
ZZ

A Survey on Thread-Level Speculation Techniques

Alvaro Estebanez, Universidad de Valladolid
Diego R. Llanos, Universidad de Valladolid
Arturo Gonzalez-Escribano, Universidad de Valladolid

Thread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential
code without relying on a prior, compile-time dependence analysis. In this work we introduce the technique,
present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances
in this field.

Categories and Subject Descriptors: F.1.2 [Modes of Computation]: Parallelism and Concurrency; D.1.3
[Concurrent programming]: Parallel programming

General Terms: Runtime parallelization

Additional Key Words and Phrases: Speculative multithreading, speculative runtime parallelization,
thread-level data speculation, TLDS, optimistic parallelization, thread-level speculation, TLS

ACM Reference Format:
Alvaro Estebanez, Diego R. Llanos, Arturo Gonzalez-Escribano, 2014. A Survey on Thread-Level Speculation
Techniques. ACM Comput. Surv. X, Y, Article ZZ ( 20YY), 40 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Thread-Level Speculation (TLS), also called Speculative Parallelization (SP), or even
Optimistic Parallelization, is a runtime technique that executes in parallel fragments
of code that were originally intended to run sequentially. Instead of relying on compile-
time analysis to identify independent parts of sequential code that can be run con-
currently, TLS techniques optimistically assume that these parts can be executed in
parallel by different threads. To ensure correctness, speculative threads should detect
whether they have consumed a datum that was subsequently updated by a predecces-
sor thread, that is, a thread executing an earlier part of the code, according to sequen-
tial semantics. Such situations, called dependence violations, should be detected and
rectified by hardware or software mechanisms, or a combination of both, to keep se-
quential semantics. If a dependence violation is detected, a corrective action will take
place, typically discarding the results calculated by the thread that has consumed the
incorrect value, and restarting it to be fed with the updated datum.

In this paper we review the literature related to Thread-Level Speculation tech-
niques, presenting a taxonomy that helps to better understand each proposed solution
in its context. The paper is organized as follows. Section 2 presents a global view of the
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problem, including a description of sources of speculation in the code, together with
the main design choices that may arise while designing a TLS solution. Section 3 ex-
amines the first solutions that served as a base for the development of TLS systems.
Section 4 details hardware-based approaches, where additional hardware is added to
support speculation. Section 5 shows software-based proposals, which do not require
additional hardware to monitor the parallel execution, at the cost of a certain perfor-
mance loss. Section 6 describes other works that take advantage of TLS capabilities for
different purposes. Section 7 cites some studies that have pointed out the theoretical
and practical limits of the TLS paradigm. Finally, Section 8 concludes our paper.

2. SOURCES OF TLS AND DESIGN CHOICES
In [Torrellas 2011], an accurate summary of Thread-Level Speculation techniques is
given, including a detailed description of the two main issues that any TLS system
should solve: How to buffer and manage speculative states, and how to detect and
handle dependence violations. His analysis makes any effort to reproduce a summary
of TLS characteristics here meaningless: we suggest the reader to consult his work to
better understand the fundamentals of the field and the management of side effects
due to the use of thread-level speculation. In this section, we will briefly discuss where
are the main sources of speculation, how TLS techniques can be classified, and which
are the most important design choices that have to be faced to set up a TLS system.

2.1. Loops as a source of speculation
Due to how easy it is to distribute work among threads, loops are the most impor-
tant source for TLS. The synthesis of loop-based speculation written by [Rauchwerger
2011], who was also a pioneer in the field, accurately reflects the importance of loops as
a source of speculation. Under TLS, loops are divided into blocks of iterations that are
dispatched to be optimistically executed in parallel, while a monitor ensures that the
execution follows sequential semantics. If this is not the case, the monitor squashes
offending threads, restarting them with the correct values. Otherwise, version data
stored in the local speculative buffers are committed to the main copy. We will first
briefly describe how data processed in one iteration may interact with calculations in
different iterations, a situation known as data dependence.

There are three basic types of data dependences among two fragments of code,
namely true, anti, and output dependences. In the following examples, let Si and Sj

be two statements, where Si should be executed earlier than Sj according to sequen-
tial semantics.

— True dependence: Statement Si writes into a location that is later read by Sj . These
situations are also called RAW (Read After Write) conflicts, or flow dependences.

— Anti dependence: Statement Si reads a location that is later written by Sj . These
situations are also called WAR (Write After Read) conflicts.

— Output dependence: Both statements Si and Sj write into the same location. These
situations are also called WAW (Write After Write) conflicts.

These definitions can be used to create a taxonomy of loops, according to the presence
of data dependences among their iterations. One of the first taxonomies was proposed
by [Polychronopoulos and Kuck 1987]. This work classified loops into three different
types: doall, forall, and doacross.

— Doall loops: Loops that do not present any dependence among their iterations. There-
fore, all iterations can be processed in parallel with no further checking [Tang and
Yew 1986]. Figure 1(a) shows an example of this loop. Most of current compilers can
parallelize this kind of loops automatically.
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for (i=0; i<SIZE; i++)

    V[i] = i; // Statement S

(a) DOALL Loop

for (i=0; i<SIZE; i++) {

    V[i] = ... ;         // Stat. S1

}

(b) FORALL Loop

for (i=0; i<SIZE; i++) {

      ... = f(V[i-x]);   // Stat. S1 (x>0)    

    V[i] = ... ;           // Stat. S2

}

for (i=0; i<SIZE; i++) {

    V[W[i]] = ...;             // Stat. S1

            ... = f(V[Z[i]]);  // Stat. S2

}

for (i=0; i<SIZE; i++) {

       ... = f(V[i-1]); // Stat. S1    

     V[i] = ...;          // Stat. S2

}

(c) Regular DOACROSS Loop

(e) Irregular DOACROSS Loop

(d) DOSEQUENTIAL/DOSERIAL Loop
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Fig. 1. Different types of loops according to the presence of data dependences. The label in each edge rep-
resents the dependence distance. Data flows are represented by the arrow directions.

— Forall loops: Loop whose iterations may present true (that is, RAW) dependences:
Values produced by one iteration may be used in a subsequent iteration. An example
is depicted in Fig. 1(b). All iterations of a forall loop can be executed simultaneously if
and only if all the statements that produce the value (S1 in the figure) have finished
before the execution of any statement that consumes the value (S2 in the figure). If
this behavior cannot be guaranteed, a synchronization mechanism is needed.

— Doacross loops: Loops that may have cross-iteration anti (also known as WAR or
backward) dependences. [Krothapalli and Sadayappan 1990] divides doacross loops
into three categories:
— Regular doacross loops: Loops whose anti dependences among iterations are domi-

nated by a constant value x. Figure 1(c) shows an example. Regular doacross loops
with x>1 can be parallelized by ensuring that the execution of the iterations in-
volved in the dependence follows sequential semantics. If the value of x is known
at compile time, compilers are usually able to produce a parallel version of the
loop.

— Dosequential or doserial loops: A special type of regular doacross whose iterations
depend on the previous one (that is, loops that have a dependence distance x=1).
Figure 1(d) shows an example where the dependence is from the last statement of
the body of the loop to the first statement. These loops have no parallelism at the
iteration level.

— Irregular doacross loops: Loops whose anti (also kwown as backward) dependences
among iterations are not known at compile time. Figure 1(e) shows an example.
These loops are commonly called “irregular loops”, and in general they cannot be
parallelized safely at compile time.

Compile-time techniques can be used to generate parallel versions of doall, forall
and, when the dependence distance is known at compile time, regular doacross loops.
Since TLS is a runtime technique, it can use the available information in all of the de-
scribed loops, including irregular doacross loops. With respect to dosequential loops, a
TLS system will also guarantee that the parallel execution will be correct, at the cost of
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squashing and re-starting iterations continuously to follow sequential semantics, thus
degrading performance. The main application of TLS is in the parallel execution of ir-
regular doacross loops when the total number of dependences that appear at runtime
is low.

2.2. Drawbacks of TLS
Although TLS can extract parallelism even from irregular doacross loops, it will likely
be slower than a compile-time parallelization, if the latter can be applied. Sources
of overhead in TLS include the cost associated to thread squash and restart due to
data dependence violations, speculative buffer overflows, load imbalance due to data
locality issues, thread dispatch and commit, and inter-thread communications [Dou
and Cintra 2004].

TLS overheads may not only lead to lower performance in terms of execution time,
but also to a greater energy consumption. This issue appears in software solutions,
due to the energy cost associated to the execution of additional instructions to guar-
antee that sequential semantics are followed, and to the wasted work carried out by
squashed threads. Energy inefficiencies also appear in hardware approaches, due to
the need of additional hardware structures in the cache hierarchy for data versioning,
dependence checking, and its associated bus traffic [Renau et al. 2005]. We will return
to this problem in Sect. 6.3.

2.3. A first classification of TLS techniques
According to [Marcuello et al. 1998; Kejariwal et al. 2006], there are three types of
speculation techniques: (1) control speculation; (2) data dependence speculation; and
(3) data values speculation (also called value prediction). These types are not disjoint,
and their basis can be combined to achieve better results.

2.3.1. Control speculation. Control speculation applies speculation to loops that include
conditional sentences. Execution paths of each iteration are detected, mapping them to
different threads. [Jacobson et al. 1997b; Wallace et al. 1998; Akkary and Driscoll 1998]
combined control speculation with branch prediction. [Puiggali et al. 2012] tried to
predict the outcome of conditional branches without the need to know all the variables
implied in the condition.

2.3.2. Data dependence speculation. Data dependence speculation is a technique suit-
able for the parallel execution of loops that may lead to inter-thread memory depen-
dences. Load operations from speculative variables (that is, variables whose use may
lead to a dependence violation) usually return the most recent value for that vari-
able, while speculative store operations search for the use of incorrect values in those
threads, executing subsequent iterations according to sequential semantics. Many re-
searchers have contributed to this solution: Please refer to [Rauchwerger and Padua
1995; Franklin and Sohi 1996; Breach 1998; Marcuello et al. 1998; Cintra and Llanos
2003; Tian et al. 2008].

2.3.3. Data values speculation. Data value speculation techniques, also known as value
prediction techniques, predict at runtime the result of instructions before their exe-
cution. This approach is based on the idea that an accurate prediction may avoid a
squash. For example, the work by [Raman et al. 2008] describes a prediction-based
TLS software that predicted values of the following iterations without specifying the
iteration where a value would be taken from. The main disadvantage of these propos-
als is that, in general, for loops with irregular memory accesses and complex control
flow, this solution does not obtain good predictions. Other works that use predictors
are [Sohi et al. 1995; Akkary and Driscoll 1998; Codrescu and Wills 1999a; Steffan
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et al. 2002; Cintra and Torrellas 2002; Prabhu and Olukotun 2003; Li et al. 2005; Tian
et al. 2010a; Fan et al. 2012; Gao et al. 2013].

2.4. Design choices overview
To be speculatively executed, the original code should be instrumented at compile or
runtime to handle different operations, such as loading and storing of speculative data,
performing commit operations if the speculative execution succeeds, and discarding
incorrect work if it does not. The main design choices that should be faced in a TLS
system are described in [Yiapanis et al. 2013]. To implement a TLS system, a number
of decisions should be taken1:

2.4.1. Metadata management. TLS approaches should manage some information in or-
der to detect whether a dependence violation has occurred. Thus, each thread should
know both what memory addresses have been used, what operations have been done,
and which thread has done each operation. All this information is collectively known
as metadata [Yiapanis et al. 2013], and its management has two goals: Preserving the
information related to variables at risk of suffering violations, such as which thread
has loaded, stored, or is locking a certain variable; and maintaining references about
operations done by each thread, specifically, recording the variables loaded or written.
The choice of the data structure to handle metadata may severely affect performance,
depending on the relative costs of accessing and updating information during the par-
allel execution. An example of such tradeoff can be found in [Estebanez et al. 2014a].

2.4.2. Version Management. When executing several consecutive fragments of sequen-
tial code in parallel, each thread usually maintains a version copy of the data structure
that is accessed speculatively. This solution allows changes to this data to be performed
locally, only storing these changes to a permanent place if the speculative execution of
this thread proves successful. To do so, TLS systems require some additional storage
to maintain the intermediate copies of each thread. There are two ways of managing
these data:

— Lazy Version Management. In this case, a local copy of the exposed data is individ-
ually stored and managed. Therefore, when a load or store operation is performed,
only the local version is changed. When a RAW dependence violation is detected,
only local versions of threads in conflict have to be discarded, instead of modifying
the reference version in memory2.

— The other approach, Eager Version Management, requires fewer resources, because
the reference version in memory is modified. An additional buffer (called undo log in
the literature) records old values and is used to restore original data in the case of a
dependence violation.

Regarding version management, [Garzarán et al. 2003; Garzarán et al. 2005] pro-
posed a taxonomy to classify speculative systems according to the way of buffering the
speculative versions of variables. They took into account the isolation of speculative
thread states in each processor, and how the new data versions produced by specula-
tive threads is merged with the main memory.

2.4.3. Conflict Detection. Dependence violations can be checked with either a lazy or an
eager approach: Lazy Conflict Detection avoids the need to check for conflicts on every
access, by delaying this task to a later stage before the commit operation. This solu-

1Unless otherwise noted, the following discussion applies for both loop-level and block-level TLS systems.
2Note that WAW dependence violations can be avoided by a commit operation that follows sequential se-
mantics. Regarding WAR dependences, the use of local versions of exposed data avoids this problem.
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tion implies to store the sequence of accesses to each speculative datum by different
threads, in order to ensure that all accesses were performed following sequential se-
mantics. Although this approach avoids time-consuming checks during the speculative
execution, the amount of work that might be potentially discarded is much higher. A
more strict approach, called Eager Conflict Detection, looks for potential dependence
violations on every access. This design avoids performance losses produced by later
checks, by squashing and restarting threads as soon as a dependence violation is pro-
duced. However, the time devoted to checking each potential dependence violation is
much higher, slowing down the parallel execution even when no dependence violations
arise.

2.4.4. Scheduling of iterations. To speculatively parallelize a loop, it should be parti-
tioned into chunks (or blocks) of iterations to be assigned to different threads. Early
approaches included a compile phase capable of classifying iterations into sets of in-
dependent iterations. Although iterations within a set should be executed in order,
the sets should be executed sequentially, in order to avoid dependence violations. This
compile-time scheduling solution came at the cost of performing a costly analysis, that
in many cases could not be carried out due to its complexity and/or the presence of po-
tential dependence violations that depended on runtime information. In these cases,
the simplest solution is to use chunks of fixed size [Kruskal and Weiss 1985]. The
particular size chosen is an important design decision. The use of smaller chunks will
reduce squashing costs, at the cost of a higher scheduling overhead. On the other hand,
bigger chunks will increase the cost of thread squashing and may lead to load imbal-
ance.

To mitigate these problems, variable chunk size strategies originally designed to
achieve load balancing in parallel computations, such as [Hummel et al. 1992; Poly-
chronopoulos and Kuck 1987], can also be used in speculative execution. Regarding
the particular context of TLS, [Llanos et al. 2007] proposed a variable chunk size for
the speculative execution of randomized incremental algorithms, an important class of
problems where the probability of a dependence violation decreases as execution pro-
ceeds. Their work uses smaller chunks for the first iterations, where randomized incre-
mental algorithms present more dependence violations, then gradually increases the
chunk size to reduce scheduling overheads, and finally reduces the size of the chunks
again to achieve a better load balancing.

The use of chunk sizes that follows a predefined distribution, however, may not be
the best solution. Speculative parallelization poses a more complex scheduling chal-
lenge than traditional parallelization, because, for irregular applications, both the
number and the particular distribution of dependence violations are unknown before
the loop is executed. Therefore, the idea of changing the chunk size at runtime depend-
ing on the number of squashes produced makes sense [Llanos et al. 2008]. Recently,
[Estebanez et al. 2015] proposed a method, called Moody Scheduling, that makes use
of both the number of re-executions of the last chunks of iterations and their tendency
(increasing, decreasing, stable) to figure out an appropriate chunk size for the following
chunk to be scheduled.

2.4.5. Squashing alternatives. If a RAW dependence violation is produced, all data calcu-
lated by the offending thread (the one that have consumed the incorrect value) should
be discarded. The mechanism chosen to do so is a design decision that severely affects
performance. Some approaches just discard the threads that have consumed this par-
ticular, wrong value, and others discard the offending thread and all its successors.
This leads to the following solution space, as described by [Garcia-Yaguez et al. 2014]:
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— Stops parallel execution: First solutions, such as [Rauchwerger and Padua 1995],
simply discard the entire speculation execution when a dependence violation was
produced, and then restart the loop sequentially from the beginning. Due to their
high cost in terms of execution time, these solutions only benefit loops that were
indeed parallel.

— Inclusive squashing: This approach stops and restarts the first thread that have con-
sumed the wrong value, together with all its successors, regardless of whether they
have consumed any value from the offending thread. Due to its simplicity of imple-
mentation, this is the most used solution (see [Cintra and Torrellas 2002; Cintra and
Llanos 2003; Prabhu and Olukotun 2003; Ceze et al. 2006]), although it may dis-
card potentially useful work carried out by a successor that has not consumed any
polluted data.

— Exclusive squashing: This approach squashes (a) the offending thread, (b) all suc-
cessor threads that have consumed any value generated by him, and (c) all threads
that have consumed any value produced by the aforementioned squashed threads. In
other words, only successor threads that have not consumed any value that may be
derived from the offending thread are allowed to survive. Note that this solution may
discard threads that have consumed values from the offending thread that have no
relationship with the value that triggered the dependence violation. [Li et al. 2005]
tried to implement this ideas in hardware. [Colohan et al. 2006] also used this kind of
squashing mechanism in the context of databases (where restarting a thread leads to
big performance losses), and used sub-threads to check for squashed threads. [Tian
et al. 2010b] also proposed a solution that does not discard all the produced values,
only a small part of them. Also, [Garcı́a-Yágüez et al. 2011; Garcia-Yaguez et al. 2014]
developed a software-only version of this idea, with the help of a list that stores which
threads have consumed a value for a particular predecessor.

— Perfect squashing: Discards offending threads and those successors that have con-
sumed the incorrect value or any value generated using it. Threads that have con-
sumed correct values from the offending thread are not squashed. This is the ap-
proach that leads to fewer squashes. However, to keep track of the definition and use
of each particular datum, an in-depth analysis should be performed, This operation
seems to be too costly. For example, [Akkary and Driscoll 1998] proposed a specific
table to store dependences, while [Rotenberg et al. 1997] used a table that saved
all intermediate values. Nevertheless, [Tian et al. 2011] addressed this problem and
concluded that this squash mechanism is not profitable.

The above discussion assumes that the data dependences are handled at the data-
element granularity level. Note that, if the TLS system uses a granularity coarser than
the data-element for speculative data, for example at the cache level, false conflicts
may appear, leading to unnecessary squashes of speculative threads.

The following section describes the ideas that led to modern TLS techniques.

3. PRECURSORS
One of the first approaches centered on the parallelization of loops that may present
dependence violations was the one proposed by [Knight 1986]. With the functional
languages in mind, specifically the Multi-Lisp approach, [Halstead 1985] introduced a
hardware approach that allowed speculation through the use of two different caches,
one dedicated to storing those values loaded from memory, and the other used to hold
those values produced by the processor whose accuracy was not confirmed yet, thus
using lazy version management (see Sect. 2.4.2). [Midkiff and Padua 1987] described a
solution to synchronize the concurrent execution of singly-nested loops, while [Zhu and
Yew 1987] described an algorithm to handle all types of loops described in Sect. 2.1.
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[Aiken and Nicolau 1988] described another scheduling algorithm (see Sect. 2.4.4),
which analyzed loops and obtained the optimal, dependence-free distribution, making
use of compile-time analysis techniques (See Sect.2.4.4). In those years, [Baxter et al.
1989] performed research to extract some parallelism of Doconsider loops, a kind of
regular Doacross loops (see Sect. 2.1). where iterations could be rearranged, in order
to preserve dependence semantics, and parallelize as many iterations as possible. They
developed a compiler plugin that divided iterations into subsets of iterations that de-
pend on each other, so as to execute several independent subsets at the same time. Al-
though this paper was focused on programs whose dependences are known at compile
time, it also mentioned codes not schedulable at start-time [Mirchandaney and Saltz
1988; Saltz and Mirchandaney 1988], which are codes whose dependences could only
be extracted during their execution, and therefore a compile-time scheduling mech-
anism is not applicable. [Krothapalli and Sadayappan 1988] explored a solution to
remove anti and output dependences (see Sect. 2.1). For that purpose, they performed
a reference analysis, storing multiple copies of suspicious variables used in the loop.
Later, [Krothapalli and Sadayappan 1990] proposed a dynamic scheduler based on syn-
chronism (see Sect. 2.4.4), that allowed doacross loops to be addressed with complex
inter-iteration dependences. Afterwards, [Wolf and Lam 1991] used matrices to trans-
form and parallelize loops in a general way, with the help of compile-time scheduling
mechanisms capable of dealing with nested loops.

The idea of the use of a dynamic inspector-executor model appeared at that time.
With this approach, an inspector loop checks for dependences in a preliminary phase,
and if no dependences arise, a second phase executes the loop in parallel. [Saltz et al.
1991] introduced this method in order to parallelize loops, showing that this technique
allowed a significant performance improvement in loops with a big number of opera-
tions, where inspector phase time was not significant compared to the executor phase.
However, none of these approaches parallelize loops with output dependences. [Chen
et al. 1994] developed a software solution that reduced delays between processor com-
munications and allowed the parallelization of loops with output dependences. They
reused some results during the execution, allowing the overlap of dependence itera-
tions and the sharing of some information between inspector and executor phases.

4. HARDWARE-BASED APPROACHES
Several hardware implementations have been developed to support TLS, mainly
through the addition of auxiliary registers to manage speculation. Even though most
hardware approaches have some parts implemented in software, in this section, we
will review both pure hardware-based and mixed implementations. There are mainly
two ways to implement TLS on hardware (HTLS): Developing a chip from scratch, or
customizing an existing chip. The modification of an existing chip led to the develop-
ment of Simultaneous Multithreading (SMT) processors3.

This section is structured in three parts. The first describes the approaches that did
not rely upon any previously developed scheme; the second details those based on the
SMT architecture; and the third depicts those that proposed CMP enhancements.

4.1. Pioneers
4.1.1. Multiscalar paradigm. [Sohi et al. 1995] developed the Multiscalar processor, one

of the first and most important approaches that executed sequential code (called tasks)

3[Packirisamy et al. 2008; Tang et al. 2005] compared SMT with CMP (Chip Multiprocessors) in the context
of TLS, giving a perspective of performance, power and thermal; [Ungerer et al. 2003] described chips that
support multithreading. However, a full description of these processors is beyond the scope of this survey,
and will not be provided.
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in parallel through speculation. The underlying idea was to perform some tasks in
parallel with the use of a chip that included several processors, ensuring sequential
semantics. Parallelization was organized by using graphs of tasks. In this way, each
processor received a task and executed it. Consistency was ensured with the help of
additional control logic, that synchronized the production of register values in prede-
cessor tasks with the consumption in successor tasks. A hardware monitor also en-
sures correctness in speculative memory accesses. The execution of parallel tasks in
each processor followed a fixed order, needed to ensure sequential semantics. To han-
dle this, a ring of processors was proposed. If a processor used a wrong value from a
predecessor, its task was squashed and restarted (see Sect. 2.4.5). When each proces-
sor finished its execution, values were committed in the order imposed by the ring. As
will be seen in Sect. 5.1.2, this idea was later used by several software-based TLS so-
lutions to implement sliding-window mechanisms. The authors also suggested the use
of a value predictor (see Sect. 2.3.3) to reduce squash overheads, and to improve load
balance among processors in order to avoid wasting computational cycles, through the
choice of an appropriate granularity. [Sohi et al. 1995] affirmed that correctness of the
operations could be ensured by different hardware implementations. A full descrip-
tion of one that supports the Multiscalar architecture can be found in [Breach et al.
1994; Breach 1998; Franklin 1993; Vijaykumar 1998]. [Vijaykumar 1998; Vijaykumar
and Sohi 1998] also described efficient ways of choosing a good task division by using
compile-time scheduling techniques (see Sect. 2.4.4).

Improvements in the storage of speculative values. Several solutions tried to reduce
overheads with the use of lazy version management (see Sect. 2.4.2) [Franklin and
Sohi 1996; Gopal et al. 1998] describe several methods to support different data ver-
sions produced during speculative execution, through the use of hardware with the
Multiscalar architecture. [Franklin and Sohi 1996] proposed ARB, an Address Resolu-
tion Buffer used by all processors. This solution introduced some overheads due to the
traffic caused by the simultaneous accesses to the ARB. [Gopal et al. 1998] proposed a
Speculative Versioning Cache (SVC), intended to overcome the limitations of ARB by
assigning a different cache to each processor. [Jacobson et al. 1997a] studied different
branch prediction techniques for control speculation (see Sect. 2.3.1): An automata-
based predictor, a prediction based on the history, and an address predictor for jumps
and indirect calls.

4.1.2. The Trace processor. [Rotenberg et al. 1997] developed an architecture based on
the parallel execution of traces. Unlike the tasks used in the Multiscalar paradigm,
that were obtained by the compiler dividing the sequential program, a trace is a dy-
namic sequence of instructions that are built as the program executes, and stored in
a so-called trace cache [Rotenberg et al. 1996]. This proposal consisted of a processor
composed of different processing elements, each having the organization of a small-
scale superscalar processor, with enough space to hold an entire trace and enough
functional units and register files. Instructions were executed in parallel, while inter-
trace dependences were speculated with the use of value predictors.

Improvements to Trace. [Patel et al. 1998] devised a way to reduce the size of traces
and a modification of branches with the aim of making them more predictable. [Black
et al. 1999] modified the original Trace approach, managing traces as series of pointers
to basic blocks stored in cache. [Rotenberg and Smith 1999] addressed the problem
of control independence to better exploit the parallelism of this architecture, using
control speculation (see Sect. 2.3.1) to structure codes into control-independent code
blocks. [Jacobson and Smith 2000] improved the instruction dispatching of trace caches
through the construction of sets of traces before they were needed. Several years later,
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[Padmanabha et al. 2013] proposed the use of super-traces to detect those parts of
codes that had regular patterns to maximize energy efficiency.

4.1.3. Oplinger et al. architecture. [Oplinger et al. 1997] combined ideas from the Multi-
scalar paradigm, putting more emphasis on the hardware and the compiler. The result
was a chip that contained some subsystem caches that supported speculation. They
also developed a specific software adapted to the underlying hardware. This work also
contained a study of several benchmarks under different metrics, namely the number
of sequential code lines, doall loops, doacross loops, etc. The goal of this research was
to check the parallel behavior of the benchmarks used. This study was improved by
[Oplinger et al. 1999], with the aim of locating niches for speculation. The authors con-
cluded that TLS should not only be applied in a single loop. Instead, they affirmed that
using TLS in all loops and procedures of sequential applications would produce better
results.

4.1.4. I-ACOMA. [Krishnan and Torrellas 1998] implemented a clustered SMT archi-
tecture where the chip had several independent processing units, with each unit hav-
ing the capability to perform simultaneous multithreading. The system supported the
speculative execution of binaries, without source recompilation, by the use of software
that identified potential threads in programs. Their efforts were mainly centered on
loops. The basis of this idea was to use a binary annotator that added some notes
into the executable file. Order between threads was implemented through a bit mask
and communications between threads were performed by either memory or registers,
throughout an annotation phase in the case of registers, and in runtime otherwise.
Dependence violations were identified with the help of a table called Memory Disam-
biguation Table (MDT) (an idea based on ARB, see [Franklin and Sohi 1996]). The
MDT was stored in the L2 cache, and contained copies of the different data used.

4.1.5. STAMPede. [Steffan and Mowry 1998; Steffan et al. 2000] proposed a chip multi-
processor architecture with TLS support called STAMPede, whose goals were twofold.
First, to handle arbitrary memory access patterns4; and second, to provide a scalable
paradigm that could be adapted to both SMT and CMP architectures. They suggested
a system that implements speculation with the help of a cache memory consistency
protocol.

Value prediction. The same authors improved the communication cost of the STAM-
Pede architecture in [Steffan et al. 2002]. To do so, they implemented value prediction
(see Sect. 2.3.3), with no additional cost of recovering if prediction failed (speculation
mechanisms were used in that case). Their solution tried to predict those values that
were going to be loaded but not stored in the same epoch. The authors affirmed that
these values were likely to produce dependence violations. They also proposed what
they called “silent store”, which avoided the unnecessary stores of values to variables
with the same value, replacing these stores, which led to many dependence violations,
with loads that compared values to check correctness.

Compiler optimization. [Steffan et al. 2005] extended the cache protocol described
by [Steffan et al. 2000], developing a cooperative approach between the software and
hardware parts of the system. Their goal was to optimize the compiler and reduce
the complexity of the hardware used. Moreover, they adapted the hardware support
to improve the compatibility with the majority of processors, and to be scalable to any
machine size.

4The reason was that the authors affirmed that previous works could only use array references (contrary to
the opinion of [Krishnan and Torrellas 1999]).
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Cache locality. [Fung and Steffan 2006] used an extended version of STAMPede to
study the inherent problems related to cache locality when TLS executions were per-
formed. The authors started their study on the initial transition from sequential to
parallel execution. Cache misses at that point (called startup misses) were not signifi-
cant enough to adversely affect performance. Instead, they found that read-only cache
misses were the most important part of misses in the execution of programs. Write-
based sharing parameters and strided miss patterns were also addressed in this paper.
The other misses were not intended to be mitigated because, according to their study,
they represent less than 10% of the execution times of the benchmarks considered.

4.1.6. SPT approach. [Li et al. 2005] described an architecture specially designed to
support scalar applications. This work also contains the design of a compiler specially
developed for this architecture5. The architecture developed combined hardware and
software parts. The proposed hardware was composed of two cores: One to execute the
main program thread, and the other to execute speculative threads. [Li et al. 2003]
described a software value predictor (see Sect. 2.3.3) in connection with this imple-
mentation.

4.2. Simultaneous multithreading (SMT)
[Tullsen et al. 1996; Tullsen et al. 1998] proposed to combine features available in
both superscalar and multithreaded architectures. The original SMT paradigm was
designed to improve the use of superscalar hardware with small additional cost, by
overlapping multiple threads on a single, wide-issue processor in order to allow inde-
pendent threads to use different functional units in the same cycle. SMT added thread
tags to a single-thread architecture, and maintained a hardware context for every si-
multaneous thread, including a general register file, PC register, and other state reg-
isters. [Tullsen et al. 1998] can be viewed as the starting point of the main research in
TLS with SMT.

4.2.1. Speculative multithreaded processor. [Marcuello et al. 1998] proposed a speculative
multithreaded processor that extended the instruction window in order to use spec-
ulation through hardware. These authors developed an architecture that controlled
parallelism without the need for a strict thread control. This scheme was entirely
hardware-based, so it did not need any modifications to existing binaries. This solu-
tion automatically detected loops (details of this detection can be found in [Tubella and
Gonzalez 1998]), and launched their parallel execution by several threads distributed
along a ring. Communications among threads were supported using broadcast mes-
sages. This solution also used data prediction techniques (see Sect. 2.3.3). With the
use of lazy version management (see Sect. 2.4.2), misspeculations were detected by
the comparison of local values and versions of cache lines at commit time.

4.2.2. Threaded Multi-Path Execution (TME). [Wallace et al. 1998] enhanced the SMT pro-
cessor with control speculation capabilities (see Sect. 2.3.1), through the use of a
branch predictor. The procedure followed was the execution of all possible branches
of a loop, whilst there were enough resources. Otherwise, the most likely branch to
occur was predicted. Before speculatively executing a predicted branch, threads saved
their execution context just in case dependence violations were produced, and they had
to re-execute the branch with correct values.

4.2.3. Dynamic Multithreading Processor (DMP). [Akkary and Driscoll 1998] developed
DMT, an architecture that fetched, renamed and dispatched instructions from different
locations of the same program into a modified hierarchy of small instruction windows.

5A more detailed description of this compiler can be found at [Du et al. 2004].
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Each thread (created by hardware when a loop or a branch were located) managed
and executed its own window of instructions. All its partial results, which were stored
in additional buffers and handled with lazy version management , were accessible by
the other threads in order to detect misspeculations. This approach also used a branch
predictor (see Sect. 2.3.1) to mitigate data dependences between threads.

4.2.4. Implicitly-Multithreaded Processors (IMT). [Park et al. 2003] developed IMT, based
on the Multiscalar approach by [Sohi et al. 1995], but mapping threads on SMT. This
approach took some ideas from TME and DMT. IMT mainly differed from TME in the
way the former managed control dependences among threads. Whereas TME specu-
lated with multiple threads in case of branch mispredictions (as previously exposed),
IMT created threads taking into account the predictions made by threads in execution,
trying to follow the program order. Regarding DMT, IMT led to better results than
DMT thanks to prediction enhancements, and also to the elimination of the selective
recovering from misspeculations that required several searches.

4.2.5. Packirisamy et al. solution. [Packirisamy et al. 2006] extended the SMT architec-
ture to support TLS with the use of a modified L1 data cache. The new cache scheme
consisted of the addition of a pointer to the thread which stored a value in the cache,
and some speculative bits to save the loads and stores performed to variables. The
number of these bits was similar to the number of available threads, in order to avoid
overheads in the check for dependence violations. According to [Wang et al. 2006], this
solution was more useful than DMT [Akkary and Driscoll 1998] and IMT [Park et al.
2003] when dealing with big threads. In addition, this approach used a simpler hard-
ware than the one proposed by [Marcuello et al. 1998].

4.3. Chip Multiprocessor (CMP)
CMPs have also been widely used in conjunction with TLS solutions. [Olukotun et al.
1996] was one of the first works that described these processors. A CMP can be viewed
as a group of single-thread processors integrated onto the same processor chip, in order
to act as a team. Generally, processors in a CMP have their own L1 cache, and share
the second-level cache. [Olukotun et al. 2007] described some implementations of CMP
such as Piranha [Barroso et al. 2000] and Niagara [Kongetira et al. 2005]. Here, we
will review those studies that used CMP in connection to TLS.

4.3.1. SMT on CMPs. [Krishnan and Torrellas 1999] explained in more detail the ideas
described by [Krishnan and Torrellas 1998], and extended the approach to CMPs,
the chips used in all the following improvements. [Cintra et al. 2000] designed and
evaluated a different CMP architecture, based on the use of the mentioned MDT, for
scalable speculative parallelization. Their solution required a relatively simple hard-
ware and was efficiently integrated with the cache coherence protocol of a conventional
NUMA (Non-Uniform Memory Access) multiprocessor. This integration of speculative
chip multiprocessors into scalable systems seemed to offer great potential. [Cintra and
Torrellas 2002] later presented a hardware subsystem that aimed to learn, predict and
solve dependence violations that could arise. They addressed the reduction of squashes
using an improved version of the MDT that contained information about data managed
by the threads in order to perform predictions, and making use of inclusive squashing
(see Sect. 2.4.5). [Martı́nez and Torrellas 2002] also proposed using synchronism in
speculative threads to speculate in active barriers or busy logs. To do so, they devel-
oped a hardware solution that added a bit per line and some logic to the cache, also
giving support for register checkpointing. If a misspeculation was detected, the offend-
ing thread was restarted from a synchronization point.
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4.3.2. Hydra CMP. The Hydra chip multiprocessor was developed by [Hammond et al.
1998; Hammond et al. 2000]. Hydra integrated four MIPS-based processors and their
primary caches on a single chip, together with a shared secondary cache. Its design
was influenced by two previous CMP designs that supported TLS: the Multiscalar
paradigm [Sohi et al. 1995] and STAMPede [Steffan and Mowry 1998] approaches,
both described previously. According to Hydra’s authors, it was an intermediate step
between them: Hydra allowed bigger threads with less complex processors than Mul-
tiscalar, where the use of a ring of processors and hardware-based thread sequenc-
ing used imposed these limitations. With respect to STAMPede, Hydra proposed more
complex write-back primary caches that did not need to be drained as each thread com-
pleted, avoiding burst of bus activity. Hydra was also influenced by the architecture de-
veloped by [Oplinger et al. 1997]. Hydra required the user to mark loops which would
be speculatively executed, and incorporated a specific compiler and a runtime system
with some instructions to manage speculation, including those needed to both start
and end speculative loops, fork calls, and manage dependence violations. [Olukotun
et al. 1999] claimed that applying speculation only in loops, instead of speculating on
both loops and procedures, led to performance improvements in connection to Hydra.
This research also proposed some code transformations, and a hardware implementa-
tion of checkpoints to recover from misspeculations, with the help of backup copies of
registers.

Profiling and code transformations. [Chen and Olukotun 2003a] added an additional
hardware component to Hydra, called TEST, that carried out the analysis of sequen-
tial codes to extract potential speculative loops. This profiling was later used in a dy-
namic parallelization system that transformed Java programs for speculative execu-
tion. [Chen and Olukotun 2003b] used this tool to develop JRPM, a system that could
dynamically and automatically parallelize many Java applications. JRPM served as
an integration of all the previous approaches developed. This solution, implemented
with the Java Virtual Machine as the abstraction layer, allowed the programmer to
avoid the need for manual changes in the code to be parallelized almost entirely.

Tutorials and performance analysis. [Prabhu and Olukotun 2003] developed a tu-
torial to explain the main adjustments needed to change a code in order to improve
the performance earned with TLS, using Hydra TLS hardware implementation as
their test platform. Optimizations described went from code reorganization to using
value prediction (see Sect. 2.3.3), but also to performing adjustments to the algorithm
or to applying speculative pipelining. In a later work, [Prabhu and Olukotun 2005]
performed an in-depth study of some applications of the SPEC CPU2000 benchmark
suite with respect to speculative parallelization. The study includes a description of
the applications used, and tips on their parallelization using some of the techniques
described above.

4.3.3. Atlas Chip-Multiprocessor. [Codrescu and Wills 1999a; Codrescu et al. 2001]
aimed to extract parallelism using single-chip multiprocessors by developing a new
chip based on the combination of TLS and inter-thread data value prediction (see
Sect. 2.3.3). Their solution assigned fragments of sequential code to processors un-
til all of them were busy. This assignment was carried out by a control module that
also performed value prediction. This development followed the principles exposed by
[Rotenberg et al. 1997] and [Marcuello et al. 1998], being one of the first approaches
whose main design factor was based on value prediction. The main contribution of this
approach was the use of a better predictor than those used in previous TLS researches,
called AMA. It was based on three tables of recent values, as described in [Codrescu
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and Wills 1999b]. The processor also contained a branch predictor for control specula-
tion (see Sect. 2.3.1), together with a recovery queue.

4.3.4. Out-of-order speculative execution. [Renau et al. 2005] enhanced CMP with hard-
ware updates, developing the first approach that allowed out-of-order spawn in the
context of TLS, that is, the execution of some instructions in an unpredictable order,
far from the sequential order imposed by previous works. This research also included
a compiler that could parallelize codes to be executed in either in-order or out-of-order
modes. DMT [Akkary and Driscoll 1998] processors could also execute out-of-order
fragments of code (tasks), using an SMT processor with different structures and mech-
anisms. [Akkary et al. 2008] later defined Disjoint Out-of-order execution (DOE) pro-
cessors, a model that targeted inter-task data communications latencies. It was com-
posed by several DOE cores, organized in a ring, that shared an L1 data cache and a
task dispatcher. A DOE core consisted of two threads, one to execute independent in-
structions, and the other responsible of executing the dependent instructions. In this
way, when a thread that depended on a previous thread execution needed to wait for a
datum, its core executed its independent instructions while previous datum was pro-
duced.

4.3.5. Bulk. [Ceze et al. 2006] addressed the problem of the complexity of the basic
operations involved in TLS processes. To do this, they used a metadata management
system (see Sect. 2.4.1 consisting on a kind of hash encoder (called signature) that
managed the addresses accessed by each speculative thread. Each signature was a set
of addresses and allowed several addresses to be treated as if they were a single one.
They enhanced the architecture with some hardware mechanisms that could efficiently
operate with this hashed information. The model developed supported TLS and also
transactional memory. In the TLS approach, they proposed to assign all the updated
values of this thread to the nearest successors when it began its execution, and to get
these data earlier. In addition, they developed some operations, such as intersection,
union, etc., to manage and operate with signatures. The details of the compiler used to
develop this system was described in [Liu et al. 2006].

4.3.6. POSH. [Liu et al. 2006] developed the POSH compiler, which divided subrou-
tines and loops into tasks. Instead of relying entirely on compile-time scheduling mech-
anisms (see Sect. 2.4.4), they used a profiling tool to select those tasks that could be
benefited from parallelism and data prefetching techniques. It was implemented in a
CMP with some additional TLS registers, and supported a software value predictor
similar to the solution developed by [Li et al. 2003].

4.3.7. RASP. The Runtime Automatic Speculative Parallelization (RASP) was the ap-
proach presented by [Hertzberg and Olukotun 2011]. This hardware-based model could
speculate over binary codes directly. A translator analyzed programs running in x86
systems, and translated them into RISC microcode. The translator was based on the
DBT86 system developed by [Hertzberg and Olukotun 2009], with some enhancements
to speculatively parallelize loops and acquire feedback. The new system could locate
loops and add some instructions to allow commitments and rollbacks with checkpoints,
thus performing lazy conflict detection (see Sect. 2.4.3). The main contribution of this
research was the inclusion of an automatic tool to speculatively parallelize binary
codes over the existing hardware.

4.4. Related techniques
4.4.1. Transactional Memory. Transactional memory (TM) [Herlihy and Moss 1993] is

another form of optimistic execution [Barreto et al. 2012]. The main difference between
TM and TLS is that TM was designed for a number of different goals, such as encapsu-
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lating synchronization burdens (such as deadlock avoidance) of fine-grained lock-based
programming, and to reducing contention by the use of optimistic speculation-based
techniques. On the contrary, TLS was primarly designed to parallelize sequential ap-
plications. Therefore, TM portions of code intended to run in parallel portions do not
need to follow any sequential order, while TLS threads need to preserve sequential
order. Transactions have been combined with TLS in two ways: Using transactions
to guarantee sequential semantics of loops, and speculating over large transactions
to be executed in parallel. Regarding the first approach, [Guo et al. 2008] proposed
LogSPoTM, a hardware-based solution that enhanced LogTM, a transactional mem-
ory system, to ensure sequential semantics and give support to TLS. LogSPoTM was
mainly based on the integration of timestamps and arbitration policies to impose a
thread order and preserve semantics. [Deng et al. 2012] used this solution and, with
the help of a hardware value predictor, improved their previous experimental results.
[Dai et al. 2011] also used LogSPoTM in their work. They looked to reduce squashes
with the use of a chip that supports packet-switch, Network-on-Chip, thus applying
some of the ideas of network theories to speculation. This work considered that thread
data were packets, and assigned higher priority to those belonging to predecessor
threads. This solution helped to reduce both timeouts and the number of squashes.

[Porter et al. 2009] also used TLS to improve the performance of their hardware-
based transactional model architecture. There are other works that combine TM
techiques with software-based TLS: We will review them in Sect. 5.3.3.

4.4.2. Speculative and transactional lock elision. Locks are a useful technique to guarantee
sequential semantics of parallel programs. [Rajwar and Goodman 2001] extended this
concept with the so-called Speculative Lock Elision, allowing the speculative execution
of critical sections. To do so, this solution automatically replaced locks by optimistic
hardware transactions, checking that no errors were produced. If transactions failed,
the system used the original lock. Some studies were conducted to evaluate transac-
tional lock elision supports in different architectures, including [Dice et al. 2009; Cain
et al. 2013; Afek et al. 2014]. Some commodity processors offer this support, includ-
ing Intel’s Haswell [Hammarlund and et al. 2014] and IBM’s Power 8 [Cain and et al.
2013].

4.4.3. Database context. [Colohan et al. 2005] demonstrated that database transactions
could benefit from the use of TLS when a large transaction (with more than 7 500
instructions) should be executed. Moreover, they gave some guidelines to remove some
of the frequent dependences of the software in this context. The hardware used to do so
was based on STAMPede (see Sect. 4.1.5). Later, [Colohan et al. 2006] introduced sub-
threads to manage dependences that occur in those large threads. Their sub-threads
introduced checkpoints and stored intermediate values to enable the recovery of some
of the calculations done in the speculative execution until a dependence violation was
produced, with the use of a lazy conflict detection system (see Sect. 2.4.3) that only
discarded the wrong part of the execution.

5. SOFTWARE-BASED APPROACHES
Software-based TLS systems implement techniques to guarantee the coherence of the
optimistic parallel execution on conventional processors, without the need for dedi-
cated functional units. Research in this field has been centered on reducing, whenever
possible, the overheads in execution times due to the need to ensure consistency by
software.

As we will see, first proposals usually executed the loop in parallel, and if a depen-
dence violation was produced, the work already carried out was discarded, and the
loop was re-executed sequentially. Subsequent approaches performed partial commits,
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in order to take advantage of the work carried out before a dependence violation ap-
pears, and thus tried to minimize the number of squashed threads to those that had
actually consumed a polluted value and its sucessors (a technique known as inclusive
squashing (see Sect. 2.4.5).

Again, we will follow a historical perspective to describe the research in this field.
We will first center our attention on those solutions where programmers should explic-
itly invoke runtime library functions and/or compiler support to manage speculative
execution. Then, we will move to solutions that are based on higher-level program-
ming abstractions. We will finish this discussion with some proposals related to TLS
behavior, and a brief review of some works that mixed TLS with other techniques.

5.1. Solutions relying on compile-time and runtime support
First approaches required programmers to use different methods to explicitly invoke
TLS mechanisms. The most representative ones are described below.

5.1.1. LRPD test. We can place the origins of Software TLS (STLS) in the work carried
out by [Rauchwerger and Padua 1995; 1999], with their research in the parallelism of
doall loops. They proposed the use of a test called LRPD to support the speculative par-
allelization of loops with some backtracking capabilities. This proposal re-executed the
loop serially if the runtime test failed, a squashing solution that is simple to implement
but with a huge cost in case of misspeculation (see Sect. 2.4.5). The proposal worked
as follows: The target loop was firstly transformed through privatization (that is, mak-
ing private copies of shared variables) and reduction parallelization (determining at
compile-time that certain operations are indeed reductions, and replacing them with a
parallel algorithm), and then it was speculatively executed as a doall loop. During this
parallel execution, the test stored the iteration number where shared variables were
defined and/or used. After the parallel loop execution, a fully-parallel data dependence
test was applied over this information to ensure that the loop had no cross-iteration
dependence. If the test failed, the loop was sequentially re-executed. Otherwise, the
parallel execution of the loop was considered successful. This approach had the dis-
advantage of detecting cross-iteration dependences only after the end of the parallel
execution, thus implying a heavy performance penalty. [Gupta and Nim 1998] pre-
sented a more efficient method for speculative array privatization that did not require
the computation to be rolled back when a particular variable was found to produce
a dependence violation. To do so, they presented a technique that allowed the early
detection of loop-carried dependences, and another that detected parallelization haz-
ards immediately after they were produced. In addition, they proposed a set of new
runtime tests for speculative parallelization of loops that defied parallelization meth-
ods based solely on static analysis. [Dang et al. 2002] developed a technique to extract
the maximum available parallelism for loops that were known to present some depen-
dences. This solution presented an evolution of the LRPD test, called Recursive LRPD
(R-LRPD). The basic idea was to transform a partially-parallel loop into a sequence of
fully-parallel loops. At each stage, this proposal speculatively executed all remaining
iterations in parallel and the R-LRPD test was applied to detect the potential depen-
dences.

5.1.2. Software versions of hardware solutions. [Rundberg and Stenström 2000] applied
many of the ideas of hardware-based speculative architectures in software. First, name
dependences were solved by dynamically renaming data at run time. Second, the over-
head of restoring the original situation after a misspeculation was greatly reduced
by reducing the amount of data to commit, and by supporting parallel implementa-
tions of the commit phase. Third, some anti data dependence violations were avoided
by supporting lazy version management without the need to enforce synchronizations
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between a pair of conflicting threads. Fourth, true data dependence violations were de-
tected when they happened, which reduces the cost of misspeculations. To do so, each
instruction on speculative data was augmented with a checking code that detects data
dependence violations dynamically, that is, using eager conflict detection (Sect. 2.4.3).
Finally, it committed data following sequential semantics.

[Cintra and Llanos 2003; 2005] developed a different scheme based on an aggressive
sliding window. It checks for data dependence violations on every speculative store,
while avoiding synchronization whenever possible. The sliding window used consisted
of an array of slots which store the status of each running thread, and pointers to their
own version of the speculative data, Commits were carried out in order from the non-
speculative thread. Each time a commit operation was finished, the sliding window
advanced one position, allowing a new, most-speculative thread to start. This solution
used lazy version management, eager conflict detection and inclusive squashing. More
recently, [Estebanez et al. 2014b] improved this solution with a different implemen-
tation that supported the speculative access to dynamically-allocated data structures
and support for the use of pointer arithmetic. This solution used a sophisticated meta-
data management (see Sect. 2.4.1) with the help of hash tables to reduce the time
needed to find the most up-to-date version of a datum (see Sect. 2.3.2), a problem also
described in [Tian et al. 2010b].

5.1.3. Based on master/slave paradigm. [Zilles and Sohi 2002] introduced the Mas-
ter/Slave speculative parallelism, a new kind of speculation whose basics were the use
of a master thread and some slaves that performed the task assigned by their master.
The main idea of this technique was to divide at compile time the program into tasks
that would be carried out by the slaves, while the master thread predicted the values
that would be produced by each task and continued with the execution of the code
without waiting for their results. This approximation needed to check all the values
produced by slaves after the execution of a task with respect to the values predicted
by the master. If both were equal, the master’s prediction had been successful, on the
other hand, a misspeculation had been detected. In this case, the work incorrectly car-
ried out by the master and all slaves since the last checkpoint needed to be discarded
and re-executed.

5.1.4. Automatic thread extraction. [Ottoni et al. 2005] proposed an automatic approach
for thread extraction. The system, called DSWP, exploited the fine-grained pipeline
parallelism of many applications to extract long-running, concurrently executing
threads. Their results showed significant improvements when executing these appli-
cations on a dual-core CMP.

5.1.5. Complementing compile-time techniques for auto-parallelization. [Tournavitis et al.
2009] proposed the use of profile-driven parallelism detection to augment the number
of loops that may considered safe to parallelize, relying on the user for final approval.
This work also uses machine-learning techniques to take better mapping decisions for
different target architectures.

5.1.6. Other solutions: SpLIP, MiniTLS, and Later. [Oancea et al. 2009] developed SpLIP, a
speculative tool centered on decreasing overheads of speculative operations of previ-
ous approaches, implementing non-locking operations where was possible, making use
of hash functions for metadata management (see Sect. 2.4.1) and relying on versions
of data instead of rollbacks (see Sect. 2.4.2). [Yiapanis et al. 2013] introduced a new
structure that reduced memory overheads of classical approaches based on the idea
of mapping every user-accessed address into an array of integers using a hash func-
tion. The authors implemented this compact data structure in two approaches, namely
MiniTLS and Later. The main characteristic of MiniTLS was that threads updated
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memory locations in-place, and also that all operations followed fast and optimistic
design patterns. As in SpLIP, hash functions were used for metadata management.
However, this approach used rollback mechanisms instead of version management,
because speculative threads modified values directly, possibly producing errors that
needed to be handled. This solution is similar to SpLIP, so both were compared in this
work. Later followed a different design, implementing a lazy version management of
values, together with pessimistic design patterns in its operations. The structure used
was a bit different, but it was based on the same operations and patterns. This ap-
proach also introduced a combination of inspector-executor techniques (described in
Sect. 3) and the LRPD test (described in Sect. 5.1.1), implementing the new solution
upon them.

5.1.7. TLS compiler and runtime for distributed systems. [Kim et al. 2012] present an au-
tomatic speculative parallelization system for clusters, composed of a parallelizing
compiler and a speculative runtime that minimizes the overheads due to validations,
through the use of lazy version management and conflict detection.. Other STLS run-
time solutions for distributed enviroments are covered in Sect. 5.4.

5.1.8. TLS for web applications. [Martinsen et al. 2013] used a speculative mechanism in
the context of web browsing. To do so, they implemented their software by means of the
Squirrelfish JavaScript environment, that enabled the parallel execution of Javascript
functions. They modified Squirrelfish interpreter to enable each instance of the inter-
preter to be executed as a thread, while executing as many instances as functions.
The used variables were maintained in a special vector that showed modified values
to detect dependence violations. The use of TLS in this context allowed these authors
to achieve noticeable speedups.

5.1.9. Apollo. [Jimborean et al. 2012a; Jimborean 2012; Jimborean et al. 2013] in-
troduced a TLS framework specially designed to speculatively execute nested loops,
by using features of the polyhedral model [Ancourt and Irigoin 1991] to dynamically
transform code into a more optimized version that led to higher speedups. First, a com-
piler [Jimborean et al. 2012b] generated skeletons6 that were the basis of executions,
due to their ability to produce different code versions that could be selected at run-
time. Then, a dynamic part was responsible for (a) representing memory accesses as
predicting linear functions of the loop indices, with the help of interpolating functions,
(b) performing dynamic dependence analysis and transformation selection, (c) instan-
tiating the parallel skeleton code, and (d) guiding the execution. The execution was
based on profiling the code several times during the execution in order to choose the
polyhedral transformations that could better speed up the execution. The detection of
dependence violations (see Sect. 2.3.2) was done at three levels: Basic scalars, memory
accesses, and loop bounds. This framework led the authors to parallelize some bench-
marks that had not been parallelized before due to dependence management hurdles.

5.1.10. HVD-TLS. [Fan et al. 2012] developed a software-based speculative framework
that improved classical TLS mechanisms by the development of new techniques to im-
prove value prediction (see Sect. 2.3.3), value checking, dynamic task partition, and
scheduling (see Sect. 2.4.4). Predictions performed were done using several predic-
tors based on the original value of the variables in conflict. Such predictions used a
predictor table that also maintained the number of correct predictions. Values were
checked by the main thread to prevent committing unmodified values, a situation re-

6Skeletons [Darlington et al. 1993] are a set of high-order parallel forms intended to be used as basic build-
ing blocks for parallel implementations. They include program transformations to ease portability between
different systems.
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peated many times according to the authors. Also, this system allowed different lev-
els of granularity to be assigned at runtime, following a linear scheme or a heuristic
scheme, where the system monitored the execution and changed the granularity ac-
cordingly.

5.2. Solutions relying on additional programming abstraction layers
Our second set of software-based solutions eased the use of TLS by offering new,
higher-level abstraction layers.

5.2.1. Fast Track. [Kelsey et al. 2009] developed a system called Fast Track, where a
programmer can install potentially-unsafe optimized code while leaving the task of
error checking and recovery to the underlying implementation. Specifically, their pro-
gramming interface allowed users to suggest faster implementations based on partial
knowledge of a program and its usage. Fast Track divided code into two branches, the
fast track and the normal track, and programmers could change between both tracks
when needed. Their implementation included both compile-time and runtime support.
A compiler inserts function calls to ensure that the fast track produced the same re-
sult as the sequential execution. To protect runtime data, the system relied on the
compiler to insert checking code that protects stack data. Regarding global and heap
data, the system relied on the operating system to protect them, by turning off write
permissions for them in both tracks, and installing custom page-fault handlers. These
handlers first recorded which page had been modified in an access map and then re-
enabled write permissions. The runtime support checked program correctness through
the comparison of results at the end of the tracks. If both results were similar, results
were supposed to be correct. Otherwise, the fast track results were discarded. In this
system, one processor was reserved to run the fast track, and the rest to the execution
of normal tracks.

5.2.2. The Copy-or-Discard model. [Tian et al. 2008; 2009] proposed the Copy-or-Discard
(CorD) execution model, in which the execution of parallel threads was separately
managed by a non-speculative one. Speculative threads read values of the non-
speculative thread and performed their computation. After that, speculative threads
were committed in order. Then, results were checked by a non-speculative thread so
as to preserve the semantics of the sequential order, using a lazy conflict detection
(see Sect. 2.4.3). The commit operation was performed by the non-speculative thread
through the CorD mechanism, which checked whether results were correct. In this
case, results were copied to the non-speculative data. Otherwise, they were discarded
at no additional cost, thanks to the use of version copies.

CorD and dynamic memory. The CorD approach did not give support to those appli-
cations whose speculative variables were dynamically allocated, so [Tian et al. 2010b]
enhanced CorD to be used with programs that had such dynamic data structures. The
main problem of this approach was data traversing, because a dynamic structure could
change their size during the execution. Pointers imposed another problem, since a
speculative copy of a dynamic structure might have a pointer with an address to a
non-speculative copy. In order to solve these problems, they proposed using a mapping
table that translated addresses among speculative and non-speculative threads. They
also included optimizations in the treatment of linked structures. Finally, [Tian et al.
2010a] used a value predictor to improve the parallelization of programs with frequent
and predictable cross-iteration dependences (see Sect. 2.3.2).

Reducing misspeculations. [Tian et al. 2011] later tried to further reduce misspec-
ulations. They proposed an approach intended to reuse almost all the correct calcu-
lations performed by a thread whose iterations had suffered dependence violations,
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instead of discarding all this information, as most approaches did. To do so, they used
a partial speculative space in addition to the primary speculative space of each thread.
This new space maintained the first read values of a speculative variable. If a misspec-
ulation was found, only the successor spaces of the offending space were squashed (see
Sect. 2.4.5). This approach led to better performance and to a reduction in the number
of dependence violations, due to lower recovery times.

5.2.3. TLS based on the use of compile-time directives. [Bhowmik and Franklin 2002] de-
scribed a compiler framework for TLS that allowed the parallelization of all instruc-
tions of a code, instead of only those that compose a loop. This feature specially bene-
fited non-numerical applications with complex instructions. Codes were initially ana-
lyzed by the compiler and profiled to produce a control flow graph. It was then used to
produce partitions that could be executed by multiple threads. [Chen et al. 2003] also
developed a compiler that focused on providing a quantitative analysis of codes with
complex dependences. Their aim was to give probabilities about the possible flows of
the code, and detect if a squash was likely to be produced.

Mitosis. Mitosis is a compiler framework developed by [Quiñones et al. 2005] ca-
pable of deciding which fragments of code could be speculatively executed. To do so,
the Mitosis compiler marked the beginning of a region whose outcome could be spec-
ulatively guessed with a so-called spawning point (SP), and its end with the control
quasi-independent point (CQIP) mark. When the sequential execution reached the SP,
a speculative thread was launched. This thread predicted the possible values of the
outcome of the parallel region and used them to start the speculative execution of the
code from the CQIP. Meanwhile, the non-speculative thread continued its execution.
If no errors were produced, speculative threads were committed, otherwise, they were
discarded. The choice of these spawning points was a key part of the work. To do so,
marks were chosen with the use of a synthetic trace. It selected the most suitable parts
of codes to be speculatively executed regarding some requirements, such as the amount
of workload of routines with respect to the total, or possible misspeculations.

Spice C. SpiceC was an approach proposed by [Feng et al. 2011]. SpiceC imple-
mented a number of directives that, when added to sequential code, eased parallel
programming. Programmers did not need to be particularly careful about communi-
cations or dependences, because this model supported doall, doacross, pipelining and
speculative parallelism. This solution also supported dynamic structures and pointer
addresses. SpiceC threads had their own private space for data. A shared global space
was used to store shared data. Threads’ first accesses were referred to shared space
and loaded to each local space, where following accesses were redirected to. When
threads ended their executions, they checked for misspeculations, and committed their
data to the shared space if they were correct. Directives were similar to OpenMP’s
[Dagum and Menon 1998], so sequential programs only needed a few additional direc-
tives: A directive to suggest what kind of parallelism would be used, and another to
mark where commit operations had to take place.

[Feng et al. 2012a] extended SpiceC with some additional directives to support I/O
operations within parallel loops. To the best of our knowledge, this was the first ap-
proach that addressed the parallelization of this kind of codes through TLS. The main
idea behind this research was to break the cross-iteration dependences caused by I/O
operations (see Sect. 2.3.2) modifying the original code. To parallelize input operations,
this approach calculated file pointers before entering the loop to be used in each iter-
ation. File pointer copies were created on demand by the iterations that used them.
Regarding output operations, they required the use of some additional buffers, in or-
der to store intermediate outputs produced by each thread. Each output value was
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stored in the corresponding thread buffer and flushed at the end of each iteration fol-
lowing sequential semantics. [Feng et al. 2012b] also augmented SpiceC directives to
parallelize loops with dynamically-linked data structures. This work tried to manage
different data partitions of loops using the same code, addressing the problem of codes
where multiple threads managed several data partitions.

ATLaS. [Aldea et al. 2014; 2015] developed a GCC plugin so as to add loop-based
TLS support to OpenMP. Their proposal include the development of a new OpenMP
speculative clause to be used in for loops [Aldea et al. 2012], which allowed program-
mers to declare all variables whose reads or writes may lead to dependence violations.
The use of this clause guaranteed that all definitions and uses of speculative variables
would follow sequential semantics. The ATLaS framework consisted on a GCC plug-in
that gave support to the new speculative clause, and a runtime library that managed
the speculative execution. The ATLaS runtime library is able to transparently support
speculation over variables of any size, and permits the use of pointer arithmetic. Its
implementation offered version management, eager conflict detection, fixed, dynamic,
and adaptive chunk scheduling, and both inclusive and exclusive squashing. The in-
ternals of the runtime library that managed dependence violations were described in
[Estebanez et al. 2014b]. The entire ATLaS framework can be freely downloaded from
atlas.infor.uva.es.

5.2.4. The Galois model. [Kulkarni et al. 2007; 2009] introduced Galois, a system that
supported complex pointer-based sets of elements in optimistic parallelism. They were
centered on benchmarks that should get a subset of points from a big set, in order
to obtain a solution to the problem. To do so, they introduced two constructs called
optimistic iterators that could be added to object-oriented programming languages
like Java: The set iterator, intended to execute a loop that processes in parallel an
unordered set of elements, and the ordered-set iterator, that traverses in parallel
partially-ordered sets while ensuring sequential semantics. The consistency of data
was implemented using locks. Moreover, to allow recovery from misspeculations, all
operations had their corresponding inverse methods. With this purpose, an undo log
was defined for each iteration. In order to manage all iterations, this solution defined a
commit pool that contained data such as the state of iteration executions, or the posi-
tion of the log. It controlled the entire execution, deciding how iterations were assigned
and committed, conflicts were solved, etc.

Efficiency improvement through data partitioning. After that, [Kulkarni et al. 2008]
introduced some mechanisms aimed to improve the efficiency of Galois, by better ex-
ploiting locality of reference, reduce mis-speculation, and producing a lower synchro-
nization overhead. The mechanisms proposed include data partitioning, to assign ele-
ments of data structures to cores; data-centric assignment policy to improve locality;
replacing fine-grain synchronization on data structure elements by coarser-grain syn-
chronization on data structure partitions; and over-decomposition of data, to assign
several partitions to the same core, thus avoiding that a lock on a partition stalls the
execution of that core.

Scheduling. [Kulkarni et al. 2008] addressed the problem of scheduling (see
Sect. 2.4.4), developing an additional framework to Galois. Although iterations could
be executed in any order within their baseline scheduling policy, this work showed the
inefficiencies associated to this behavior, and proposed an improvement based on clus-
tering (select a cluster of iterations), labelling (assign the selected clusters to cores),
and ordering (order of the clusters to be executed) of iterations. Scheduling strategies
for irregular applications in TLS were also addressed by [Jo and Kulkarni 2010] with
Galois. Their strategies went from “stealing” the work of overloaded processors by idle
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processors in the static assignment, to using a centralized place as a warehouse for the
extracted partitions.

A profiler: ParaMeter. [Kulkarni et al. 2009b] developed a tool to extract parallelism
profiles from irregular applications. This method took abstract measures of the in-
herent parallelism of the different points of a code, showing instructions that could
be executed concurrently. Although this tool has been used in the context of Galois,
the authors affirmed that it is framework-independent. [Kulkarni et al. 2009a] also
introduced a suite of benchmarks to test irregular applications with the use of TLS
libraries, including those used in the mentioned papers.

5.2.5. Optimizing irregular applications. [Méndez-Lojo et al. 2010] described three manual
techniques to optimize irregular applications in order to improve their parallel execu-
tion. The first one was based on the idea of modifying codes in such a way that all
read operations were done before any write operation. The second one, called “one-
shot”, was based on the detection of dependences before the execution. If none were
detected, checks for them could be disabled, and code could be parallelized without
locks. Finally, for those algorithms whose bottlenecks were located in the accesses to
data sets (appropriate for the benchmarks tested by them, described in [Kulkarni et al.
2009a]), they developed the “iteration coalescing” optimization. While in Galois there
was a one-to-one correspondence between iterations and data elements to be processed
(which was called activities), this iteration allowed a single iteration to grab multi-
ple active elements from the set of data elements to be processed (called the working
set), thus reducing the overhead associated to their access. Later, [Prountzos et al.
2011] completed this work by automatizing the manual techniques described. They
addressed again the overhead problems that emerged from optimistic parallelization,
specifically, those related to conflict checking and undo actions. The center of this re-
search was to reduce locks and rollbacks of the shared objects, using some inferred
properties. In 2011, [Kulkarni et al. 2011] analyzed whether the order used to launch
methods affected execution times.

5.2.6. SEED. An approach for speculative loop execution that handled nested loops
was recently proposed by [Gao et al. 2013]. They developed and implemented SEED, a
tool that provided a runtime scheduler capable of adaptively selecting loops for paral-
lelization in terms of their potential benefits, by performing a cost-benefit analysis that
took into account the input data. This tool was composed by two phases, one related to
compilation time, and the other related to runtime. In the compiler phase, loops were
selected, threads were exposed in order to be later created, and the resulting code was
optimized using precomputation and software value prediction (see Sect. 2.3.3) to re-
duce misspeculations. At runtime, the basic TLS operations, such as thread spawning,
dependence violations detection, and squashes, were carried out, together with the use
of adaptive scheduling techniques (see Sect. 2.4.4) that were sensitive to input data.

5.3. TLS mixed with other techniques
5.3.1. Helper threads, runahead and multi path execution. [Xekalakis et al. 2009] proposed

a model that combined different techniques such as TLS, helper threads, and runa-
head execution, in order to dynamically choose at runtime the most appropriate com-
bination. The helper threads technique is based on the runtime generation of small
threads (also called slices) to improve the efficiency of the main thread, for exam-
ple, by resolving highly-unpredictable branches and cache misses. By contrast, runa-
head execution was based on executing instructions in advance when a long latency
operation was expected. Runahead threads either ignore or predict the outcomes of
this long latency operation. Consequently, runahead threads would be faster than the
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others, and they would serve to predict cache misses to help TLS threads. In other
words, these prefetched threads were essentially helper threads acting in a runahead
mode to help the execution of main threads. The main difference of this technique
with respect to helper threads was that the former did not require additional threads.
[Xekalakis and Cintra 2010] later combined TLS with MultiPath execution, a tech-
nique consisting in executing the two branches of hard-to-predict branches. The main
idea behind this approach was to enhance processors with multiple-context execution
to enable a fast way to discard erroneous data of wrong branches. The execution had
normal TLS and MultiPath modes, depending on the number of occurrences of hard-to-
predict branches. The previous combinations were more detailed, extended and mixed
in [Xekalakis et al. 2012], where the authors described a system that applied TLS to
loops. Other techniques were also proposed, such as the use of prefetched threads when
delays were detected.

5.3.2. Continuous speculation. [Zhang et al. 2010] described continuous speculation, a
technique whose main objective was to achieve full-occupancy of processors. For that
purpose, they used speculation techniques to achieve the parallelization of large se-
quential codes. Their solution used a sliding window and a group classification to
ensure the correct order of the tasks. To get information about the possibly parallel
regions of a sequential code, they used BOP [Ding et al. 2007; Ding 2011], a tool that
analyzed the program behavior to parallelize it.

5.3.3. STLS and Transactional Memory. There were several works that made a joint use of
TLS and Transactional Memory (TM) solutions. [Mehrara et al. 2009] described STM-
Lite, a STM implementation customized to facilitate profile-guided automatic loop par-
allelization, by supporting TLS using a simplified variant of STM. STMLite was spe-
cially designed to reduce overheads of accesses to logs of variables used in transactions.
[Raman et al. 2010] proposed SMTX, a software system that generalized existing soft-
ware TLS memory systems to support speculative pipelining schemes, and was tuned
for loop parallelization. It was specially designed to exploit hardware MTX (multi-
thread transactions) capabilities. Conceptually, an MTX provides a private memory
that was initialized with the contents of committed memory at the time of creation of
the MTX. Several threads could participate concurrently in the MTX, by performing
loads and stores in this private memory. At the end of the MTX, if no conflictes were
detected, the contents of the private memory were committed. Otherwise, the MTX
was rolled back. [Barreto et al. 2012] proposed unifying software transactional mem-
ory and STLS in TLSTM. They developed a software tool that improved the execution
of each transaction of parallel programs through the use of TLS.

5.3.4. Software-based lock elision. [Roy et al. 2009] proposed a software version of the
speculative lock elision proposed by [Rajwar and Goodman 2001] (see Sect 4.4.2) that
was fully implemented in software. If a misspeculation was produced, the system exe-
cuted the original lock. Synchronization and privatization were implemented through
special instrumentation for objects and through signals between threads implemented
inside the Linux kernel.

5.4. STLS on distributed-memory systems
There have been some efforts on applying TLS techniques on clusters of commodity
servers. [Kim et al. 2010] present a runtime monitor called Distributed Software Multi-
threaded Transactional Memory (DSMTX) that allows the application of pipeline par-
allelism, multi-threaded transactions and TLS on distributed-memory environments.
[Koduru et al. 2013] described dyDSM, a distributed-shared memory abstraction to
process large dynamic graphs that provides support for exploiting speculative paral-

ACM Computing Surveys, Vol. X, No. Y, Article ZZ, Publication date: 20YY.



ZZ:24 A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano

lelism. The balance between communication and computation in graph-based applica-
tions is studied in [Charan Koduru et al. 2014], proposing a new runtime, called ABC2,
that dynamically modified the configuration of the underlying DSM. Finally, [Palmieri
et al. 2011] proposed a transactional replication protocol, named OSARE, built on top
of an Optimistic Atomic Broadcast (OAB) service, that in turn was designed to speed
up Atomic Broadcasts in distributed-memory systems. OSARE opportunistically pro-
cesses transactions in multiple, speculative serialization orders, to increment the like-
lihood that the final message ordering established by the OAB service matches one of
the already speculated serialization orders.

5.5. STLS using GPUs
Nowadays, parallelism applied to GPUs is one of the most profitable research fields
due to their large number of computing units. This characteristic makes them desir-
able to find ways to use TLS with these architectures. [Liu et al. 2010] discussed how
TLS could be correctly used in the context of GPU computation. Meanwhile, [Diamos
and Yalamanchili 2010] extended Harmony, a runtime for heterogeneous, many-core
systems, to support speculation in GPUs. [Samadi et al. 2012] introduced Paragon,
a solution that combined CPU and GPU executions to achieve the best performance.
[Feng et al. 2012; 2014] proposed a framework to run loops speculatively in GPUs. The
main idea of their solution was to divide the tasks that should be carried out by a spec-
ulative runtime framework into five categories, and to assign some of them to CPUs
and the others to GPUs. Scheduling, results committing and misspeculation recover-
ies were assigned to CPUs, while computation and misspeculation checks were carried
out in GPUs. In a more recent approach, [Zhang et al. 2013] introduced a new library
based on sliding windows that support TLS in GPUs. Classical solutions that were ex-
pected to have a better behavior with GPUs, such as hybrid dependence checking, and
the use of a parallel commit scheme, were adapted by these authors to their software.

5.6. Other proposals
Finally, we will now describe other software-based approaches that uses speculation
in particular domains.

5.6.1. Finite-State Machine in TLS. [Zhao et al. 2012; 2014] introduced the use of prob-
abilistic analysis into the design of speculation schemes. In particular, they focused
on applications that were based on Finite-State Machines. The authors affirmed that
this type of applications had the most prevalent dependences of all the programs. They
developed a probabilistic model to formulate the relationship between speculative ex-
ecutions and the properties of the target computation and inputs. Based on that for-
mulation, they proposed two model-based speculation schemes that automatically cus-
tomized themselves with the best configurations for a given Finite-State Machine and
its inputs. [Zhao and Shen 2015] presented a set of techniques to remove the need
of offline training to collect probabilistic properties that help to reduce the probabil-
ity of misspeculations. Instead, their techniques allowed probabilistic analysis to be
performed on-the-fly.

5.6.2. MUTLS. [Cao and Verbrugge 2013] introduced a mixed model to fork threads
in both in-order and out-of-order ways in a TLS library. Their work was based on the
use of the LLVM compiler framework [Lattner and Adve 2004] which allowed mul-
tiple source languages and target architectures through the use of an intermediate
representation. MUTLS allowed threads to fork and join in different parts of the code,
and also implemented barriers to avoid some rollbacks. Functions annotated with fork
and join points are transformed at compile time. For each one, a speculative version
was generated, that included helper functions for interaction with the TLS runtime
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library, the use of synchronization points, and the assignment of local buffers. Threads
were managed by four modules: one dedicated to maintaining the status of speculative
threads, two dedicated to manage local and global variables of speculative threads, and
the last one used to managing other modules and interact with the LLVM speculator
pass.

5.6.3. TLS to decompress: SDM. [Jang et al. 2013] described a TLS scheme specially
designed to be applied to decompression algorithms. Their approach was centered on
the application of prediction techniques based on partial decompression and pattern
matching, to quickly identify block chunks that can be independently decompressed.
The tool decompressed in parallel all the blocks identified.

6. OTHER STUDIES RELATED TO TLS
There are several works that used TLS for other purposes, such as improving manual
parallelization, or performing module-level speculation. Other studies include how the
energy consumed by TLS proposals could be reduced. In this section we will review
some of them.

6.1. TLS as a help to manual parallelization
In order to avoid making speculative codes that might be slower than the original
sequential ones, some researchers have proposed techniques to predict overheads of
speculative parallelization. For example, the work developed by [Dou and Cintra 2004;
2007] contained a compiler pass that can be used to estimate the overheads and the
expected resulting performance gains, if any. [Ding et al. 2007] proposed a software-
based TLS system to help in the manual parallelization of applications. The system
required the programmer to mark “possibly parallel regions” (PPR) in the application
to be parallelized. The system relied on a so-called “tournament” model, with differ-
ent threads cooperating to execute the region speculatively, while an additional thread
ran the same code sequentially. If a single dependence arose, speculation failed en-
tirely and the sequential execution results were used instead. [Ke et al. 2011] improved
that work with a system that relied on dependence hints provided by the programmer.
This allowed explicit data communication between threads, thus reducing runtime
dependence violations. [Ioannou and Cintra 2011] studied the problem of taking ad-
vantage of future many-core architectures by complementing parallel programming at
a coarse-grain level with hardware TLS support to launch fine-grain implicit specu-
lative threads. Other authors have focused on providing assistance to those program-
mers that extract TLS from the applications. For example, [Aldea et al. 2011; Wu et al.
2008] developed tools that made a static and/or dynamic profile of the codes, returning
information that allowed a decision to be made about which loop would be the best can-
didate to be speculatively parallelized. [Prabhu et al. 2010] developed some directives
and operations to facilitate programmers to make their own speculative programs.
[Chen et al. 2004] designed a dependence profiler to extract information from a code.
[Bhattacharyya 2012] also developed a similar tool that studied the profitability of TLS
with the use of profiling. More recently, [Bhattacharyya and Amaral 2013] used poly-
hedral analysis to detect dependences of loops at compile time (see Sect. 2.3.2), stating
that this analysis overcame the previous one.

6.2. Module-level speculation
Module-level speculation is the application of speculation in a module-based layer.
[Chen and Olukotun 1998] applied this technique to object-oriented Java programs.
[Warg and Stenström 2001] compared the use of object-oriented and imperative lan-
guages in the context of Module-level parallelism, concluding that there were not sig-
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nificant differences between both approaches. Their experimental results showed that
the use of this method in modules with a low computational load would adversely af-
fect the performance of applications. [Warg and Stenström 2003] described a predictor
that allowed the detection of whether a module had a low overhead. In this case, no
threads were created to help him. Later, [Warg and Stenström 2005] developed another
prediction technique to detect when misspeculations would occur, in order to avoid ex-
ecutions that were expected to be squashed (see Sect. 2.4.5). History-based prediction
is used to prevent speculative threads from being spawned when they are expected
to cause misspeculations. [Pickett and Verbrugge 2006] addressed the requirements
that Java language imposed to implement this approach, also analyzing their costs.
They developed a design based on the application of Module-level speculation to sup-
port TLS at the level of Java bytecode. To do so, they introduced two new bytecodes, to
fork and join speculative threads, in order to ensure their correctness. They also gave
an implementation of the mentioned design, called SableSpMT analysis framework
(described in more depth in [Pickett and Verbrugge 2005; Pickett 2007]).

6.3. Energy consumption
Since their origins, TLS was claimed to be energy inefficient. [Co et al. 2006] analyzed
the energy consumption of some approaches based on the Trace processors described
in Sect. 4.1.2. [Renau et al. 2005; 2006] searched for the main sources of energy con-
sumption in TLS, giving some advice for energy saving. With the same goal, [Xekalakis
et al. 2010] proposed a power allocation scheme for TLS systems based on Dynamic
Voltage and Frequency Scaling (DVFS) that took power from non-profitable threads
that would need to be discarded and used it to speed up more useful ones. [Li and Guo
2010] proposed two algorithms also based on DVFS. They proposed both static and
dynamic assignment algorithms, achieving significant reductions in energy consump-
tion. However, in the work carried out by these authors, energy savings came at the
cost of lower performances. This topic was also addressed by [Luo et al. 2013], which
developed a system that analyzed speculative execution, and managed resources in a
way that decreased the energy needed.

6.4. Benchmarks for TLS
Many of the aforementioned studies shared the same benchmarks to give experimen-
tal results. We could highlight Standard Performance Evaluation Corporation (SPEC)
benchmarks [Dixit 1993; Phansalkar et al. 2005; Henning 2006; 2007], a benchmark
suite to measure computing performance. Other benchmark suites frequently used
are Olden [Rogers et al. 1995], a set of relatively small programs that perform a mono-
lithic task with minimal user feedback; and MiBench [Guthaus et al. 2001], a set of
programs to test embedded systems. STAMP [Cao Minh et al. 2008] is a benchmark
suite designed for transactional memory applications, that was also used by differ-
ent TLS approaches. The LLVM compiler infrastructure [Lattner and Adve 2004] also
offered some benchmarks. Princeton Application Repository for Shared-Memory Com-
puters (PARSEC) [Bienia 2011] is another benchmark suite composed of multithreaded
programs, and [Kulkarni et al. 2009a] described Lonestar, a suite of benchmarks of
TLS specially developed to test the Galois system, described in Sect. 5.2.4.

7. LIMITS TO TLS
A number of papers are mainly centered on the analysis of TLS performance and
its limitations. Although [Prabhu and Olukotun 2005] affirmed that significant par-
allelism could be extracted using TLS in SPEC2000 applications, [Kejariwal et al.
2006] affirmed that it is very difficult to achieve a high level of performance through
TLS with this benchmark. [Kejariwal et al. 2007] performed an analysis of TLS using
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SPEC CPU2006 benchmarks and affirmed that the use of TLS with these benchmarks
did not lead to significant benefits, with just a 1% improvement. However, as [Ioannou
et al. 2010] and [Packirisamy et al. 2009] noted, the former study only considered par-
allelism at the innermost loop level, while the parallelization of outer loops would lead
to speedups. Later, [Kejariwal et al. 2010b] briefly analyzed the performance of TLS at
module-level (also called graph-level). They studied factors such as recursion, or I/O,
which limits TLS applicability at this level. Also, [Kejariwal et al. 2010a] proposed
an analytical model based on conditional probability to gauge the suitability of nested
TLS.

[Islam et al. 2007a; 2007b] analyzed loop-level parallelism in embedded applica-
tions with and without TLS, concluding that TLS is useful for extracting the most
possible parallelism from this kind of programs. Finally, [Bhattacharyya 2013] stud-
ied the influence of input sets in dependences of some TLS benchmarks. To do so, he
had proven 57 benchmarks of SPEC2006, PolyBench/C, BioBenchmark and NAS in
the IBMs BlueGene/Q supercomputer. The author concluded that the input set did not
noticeably change the dependence behavior in the loops of the benchmarks studied.

8. CONCLUSIONS
Thread-level speculation is an active field, thanks in part to the appealing idea that it
may be possible to automatically extract the loop-level parallelism of sequential appli-
cations without a prior and costly dependence analysis. Most studies described in this
work have shown that TLS techniques effectively lead to a speedup when used under
certain conditions. However, this technique is highly sensitive to the actual number of
dependence violations that appear at runtime. A second drawback of TLS techniques
is their comparatively high costs in terms of energy consumption.

While more general TLS solutions are developed, speculative-based techniques will
likely coexist with other solutions in the execution of irregular codes that are not ana-
lyzable by other means. Current trends are focused on: avoiding, as much as possible,
dependences with better predictors; developing advanced squashing techniques; and
the use of TLS in manycore systems such as GPUs or Intel Xeon Phi.
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Peng Wu, Arun Kejariwal, and Călin Caşcaval. 2008. Compiler-Driven Dependence Profiling to Guide Pro-
gram Parallelization. In Languages and Compilers for Parallel Computing, José Nelson Amaral (Ed.).
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