
Noname manuscript No.
(will be inserted by the editor)

Comprehensive Evaluation of a New GPU-based
Approach to the Shortest Path Problem

Hector Ortega-Arranz · Yuri Torres ·
Arturo Gonzalez-Escribano ·
Diego R. Llanos

Received: date / Accepted: date

Abstract The Single-Source Shortest Path (SSSP) problem arises in many
different fields. In this paper, we present a GPU SSSP algorithm implementa-
tion. Our work significantly speeds up the computation of the SSSP, not only
with respect to a CPU-based version, but also to other state-of-the-art GPU
implementations based on Dijkstra. Both GPU implementations have been
evaluated using the latest NVIDIA architectures. The graphs chosen as input
sets vary in nature, size, and fan-out degree, in order to evaluate the behavior
of the algorithms for different data classes. Additionally, we have enhanced our
GPU algorithm implementation using two optimization techniques: The use of
a proper choice of threadblock size; and the modification of the GPU L1 cache
memory state of NVIDIA devices. These optimizations lead to performance
improvements of up to 23% with respect to the non-optimized versions. In
addition, we have made a platform comparison of several NVIDIA boards in
order to distinguish which one is better for each class of graphs, depending on
their features. Finally, we compare our results with an optimized sequential
implementation of Dijkstra’s algorithm included in the reference Boost library,
obtaining an improvement ratio of up to 19× for some graph families, using
less memory space.

Keywords Dijkstra · GPGPU · Kernel characterization · NVIDIA platform
comparison · Optimization techniques · SSSP · Boost Library

1 Introduction

Many problems that arise in real-world networks imply the computation of
the shortest paths, and their distances, from a source to any destination
point. Some examples include navigation systems [1], spatial databases [2],

Hector Ortega-Arranz · Yuri Torres · Arturo Gonzalez-Escribano · Diego R. Llanos
Departamento de Informática, Universidad de Valladolid, Spain.
Tel.: (+34) 983.423.000 Ext. 5642
E-mail: {hector| yuri.torres | arturo | diego}@infor.uva.es

2 Hector Ortega-Arranz et al.

and web searching [3]. Algorithms to solve shortest-path problems are compu-
tationally costly. Thus, in many cases, commercial products implement heuris-
tic approaches to give approximate solutions instead. Although heuristics are
usually faster and do not need a great amount of data storage, they do not
guarantee the optimal path.

The Single-Source Shortest Path (SSSP) problem is a classical problem
of optimization. Given a graph G = (V,E), a function w(e) : e ∈ E that
associates a weight to the edges of the graph, and a source node s, the prob-
lem consists of computing the paths (sequence of adjacent edges) with the
smallest accumulated weight from s to every node v ∈ V . The classical algo-
rithm that solves the SSSP problem is Dijkstra’s algorithm [4]. Where n = |V |
and m = |E|, the complexity time of this algorithm is O(n2). This complex-
ity is reduced to O(m + n logn) when special data structures are used, as
with the implementation of Dijkstra’s algorithm included in the Boost Graph
Library [5] which exploits the relaxed-heap structures. The efficiency of Di-
jkstra’s algorithm is based on the ordering of previously computed results.
This feature makes its parallelization a difficult task. However, under certain
situations, this ordering can be permuted without leading to wrong results or
performance losses.

An emerging method of parallel computation includes the use of hardware
accelerators, such as graphic processing units (GPUs). Their powerful capabil-
ities have triggered their massive use to speed up highly parallel computations.
The application of GPGPU (General Purpose computing on GPUs) to accel-
erate problems related with shortest-path problems has increased during the
last few years. Some GPU solutions to the SSSP problem have been previously
developed using different algorithms, such as Dijkstra’s algorithm in [6,7].

GPGPU programming has been simplified by the introduction of high-level
data parallel languages, such as CUDA [8]. A CUDA application has some
configuration and execution parameters, such as the threadblock size, and the
L1 cache state, whose combined use can lead to significant performance gains.

In this paper, we present an adapted version of Crauser’s algorithm [9]
for the GPU architectures and an experimental comparison with both its se-
quential version on CPU and the parallel GPU implementations of Mart́ın et
al. [6]. Additionally, we have enhanced the performance of the fastest meth-
ods by applying two CUDA optimization techniques: A proper selection of
the threadblock size, and the configuration of the L1 cache memory. We have
used the latest CUDA architectures (Fermi GF110, Kepler GK104, and Kepler
GK110) and we have made a comparison of them in order to distinguish which
one is better for each kind of graph. Finally, we have compared our results with
the implementation of Dijkstra’s algorithm of the Boost library.

The rest of this paper is organized as follows. Section 2 briefly describes
both the Dijkstra’s sequential algorithm and some proposed parallel implemen-
tations. Section 3 explains in depth our GPU-implementation of the Crauser
et al. algorithm and the Mart́ın et al. CUDA solution for the SSSP problem.
Section 4 introduces the experimental methodology, experimental platforms,
and the input sets considered. Section 5 discusses the results obtained. Finally,
Sect. 6 summarizes the conclusions obtained and describes some future work.

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 3

� ✁✂

✁

✂

✄ ✄
✂

☎

✆
✝

✞

� ✁✂

✁

✂

✄ ✄ ✂

☎

✆
✝

✞

� ✁✂

✁

✂

✄ ✄
✂

☎

✆
✝

✞

(a) (b) (c)

Fig. 1 Dijkstra’s algorithm steps: Initialization (a), edge relaxation (b), and settlement (c).

2 Dijkstra’s algorithm overview and related work

2.1 Dijkstra’s algorithm

Dijkstra’s algorithm constructs minimal paths from a source node s to the
remaining nodes, exploring adjacent nodes following a proximity criterion.
This exploring process is known as edge relaxation. When an edge (u, v) is
relaxed from a node u, it is said that node v has been reached. Therefore,
there is a path from s through u to reach v with a tentative shortest distance.
Node v is considered settled when the algorithm finds the shortest path from
source node s to v. The algorithm finishes when all nodes are settled.

The algorithm uses an array, D, that stores all tentative distances found
from the source node, s, to the rest of the nodes. At the beginning of the
algorithm, every node is unreached and no distances are known, so D[i] =∞
for all nodes i, except the current source node D[s] = 0. Note that the reached
nodes that have not been settled yet and the unreached nodes are considered
unsettled nodes. The algorithm proceeds as follows (see Fig. 1):

1. (Initialization) It starts on the source node s, initializing the distance array
D[i] =∞ for all nodes i and D[s] = 0. Node s is settled, and is considered
as the frontier node f (f ← s), the starting node for the edge relaxation.

2. (Edge relaxation) For every node v adjacent to f that has not been settled
(nodes a, b, and c in Fig. 1), a new distance from source node s is found
using the path through f , with value D[f] + w(f, v). If this distance is
smaller than the previous value D[v], then D[v]← D[f] + w(f, v).

3. (Settlement) The non-settled node b with the minimal value in D is taken
as the new frontier node (f ← b), and it is now considered as settled.

4. (Termination criterion) If all nodes have been settled, the algorithm fin-
ishes. Otherwise, the algorithm proceeds once more to step 2.

2.2 Dijkstra with priority queues

The most efficient implementations of Dijkstra’s algorithm, for sparse graphs
(graphs with m << n2), have a priority queue to store the reached nodes [10].
Its use helps to reduce the asymptotical behavior of Dijkstra’s algorithm. If
traditional binary heaps are used, the algorithm has an asymptotic time com-
plexity of O((m + n) log n) ⊆ O(m log n). Fredman and Tarjan’s Fibonacci
heaps [11] reduce the running time to O(n log n + m). The Relaxed heaps
achieve the same amortized time bounds as the Fibonacci heaps with fewer

4 Hector Ortega-Arranz et al.

restrictions. This relaxed-heap structure is used in the optimized sequential
implementation of Dijkstra’s algorithm of the Boost reference library.

2.3 Parallel versions of Dijkstra’s algorithm

We can distinguish two parallelization alternatives that can be applied to
Dijkstra’s approach. The first one parallelizes the internal operations of the
sequential Dijkstra algorithm, while the second one performs several Dijkstra
algorithms through disjoint subgraphs in parallel [12]. This paper focuses on
the first solution.

The key to the parallelization of a single sequential Dijkstra algorithm is
the inherent parallelism of its loops. For each iteration of Dijkstra’s algorithm,
the outer loop selects a node to compute new distance labels. Inside this loop,
the algorithm relaxes its outgoing edges in order to update the old distance
labels, that is, the inner loop. After these relaxing operations, the algorithm
calculates the minimum tentative distance from the unsettled nodes set to
extract the next frontier node.

Parallelizing the inner loop implies simultaneously traversing the outgoing
edges of the frontier node. One of the algorithms presented in [13] is an example
of this kind of parallelization. However, having only the outgoing edges of one
frontier node, there is not enough parallelism to port this algorithm to the
GPUs in order to properly exploit the huge number of cores.

Parallelizing the outer loop implies computing in each iteration i, a frontier
set Fi of nodes that can be settled in parallel without affecting the algorithm’s
correctness. The main problem here is to identify this set of nodes v whose
tentative distances from source s, δ(v), are in reality the minimum shortest-
distance, d(v). As the algorithm advances in the search, the number of reached
nodes that can be computed in parallel increases considerably, fitting the GPU
capabilities well. Some algorithms that are based on this idea are [9,6]. ∆-
Stepping is another algorithm [14] that also parallelizes the outer loop of the
original Dijkstra’s algorithm, by exploring in parallel several nodes grouped
together in a bucket. Several buckets are used to group nodes with different
tentative distance ranges. On each iteration, the algorithm relaxes in parallel
all the outgoing edges from all the nodes in the lowest range bucket. It first
selects the edges that end on nodes inside the same bucket (light edges), and
later the rest (heavy edges). Note that this algorithm can find that a processed
node has to be recomputed if, at the same time, another node reduced the
tentative distance of the first one, implying the bucket change of its reached
nodes. The dynamic nature of the bucket structure and the fine-grain changes
of node-bucket association do not fit well with the GPU features [15].

3 Parallel Dijkstra with CUDA

This section describes how our implementation parallelizes the outer loop of
Dijkstra’s algorithm following the ideas of [9]. As explained above, the main
problem of this kind of parallelization is to identify as many nodes as possible
that can be inserted in the following frontier set.

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 5

Algorithm 1 GPU code of Crauser’s algorithm.

1: while (∆ 6= ∞) do
2: gpu kernel relax(U, F, δ); //Edge relaxation
3: ∆ = gpu kernel minimum(U, δ); //Settlement step 1
4: gpu kernel update(U, F, δ,∆); //Settlement step 2
5: end while

3.1 Defining the frontier set

Dijkstra’s algorithm, in each iteration i, calculates the minimum tentative
distance between all the nodes that belong to the unsettled set, Ui. After that,
every unsettled node whose tentative distance is equal to this minimum value
can be safely settled. These nodes that have been settled will be the frontier
nodes of the following iteration, and their outgoing edges will be traversed to
reduce the tentative distances of the adjacent nodes.

Parallelizing the Dijkstra algorithm requires the identification of which
nodes can be settled and used as frontier nodes at the same time. Mart́ın et al. [6]
insert into the following frontier set, Fi+1, all nodes with the minimum ten-
tative distance in order to process them simultaneously. Crauser et al. [9]
introduce a more aggressive enhancement, augmenting the frontier set with
nodes that have bigger tentative distances. The algorithm computes in each
iteration i, for each node of the unsettled set, u ∈ Ui, the sum of: (1) its tenta-
tive distance, δ(u), and (2) the minimum weight of its outgoing edges. Then,
from among these computed values, it calculates the total minimum value, also
called threshold. Finally, an unsettled node, u, can be safely settled, becoming
part of the next frontier set, only if its δ(u) is lower than or equal to the calcu-
lated threshold. We name this threshold as∆i, that is the limit value computed
in each iteration i, holding that any unsettled node u with δ(u) ≤ ∆i can be
safely settled. The bigger the value of ∆i, the more parallelism is exploited.

Our implementation follows the idea proposed by Crauser et al. [9] of incre-
menting each ∆i. For every node v ∈ V , the minimum weight of its outgoing
edges, that is, ω(v) = min{w(v, z) : (v, z) ∈ E}, is calculated in a precompu-
tation phase. For each iteration i, having all tentative distances of the nodes
in the unsettled set, we compute ∆i = min{(δ(u) + ω(u)) : u ∈ Ui}. Thus, it
is possible to put into the frontier set Fi+1 every node v whose δ(v) ≤ ∆i.

3.2 Our GPU implementation: The successors variant

The four Dijkstra’s algorithm steps described in Sect. 2.1 can be easily trans-
formed into a GPU general algorithm (see Alg. 1). It is composed of three
kernels that execute the internal operations of the Dijkstra vertex outer loop.

In the relax kernel (Alg. 2 (left)), a GPU thread is associated for each node
in the graph. Those threads assigned to frontier nodes traverse their outgoing
edges, reducing/relaxing the distances of their unsettled adjacent nodes.

The minimum kernel computes the minimum tentative distance of the
nodes that belongs to the Ui set, plus the corresponding Crauser values. No

6 Hector Ortega-Arranz et al.

Algorithm 2 Pseudo-code of the relax kernel (left) and the update kernel (right).

gpu kernel relax(U, F, δ)

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: δ[j] = Atomicmin{δ[j], δ[tid] + w(tid, j)};
6: end if
7: end for
8: end if

gpu kernel update(U, F, δ, ∆)

1: tid = thread.Id;
2: F[tid]= FALSE;
3: if (U[tid]==TRUE) then
4: if (δ[tid] <= ∆) then
5: U[tid]= FALSE;
6: F[tid]= TRUE;
7: end if
8: end if

code of this kernel is shown because, to accomplish this task, we have used
the reduce4 method included in the CUDA SDK [16], by simply inserting an
additional sum operation per thread before the reduction loop. The resulting
value of this reduction is ∆i.

The update kernel (Alg. 2 (right)) settles the nodes that belong to the
unsettled set, v ∈ Ui, whose tentative distance, δ(v), is lower than or equal to
∆i. This task extracts the settled nodes from Ui. The resulting set, Ui+1, is
the following-iteration unsettled set. The extracted nodes are added to Fi+1,
the following-iteration frontier set. Each single GPU thread checks, for its
corresponding node v, whether U(v) ∧ δ(v) ≤ ∆i. If so, it assigns v to Fi+1

and deletes v from Ui+1.
Besides the basic structures needed to hold nodes, edges, and their weights,

three vectors are used to store node properties: (a) U [v], which stores whether a
node v is an unsettled node; (b) F [v], which stores whether a node v is a frontier
node; and (c) δ[v], which stores the tentative distance from source to node v.

3.3 Mart́ın et al. successors and predecessors variants

In this subsection, we describe the GPU approach developed by Mart́ın et al.
[6]. In order to parallelize Dijkstra’s algorithm, they have introduced a conser-
vative enhancement to increase the frontier set, inserting only the nodes with
the same minimum tentative distance. According to our notation presented
above, their frontier set of any iteration i, Fi+1, is composed of every node
x ∈ Ui with a tentative distance δ(x) equal to ∆i, in which ∆i = min{δ(u) :
u ∈ Ui}. Their update kernel also differs from ours in the frontier-set check
condition, U(v) ∧ δ(v) = ∆i.

Additionally, the authors have presented a different variant of Dijkstra’s
algorithm, called the predecessors variant. This differs from the previous one,
called successors, in the way it reduces the tentative distances of the unsettled
nodes. That is, for every unsettled node, the algorithm checks if any of its
predecessor nodes belong to the current frontier set. In that case, the tentative
distance is relaxed, if the new distance through this frontier node is lower
than the previous one. The GPU predecessors implementation assigns a single
thread for each node in the graph. The relax kernel only computes those
threads assigned to unsettled nodes u ∈ Ui. Every thread traverses back the
incoming edges of its associated node looking for frontier nodes.

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 7

4 Experimental setup

In this section, we describe the methodology used to design and carry out
experiments to validate our approach, the different scenarios we considered,
and the platforms and input sets used.

4.1 Methodology

From the suite of different implementations described in [6], we used as refer-
ences the sequential implementation (labeled here as CPU Mart́ın), and the
fastest version fully implemented for GPUs (GPUMart́ın). This means that we
have left out the hybrid approaches that execute some phases on the CPU and
others on the GPU. To fairly compare the performance gain of our algorithms,
we used the same input set of synthetic graphs of Mart́ın et al.’s study (Mart́ın
graphs), and the same CUDA configuration values they used: (1) 256 threads
per block for all kernels; and (2) L1 cache normal state (16KB). We named this
configuration the default configuration. On the other hand, the values used for
our optimized implementation were taken from [17] (see Table 1).

As a second scenario, we have extended the experimentation for the result-
ing best approach (the successors variant), testing it with synthetic random
graphs generated using a technique described in [18], appropriate for generic
random graph generation, and real-world graphs publicly available [19,20].

For all studied scenarios, we have randomly selected 100 sources from the
graph nodes, using uniform distribution, to solve 100 SSSP problems in order
to obtain an average time. A description of each experiment is presented below:

1. Mart́ın graphs experimentation.
a. Sequential algorithmic comparison: CPU Mart́ın vs CPU Crauser im-

plementations for the successors and predecessors variants.
b. Parallel algorithmic comparison: GPU Mart́ın vs GPU Crauser imple-

mentations using both successors and predecessors variants.
c. Evaluation of the optimized version obtained by using the kernel char-

acterization values: CPU and GPU Crauser vs Optimized GPU.
d. Evaluation of the performance degradation due to the divergent branch

and dummy computations.
2. Synthetic and real-world graphs experimentation.

A. GPU parallel state-of-art improvement: GPU Mart́ın vs GPU Crauser,
and also the comparison vs its sequential version, CPU Crauser.

B. Evaluation of the optimized version obtained by using the kernel char-
acterization values: CPU and GPU Crauser vs Optimized GPU.

C. A GPU architectural comparison of the results obtained launching the
optimized GPU Crauser version on the different experimental boards
(Fermi GF110, Kepler GK104, and Kepler GK110), and input sets.

D. Comparison of our GPU approach with a sequential state-of-art ver-
sion: Dijkstra’s algorithm of Boost library vs Optimized GPU Crauser,
with the aim of discovering the threshold and conditions where each
approach is best.

8 Hector Ortega-Arranz et al.

Table 1 Values selected for threadblock-size and L1 cache state through kernel characteri-
zation process for Fermi (F) and Kepler (K). L1 states are: (A) Augmented or (N) Normal.

size/kernel deg2 deg20 deg200 ≥ deg1000
F K F K F K F K

24k relax 192-A 128-A 192-A 128-A 192-A 192-A 192-A 192-A
24k min 192-A 96-A 128/192-A 96-A 192-A 128-A 192-A 128-A
24k update 192-A 128-A 192-A 128-A 192-A 128-A 192-A 128-A

49k relax 192-A 256-A 256-A 256-A 256-N 256-A 256-N 256-A
49k min 192-A 96-A 128-A 96/128-A 192-A 256-A 192-N 256-A
49k update 192-A 128-A 192-A 128-A 192-A 256-A 256-N 256-A

98k relax 192-A 128-A 256-N 256-A 384-A 256-A 384-A 256-A
98k min 128-A 128-A 192-N 96-A 192-A 128-N 192-A 128-N
98k update 192-A 128-N 192-N 256-N 192-N 128-N 192-N 128-N

4.2 Target architectures

The performance results of the work of Mart́ın et al. were obtained using a pre-
Fermi architecture. We replicated the experiments using three NVIDIA GPU
devices, a GeForce GTX 480 (Fermi GF110), a GeForce GTX 680 (Kepler
GK104), and a GeForce GTX Titan Black (Kepler GK110). For our experi-
ments we named these devices Fermi, Kepler, and Titan boards, respectively.

The host machine for the first two boards is an Intel(R) Core i7 CPU 960
3.20GHz, with a global memory of 6 GB DDR3. It runs an Ubuntu Desk-
top 10.04 (64 bits) OS. The experiments were launched using the CUDA 4.2
toolkit. The host machine for the Titan board is an Intel(R) Xeon E5 2620
2.1GHz, with a global memory of 32GB DDR3 running an Ubuntu Server
14.04 (64 bits) operating system. The experiments have been launched using
the CUDA 6.0 toolkit. The latter machine described is where the sequential
CPU implementations have been carried out, because the Boost library imple-
mentation needs big amounts of global memory to allocate the relaxed heap
structure. All programs have been compiled with gcc using the -O3 flag, which
includes the automatic vectorization of the code in the Xeon machine.

4.3 Input set characteristics

In this section, we describe the different input sets used for our experiments.
The first one is from Mart́ın et al.. We used their graph creation tool with the
aim of comparing our implementation with their solution. The second input
set is composed by a collection of random graphs generated with a specific
technique designed to produce random structures. The third input set contains
real-world and benchmarking graphs provided by some research institutions.
All the graphs of every input set used are stored using adjacency list structures.

Mart́ın’s graphs: These graphs have sizes that range from 220 to 11 ·
220 vertices. We kept the degree they chose (degree seven), so the generator
tool creates seven adjacent predecessors for each vertex. They inverted the
generated graphs in order to study approaches based on the successors version.
The edge weights are integers that randomly range from 1 to 10.

Synthetic random graphs: We used the random-graph generation tech-
nique presented in [18] to create our second input set. This decision was taken

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 9

in order to: (1) avoid dependences between a particular graph structure of
the input sets and performance effects related to the exploitation of the GPU
hardware resources; and (2) avoid focusing on specific domains, such as road
maps, physical networks, or sensor networks among others, that would lead
to loss of generality. In order to evaluate the algorithmic behavior for some
graph features, we have generated a collection of graphs using three sizes
(24 576, 49 152, and 98 304) and five fan-out degrees (2, 20, 200, 1 000, and
2 000). These sizes, smaller than Mart́ın’s graphs, were chosen with the aim of
discovering the threshold where the sequential CPU version executes faster
than the GPU. Weights are integers randomly chosen, and uniformly dis-
tributed in the range [1 . . . 100].

Dimacs and social-network graphs: We used some of the real-world
and benchmarking graphs facilitated by DIMACS [19], such as the walshaw
graphs (low degree), clustering graphs (low degree), rmat-kronecker graphs
(medium-high degree), and the social-networks graphs (medium degree), in-
cluding also a graph based on the flickr structure provided by [20]. The purpose
of experimenting with these graphs is to observe if the evaluated approaches
not only performs well in synthetic laboratory graphs but also in real contexts.

4.4 Divergent Branch and dummy computation

CUDA Branch divergence, known as divergent branch effect [8], has a signifi-
cant impact on the performance of GPU programs. In the presence of a data
dependent branch that causes different threads in the same warp to follow
different execution paths, the warp serially executes each branch path taken.

The threads of the relax kernel, for both predecessors and successors vari-
ants, have a divergent branch. Two different kinds of threads are identified
due to this divergent branch: (1) dummy threads, that do not make any com-
putation for the assigned node, and (2) working threads, that carry out the
relax operation from the assigned node. In order to discuss if the presence
of such divergent branches causes a significant performance degradation, we
have carried out an experiment to measure the efficiency ratio of the diver-
gent branch, by means of the CUDA VisualProfiler. The presence of so many
dummy threads in the relax kernel implies too much futile computation. With
the aim of knowing if it is possible to compute this kernel more efficiently, we
have measured both the total number of executed threads and the number of
working threads.

5 Experimental results

This section describes the results of our experiments and the performance
comparisons for the scenarios and input sets described in the previous section.

10 Hector Ortega-Arranz et al.

 0

 5000

 10000

 15000

 20000

 25000

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(m

s)

Number of nodes (multiples of 220)

CPU Martin vs. CPU Crauser

CPU Martin Pred
CPU Crauser Pred

CPU Martin Succ
CPU Crauser Succ

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(m

s)

Number of nodes (multiples of 220)

GPU Martin vs. GPU Crauser

Fermi Martin Pred
Kepler Martin Pred

Kepler Crauser Pred
Fermi Crauser Pred

Fermi Martin Succ
Kepler Martin Succ

Kepler Crauser Succ
Fermi Crauser Succ

(a) (b)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(m

s)

Number of nodes (multiples of 220)

Default GPU Crauser vs. Optimized GPU Crauser (Succ)

Kepler GPU Crauser
Opt. Kepler GPU Crauser

Fermi GPU Crauser
Opt. Fermi GPU Crauser

 1e+06

 1e+07

 1e+08

 1e+09

 0 1 2 3 4 5 6 7 8 9 10 11 12

#T
hr

ea
ds

 (
lo

gs
ca

le
)

Number of nodes (multiples of 220)

Adjacency lists dummy computations

Total threads
Working threads, Pred
Working threads, Succ

(c) (d)

Fig. 2 Experimental results of Mart́ın’s graphs: Execution times of CPU-Mart́ın vs. our
CPU-Crauser (a), GPU-Mart́ın vs. our GPU-Crauser (b), and GPU-Crauser Successors vs
its optimized version (c); and number of total threads vs. number of working threads in the
relax kernel (d).

5.1 Mart́ın’s graphs

a. CPU algorithmic comparison

Figure 2 (a) shows the execution times for both sequential algorithms: Mart́ın’s,
and our approach. For each one, we present results for the two variants: Succes-
sors and Predecessors. Although all versions are sequential and no parallelism
can be exploited, the fact of having more nodes in the frontier set per iteration
for the Crauser algorithm means that fewer iterations are needed to complete
the computation of the whole SSSP. This means that the minimum calculation
and the updating operation are computed fewer times. The gain ranges from
4.44% to 18.34%, for Successors and Predecessors variants respectively.

b. GPU algorithmic comparison

The execution times for both parallel algorithms, Mart́ın and Crauser, with
their respective variants, Successors and Predecessors, carried out in the dif-
ferent CUDA architectures, Fermi and Kepler, are shown in Fig. 2 (b). Due
to the sparse nature of the graphs, there are not so many possibilities to take
advantage of the parallelism present in Crauser’s algorithm. Therefore, the
Fermi board, with a higher clock rate, returned better results than the Kepler

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 11

one. The Fermi performance improvement, over Mart́ın’s algorithm, goes from
20.29%, for the Predecessors variant, up to 45.80%, for the Successors variant.
On the other hand, these improvements are not so significant in the Kepler
architecture, involving just 1.07% and 8.14% for Successors and Predecessors
variants respectively.

c. GPU vs Optimized comparison

Figure 2 (c) shows the execution times for the fastest variant, the GPU Crauser
Successors variant, using the default and the optimized configurations; both
carried out in the Fermi and Kepler CUDA architectures. The use of optimiza-
tion techniques, which take better advantage of the GPU hardware resources,
leads to faster execution times of up to 9.75% for Fermi, and up to 5.11% for
Kepler architectures. Comparing the execution times of this optimized GPU
Crauser Successors with its analogous sequential version, the CPU Crauser
Successors, we observe that the use of the GPU offers a speed-up of up to
26.68×, for Fermi’s architecture, and up to 21.4×, for Kepler’s architecture.

d. Divergent Branch and dummy computations

Figure 2 (d) shows the total number of executed threads and the number
of working threads in the relax kernel. In both cases, the number of working
threads is significantly lower than the total number of launched threads. The
percentage of dummy threads vs. total threads varies from 90% for the prede-
cessors variant, to 96% for the successors variant. The CUDA VisualProfiler
results have shown that the efficiency ratio of the divergent branch in the relax
kernel is good, from 94.3% to 99.5%. Thus, the serialized work-flows in a warp,
due to the divergent branch, hardly affects the performance of this kernel.

The execution of dummy warps, that are warps of 32 dummy threads, do not
lead to the serializing of different work-flows, because all threads of these warps
process the same dummy instruction. Therefore, having many more dummy
warps than mixed warps, warps filled with both dummy and working threads,
implies that the performance is hardly affected by the divergent branch.

5.2 Synthetic random and real-world graphs

A. CPU and GPU algorithmic comparison

Figure 3 shows the execution times for the synthetic random graphs. Note
that there are additional results for the 98k scenario (degree 5, 10, 50, 100,
and 500) shown in this figure, included in order to obtain smoother plots and
clarify the trends and thresholds. In order to clarify the figure, we have only
shown the results of one GPU board, in this case Titan, because the execution
times for the remaining platforms present the same trends related to size and
degree. Regarding the size, as expected, the execution times increase as the

12 Hector Ortega-Arranz et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
2 20 20

0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random24k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 0

 500

 1000

 1500

 2000

 2500

2 20 20
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random49k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

Fig. 3 Scenario A: Execution times of successors algorithmic variants (GPU Mart́ın,
CPU Crauser, and GPU Crauser) for synthetic random graphs.

 10

 100

 1000

 10000

 100000

11
14

3
16

38
6

45
08

7

78
13

6

99
61

7

14
34

37

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes

Walshaw - DIMACS - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 10

 100

 1000

 10000

 100000

16
72

6
22

96
3

31
16

3
40

42
1

19
22

44

32
55

57

86
26

64

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes (logscale)

Clustering - DIMACS - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 100

 1000

 10000

 100000

43
41

02

54
04

86

82
08

78

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes

Social Networks- DIMACS - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 100

 1000

 10000

 100000

65
53

6
13

10
72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes

Kronecker - DIMACS - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

Fig. 4 Scenario A: Execution times, in logarithmic scale, of successors algorithmic variants
(GPU Mart́ın, CPU Crauser, and GPU Crauser) for real-world graphs.

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 13

Table 2 Speedups of GPU Crauser vs the sequential implementation (CPU C), and vs GPU
Martin (GPU M) for the used GPU boards. Speedups above 10× are highlighted in grey.

Fermi Kepler Titan
CPU C GPU M CPU C GPU M CPU C GPU M

24k deg2 5.90× 24.61× 5.54× 24.66× 3.56× 21.62×
24k deg20 6.07× 11.04× 5.98× 11.23× 4.33× 12.11×
24k deg200 3.84× 2.50× 3.94× 2.39× 3.49× 2.40×
24k deg1000 3.00× 1.43× 3.08× 1.40× 3.76× 1.48×
24k deg2000 3.30× 1.22× 3.51× 1.21× 4.66× 1.25×
49k deg2 10.78× 29.97× 10.47× 29.20× 7.39× 29.62×
49k deg20 10.55× 9.66× 10.63× 9.62× 7.76× 9.40×
49k deg200 5.93× 2.18× 6.32× 2.10× 6.26× 2.30×
49k deg1000 3.62× 1.35× 3.80× 1.32× 4.55× 1.40×
49k deg2000 4.85× 1.20× 4.98× 1.18× 6.39× 1.19×
98k deg2 18.42× 31.85× 18.01× 31,70× 14.22× 32.20×
98k deg20 17.33× 7.75× 17.63× 7.73× 14.97× 8.55×
98k deg200 8.23× 1.87× 9.07× 1.86× 10.18× 2.07×
98k deg1000 5.91× 1.27× 6.13× 1.24× 8.16× 1.31×
98k deg2000 6.23× 1.13× 6.32× 1.13× 9.09× 1.16×

Table 3 Best speedups obtained for each Dimacs family graph of GPU Crauser vs the
sequential implementation (CPU C), and vs GPU Martin (GPU M).

Fermi Kepler Titan
CPU C GPU M CPU C GPU M CPU C GPU M

walshaw 19.23× 27.99× 19.22× 28.00× 16.57× 29.20×
clustering 25.43× 23.97× 26.68× 26.63× 25.41× 30.61×
kronecker 27.09× 3.78× 30.76× 4.05× 43.05× 5.21×
social net. 33.30× 129.71× 37.09× 130.25× 45.38× 125.99×

graph gets bigger. Having more nodes in the graph implies that there are
more distance combinations to be computed. However, the algorithms have a
complex behavior depending on the degree. The graphs with a lower degree (2
to 20) give fewer possibilities to take advantage of the algorithm parallelism
because, in each iteration, there are fewer nodes that can be inserted in the
next frontier set. For the GPU Mart́ın algorithm, this fact leads to worse
execution times than the tested sequential version (CPU Crauser). As the
degree increases in the graphs, all methods reduce their execution times, more
drastically for the parallel ones. However, when higher degrees are reached
(1 000 and 2 000) the execution times rise again. Although it could seem that,
with a higher degree, it may be possible to take better advantage of the parallel
algorithms, the computation performed in the relax kernel increases because
there are more distances to be checked. Additionally, this checking operation
must be done with an atomic instruction serializing the execution of two or
more threads that try to access the same memory position simultaneously.

Figure 4 shows, in logarithmic scale, the execution times for Dimacs graphs,
where all approaches have similar trends and behaviors to those in synthetic
random graphs, except for a simple variation in the threshold where the se-
quential implementation goes faster than the GPU Mart́ın algorithm. Our
approach still returns the fastest execution times.

The speedups obtained with our GPU Crauser solution versus: (a) the
sequential implementation, and (b) the GPU Mart́ın version, are shown in
Tables 2 and 3. The most representative results for synthetic random graphs
appear for the ones with a lower degree, up to 18.42× against the CPU, and

14 Hector Ortega-Arranz et al.

Table 4 Best performance gains for the synthetic random graphs for the used GPU boards.
Gains above 10% are highlighted in grey.

GPU 24k 49k 98k
boards ≤20 200 >200 ≤20 200 >200 ≤20 50-200 >200
Fermi 1.8% 2.6% 3.3% 4.4% 7.0% 0.2% 4.2% 8.9% 14.4%
Kepler 0.9% 4.7% 13.7% 2.5% 7.3% 17.1% 6.5% 10.4% 22.3%
Titan 2.3% 6.3% 10.4% 6.6% 7.2% 16.7% 10.2% 7.4% 22.9%

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Fermi
Fermi opt

 50

 100

 150

 200

 250

 300

 350

 400

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Kepler
Kepler opt

 50

 100

 150

 200

 250

 300

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Titan
Titan opt

Fig. 5 Scenario B: Execution times of GPU Crauser implementation and its optimized
version for the synthetic random graphs using Fermi, Kepler, and Titan boards.

up to 32.20× compared to the GPU Mart́ın. For the Dimacs set, the highest
speedups obtained are up to 45.38× and up to 130.25× against the CPU
Crauser and the GPU Mart́ın approaches, respectively.

B. GPU Crauser optimization

Figure 5 shows that the use of the kernel characterization techniques cited
to choose optimized configuration parameters (thread-block size and L1 cache
configuration) leads to significant percentages of performance improvements.
The most significant are 14.39% for Fermi, 22.28% for Kepler, and 22.93%
for Titan (see Table 4). Note that, for the particular scenario of graph 49k
with degree greater than 200, there is hardly any improvement because the
proper values selected coincide with those used in the default configuration.
The performance gains obtained for real-world graphs are up to 9% for walshaw
graphs and almost 6% for social networks and kronecker graphs (see Fig. 6).

We can see that the values obtained through kernel characterization for the
Kepler GK104 board in [17] have been useful to reach significant performance

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 15

 0

 50

 100

 150

 200

 250

 300

 350

 400

11
14

3
16

38
6

45
08

7

78
13

6

99
61

7

14
34

37

T
im

e
(m

s)

Nodes

Walshaw - DIMACS - Kernel characterization

Fermi
Fermi opt

Kepler
Kepler opt

Titan
Titan opt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

65
53

6
13

10
72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

T
im

e
(m

s)

Nodes

Kronecker - DIMACS - Kernel characterization

Fermi
Fermi opt

Kepler
Kepler opt

Titan
Titan opt

Fig. 6 Scenario B: Execution times of GPU Crauser implementation and its optimized
version for social networks and kronecker graphs using Fermi, Kepler and Titan boards.

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 20 20
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random24k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

 0

 50

 100

 150

 200

 250

2 20 20
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random49k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

 50

 100

 150

 200

 250

 300

 350

 400

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

Fig. 7 Scenario C: Comparison of CUDA architectures using the optimized GPU Crauser
implementation for synthetic random graphs executed on the considered boards.

improvements, also using the last Kepler architecture GK110, not tested on
the original work.

C. NVIDIA platform comparison

Figure 7 shows the execution times of the different NVIDIA platforms used.
We observe that the last released board, NVIDIA Titan, did not always have
the best performance for all cases. For the scenario with the lowest size and
degree (24k-deg2), the Fermi board obtained the best performance with a
difference of up to 39.40%. However, as the degree of the graph increases,
these performance distances get closer until they meet at degree 200 in our

16 Hector Ortega-Arranz et al.

 0

 50

 100

 150

 200

 250

 300

 350

11
14

3
16

38
6

45
08

7

78
13

6

99
61

7

14
34

37

T
im

e
(m

s)

Nodes

Walshaw - DIMACS - GPU architecture comparative

Fermi
Kepler

Titan

 10

 100

 1000

 10000

16
72

6
22

96
3

31
16

3
40

42
1

19
22

44

32
55

57

86
26

64

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes (logscale)

Clustering - DIMACS - GPU architecture comparative

Fermi
Kepler

Titan

 400

 450

 500

 550

 600

 650

 700

 750

 800

43
41

02

54
04

86

82
08

78

T
im

e
(m

s)

Nodes

Social Networks- DIMACS - GPU architecture comparative

Fermi
Kepler

Titan

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

65
53

6
13

10
72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

T
im

e
(m

s)

Nodes

Kronecker - DIMACS - GPU architecture comparative

Fermi
Kepler

Titan

Fig. 8 Scenario C: Comparison of CUDA architectures using the optimized GPU Crauser
implementation for Dimacs graphs executed on the considered boards.

experimental study. Finally, for more dense graphs, the Titan board reaches
the best performance with a gain of up to 40.53%, as compared with Fermi.
This behavior also appears for the other graphs, but the meeting point between
both architectures decreases as the graph size increases.

This occurs because the Fermi board has a lower number of cores (480)
than the other tested boards (1 536 for Kepler and 2 880 for Titan), but a
higher clock rate (1.40 Ghz against 1.05 and 0.89. . .0.98 Ghz). Thus, for graphs
with a low degree, where the level of parallelism is lower, it is better to use
a higher clock-rate GPU with fewer cores instead of a slower one with more
processing units. On the other hand, having higher degrees, there are more
threads performing useful relaxing operations. Therefore, for graphs with high
degree and high size, it is better to use a GPU with many more cores to exploit
higher levels of parallelism.

For the input set provided by Dimacs and the flickr graph, the GPU boards
have returned analogous results to those of the synthetic random graphs, where
Fermi is the fastest one for low size and low degree graph instances, and later
Titan as these features increase (see Fig. 8).

D. Boost library vs GPU Crauser optimized

Figure 9 shows the execution times of the sequential reference Dijkstra Boost
library implementation [5] that uses relaxed heaps, and our optimized solution.
We observe that for graphs with low fan-out degree and small size, there is a

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 17

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 20 20
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random24k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 20 20
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random49k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
(m

s)

Degree (logscale)

random98k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

Fig. 9 Scenario D: Execution times of the optimized GPU Crauser implementation, ex-
ecuted on Fermi and Titan boards, versus the optimized sequential Dijkstra’s algorithm
included in the Boost Graph Library, for synthetic random graphs.

 0

 50

 100

 150

 200

 250

 300

 350

11
14

3
16

38
6

45
08

7

78
13

6

99
61

7

14
34

37

T
im

e
(m

s)

Nodes

Walshaw - DIMACS - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 1

 10

 100

 1000

 10000

16
72

6
22

96
3

31
16

3
40

42
1

19
22

44

32
55

57

86
26

64

T
im

e
(m

s
-

lo
gs

ca
le

)

Nodes (logscale)

Clustering - DIMACS - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 400

 600

 800

 1000

 1200

 1400

 1600

43
41

02

54
04

86

82
08

78

T
im

e
(m

s)

Nodes

Social Networks- DIMACS - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

65
53

6
13

10
72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

T
im

e
(m

s)

Nodes

Kronecker - DIMACS - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

Fig. 10 Scenario D: Execution times of the optimized GPU Crauser implementation, ex-
ecuted on Fermi and Titan boards, versus the optimized sequential Dijkstra’s algorithm
included in the Boost Graph Library, for real-world graphs.

18 Hector Ortega-Arranz et al.

low level of parallelism associated. Thus, the sequential algorithms work better
than the parallel GPU implementation (6.8× faster than Fermi). However, as
the complexity of the graph, in terms of size and degree, starts to increase, also
augmenting the level of parallelism, the execution times of the Boost library
start to grow linearly, whereas the execution times of the GPU solution do so
logarithmically. The greater the size of the graph, the earlier the performance
of the GPU solution surpasses the sequential one: (1) deg200 for the 24k-size
scenarios, with a speedup of 2.13×; (2) deg20 for the 49k-size scenarios with a
speedup of 1.28×; and (3) deg10 for the 98k-size scenarios with a speedup of
1.24×. Finally, our GPU solution reaches a total speedup of 6.9×, 10×, and
19× for the synthetic random graphs with degree 2 000 and 24k, 49k, and 98k
nodes, respectively, using the Titan board.

Figure 10 shows the same experimental scenario for real-world graphs,
where similar conclusions can be obtained. The Boost library implementation
performs well in the walshaw graph family, with speedups of up to 13.09×
vs our optimized version. However, our GPU approach starts to get closer to
it in the clustering graphs, and finally offers a better performance than the
Boost version in social-network and kronecker graphs (with speedups of up to
4.76×), while requiring lower quantities of memory.

The memory usage of each approach, displayed in Fig. 11, is different due
to the nature of each algorithm. The sequential implementation uses relaxed
heaps as queue data structure to store the reached nodes. When there are
many connections per node in a graph, the space usually needed by this queue
increases exponentially, making the computation impractical for cases with
big sizes and non-low fan-out degree. In comparison, our GPU solution only
has three additional vectors, in addition to the data structures to store the
graph, and they do not increase their space along the execution (see Sect. 3.2),
leading to a consumption of up to 11.25× less memory space (kronecker g500-
logn21 graph).

6 Conclusions and Future Work

We have adapted the Crauser et al. SSSP algorithm to exploit GPU architec-
tures. We have compared our GPU-based approach with its sequential version
for CPUs, and with the most relevant GPU implementations presented in [6].
We have obtained significant speedups for all kinds of graphs compared with
the previous approaches tested, up to 45× and 130× respectively. We have
also compared an optimized version of our GPU solution with the optimized
sequential implementation of the Boost library [5].

We have observed that the algorithm due to Mart́ın et al. is not as prof-
itable in GPUs as Crauser’s for graphs with a small number of nodes and
a low fan-out degree, behaving even worse than the sequential CPU Crauser
version. This occurs due to the small threshold for converting reached nodes
into frontier nodes of their algorithm, and due to the low level of parallelism
that can be extracted for these graphs. Our optimized GPU solution cannot
beat the times of the Boost library in graphs with extremely low degrees for

Comprehensive Eval. of a New GPU-based Approach to the SP Problem 19

 1

 10

 100

 1000

 10000

 100000

(sy
n-ra

ndom)_24k-d
eg2000

(sy
n-ra

ndom)_49k-d
eg2000

(sy
n-ra

ndom)_98k-d
eg2000

 (w
alsh

aw)_fe_oce
an

(cl
uste

rin
g)_co

nd-m
at-2

005

(kr

oneck
er)_

g500-lo
gn21

(so
cia

l n
et.)_

co
PapersD

BLP

M
em

or
y

(M
B

 -
 lo

gs
ca

le
)

Family graph

Memory usage

CPU BOOST
GPU Crauser

Fig. 11 Scenario D: Memory usage, in MB with logarithmic scale, of Boost library and
GPU Crauser for a particular graph of the different graph families.

the same reason. However, our approach runs faster when the size and degree
increases, obtaining a speedup of up to 19× for some graph families.

Additionally, we have successfully tested the optimization process in our
GPU solution, using the values obtained through the kernel characterization
criteria from [17] for the CUDA running parameters (thread-block size and L1
cache configuration). This optimized version obtains performance benefits for
all tested input sets of up to 22.43% as compared to the non-optimized version.

Most recent GPU architectures contain higher amounts of single processors
at the cost of reducing clock frequency, in order to take advantage of the huge
parallelism levels of the applications. However, as can be seen in our experi-
mental results, there is a threshold, related to the low application parallelism
level, where previous CUDA architectures, working with higher clock frequen-
cies, obtain better execution times. Therefore, the faster architecture in this
application domain is not always the most modern one, but depends on the
features of the corresponding input set.

We have detected that there is a high amount of dummy instructions exe-
cuted in the relax kernel, up to 96%. The application of methods that try to
avoid this dummy computation may insert more computational load than the
overhead we want to avoid. Besides this, as we have already shown, although
this kernel contains divergent branches, they hardly affect its performance.

Our future work includes the comparison with other non-GPU parallel
implementations using OpenMP or MPI, in order to see what the threshold is
where the use of a GPU is worthwhile in terms of efficiency and/or consumed
energy.

20 Hector Ortega-Arranz et al.

Acknowledgments

This research has been partially supported by the Ministerio de Economı́a y Competitividad

(Spain) and ERDF program of the European Union: CAPAP-H5 network (TIN2014-53522-

REDT), MOGECOPP project (TIN2011-25639); Junta de Castilla y León (Spain): ATLAS

project (VA172A12-2); and the COST Program Action IC1305: NESUS.

References

1. H. Bast, D. Delling, A. Goldberg, M. Muller-Hannemann, T. Pajor, P. Sanders, D. Wag-
ner, and R. Werneck, “Route Planning in Transportation Networks,” Microsoft Re-
search, Tech. Rep. MSR-TR-2014-4, 2014.

2. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in spatial network
databases,” in VLDB’03. Berlin: VLDB Endowment, 2003, pp. 802–813.

3. C. Barrett, R. Jacob, and M. Marathe, “Formal-language-constrained path problems,”
vol. 30, pp. 809–837, 2000.

4. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Math-
ematik, vol. 1, pp. 269–271, 1959.

5. J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and
Reference Manual. Boston, MA, USA: Addison-Wesley Longman Publishing Co., 2002.

6. P. Mart́ın, R. Torres, and A. Gavilanes, “CUDA Solutions for the SSSP Problem,” in
Computational Science – ICCS 2009, ser. LNCS, G. Allen, J. Nabrzyski, E. Seidel,
G. van Albada, J. Dongarra, and P. Sloot, Eds. Springer, 2009, vol. 5544, pp. 904–913.

7. P. Harish, V. Vineet, and P. J. Narayanan, “Large Graph Algorithms for Massively
Multithreaded Architectures,” Centre for Visual Information Technology, International
Institute of IT, Hyderabad, India, Tech. Rep. IIIT/TR/2009/74, Feb. 2009.

8. D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, Feb. 2010.

9. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization of Dijkstra’s
shortest path algorithm,” in Mathematical Foundations of Compt. Science 1998, ser.
LNCS, L. Brim, J. Gruska, and J. Zlatuška, Eds. Springer, 1998, vol. 1450, pp. 722–731.

10. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms,
2nd ed. Burr Ridge, Il 60521: McGraw-Hill Higher Education, 2001.

11. M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms,” J. ACM, vol. 34, pp. 596–615, July 1987.

12. D. P. Singh and N. Khare, “Article: A Study of Different Parallel Implementations
of Single Source Shortest Path Algorithms,” Int. Journal of Computer Applications,
vol. 54, no. 10, pp. 26–30, September 2012.

13. M. Papaefthymiou and J. Rodrigue, Implementing parallel shortest-paths algorithms,
ser. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Prov-
idence: American Mathematical Society, 1994, vol. 30, pp. 59–68.

14. U. Meyer and P. Sanders, “∆-Stepping: a parallelizable shortest path algorithm,”
Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0196677403000762

15. A. Davidson, S. Baxter, M. Garland, and J. Owens, “Work-Efficient Parallel GPU Meth-
ods for Single-Source Shortest Paths,” in Parallel and Distributed Processing Sympo-
sium, 2014 IEEE 28th International, May 2014, pp. 349–359.

16. M. Harris, Optimizing Parallel Reduction in CUDA, devel-
oper.download.nvidia.com/assets/cuda/files/reduction.pdf, nVidia, 2008.

17. H. Ortega, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Optimizing an APSP
Implementation for NVIDIA GPUs Using Kernel Characterization Criteria,” J. Super-
computing, pp. 1–13, 2014.

18. S. Nobari, X. Lu, P. Karras, and S. Bressan, “Fast random graph generation,” in
Proc. of the 14th International Conference on Extending Database Technology, ser.
EDBT/ICDT ’11. New York, NY, USA: ACM, 2011, pp. 331–342.

19. “DIMACS implementation challenge,” 2012. [Online]. Available:
http://www.cise.ufl.edu/research/sparse/dimacs10

20. David F Gleich, “Graph of Flickr Photo-Sharing Social Network Crawled in May
2006,” Feb 2012. [Online]. Available: https://purr.purdue.edu/publications/1002

