
Analysis of OpenACC Performance
Using Different Block Geometries

Daniel Barba Arturo Gonzalez-Escribano Diego R. Llanos
International Conference on Computational and Mathematical Methods in Science and Engineering

(CMMSE), 4-8 July 2017, Cadiz, Spain

Introduction

OpenACC is a parallel programming model
for automatic parallelization of sequential
code using compiler directives or pragmas.
OpenACC is intended to be used with accel-
erators such as GPUs and Xeon Phi. The
different implementations of the standard,
although still in early development, are pri-
marily focused on GPU execution.

CUDA kernels are usually heavily affected
by the thread block geometry of choice[1]
and, in OpenACC, this is defined by the
Gang number, Worker number, and Vector
Length. In this study we analyze how differ-
ent choices of these values affect the perfor-
mance of OpenACC generated code.

Benchmark Proposal

We use a very simple matrix addition implemented both in CUDA and OpenACC. Our decision is driven
by the fact that the problem is embarrassingly parallel, memory accesses are perfectly coalesced, and the
computational load per global memory access is low (memory-bound application).

The standard only defines the different levels of parallelism, but it is up to each implementation to decide how
these levels are exploited in the actual architecture. In this study, we analyze how the different OpenACC
compilers available under certain premises behave when the clauses affecting the underlying block geometry
implementation are modified. In order to obtain comparable results in a relative performance study, some
details should be taken into account:
• CUDA version needs to use elastic kernels.
• We use a one-dimensional grid, because grid dimensions depend on the collapse clause.
• We evaluate a number of blocks in the grid ranging from one to 2048 (using only powers of two).

In OpenACC the X dimension of the CUDA block translates to vector length, whereas the Y dimension equals
the worker number. We have also decided to use 512 threads per block, trying each possible combination
of X and Y dimension values using powers of two.

CUDA NVCC Results

y1x512

y2x256

y4x128

y8x64

y16x32

y32x16

y64x8

y128x4

y256x2

y512x1

1 4 16 64 256 1024

Time (ms)

B
lo

ck
.y

 B
lo

ck
.x

Number of blocks

4

4.5

5

5.5

6

6.5

7

7.5

8

PGI[2] Results

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

Time (ms)

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g

th

Gang Number

4

4.5

5

5.5

6

6.5

7

7.5

8

OpenUH[3] Results

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

Time (ms)

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g

th

Gang Number

4

4.5

5

5.5

6

6.5

7

7.5

8

accULL[4] Results

w1v512

w2v256

w4v128

w8v64

w16v32

w32v16

w64v8

w128v4

w256v2

w512v1

1 4 16 64 256 1024

Time (ms)

W
o
rk

e
rs

, 
V
e
ct

o
r 

Le
n
g

th

Gang Number

4

4.5

5

5.5

6

6.5

7

7.5

8

The figures show matrices of execution times depending on two variables: Gang number and Worker number - Vector Length
combinations (which are tied together in order to obtain 512 thread blocks). Execution time is in milliseconds and it is a LB
metric (lower is better). Darker colours means lower execution times while brighter means higher.

Conclusions

The best results are obtained when the
block number is high enough to make
the GPU reach proper levels of occu-
pation. The X dimension plays an im-
portant role, but we expected to see an
additional improvement in performance
when the X dimension was at least 16.
We suspect this is due to the behaviour
of the cache when elastic kernels are
used.

For PGI, the only clause affecting the
performance is the gangs number, un-
less a vector length of one is specified.
Overall, PGI’s behaviour is the closest
one to CUDA for this example.

When using OpenUH all three parame-
ters affect the performance. This means
that the parameters are actually being
used to map the computation to the ar-
chitecture resources, unless all three pa-
rameters are set to one. In this case,
OpenUH seems to choose what it con-
siders adequate.

Finally, the results obtained by using
accULL show that none of the parame-
ters have any effect on the performance
of the generated code, and it is the com-
piler itself who decides the value to be
used.

References

[1] Ortega-Arranz, H., Torres, Y., Gonzalez-Escribano, A., & Llanos, D. R. (2014). Optimizing an APSP implementation for NVIDIA GPUs using kernel
characterization criteria. The Journal of Supercomputing, 70(2), 786-798.
[2] PGI, “PGI Accelerator Compilers with OpenACC Directives”, available online at https://www.pgroup.com/resources/accel.htm on april 2017.
[3] Tian, X., Xu, R., & Chapman, B. (2014). OpenUH: open source OpenACC compiler. GTC2014, HPCTools Group Computer Science Department
University of Houston.
[4] Reyes, R., López-Rodríguez, I., Fumero, J. J., & de Sande, F. (2012, August). accULL: an OpenACC implementation with CUDA and OpenCL support.
In European Conference on Parallel Processing (pp. 871-882). Springer Berlin Heidelberg.

Acknowledgements This research has been partially supported by MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network
(TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS).


