
Proceedings of the 17th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2017
4–8 July, 2017.

Analysis of OpenACC Performance
Using Different Block Geometries

Daniel Barba1, Arturo Gonzalez-Escribano1 and Diego R. Llanos1

1 Departamento de Informatica, Universidad de Valladolid, Spain

emails: daniel@infor.uva.es, arturo@infor.uva.es, diego@infor.uva.es

Abstract

OpenACC is a parallel programming model for automatic parallelization of sequen-
tial code using compiler directives or pragmas. OpenACC is intended to be used with
accelerators such as GPUs and Xeon Phi. The different implementations of the stan-
dard, although still in early development, are primarily focused on GPU execution. In
this study, we analyze how the different OpenACC compilers available under certain
premises behave when the clauses affecting the underlying block geometry implemen-
tation are modified. These clauses are the Gang number, Worker number, and Vector
Size defined by the standard.

Key words: OpenACC, GPU, block geometry, thread geometry

1 Introduction

OpenACC is an open standard intended to automatically parallelize sequential code and
manage its execution in accelerators like GPUs or Xeon Phi coprocessors. It defines a
number of compiler directives, also called pragmas. The main goal of OpenACC is to
reduce both learning and coding time in a portable way [1]. The version of the OpenACC
standard at the time of writing is the 2.5 [2].

The OpenACC standard was founded by Nvidia, CRAY, CAPS and PGI. The number
of members now is larger, including both academic institutions and companies like the Oak
Ridge National Laboratory, the University of Houston, AMD, and the Edinburgh Parallel
Computing Centre (EPCC), among others.

There are several compilers that implement the OpenACC standard. The PGI com-
piler, developed by the Portland Group (subsidiary of Nvidia) is being distributed as part of

c©CMMSE ISBN: 978-84-617-8694-7



Analysis of OpenACC Performance Using Different Block Geometries

the Nvidia OpenACC Toolkit under a free 90-day license. Cray Inc. has its own OpenACC
compiler, only available for use with their supercomputers. Pathscale Inc., a software de-
veloper for compilers and multicore software, also has an OpenACC implementation, the
ENZO compiler.

Among the many academic or open-source alternatives there are the OpenUH compiler
[3] by the University of Houston and accULL [4] from Universidad de La Laguna (Spain).

This work presents a study on the impact of different values for the clauses that affect
the underlying block geometry of OpenACC-generated code. GPUs are very sensitive to
the geometry of the thread-block chosen [5], and OpenACC makes use of the terms “gang”,
“worker” and “vector” in order to define different levels of parallelism. According to [6], the
specification is ambiguous and this functionality depends directly on how each compiler is
implemented. In this work, we measure the impact of the choice of an appropriate thread-
block geometry when running a representative benchmark. By default, the geometry is
decided by the compiler unless the specific clause is used inside the OpenACC directive.
Our aim is to compare the resulting behaviour among different compilers and options. For
thread-block geometry testing, we will modify the most representative of the benchmarks,
testing several combinations of values for the clauses to specify gang, workers and vectors,
and analyzing the differences in execution time for each compiler. This will offer some
insight on the implementation of these clauses on each compiler.

Our contribution shows that the decisions made by each compiler is not always optimal,
but manual tuning of the different values is not always possible for every compiler.

The rest of this paper is organized as follows. Section 2 describes the selected compilers.
Section 3 shows our selected microbenchmark for testing the behaviour of the generated code
when modifying the block geometry. Section 4 contains the result of our analysis about the
impact on performance when changing the underlying block geometry. Finally, Section 5
concludes our paper.

2 Available Compilers

We mentioned several compilers in the Introduction. In this section we describe with more
detail the compilers we were able to use for this study.

2.1 PGI Compiler

The PGI Compiler [7] is being developed by The Portland Group, being owned by Nvidia.
This compiler is frequently presented in webinars, workshops, and conferences.

At the time of writing this paper, the PGI compiler is available for download as part of
the OpenACC Toolkit from Nvidia. This toolkit includes a 90-day free trial, the possibility
of acquiring an academic license for a whole year, or buying a commercial license.

c©CMMSE ISBN: 978-84-617-8694-7



Daniel Barba, Arturo Gonzalez-Escribano, Diego R. Llanos

2.2 accULL

The accULL [4] compiler developed by Universidad of La Laguna (Spain) is an open-source
initiative. accULL consists on a structure of two layers containing YaCF [8] (Yet another
Compiler Framework) and Frangollo [9], a runtime library. YaCF acts as a source-to-source
translatori, while Frangollo works as an interface that provides the most common operations
found in accelerators.

2.3 OpenUH

The OpenUH [3] compiler, developed by the University of Houston (USA) is another open-
source initiative. It makes use of Open64, a discontinued open-source optimizing compiler.

3 Microbenchmark Description

In OpenACC, block size is defined by gangs, workers and vectors.Their choices affect the
performance on memory-bound applications. To study this issue, we are going to use a
very simple matrix addition implemented both in CUDA and OpenACC. Our decision is
made by the fact that the problem is embarrassingly parallel, memory acceses are perfectly
coalesced, and the computational load per global memory access is low (memory-bound
application).

The standard only defines the different levels of parallelism, but it is up to each imple-
mentation to decide how are these levels exploited in the actual architecture. In order to
obtain comparable results, some details should be taken into account. The CUDA version
needs to be implemented using elastic kernels, using a fixed number of blocks, which equals
the gang number in the OpenACC code. Also, since the OpenACC standard establishes
that grid dimensions depend on the use of the collapse clause with nested loops, we have
decided to make a one-dimensional grid. We evaluate a number of blocks in the grid ranging
from one to 2048 (using only powers of two). The sequential code can be seen in Fig. 1 and
the CUDA kernel in Fig. 2.

In OpenACC the X dimension of the CUDA block translates to vector length, whereas
the Y dimension equals the worker number. We have also decided to use 512 threads per
block, trying each possible combination of X and Y dimension values using powers of two.

4 Evaluation

In this section we analyze the impact of different choices for the geometry of the underlying
thread-blocks in the OpenACC generated code.

c©CMMSE ISBN: 978-84-617-8694-7



Analysis of OpenACC Performance Using Different Block Geometries

#pragma acc data copyin(p_A[0:Size*Size],p_B[0:Size*Size]), copyout(p_C[0:Size*Size])

{

int j;

#pragma acc kernels

#pragma acc loop independent gang(GANG), worker(WORKER), vector(VECTOR)

for (j = 0; j < Size*Size; ++j)

{

p_C[j] = ALPHA*p_A[j] + p_B[j];

}

} //End data region

Figure 1: Sequential Code for the Matrix Addition

__global__ void matrixKernel(float* p_A, float* p_B, float* p_C)

{

int iterations = ((SIZE/blockDim.x)*(SIZE/blockDim.y)) / GANG;

int iter;

for (iter = 0; iter < iterations; ++iter)

{

int tx = (blockIdx.x + iter*GANG)*blockDim.x + threadIdx.x;

int ty = threadIdx.y;

int i = (tx/SIZE)*blockDim.y + ty;

int j = (tx%SIZE);

int offset = i*SIZE + j;

if (offset < SIZE*SIZE) p_C[offset] = ALPHA*p_A[offset] + p_B[offset];

}

}

Figure 2: CUDA Kernel for the Matrix Addition

c©CMMSE ISBN: 978-84-617-8694-7



Daniel Barba, Arturo Gonzalez-Escribano, Diego R. Llanos

4.1 Experimental Setup

We used a Nvidia GTX Titan Black to run the experiments. This GPU contains 2 880
CUDA cores with a clock rate of 980MHz and 15 SMs. It has 6GB of RAM, and Compute
Capability 3.5. The host is a Xeon E5-2690v3 with 12 cores at a clock rate of 1.9GHz, and
64GB in four 12GB modules.

The PGI compiler is the one contained in the Nvidia OpenACC Toolkit, version 15.7-
0, published in Jul 13, 2015. We used OpenUH version 3.1.0 (published in November
4, 2015), based on Open64 version 5.0 and using GCC 4.2.0, prebuilt, downloaded from
the High Performance Computing Tools group website [10]. accULL is version 0.4alpha
(published in November 28, 2013), downloaded from Universidad de La Laguna’s research
group “Computación de Altas Prestaciones” [11].

4.2 Block Geometry Sensibility of Generated Code

Observing the results obtained using the CUDA code in Fig. 3, we can see that the best
results are obtained when the block number is high enough to make the GPU reach proper
levels of occupation. The X dimension plays a huge role, but we expected to see an im-
provement in performance when the X dimension was at least 16. We suspect this is due to
several factors, being the most important the behaviour of the cache when elastic kernels
are used.

The results of the OpenACC code generated by PGI (Fig. 4) show that the only factor
affecting the performance is the gangs number, whereas the variation of workers number
and vector length does not play a significant role except when a vector length of one is
used. In this case, performance is severely affected, which indicates a poor use of the cache.
Overall, PGI’s behaviour is the closest one to CUDA for this example.

When using OpenUH as the compiler for the OpenACC code (Fig. 5), all three pa-
rameters affect the performance of the generated code, which means that the parameters
are actually being used to map the computation to the architecture resources. There is an
exception when any of the three parameters is set to one. In this case, OpenUH seems to
assume direct control and choose what it considers an adequate set of parameters for gangs
number, workers number and vector length.

Finally, the results obtained by using accULL (Fig. 6) as our OpenACC compiler show
that none of the parameters have any effect on the performance of the generated code, and
it is the compiler itself who decides the value to be used.

5 Conclusions

During this work, we have realized that the OpenACC standard is very unspecific about
how the different compilers should implement the three levels of parallelism. This allows

c©CMMSE ISBN: 978-84-617-8694-7



Analysis of OpenACC Performance Using Different Block Geometries

y1x512

y2x256

y4x128

y8x64

y16x32

y32x16

y64x8

y128x4

y256x2

y512x1

1 4 16 64 256 1024

B
lo

ck
.y

 B
lo

ck
.x

Number of blocks

Thread-Block sensibility in CUDA

Time (ms)

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 3: Effects of the Gang Number, Worker and Vector Length in the measured execution
time using CUDA. Execution time is in milliseconds (lower is better). Darker is lower.
Brighter is higher.

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g
th

Gang Number

Thread-Block sensibility in PGI

Time (ms)

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 4: Effects of the Gang Number, Worker and Vector Length in the measured execution
time using PGI compiler. Execution time is in milliseconds (lower is better). Darker is lower.
Brighter is higher.

c©CMMSE ISBN: 978-84-617-8694-7



Daniel Barba, Arturo Gonzalez-Escribano, Diego R. Llanos

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g
th

Gang Number

Thread-Block sensibility in OpenUH

Time (ms)

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 5: Effects of the Gang Number, Worker and Vector Length in the measured execution
time using OpenUH compiler. Execution time is in milliseconds (lower is better). Darker
is lower. Brighter is higher.

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g
th

Gang Number

Thread-Block sensibility in accULL

Time (ms)

4

4.5

5

5.5

6

6.5

7

7.5

8

Figure 6: Effects of the Gang Number, Worker and Vector Length in the measured execution
time using accULL compiler. Execution time is in milliseconds (lower is better). Darker is
lower. Brighter is higher.

c©CMMSE ISBN: 978-84-617-8694-7



Analysis of OpenACC Performance Using Different Block Geometries

very different behaviours while unifying the basic concepts of automatic parallelization for
both GPUs and Xeon Phi coprocessors.

Due to the standard leaving freedom for the implementation of the different levels
of parallelism to the different compilers, the maturity of the latter directly affects the
performance of the OpenACC-generated code. Thus we find that the PGI compiler, being
the more mature of the analyzed compilers, generates code that resembles an optimized
CUDA implementation. OpenUH shows an implementation that takes the defined levels
of parallelism into consideration, but with room for a performance improvement. On the
other hand, accULL seems to avoid hand-made changes to the levels of parallelism, choosing
always the same configuration.

Although compiler implementations are not very mature yet, the simplicity of our mi-
crobenchmark allows us to see the effects of the variations in the different clauses: Gang
number, Worker number, Vector length. Our results remark that the performance boost
obtained by the tested OpenACC compilers in GPUs is dependant on the implementation
of these clauses. However, since the mission of these clauses is to unify different concepts
among GPUs and Xeon Phi accelerators, we argue this is complex task for the compiler
implementations.

Acknowledgements

This research has been partially supported by MICINN (Spain) and ERDF program of
the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network
(TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ul-
trascale Computing (NESUS).

References

[1] OpenACC-standard.org, “About OpenACC.”

[2] OpenACC-Standard.org, “The OpenACC application programming interface version
2.5,” oct 2015.

[3] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chapman, “Compiling a
high-level directive-based programming model for GPGPUs,” in Languages and Com-
pilers for Parallel Computing, pp. 105–120, Springer, 2014.

[4] R. Reyes, I. López-Rodŕıguez, J. J. Fumero, and F. de Sande, “accULL: an OpenACC
implementation with CUDA and OpenCL support,” in Euro-Par 2012 Parallel Pro-
cessing, pp. 871–882, Springer, 2012.

c©CMMSE ISBN: 978-84-617-8694-7



Daniel Barba, Arturo Gonzalez-Escribano, Diego R. Llanos

[5] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Optimizing
an apsp implementation for nvidia gpus using kernel characterization criteria,” The
Journal of Supercomputing, vol. 70, no. 2, pp. 786–798, 2014.

[6] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and O. Hernandez, “A validation
testsuite for OpenACC 1.0,” in Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pp. 1407–1416, May 2014.

[7] PGI, “Pgi accelerator compilers with OpenACC directives.” https://www.pgroup.

com/resources/accel.htm, nov 2015.

[8] U. de La Laguna, “YaCF.” https://bitbucket.org/ruyman/llcomp, nov 2015.

[9] U. de La Laguna, “Frangollo.” https://bitbucket.org/ruyman/frangollo, nov
2015.

[10] U. of Houston, “Open-source UH compiler.” http://web.cs.uh.edu/~openuh/

download/, nov 2015.

[11] U. de La Laguna, “accULL.” http://cap.pcg.ull.es/es/accULL, nov 2015.

c©CMMSE ISBN: 978-84-617-8694-7

https://www.pgroup.com/resources/accel.htm
https://www.pgroup.com/resources/accel.htm
https://bitbucket.org/ruyman/llcomp
https://bitbucket.org/ruyman/frangollo
http://web.cs.uh.edu/~openuh/download/
http://web.cs.uh.edu/~openuh/download/
http://cap.pcg.ull.es/es/accULL

	Introduction
	Available Compilers
	PGI Compiler
	accULL
	OpenUH

	Microbenchmark Description
	Evaluation
	Experimental Setup
	Block Geometry Sensibility of Generated Code

	Conclusions

