic operators have been selected and specific mechanisms to improve the
search algorithm ability have been implemented. These are: a binary coding
scheme for individuals, HUX as the crossover operator (Eshelman, 1991),
classical mutation (Ishibuchi et al., 1997) with probability 0.2, a mechanism
for incest prevention based on concepts of CHC (Eshelman, 1991), a restart-
ing operator to maintain the best individuals in the external population, and
the mating pool being progressively reduced. Other parameters are: a popu-
lation size of 200, an external population size of 61 and 100, 000 evaluations
(Alcalá et al., 2007).

Finally, the MOEA based approach permits the results to be analyzed un-
der three different views: Accuracy-Interpretability, Accuracy-Relevance and

4The data partitions (5-fold) are available on the KEEL project website:
http://sci2s.ugr.es/keel/datasets.php
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Methodology 1 MOEA based FRBS rule selection based on accuracy, in-
terpretability and relevance

for Algorithm Modeling = Scatter:Linguistic do
for Orthogonal Transformation = SVD : P-QR : OLS do

for Relevance = RelRH : RelRL do
for Interpretability = NR : NMF : Inc : Sim do

for Dataset = Dataset1 · · ·Dataset9 do
for CrossValidation = CV 1 · · ·CV 5 do

Generate initial FRBS
Generate ordering rules according to the relevant rules obtained from
orthogonal transformations
for Run=1 a 6 do

Run Genetic Algorithm SPEA2 for rule selection with three objec-
tives:

Accuracy → min(MSEtra)
Relevance → min(RelRL) or min(RelRH)
Interpretability → min(NR) or min(NMF ) or min(Inc) or

min(Sim)
end for

end for
for View = Accuracy-Relevance : Accuracy-Interpretability : Relevance-
Interpretability do

Pareto Front Analysis {Best Acc, Median Acc-Inter, Best Inter}
end for

end for
for View = Accuracy-Relevance : Accuracy-Interpretability : Relevance-
Interpretability do

Nonparametric Statistics Test {Best Acc, Median Acc-Inter, Best Inter}
end for

end for
end for

end for
end for

Interpretability-Relevance. Pareto Fronts are analyzed taking into account
different representative points, or models, for each view: the best for each
objective and the median one. This permits the users to make their own
selection based on their preferences regarding the objectives. In any case,
the users always have the Median solution as a compromise option, although
other options are possible, such as in Ishibuchi and Nojima (2013). Other
researchers have also used these kinds of projections for graphical represen-
tation and statistical analysis when three objectives are optimized together
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Table 2: FRBS Tuning Parameters
#var FasArt NefProx S-IRL and L-IRL
< 9 ρ = 0.7,γ = 8 nLT = 5 nLT = 5
≥ 9 ρ = 0.7,γ = 6 nLT = 3 nLT = 3
In any case ε = 1.5,ω = 0.05,K = 0.1,P = 61

a = 0.35,b = 5,Pc = 0.6,Pm = 0.1
Gen = 100,ES = 50,α = 20%

ρ-vigilance parameter, γ-fuzzification rate, nLT -number of linguistic terms for lin-
guistic partitions, ε-minimum covering degree, ω-covering for positive examples,
K-percentage of negative examples, P -population size, a and b-crossover and mu-
tation, Pc-crossover probability, Pm-mutation probability, Gen-for the number of
generations, ES-evolutionary strategy applied until there is no improvement in ES
generations over a percentage α of individuals of population

(Nguyena et al., 2015; Márquez et al., 2012; Galende et al., 2012; Antonelli
et al., 2011; Gacto et al., 2010). For all cases, a comparison with other ap-
proaches and non-parametric statistical tests are applied in order to check
the statistical significance of the results obtained.

6.1.2. Impact of Rule Relevance through the FRBSs

Methodology 2 shows the methodology of experimentation applied to
evaluate the meaning of rule relevance and its distribution in the improved
FRBSs by this multi-objective approach. The results of this study are shown
and analyzed in Section 6.2.3.

The analysis involves every algorithm of Subsection 4.1 and all datasets
described in Table 1. First, the range of rule relevance for each FRBS is
divided into quarters labeled as: Low Relevance, Low-Medium Relevance,
High-Medium Relevance and High Relevance. Then, the distribution of rules
by quarters and the selected rules by quarters is analyzed to check their
impact in reaching the Accuracy-Interpretability trade-off.
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Methodology 2 Distribution of rules by relevance into improved FRBS
for Algorithm Modeling = Scatter:Linguistic do

for Orthogonal Transformation = SVD : P-QR : OLS do
for Relevance = RelRH : RelRL do

for Interpretability = NR : NMF : Inc : Sim do
for View = Accuracy-Relevance : Accuracy-Interpretability : Relevance-
Interpretability do

for Dataset = Dataset1 · · ·Dataset9 do
maxRel = maxNRini

i=1 RelevanceRulei

minRel = minNRini
i=1 RelevanceRulei

width = maxRel−minRel
4

for c = 1 · · · 4 do
Quarterc = [minRel + (width ∗ (c− 1)),minRel + (width ∗ c)]
InitialDistribution(%) = NRinitial in Quarterc

NRinitial

PreservedRules(%) = NRimproved in Quarterc

NRinitial in Quarterc

ImprovedDistribution(%) = NRimproved in Quarterc

NRimproved

end for
end for
Mean distributions of selected rules are studied {Best Acc, Median Acc-
Inter, Best Inter}

end for
end for

end for
end for

end for

6.2. Improving FRBS by MOEA Rule Selection: Results and Discussions

The results shown and discussed in this section are based on the method-
ologies previously commented in Sections 6.1.1 and 6.1.2, and shown in Fig.
1. The experimentation carried out has been very extensive and exhaustive,
so it is not possible to present all the results for all the cases in detail. So,
only the most contributable results are included in the following sections:

• Section 6.2.1 presents the results corresponding to the Accuracy-Inter-
pretability view because this is the most usual for the scientific commu-
nity. The results obtained by OLS, which take into account both rule
antecedents and consequents, and measurement by relevance RelRH ,
are analyzed in detail. Then, results obtained with P-QR and SVD are
summarized.

• Section 6.2.2 includes a global analysis for the other views: Accuracy-

19



Relevance and Relevance-Interpretability.

• Finally, in section 6.2.3, the role of the fuzzy rules is analyzed for the
trade-off according to their relevance.

6.2.1. Accuracy-Interpretability Improvement

The results obtained in these cases are summarized in Tables 3, 4 and
5, which show average ∆ values for the different interpretability indexes and
all datasets, where the ∆ value is the variation in % of improved FRBSs
with respect to the initial one. The values shown in the tables are: in-
dexes NR (number of rules), NMF (number of membership functions), Inc
(incoherence) or Sim (similarity) involved in the Interpretability objective
(Inter), MSE for training (Etra) involved in the Accuracy objective and
mean relevance of selected rules (RelFS) involved in the Relevance objec-
tive. Also the MSE for test (Etst) and number of rules (NR) are also shown.
All these values are shown for three representative systems in Pareto Front
for the Accuracy-Interpretability view: most Interpretable (Best Inter), me-
dian Accuracy-Interpretability (Median Acc-Inter) and most Accurate (Best
Acc). The grey color in the table indicates that the Wilcoxon test, performed
with a confidence level of α = 0.1, accepts that initial and improved models
are similar.

Orthogonal Transformation: OLS.
The results obtained are based on the procedure shown in methodology

1. Table 3 shows the results obtained for each scatter and linguistic fuzzy
model and interpretability measures when OLS is considered in RelRH .

Scatter Fuzzy Models:

1. The most interpretable solutions. The Wilcoxon test accepts that
every measure has been improved. Interpretability improves in every
case up to 70.20%, the error always being significantly improved for
S-IRL cases and most FasArt cases up to 70.38%, while the number
of rules is reduced for every case up to 68.28%. Relevance is always
improved for FasArt cases and most S-IRL cases up to 63.36%.
Summarizing, the rate of improvement is higher in S-IRL than FasArt
for most indexes except relevance, but FasArt is generally more ac-
curate. Regarding interpretability indexes, NR, NMF , Inc and Sim
behave similarly in FasArt and S-IRL.

2. The median solutions. The Wilcoxon test accepts that most indexes
have been improved, except in two cases of S-IRL, where they remain
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Table 3: Average ∆ Values (%) for Improved FRBS: Accuracy-Interpretability View, OLS,
RelRH

FasArt

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 50.28 30.55 31.08 50.28 63.15 39.12 53.07 51.88 39.12 29.84 27.26 55.51 54.02 27.26 11.17
NMF 51.37 32.16 32.48 49.90 63.36 39.98 53.29 52.00 38.81 29.75 28.10 55.50 53.91 27.26 11.20
Inc 55.53 54.44 52.93 29.15 16.01 22.90 55.14 53.53 26.45 11.11 −0.76 55.47 53.87 26.07 9.97
Sim 27.61 22.52 25.15 46.54 48.65 24.17 48.81 47.99 40.48 31.86 17.91 54.99 53.64 34.77 26.12

S-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 68.28 63.96 62.45 68.28 46.74 58.31 70.65 69.43 58.31 18.38 49.50 71.85 70.77 49.50 1.09
NMF 70.20 63.54 62.26 68.26 46.24 60.10 70.44 69.22 58.45 18.62 50.84 71.85 70.77 49.46 1.02
Inc 55.56 71.48 70.38 47.75 3.73 11.79 71.59 70.52 47.37 3.04 −11.58 71.65 70.57 47.48 3.57
Sim 37.29 52.18 50.94 64.28 23.06 34.05 66.87 65.42 56.63 4.98 28.64 71.87 70.71 48.13 0.30

NefProx

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 86.80 31.14 30.85 86.80 580.30 77.44 54.48 53.50 77.44 182.42 63.24 61.23 60.44 63.24 101.83
NMF 75.84 42.30 42.48 74.29 188.06 67.45 59.02 58.27 66.36 58.44 55.22 61.53 60.86 54.54 53.97
Inc 65.96 60.02 59.27 57.15 61.59 56.93 60.76 60.06 55.04 47.74 39.58 61.34 60.60 53.10 57.47
Sim 43.05 34.62 34.85 72.88 63.48 38.85 52.86 52.05 68.25 36.18 30.47 60.74 60.17 59.74 84.18

L-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 83.19 40.58 40.06 83.19 202.50 75.82 63.95 63.18 75.82 124.92 54.14 71.60 71.02 54.14 70.24
NMF 85.06 42.89 42.11 83.41 205.97 77.39 64.22 63.41 75.90 127.11 61.92 70.57 69.97 60.72 78.46
Inc 99.82 68.49 67.67 65.11 111.45 81.84 69.98 69.13 62.29 85.39 40.36 70.59 69.76 60.77 79.76
Sim 44.50 34.67 33.00 81.62 108.57 39.27 61.10 60.19 74.94 4.91 31.50 70.53 69.85 59.99 59.11

the same. Interpretability has improved for most FasArt and S-IRL
cases up to 60.10%, while the error is significantly reduced for every
case up to 70.52%, and the number of rules is reduced for every case
up to 58.45%. Relevance is improved for most FasArt and S-IRL cases
up to 31.86%.
In general, the rate of improvement is higher for S-IRL than FasArt for
most indexes except Relevance, but FasArt is more accurate. Regarding
the interpretability indexes, NR, NMF , Inc and Sim behave similarly
in FasArt and S-IRL with Interpretability and error, but not similarly
in number of rules and Relevance.

3. The most accurate solutions.The Wilcoxon test accepts that most
indexes have been improved except for one case of FasArt and two cases
of S-IRL, where they remain the same. Interpretability has improved
for every case of NR, NMF and Sim up to 50.84%, while error is
significantly reduced for every case up to 70.77%, and the number of
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rules is improved for every case up to 49.50%. Relevance is improved
in most FasArt and S-IRL cases up to 26.12%.
So, the rate of improvement is higher in S-IRL than FasArt for most
indexes except Relevance, but FasArt is more accurate. Regarding
interpretability indexes, NR, NMF , Inc and Sim behave similarly in
FasArt and S-IRL with Interpretability and error, but not similarly in
number of rules and Relevance.

Linguistic Fuzzy Models:

1. The most interpretable solutions. The Wilcoxon test accepts an
improvement for every case. Interpretability has improved for every
case up to 99.82%, the error is significantly improved in most cases
up to 67.67%, and the number of rules is reduced for every case up to
86.80%. Relevance is also improved for most cases up to 580.30%.
So, L-IRL generally improves more than NefProx. Regarding the in-
terpretability indexes, NR, NMF , Inc and Sim behave similarly in
NefProx and L-IRL.

2. The median solutions. The Wilcoxon test accepts an improvement
for every case. Interpretability has improved for every case up to
81.84%, the error is reduced for every case up to 69.13%, and the
number of rules is significantly reduced for every case up to 77.44%.
Relevance is always improved for L-IRL cases and most NefProx cases
up to 182.42%.
Regarding FRBS models, L-IRL generally improves more than Nef-
Prox. Regarding the interpretability indexes, NR, NMF , Inc and
Sim, behave similarly in NefProx and L-IRL with Interpretability and
error, but not similarly in number of rules and Relevance.

3. The most accurate solutions. The Wilcoxon test accepts that every
analyzed measure has been improved. Interpretability has improved in
every NefProx case, and every L-IRL case of Inter = NR, Inter =
NMF and Inter = Sim up to 61.92%, while the error is significantly
reduced for every case up to 71.02%, and the number of rules has
improved for every case up to 63.24%. Relevance is improved in most
cases up to 101.83%.
Thus, L-IRL generally improves more than NefProx. Regarding the
interpretability indexes, NR, NMF , Inc and Sim, are quite similar
with error for NefProx and L-IRL, but for Interpretability, number of
rules and Relevance, they are not similar.
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Orthogonal Transformation: P-QR and SVD. To avoid a very
long article for these orthogonal transformations, only average results for
all datasets are shown. Table 4 for P-QR and Table 5 for SVD show the
mean results for every (scatter and linguistic) fuzzy model and interpreta-
bility measure, considering RelRH . Both orthogonal transformations achieve
improvements in Accuracy, Interpretability and Relevance for 98% of scat-
ter models and 100% of linguistic ones. On average, interpretability indexes
have been improved by up to 72% for scatter models and 100% for linguistic
ones; the error has been reduced by 71% in all models; and Relevance has
been improved by up to 33% and 199%, respectively. There are no significant
differences between P-QR and SVD.

Table 4: Average ∆ Values (%) for Improved FRBS: Accuracy-Interpretability View, P-
QR, RelRH

FasArt

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 48.75 38.53 37.03 48.75 32.86 37.86 53.63 52.17 37.86 19.65 26.86 55.46 53.83 26.86 10.20
NMF 50.20 38.09 37.49 48.78 32.78 38.95 53.70 52.25 37.81 19.60 27.68 55.46 53.83 26.86 10.20
Inc 55.56 54.34 52.96 27.50 11.96 27.99 55.04 53.51 25.03 10.13 3.30 55.39 53.78 25.03 9.79
Sim 26.88 26.71 27.98 45.59 32.35 23.42 49.35 48.29 39.43 29.34 17.12 54.97 53.63 32.33 24.50

S-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 68.01 65.36 64.33 68.01 28.57 58.15 70.61 69.43 58.15 14.70 49.82 71.73 70.61 49.82 5.95
NMF 69.97 64.03 62.99 68.04 29.00 59.91 70.64 69.40 58.26 14.69 51.22 71.73 70.61 49.82 5.95
Inc 55.56 71.15 70.07 47.14 6.26 21.25 71.20 70.14 46.72 5.88 5.61 71.26 70.23 46.81 5.89
Sim 36.41 53.80 52.82 61.23 8.89 33.54 66.78 65.47 54.60 5.17 28.86 71.61 70.11 46.72 3.20

NefProx

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 87.67 35.67 35.81 87.67 140.78 78.54 54.39 53.97 78.54 52.43 62.52 60.89 60.25 65.21 34.59
NMF 77.51 42.01 42.03 75.92 59.34 69.20 59.16 58.24 68.08 20.27 55.73 61.37 60.62 55.06 15.65
Inc 66.67 59.54 58.83 57.93 26.10 56.81 60.62 59.84 55.40 20.35 35.60 61.11 60.49 52.81 16.84
Sim 43.38 34.87 35.03 73.23 55.50 39.03 51.90 51.39 68.74 30.97 31.17 60.63 60.22 59.16 25.28

L-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 83.43 41.72 41.26 83.43 134.04 75.42 64.52 63.74 75.42 97.45 54.20 71.53 70.97 54.20 51.93
NMF 85.16 42.46 42.83 83.52 140.29 77.28 63.63 63.10 75.79 98.69 62.32 70.52 69.98 61.11 62.50
Inc 99.63 68.40 67.78 65.55 76.39 77.04 69.80 69.17 62.55 65.82 15.77 70.64 70.04 59.85 60.28
Sim 44.10 35.84 34.92 81.22 101.83 39.43 60.93 60.22 75.02 81.44 30.75 70.50 69.79 60.38 56.94

In most cases, the higher percentages of Accuracy improvement are ob-
tained when the Relevance is lower. The same conclusion is possible when
incoherence and similarity are involved, due to the interpretability indexes
for the selection of rules. On the other hand, this variation is higher for
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Table 5: Average ∆ Values (%) for Improved FRBS: Accuracy-Interpretability View, SVD,
RelRH

FasArt

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 51.80 21.88 23.10 51.80 19.49 40.40 52.35 50.74 40.40 9.26 26.46 55.44 53.94 26.46 3.27
NMF 53.38 21.77 22.92 51.87 19.52 41.55 52.37 50.82 40.35 9.10 27.36 55.43 53.91 26.53 3.03
Inc 55.44 54.21 52.96 26.70 5.94 25.39 55.02 53.51 24.82 4.14 3.49 55.39 53.85 24.53 4.01
Sim 26.46 12.85 15.08 43.07 26.93 23.01 45.77 44.98 36.19 17.89 16.44 54.90 53.63 29.04 12.72

S-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 70.22 64.82 63.53 70.22 33.03 59.80 70.50 69.32 59.80 4.14 49.41 71.79 70.65 49.41 8.49
NMF 72.14 63.40 62.05 70.14 32.20 61.51 70.36 69.21 59.81 14.32 50.53 71.79 70.66 49.15 8.44
Inc 55.56 71.29 70.10 47.01 9.37 22.71 71.41 70.27 46.72 9.22 −7.82 71.47 70.09 46.86 9.10
Sim 37.44 52.37 51.84 62.31 24.52 33.99 67.11 65.97 54.90 13.52 28.78 71.76 70.68 46.82 7.70

NefProx

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 84.58 34.90 35.33 84.58 199.01 76.22 53.50 52.92 76.22 77.13 62.57 60.56 59.79 62.57 43.14
NMF 79.53 40.54 40.91 77.50 85.99 70.47 58.72 57.96 69.06 25.06 55.30 61.41 60.65 54.63 23.49
Inc 66.07 59.31 58.50 55.54 39.10 56.88 60.34 59.38 53.65 32.87 39.31 60.99 60.08 51.11 24.05
Sim 43.21 32.95 33.07 73.35 6.19 38.96 51.22 50.70 68.79 47.57 31.25 60.49 60.11 59.60 45.55

L-IRL

Inter
Best Inter Median Acc-Inter Best Acc

Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS Inter Etra Etst NR RelFS
NR 83.07 44.47 44.36 83.07 138.59 75.00 65.07 64.43 75.00 88.90 54.15 71.39 70.83 54.15 48.59
NMF 84.55 44.62 44.43 82.92 136.46 76.80 64.30 63.85 75.33 88.77 61.68 70.52 70.05 60.49 54.50
Inc 99.84 67.91 67.31 64.96 74.30 79.04 69.96 69.40 61.58 55.33 42.08 70.67 70.14 59.45 51.65
Sim 43.54 37.64 37.18 80.88 103.50 39.09 62.37 61.95 74.73 67.91 30.85 70.44 69.76 60.58 50.48

linguistic modeling than for scatter ones, and this suggests that low rele-
vance rules are very important for Accuracy and Interpretability. Therefore,
this implies paying attention to this issue for a better, or correct, Accuracy-
Interpretability trade-off.

Finally, in order to compare the fuzzy models of this proposal, a com-
parison has been made using the following approaches: WM-R (Wang and
Mendel, 1992) and GFS-RS-T (Cordón and Herrera, 1997; Ishibuchi et al.,
1995), included in the KEEL software tool5; SSP2 (MAXACC) obtained
from Gacto et al. (2010) and ScatA6, ScatB7, LingA8 and LingB9 reported in

5http://sci2s.ugr.es/keel/algorithms.php
6FasArt Compact + SNSGAII+InterC
7FasArt Complex + SNSGAII+InterC
8NefProx Compact + SNSGAII+InterC
9NefProx Complex + SNSGAII+InterC

24



Table 6: Accuracy and Interpretability based comparison: Accuracy/Interpretability
View, OLS, RelRH , Inter = NR

Datasets
FRBS Best Inter Median Acc-Inter Best Acc
model Etst NR Inter Etst NR Inter Etst NR Inter

PLA

FasArt 3.802 7.3 7.3 1.981 13.5 13.5 1.778 21.7 21.7
S-IRL 2.773 29.1 29.1 2.332 40.1 40.1 2.249 52.6 52.6

NefProx 3.808 6.2 6.2 3.225 10.2 10.2 2.632 13.5 13.5
L-IRL 5.230 9.1 9.1 2.477 15.8 15.8 2.029 27.4 27.4
LingA 4.391 10.6 10.6 3.572 13.0 13.0 3.222 17.0 17.0
LingB 3.286 18.0 18.0 2.824 23.0 23.0 2.655 29.6 29.6
ScatA 3.718 18.8 18.8 3.073 22.0 22.0 2.688 27.2 27.2
ScatB 3.172 36.2 36.2 2.567 45.8 45.8 2.374 55.4 55.4
WM-R 7.114 14.8 14.8 7.114 14.8 14.8 7.114 14.8 14.8

GFS-RS-T 18.261 7.5 7.5 18.261 7.5 7.5 18.261 7.5 7.5
SSP2 4.832 12.0 12.0 4.832 12.0 12.0 4.832 12.0 12.0

WIZ

FasArt 4.502 49.2 49.2 4.131 52.5 52.5 4.141 55.7 55.7
S-IRL 16.467 8.2 8.2 14.747 10.9 10.9 14.253 13.2 13.2

NefProx 8.383 4.8 4.8 5.570 11.9 11.9 4.467 22.7 22.7
L-IRL 16.950 8.6 8.6 7.851 13.3 13.3 5.319 21.7 21.7
LingA 13.271 357.8 357.8 12.998 363.0 363.0 12.804 375.4 375.4
LingB 19.099 373.6 373.6 18.829 380.6 380.6 18.860 392.8 392.8
ScatA 17.571 116.0 116.0 17.401 124.4 124.4 16.701 134.5 134.5
ScatB 23.251 358.0 358.0 23.182 365.9 365.9 23.067 380.5 380.5
WM-R 14.736 104.8 104.8 14.736 104.8 104.8 14.736 104.8 104.8

GFS-RS-T 7.346 51.2 51.2 7.346 51.2 51.2 7.346 51.2 51.2
SSP2 15.482 38.7 38.7 15.482 38.7 38.7 15.482 38.7 38.7

MOR

FasArt 0.583 10.1 10.1 0.235 14.3 14.3 0.198 18.6 18.6
S-IRL 0.725 6.5 6.5 0.430 9.4 9.4 0.388 11.6 11.6

NefProx 1.049 3.2 3.2 0.338 9.4 9.4 0.259 19.9 19.9
L-IRL 0.845 4.7 4.7 0.585 6.9 6.9 0.455 10.0 10.0
LingA 0.975 76.6 76.6 0.660 82.8 82.8 0.632 98.0 98.0
LingB 0.415 171.6 171.6 0.382 179.0 179.0 0.377 191.8 191.8
ScatA 1.266 36.8 36.8 1.216 38.8 38.8 1.178 41.4 41.4
ScatB 0.447 64.1 64.1 0.381 69.3 69.3 0.373 79.5 79.5
WM-R 1.946 77.6 77.6 1.946 77.6 77.6 1.946 77.6 77.6

GFS-RS-T 0.750 24.3 24.3 0.750 24.3 24.3 0.750 24.3 24.3
SSP2 0.510 17.2 17.2 0.510 17.2 17.2 0.510 17.2 17.2

Galende et al. (2012). This comparison is based on three indexes: Etst, NR
and Inter. In order to avoid an overlong paper, only the comparison based
on OLS and RelRH is shown; in the other cases, no significant differences are
found. In the four latter works used for comparison, only the Best Inter,
Median Acc-Inter and Best Acc have been reported, while in the other cases,
only Best Acc is available for comparison. In this latter case, it is compared
with the Best Inter, Median Acc-Inter and Best Acc of this proposal.

For the same reason, only a sample of the global comparison results are
shown in Tables 6 and 7. These correspond to the interpretability indexes
Inter = NR and Inter = Sim, and the datasets: PLA, WIZ and MOR.
Analyzing these results, it is possible to check that the fuzzy models reported
in this approach are very competitive. In any case, to check the statistical
impact of the comparison, some non-parametric tests for multiple comparison
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Table 7: Accuracy and Interpretability based comparison: Accuracy/Interpretability
View, OLS, RelRH , Inter = Sim

Datasets
FRBS Best Inter Median Acc-Inter Best Acc
model Etst NR Inter Etst NR Inter Etst NR Inter

PLA

FasArt 3.966 10.2 0.121 2.262 13.3 0.138 1.784 19.1 0.165
S-IRL 3.264 45.9 0.105 2.525 51.6 0.113 2.275 58.5 0.131

NefProx 2.926 12.8 0.183 2.787 13.2 0.189 2.633 13.7 0.203
L-IRL 6.279 8.8 0.161 3.146 13.7 0.193 2.037 25.8 0.234
LingA 4.391 10.6 0.195 3.572 13.0 0.231 3.222 17.0 0.241
LingB 3.286 18.0 0.164 2.824 23.0 0.172 2.655 29.6 0.186
ScatA 3.718 18.8 0.151 3.073 22.0 0.176 2.688 27.2 0.254
ScatB 3.172 36.2 0.132 2.567 45.8 0.143 2.374 55.4 0.167
WM-R 7.114 14.8 0.244 7.114 14.8 0.244 7.114 14.8 0.244

GFS-RS-T 18.261 7.5 0.234 18.261 7.5 0.234 18.261 7.5 0.234
SSP2 4.832 12.0 0.233 4.832 12.0 0.233 4.832 12.0 0.233

WIZ

FasArt 5.546 51.4 0.333 4.414 53.9 0.339 4.143 56.7 0.351
S-IRL 20.777 9.5 0.393 16.772 11.1 0.401 14.215 13.4 0.414

NefProx 12.864 9.1 0.510 7.358 12.0 0.542 4.343 22.5 0.610
L-IRL 13.366 11.3 0.546 7.323 14.7 0.565 5.494 20.5 0.605
LingA 13.271 357.8 0.557 12.998 363.0 0.559 12.804 375.4 0.561
LingB 19.099 373.6 0.489 18.829 380.6 0.491 18.860 392.8 0.494
ScatA 17.571 116.0 0.349 17.401 124.4 0.354 16.701 134.5 0.360
ScatB 23.251 358.0 0.399 23.182 365.9 0.401 23.067 380.5 0.404
WM-R 14.736 104.8 0.722 14.736 104.8 0.722 14.736 104.8 0.722

GFS-RS-T 7.346 51.2 0.710 7.346 51.2 0.710 7.346 51.2 0.710
SSP2 15.482 38.7 0.716 15.482 38.7 0.716 15.482 38.7 0.716

MOR

FasArt 0.550 12.7 0.192 0.261 14.8 0.202 0.203 17.1 0.216
S-IRL 1.299 5.8 0.282 0.578 8.6 0.312 0.389 11.5 0.339

NefProx 0.949 6.5 0.340 0.451 10.2 0.391 0.264 17.2 0.471
L-IRL 0.910 5.5 0.314 0.574 8.1 0.371 0.457 10.9 0.403
LingA 0.975 76.6 0.403 0.660 82.8 0.405 0.632 98.0 0.409
LingB 0.415 171.6 0.288 0.382 179.0 0.289 0.377 191.8 0.291
ScatA 1.266 36.8 0.327 1.216 38.8 0.340 1.178 41.4 0.353
ScatB 0.447 64.1 0.317 0.381 69.3 0.322 0.373 79.5 0.327
WM-R 1.946 77.6 0.580 1.946 77.6 0.580 1.946 77.6 0.580

GFS-RS-T 0.750 24.3 0.557 0.750 24.3 0.557 0.750 24.3 0.557
SSP2 0.510 17.2 0.553 0.510 17.2 0.553 0.510 17.2 0.553

have been done: Friedman’s test, Iman and Davenport’s test and Holm’s
post-hoc test.

To perform these tests, we used a confidence level α = 0.1. Table 8
shows a summary for the different interpretability indexes, considering the
Accuracy-Interpretability view, OLS and RelRH . The dark grey color iden-
tifies the model with the best Friedman’s ranking, while the light grey color
indicates that Holm’s post-hoc test accepts that this model is similar to the
winner. As shown in the table, the fuzzy models based on this proposal are
the best in most cases, and equivalent to other approaches reported by other
authors, not only in interpretability, but also in accuracy. Similar results
have been obtained by the rest of the orthogonal transformations.
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Table 8: Rankings obtained through Friedman’s Test on the different measures, Iman-
Davenport p-values and Holm’s post-hoc similarities: Accuracy/Interpretability View,
OLS, RelRH

Inter
FRBS Best Inter Median Acc-Inter Best Acc
model Etst NR Inter Etst NR Inter Etst NR Inter

NR

FasArt 2.33 4.78 4.78 1.22 5.44 5.44 1.28 5.67 5.67
S-IRL 5.22 4.11 4.11 5.11 3.72 3.72 5.39 3.11 3.11

NefProx 6.33 1.22 1.22 4.89 2.00 2.00 4.61 2.78 2.78
L-IRL 7.33 2.89 2.89 5.22 3.17 3.17 3.61 4.11 4.11
LingA 6.50 7.44 7.44 7.22 7.89 7.89 7.33 8.00 8.00
LingB 5.44 9.67 9.67 6.33 9.67 9.67 6.56 9.78 9.78
ScatA 7.17 7.89 7.89 7.56 7.89 7.89 7.72 7.67 7.67
ScatB 4.67 9.89 9.89 4.78 9.89 9.89 4.83 10.00 10.00
WM-R 9.33 8.11 8.11 9.56 7.44 7.44 9.67 7.00 7.00

GFS-RS-T 6.56 5.28 5.28 7.89 4.72 4.72 8.33 4.50 4.50
SSP2 5.11 4.72 4.72 6.22 4.17 4.17 6.67 3.39 3.39

p-values 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

NMF

FasArt 2.44 4.78 4.78 1.22 5.44 5.50 1.39 5.56 5.56
S-IRL 5.17 3.94 3.94 5.06 3.44 3.44 5.33 3.11 3.11

NefProx 5.50 2.11 1.94 4.67 3.28 3.22 4.33 3.67 3.67
L-IRL 7.22 2.56 2.56 5.06 2.83 2.83 4.17 3.44 3.44
LingA 6.72 7.33 7.33 7.22 7.78 7.78 7.22 8.00 8.00
LingB 5.56 9.67 9.67 6.44 9.67 9.67 6.44 9.78 9.78
ScatA 7.39 7.89 7.89 7.67 7.89 7.78 7.61 7.78 7.78
ScatB 4.67 9.89 9.89 4.78 9.89 9.89 4.72 10.00 10.00
WM-R 9.44 8.11 8.11 9.67 7.44 7.56 9.67 7.00 7.00

GFS-RS-T 6.67 5.17 5.11 8.00 4.61 4.56 8.33 4.50 4.44
SSP2 5.22 4.56 4.78 6.22 3.72 3.78 6.78 3.17 3.22

p-values 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Inc

FasArt 1.22 6.11 4.11 1.22 6.22 5.06 1.28 5.56 4.94
S-IRL 4.72 3.33 4.11 5.06 3.33 3.89 5.22 3.33 3.83

NefProx 4.22 3.83 4.44 4.44 3.83 6.00 4.44 3.72 6.11
L-IRL 4.28 3.28 4.44 4.28 3.44 6.56 4.17 3.39 7.56
LingA 7.28 6.78 7.22 7.33 7.67 6.56 7.22 8.00 6.11
LingB 6.22 9.22 6.56 6.44 9.56 5.39 6.44 9.78 4.94
ScatA 7.94 7.67 4.72 7.67 7.44 3.78 7.61 7.78 4.22
ScatB 5.78 9.78 4.72 4.89 9.78 3.78 4.72 9.89 4.06
WM-R 9.67 7.72 8.83 9.67 7.28 8.61 9.67 6.94 8.39

GFS-RS-T 8.00 4.67 8.33 8.22 4.28 8.11 8.33 4.33 7.78
SSP2 6.67 3.61 8.50 6.78 3.17 8.28 6.89 3.28 8.06

p-values 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.004

Sim

FasArt 2.61 5.33 1.33 1.11 5.67 1.33 1.28 5.22 1.44
S-IRL 7.22 4.00 2.89 6.00 3.33 3.06 5.22 3.22 3.56

NefProx 5.39 2.83 6.22 4.89 3.22 6.33 4.56 3.50 7.17
L-IRL 7.56 1.94 5.56 5.89 2.44 6.33 4.17 3.67 7.00
LingA 6.39 7.33 7.67 7.22 7.78 7.78 7.22 8.00 7.22
LingB 5.00 9.56 4.56 6.11 9.78 3.89 6.44 9.78 3.78
ScatA 6.83 7.78 3.67 7.44 7.78 3.44 7.61 7.78 3.67
ScatB 4.33 9.78 4.22 4.33 9.78 4.17 4.72 9.89 3.44
WM-R 9.33 8.00 10.83 9.56 7.67 10.72 9.67 7.00 10.61

GFS-RS-T 6.44 4.94 9.83 7.56 4.61 9.72 8.33 4.39 9.44
SSP2 4.89 4.50 9.22 5.89 3.94 9.22 6.78 3.56 8.67

p-values 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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6.2.2. Accuracy-Relevance and Relevance-Interpretability View

In addition to the Accuracy-Interpretability trade-off or view, the most
popular one in this domain, this experimental work also studies the other two
views: Accuracy-Relevance and Relevance-Interpretability. Table 9 shows
the behavior of accuracy according to the average rule relevance (Accuracy-
Relevance view), and Table 10 shows the behavior of interpretability accord-
ing to the averaged rule relevance (Relevance-Interpretability view) for OLS,
P-QR and SVD. These tables show: Interpretability (Inter), MSE for the
test (Etst), and the mean relevance of selected rules (RelFS).

All these values are shown for the three representative models in the
Pareto Front: most Relevant (Best Rel), median Accuracy-Relevance (Me-
dian Acc − Rel) and most Accurate (Best Acc) for the Accuracy-Relevance
view (Table 9). In the Relevance-Interpretability view (Table 10): most
Interpretable (Best Inter), median Relevance-Interpretability (Median Rel-
Inter) and most Relevant (Best Rel) are shown.

The average minimum (min) and maximum (max) percentages (%) of
improvement for every orthogonal transformation and view are shown, con-
sidering the scatter and linguistic cases, and an average interpretability index
(as averaging of NR, NMF , Inc, Sim) for each representative model.

Table 9: Minimum and Maximum ∆ Values (%) for Improved FRBS: Accuracy-Relevance
View, RelRH

Scatter Fuzzy Models
Orthogonal Best Rel Median Acc-Rel Best Acc

Transformation Inter Etst RelFS Inter Etst RelFS Inter Etst RelFS

OLS
min (%) 18.35 29.92 58.36 17.89 49.47 25.64 17.91 53.64 9.97
max (%) 68.97 64.50 106.14 59.17 69.14 64.3 50.84 70.77 26.12

P-QR
min (%) 18.88 41.20 31.25 17.67 50.48 17.45 17.12 53.63 5.89
max (%) 68.05 63.96 47.43 59.46 68.96 37.93 51.22 70.61 24.50

SVD
min (%) 19.00 33.22 30.66 −31.14 46.31 17.89 16.44 53.63 4.01
max (%) 68.87 63.45 64.84 59.39 68.85 37.71 50.53 70.68 12.72

Linguistic Fuzzy Models
Orthogonal Best Rel Median Acc-Rel Best Acc

Transformation Inter Etst RelFS Inter Etst RelFS Inter Etst RelFS

OLS
min (%) 23.12 30.37 336.95 18.24 51.32 205.77 30.47 60.17 53.97
max (%) 84.48 46.73 805.11 73.85 64.33 407.43 61.92 71.02 101.83

P-QR
min (%) 26.95 32.96 136.27 29.38 51.29 79.52 15.77 60.22 15.65
max (%) 82.32 45.11 221.93 73.28 63.81 156.57 62.52 70.97 62.50

SVD
min (%) 31.70 30.42 161.61 18.75 50.01 104.43 30.85 59.79 23.49
max (%) 81.44 45.82 429.90 72.86 64.58 171.81 62.57 70.83 54.50

For both views, the Wilcoxon test accepts that every index (Interpreta-
bility, MSE and Relevance) has been improved in over 98% of cases, while
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Table 10: Minimum and Maximum ∆ Values (%) for Improved FRBS: Relevance-
Interpretability View, RelRH

Scatter Fuzzy Models
Orthogonal Best Inter Median Rel-Inter Best Rel

Transformation Inter Etst RelFS Inter Etst RelFS Inter Etst RelFS

OLS
min (%) 27.61 25.15 16.01 24.77 28.45 55.54 18.48 29.82 58.36
max (%) 70.20 70.38 63.36 69.67 64.46 79.93 68.97 64.50 106.14

P-QR
min (%) 26.88 27.98 6.26 24.21 34.95 28.85 18.89 41.15 31.25
max (%) 69.97 70.07 32.86 68.97 63.77 41.70 68.05 63.96 47.47

SVD
min (%) 26.46 22.92 5.94 24.07 16.56 30.01 19.01 33.22 30.66
max (%) 72.14 70.10 33.03 70.88 63.39 47.95 68.87 63.45 64.84

Linguistic Fuzzy Models
Orthogonal Best Inter Median Rel-Inter Best Rel

Transformation Inter Etst RelFS Inter Etst RelFS Inter Etst RelFS

OLS
min (%) 43.05 30.85 61.59 38.67 30.40 274.86 23.12 30.37 336.95
max (%) 99.82 67.67 580.30 94.24 47.33 702.77 84.51 46.73 805.11

P-QR
min (%) 43.38 34.92 26.10 39.25 32.30 107.43 26.95 32.96 136.31
max (%) 99.63 67.78 140.78 86.88 46.01 188.14 82.32 45.11 222.12

SVD
min (%) 43.21 33.07 39.10 39.11 32.92 151.04 31.70 30.42 161.61
max (%) 99.84 67.31 199.01 83.57 47.05 250.74 81.44 45.82 429.9

for the remaining 2%, the performance of FRBSs is maintained. The results
show similar behavior between OLS, P-QR and SVD for all cases. Analyzing
each view separately:

• Accuracy-Relevance view: Interpretability is improved by between
29%-47% for scatter models and 44%-64% for linguistic ones. Accu-
racy improves by between 47%-62% for scatter FRBS and 37%-65%
in linguistic FRBS, while Relevance improves by between 8%-76% for
scatter and 41%-448% linguistic ones.

• Relevance-Interpretability view: Interpretability is improved by
between 46% - 53% for scatter models and 58% - 73% for linguistic
ones. Accuracy improves by between 46%-54% for scatter models and
37% - 45% for linguistic models; while Relevance improves by between
21% - 76% for scatter models and 92% - 448% for linguistic models.

6.2.3. Improved FRBS: Rules with Low & High Relevance

In this section, a relevance based analysis of the rules selected through the
trade-off process is carried out, according to the scheme shown in Methodol-
ogy 2. The analysis described below is focused on OLS and P-QR orthogonal
transformations. The first one takes into account rule antecedents and conse-
quents, while the second only considers rule antecedents. In both cases, the
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percentage of rules for each relevance quarter is calculated. Table 11 shows
the rules of the initial models matched by quarters, according to their own
relevance based on orthogonal transformations, and other views and results
regarding the low & high relevance issue.

Table 11: Distribution (%) of rules classified by relevance quarters: OLS and P-QR,
Accuracy-Interpretability View, initial models

Scatter Fuzzy Models (%)
Orthogonal FRBS Low Medium-Low Medium-High High

Transformation Model Relevance Relevance Relevance Relevance

OLS
FasArt 85.70 8.49 2.81 2.99
S-IRL 92.63 3.33 1.35 2.69

P-QR
FasArt 70.87 18.04 6.85 4.25
S-IRL 72.71 19.39 4.75 3.15

Linguistic Fuzzy Models (%)
Orthogonal FRBS Low Medium-Low Medium-High High

Transformation Model Relevance Relevance Relevance Relevance

OLS
NefProx 92.95 3.24 1.23 2.58
L-IRL 94.41 2.74 0.89 1.97

P-QR
NefProx 85.11 8.98 3.14 2.77
L-IRL 81.87 10.92 3.82 3.38

First of all, all these results show that most of the FRBS rules can be
labeled as Low Relevance rules for both scatter models and linguistic ones.
In this last case, the percentage of Low Relevance rules (around 88%) is even
higher than the scatter case (around 80%). Thus, the idea of removing Low
Relevance rules does not seem to be the best, and the idea of a “gap” as
a criterion to define the border between rules to be preserved and rules to
be removed, does not seem to be implementable. In general, to remove Low
Relevance rules seems a highly questionable and debatable issue.

Average results for improved models using OLS are shown in tables 12 and
13. Tables 14 and 15 show the results for P-QR. Checking the lowest relevance
rules of the improved models for the Best Acc, Median Acc-Inter and Best
Inter: 30-50 % of their original Low Relevance rules have been preserved
for most cases, which means from around 60% up to 90% of the rules of the
improved models. In this context, these rules with Low Relevance become a
serious factor, playing a relevant role in the Accuracy-Interpretability trade-
off. On the other hand, rules with High Relevance are not always preserved
on the way to obtaining this trade-off, a fact which is not discussed in the
published works.
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Table 12: Distribution (%) of rules classified by relevance quarters and interpretability
indexes: Accuracy-Interpretability view, OLS, RelRH , improved scatter models. (a) Pre-
served rules (%) (b) Improved distribution (%)

FasArt
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 45.71 45.84 67.00 55.96 80.03 80.09 86.29 70.18 75.97 77.92 82.03 71.37 86.18 86.18 88.21 73.05
(b) 72.96 73.21 80.33 78.83 14.22 14.03 10.83 10.56 4.64 5.07 3.80 4.67 8.18 8.29 5.04 5.94

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 57.34 57.49 70.58 62.36 84.48 84.42 86.44 75.51 79.22 79.87 82.03 74.15 84.35 84.35 87.40 68.52
(b) 77.74 78.07 81.00 80.77 12.50 12.59 10.62 10.62 4.07 4.50 3.71 4.16 5.69 5.86 4.67 4.46

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 68.34 68.39 71.22 68.40 86.14 86.08 86.36 78.14 82.68 82.68 81.60 77.35 86.38 86.38 86.79 71.40
(b) 80.70 80.67 81.06 82.02 10.72 11.10 10.58 9.73 3.79 4.39 3.67 4.03 4.79 4.99 4.70 4.22

S-IRL
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 32.03 32.05 54.31 41.26 52.15 52.15 60.09 48.71 51.85 51.32 60.32 49.74 55.41 55.41 60.16 49.60
(b) 84.61 84.76 89.36 85.49 5.67 5.77 4.07 5.43 2.54 2.69 1.97 2.95 7.18 7.38 4.59 6.12

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 42.16 42.05 54.56 48.40 55.15 55.15 60.09 53.22 55.56 55.03 60.32 51.85 56.46 56.20 60.69 51.98
(b) 88.09 88.18 89.44 88.42 4.45 4.79 4.04 4.47 2.18 2.55 1.94 2.15 5.28 5.50 4.58 4.95

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 51.17 51.19 54.49 54.82 57.51 57.51 60.09 60.30 55.56 55.56 60.32 57.67 57.52 57.52 60.69 56.99
(b) 89.79 89.65 89.41 89.40 3.94 4.44 4.05 4.15 1.81 2.41 1.95 2.00 4.46 4.65 4.59 4.45

The situation with respect to these issues for linguistic and scatter FRBS
models is discussed below.

• Scatter Fuzzy Models

A first point about the rule selection carried out is the different se-
lection (preservation) rates of rules between models: FasArt, a scatter
approach, has a larger ratio of preserved rules (50% − 90%) than the
rest of the approaches involved in this work: scatter or linguistic ones,
and for all levels of rule relevance, as shown in tables 12(a) and 14(a).

In general, this higher rate can mean fuzzy rules have a lower level of

31



Table 13: Distribution (%) of rules classified by relevance quarters and interpretability
indexes: Accuracy-Interpretability view, OLS, RelRH , improved linguistic models. (a)
Preserved rules (%) (b) Improved distribution (%)

NefProx
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 6.50 14.70 32.39 17.78 40.31 48.63 73.30 48.64 60.19 51.75 72.69 52.31 63.51 48.20 61.04 40.09
(b) 52.44 68.79 76.51 74.42 10.93 6.80 6.05 6.42 6.93 3.63 2.43 3.18 18.58 9.66 3.89 4.87

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 15.56 23.25 36.04 23.06 51.36 58.76 76.87 54.93 59.72 59.65 76.85 56.48 55.63 45.72 62.39 41.67
(b) 71.38 75.62 76.60 76.82 6.95 6.16 6.08 6.00 3.75 2.86 2.55 2.58 6.81 4.24 3.66 3.49

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 27.66 35.14 36.74 30.97 73.13 75.26 77.04 73.64 76.85 78.07 76.85 75.93 69.14 64.19 67.12 64.41
(b) 73.67 76.12 76.42 75.18 6.72 6.10 5.99 6.42 3.01 2.63 2.54 2.79 5.48 4.04 3.94 4.50

L-IRL
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 16.03 15.23 29.64 14.15 50.75 51.87 71.54 38.39 41.95 45.40 56.32 36.78 57.29 57.03 75.26 43.49
(b) 74.62 74.17 84.28 81.05 12.73 12.89 8.09 9.23 2.48 2.86 1.66 2.53 10.17 10.08 5.97 7.19

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 24.36 23.83 34.50 20.47 58.61 59.74 70.97 51.31 48.28 47.70 53.45 39.08 59.38 58.33 71.35 50.78
(b) 82.52 82.39 85.49 85.42 8.77 9.06 7.64 7.87 1.78 1.78 1.50 1.66 6.93 6.77 5.37 5.06

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 42.58 37.80 38.98 39.25 69.48 71.16 70.41 70.04 55.17 55.75 52.87 44.83 76.82 71.09 72.14 63.28
(b) 86.69 86.00 85.81 87.62 7.04 7.47 7.49 7.09 1.38 1.39 1.43 1.08 4.89 5.14 5.27 4.22

incoherence, a similar number of membership functions, and a higher
contribution of rules to the model Accuracy. Another point is that
there are rules with a High Relevance that are not considered for the
improved models: around 15− 30% for the FasArt case, and 50− 55%
for the S-IRL case. All these figures are quite similar for OLS, P-QR
and SVD.

Tables 12(b), 13(b), 14(b) and 15(b) show that the improved models
are made for a “huge” % of rules with Low Relevance, in comparison
with the rest of the model rules, for every interpretability index and
Best Acc, Median Acc-Inter or Best Inter cases. From around 50% up
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Table 14: Distribution (%) of rules classified by relevance quarters and interpretability
indexes: Accuracy-Interpretability view, P-QR, RelRH , improved scatter models. (a)
Preserved rules (%) (b) Improved distribution (%)

FasArt
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 44.60 44.60 65.71 58.69 62.37 62.37 81.20 56.29 77.54 77.54 87.08 63.58 85.63 85.63 89.08 65.68
(b) 44.19 44.28 55.62 54.72 26.01 26.13 24.02 22.46 16.34 16.55 12.17 13.46 13.45 13.63 8.18 9.35

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 55.74 55.74 68.49 63.79 71.91 71.91 82.45 63.69 83.69 83.69 89.04 69.40 86.64 86.64 89.80 77.12
(b) 51.47 51.59 56.58 55.89 24.78 25.08 23.56 22.08 13.81 14.21 11.93 12.51 9.94 10.14 7.92 9.53

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 66.42 66.42 69.41 68.95 79.41 79.41 82.52 74.65 87.70 87.70 88.77 77.34 87.79 87.79 89.22 81.78
(b) 56.38 56.23 56.67 57.42 23.54 24.04 23.44 22.76 12.07 12.67 11.92 11.81 8.01 8.21 7.97 8.01

S-IRL
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 26.20 26.16 55.93 47.07 48.47 48.51 63.40 48.14 58.92 58.77 66.57 50.52 51.47 51.92 53.95 45.15
(b) 54.79 54.77 66.75 65.97 27.74 27.95 20.99 20.30 9.89 9.98 7.22 7.30 7.58 7.89 5.04 6.44

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 37.67 37.63 56.32 52.54 54.36 54.28 63.76 54.06 61.17 61.02 66.57 56.97 50.11 50.11 54.18 49.44
(b) 62.41 62.56 66.87 67.01 23.84 24.15 21.05 20.23 8.19 8.54 7.10 7.24 5.57 5.78 4.98 5.52

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 48.21 48.21 56.18 58.29 58.69 58.69 63.62 62.44 62.82 62.82 66.57 63.72 51.02 51.02 53.95 51.47
(b) 66.69 66.54 66.90 67.93 21.62 22.12 21.00 20.30 6.93 7.53 7.13 6.92 4.77 4.97 4.98 4.84

to 90% of the rules of these models are Low Relevance. This is a little
higher for the S-IRL case. So, a very important number of these rules
are preserved for the improved models.

In general, rules with a High Relevance are more significant for the Best
Inter model, while rules with a Low Relevance are more significant
for the Best Acc model. There are no significant differences for the
interpretability index considered in each case.

• Linguistic Fuzzy Models

In comparison with scatter models, the linguistic ones have a lower
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Table 15: Distribution (%) of rules classified by relevance quarters and interpretability
indexes: Accuracy-Interpretability view, P-QR, RelRH , improved linguistic models. (a)
Preserved rules (%) (b) Improved distribution (%)

NefProx
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 5.50 13.09 31.47 16.24 15.42 27.06 49.52 32.78 38.01 50.37 68.37 55.19 61.25 49.58 60.16 48.75
(b) 48.89 62.18 65.75 63.05 11.09 11.34 11.68 12.02 10.57 7.00 6.04 7.40 18.33 8.37 5.42 6.42

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 14.66 21.56 34.72 21.64 27.50 34.80 50.07 37.36 48.31 55.13 73.30 60.00 44.17 50.83 61.59 51.67
(b) 61.84 67.39 66.67 66.29 12.44 10.26 11.01 10.52 7.74 5.98 5.83 6.77 6.87 5.26 5.38 5.31

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 26.32 34.27 37.76 30.87 40.14 49.09 52.75 46.18 65.92 66.48 74.81 70.74 57.50 61.46 65.04 62.71
(b) 62.43 67.39 66.83 66.24 12.32 10.67 11.02 10.91 7.55 5.70 5.55 6.38 6.60 5.13 5.50 5.36

L-IRL
Best Inter

Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance
NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim

(a) 10.65 10.47 25.96 12.37 25.59 27.18 55.82 31.55 40.46 38.84 64.38 23.52 55.15 56.97 64.09 46.36
(b) 50.90 49.35 61.56 57.48 21.00 22.52 20.35 22.35 12.71 12.27 9.37 7.48 15.40 15.87 8.73 12.69

Median Acc-Inter
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 19.07 19.11 31.10 18.10 40.00 39.58 59.81 39.81 54.84 54.03 64.92 35.35 63.94 62.58 66.36 53.64
(b) 57.99 57.79 63.77 62.57 20.22 20.44 19.47 19.94 10.33 10.51 8.69 7.73 11.47 11.27 8.07 9.77

Best Acc
Low Relevance Medium-Low Rel. Medium-High Rel. High Relevance

NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim NR NMF Inc Sim
(a) 39.57 34.53 36.81 35.96 59.20 56.57 60.09 57.42 71.91 65.99 64.11 60.75 75.45 75.61 71.36 71.67
(b) 65.38 63.90 64.99 66.03 18.21 18.38 18.51 17.60 8.33 8.62 8.32 7.68 8.08 9.09 8.18 8.69

ratio of selection, or preservation, of original rules. Under 40% of Low
Relevance rules are selected for both linguistic FRBS models (see table
13 (a)). This % implies around 60− 90% of Low Relevance rules in the
improved models.

On the other hand, the selection rate for High Relevance rules is very
high (> 70%) in comparison with Low Relevance. Here also, there are
High Relevance rules that are not preserved: 25%− 60%.

As in the scatter case, the improved models are made for Low Relevance
rules in a very high %: from around 60% up to 90% (see tables 13(b)
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and 15(b)). No differences exist between the interpretability indexes
used.

Table 16: Distribution (%) of rules according to relevance quarters by other approaches
Best Inter

Orthogonal FRBS Low Medium-Low Medium-High High
Transformation Model Relevance Relevance Relevance Relevance

OLS
ScatA 85.51 9.39 2.41 2.69
ScatB 89.67 6.87 1.72 1.75
LingA 77.63 11.72 5.19 5.47
LingB 80.67 10.02 5.43 3.88

P-QR
ScatA 69.84 18.75 8.24 3.18
ScatB 64.78 25.05 6.74 3.43
LingA 71.23 12.27 11.18 5.32
LingB 71.96 14.16 8.33 5.54

Median Acc-Inter
Orthogonal FRBS Low Medium-Low Medium-High High

Transformation Model Relevance Relevance Relevance Relevance

OLS
ScatA 85.80 9.15 2.52 2.53
ScatB 90.96 6.08 1.52 1.44
LingA 81.74 9.74 4.03 4.49
LingB 83.22 9.19 4.56 3.04

P-QR
ScatA 69.48 19.20 8.02 3.30
ScatB 64.01 25.64 6.98 3.36
LingA 73.93 12.02 7.72 6.33
LingB 73.58 14.21 9.02 3.19

Best Acc
Orthogonal FRBS Low Medium-Low Medium-High High

Transformation Model Relevance Relevance Relevance Relevance

OLS
ScatA 86.38 8.91 2.36 2.34
ScatB 91.55 5.76 1.33 1.36
LingA 84.93 7.56 3.90 3.61
LingB 85.98 7.98 3.81 2.22
WM-R 86.73 6.66 3.42 3.20

GFS-RS-T 79.42 9.48 4.71 6.39
SSP2 73.27 14.01 6.30 6.42

P-QR
ScatA 70.22 18.07 8.53 3.18
ScatB 64.30 25.47 6.94 3.29
LingA 77.50 10.68 7.23 4.59
LingB 75.99 12.39 6.62 5.01
WM-R 78.82 12.06 3.99 5.13

GFS-RS-T 73.69 13.70 5.45 7.15
SSP2 65.31 15.75 8.02 10.92

These “surprising” results concerning rules with High and Low Relevance
are supported by the Relevance metric, which is defined locally, meaning for
each rule individually. However, accuracy is globally defined for the FRBS
model taking into account all the components of FRBS (knowledge base,
inference system, etc.), not only the fuzzy rule set.
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The results show that rules with high relevance can be removed and/or
rules with low relevance preserved. So, the idea of removing the latter does
not match with the results obtained, nor with always preserving the most
relevant rules. This seems contradictory, but it fits with the nature of both
types of rule.

In general, rules with low relevance, according to relevance based on or-
thogonal transformations, can concern rules with very low levels of activation,
except for some cases of the input space, or very similar activation levels for
most input/output spaces; whereas that rules with high relevance correspond
to very variable levels of activation for most cases of the input/output space.
The first case can imply “exception” cases in the input space, or rules cov-
ering the input space very homogeneously; while the second can imply rules
covering most of the input/output universe on different levels.

In order to reach the Accuracy-Interpretability trade-off, it may be nec-
essary to preserve or remove some rules, those that allow the trade-off to be
reached by considering the structure and operators of each FRBS and data.
Here, accuracy as a global index plays a very powerful role in comparison
with the interpretability or relevance of the rules, which are only based on the
fuzzy rule set of the FRBS. In other words, this implies there is interaction
between rules that depends on the nature and design of each FRBS, which
can modify the perception based on the rule relevance.

In this way, some low relevant rules are preserved due to their considerable
impact on the accuracy of the FRBS.

On the other hand, removing some relevant rules can be explained in
terms of Interpretability: these rules are very relevant, so here this implies
much variability of activation regarding most input/output data spaces. This
fact can imply redundancy, or even incoherency, between rules, so interpre-
tability works like a global metric and could lead to them being removed if
the impact on accuracy were assumable.

In terms of rule Relevance, this is a local measurement for every rule
concerning its variability based meaningfulness for each FRBS and problem.
However, it does not imply how relevant or useful each rule, or the whole rule
set of an FRBS, is when dealing with accuracy, or another objective, as a
global issue of an FRBS. It is only possible to know the local relevance of each
rule, or the average relevance of the rules contained in the rule set, but not
how they interact for each type of FRBS, operators, etc. So a complementary
global measure is interesting.

On the other hand, the FRBS performance is a global measurement of
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the effective relevance of the whole rule set of a particular FRBS, which can
be a complementary index to the local relevance of the rules, so as to gain a
global view of the relevance of a fuzzy rule set.

As in the previous section, a comparison in terms of relevance with models
obtained by other approaches can be seen in Table 16: showing the distri-
bution (%) of selected rules classified by relevance quarters for these cases.
Analyzing the rule relevance based distribution for the Best Acc models by
OLS, the percentage of rules with Low Relevance selected by this relevance
based approach is lower than the other reported models which are based on
Inter = NR. These differences are even higher when Median Acc-Inter and
Best Inter models are analyzed, and even higher still with P-QR. As for
Low Relevance selected rules, once more, this relevance based approach has
selected a higher number of these meaningful rules for all cases.

In fact, using rule relevance, a good Accuracy-Interpretability trade-off
allows more relevant rules to be selected than other approaches obtaining a
similar, or even better, FRBS performance.

7. Lessons learned

This exhaustive experimental work and analyses concerning the Accuracy-
Interpretability-Relevance trade-off has permitted us to show rule relevance
as a serious factor in selecting the most adequate rules for improving the
Accuracy-Interpretability trade-off, for both scatter and linguistic FRBSs.
It even seems possible to improve both the accuracy and interpretability of
the FRBSs simultaneously. This performance has been checked regarding
other reported approaches, with positive statistical results.

The results show that FRBSs have been improved in over 98% of cases,
increasing relevance and decreasing error, number of rules and membership
functions, incoherence and similarity.

In fact, Accuracy is improved by between 48.46% - 62.18% for scatter
models and 43.79% - 65.33% for linguistic ones. Interpretability improves by
between 23.31% - 52.81% for scatter and 43.51% - 73.44% for linguistic ones,
and Relevance by between 8.41% - 47.36% for scatter FRBSs and 40.50% -
190.24% for linguistic ones. No serious differences were found between the
relevance criteria proposed. Regarding the relevance based on orthogonal
transformations, in general, OLS achieves the best improvements for both
scatter and linguistic models. P-QR gets the best ones for Accuracy and
SVD for Interpretability in scatter models.
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Furthermore, the idea of removing Low Relevance rules and preserving
High Relevance rules from FRBSs has been shown to be a debatable issue.
Low Relevance rules have important contributions in both scatter and linguis-
tic FRBSs, but their influence in scatter FRBSs is higher. Around 6%-50%
of the Low Relevance rules are preserved and about 20%-50% of the High
Relevance rules must be dropped to reach this same trade-off.

This fact is linked with the global or local nature of the metrics considered
and how many times a rule is fired, its level of activation, its similarity
regarding other rules and its contribution to the FRBS output. This implies
a blend between these metrics must be addressed for a more effective and
coherent relevance rule.

8. Concluding remarks

The target of this work is to check the concept relevance of the FRBS rule
in order to get a better Accuracy-Interpretability trade-off, using a MOEA
based rule selection. In this sense, exhaustive experimental work and analyses
have been carried out.

This proposal has shown rule relevance to be a serious factor for the
Accuracy-Interpretability trade-off, for both scatter and linguistic FRBSs, se-
lecting the most adequate rules for a better Accuracy-Interpretability trade-
off. A comparison regarding other reported approaches has shown the per-
formance of rule relevance for this goal.

Moreover, the role of rules based on their relevance has been seen to be
contradictory and debatable: some low relevant rules have a high impact for
the FRBS trade-off and some high relevant rules are not adequate for this
trade-off.

This fact suggests that the usual definition of rule Relevance, as a local
measurement, should be complemented by another global index that takes
into account rule interactions and the nature of the FRBS involved. Accu-
racy by Error can be a complementary measurement for this rule Relevance,
showing the global Relevance of the FRBS model, including its fuzzy rule set.
In some terms, Interpretability can take on this role to some extent, depend-
ing on its definition of Interpretability regarding the nature and components
of the FRBS.

The work in progress is based on the characterization of the rules to be
preserved and removed, as well as the study of formulations of relevance rules
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that permit a better coherency regarding rules with High and Low Relevance
for a correct balance between the Accuracy and Interpretability of the FRBS.

References
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Fazzolari, M., Alcalá, R., Nojima, Y., Ishibuchi, H., Herrera, F., 2013a. A re-
view of the application of multiobjective evolutionary fuzzy systems: Cur-
rent status and further directions. IEEE Transactions on Fuzzy Systems
21, 45 – 65.
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Setnes, M., Babuška, R., Kaymak, U., van Nauta Lemke, H., June 1998.
Similarity measures in fuzzy rule base simplification. IEEE Transactions
on Systems, Man and Cybernetics. Part B: Cybernetics 28 (3), 376 – 386.

Wang, L.-X., Mendel, J., November/December 1992. Generating fuzzy rules
by learning from examples. IEEE Transactions on Systems, Man and Cy-
bernetics 22 (6), 1414–1427.

Yen, J., Wang, L., February 1999. Simplifying fuzzy rule-based models using
orthogonal transformation methods. IEEE Transactions on Systems, Man
and Cybernetics. Part B: Cybernetics 29 (1), 13–24.

Yu, L., Liu, H., 2004. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research 5, 1205–1224.

Zhou, S.-M., Gan, J. Q., June 2007. Constructing L2-SVM-based fuzzy clas-
sifiers in high-dimensional space with automatic model selection and fuzzy
rule ranking. IEEE Transactions on Fuzzy Systems 15 (3), 398 – 409.

Zhou, S.-M., Gan, J. Q., 2008. Low-level interpretability and high-level in-
terpretability: a unified view of data-driven interpretable fuzzy system
modelling. Fuzzy Sets and Systems 159, 3091 – 3131.

45



Zhou, S.-M., Garibaldi, J. M., John, R. I., Chiclana, F., June 2009. On
constructing parsimonious type-2 fuzzy logic systems via influential rule
selection. IEEE Transactions on Fuzzy Systems 17 (3), 654 – 667.

Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization. In: Proc.
Evolutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems. Barcelona, Spain, pp. 95–100.

46


