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Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
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We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting
planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions
can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green’s function
of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the
adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable
atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials
in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with
one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case.
The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is
analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity
plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the
cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic
distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments
perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width
close to the interatomic distance, while it increases for values of the width much less than the interatomic distance
with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole
interactions between two alkali atoms in circular Rydberg states.
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I. INTRODUCTION

Modifying the interaction of atoms with the electromag-
netic (EM) field by means of a cavity is at the origin of
cavity QED [1,2]. In the first place, a perfectly reflecting
cavity reduces the density of EM states accessible to the
spontaneous emission of a single atom. This results in an
enhancement of the atomic lifetime as well as in a shift of the
atomic levels. On the other hand, the strong coupling between
the cavity modes and the atomic charges drives the coherent
exchange of excitations between the atom and the cavity field
[3]. For the case of a perfectly reflecting planar cavity, the
atomic level shifts [4–8] and the modified lifetimes of an
excited atom have been well studied theoretically [9–11] and
measured experimentally [1,2,12]. Ultimately, these effects
make possible the coherent manipulation of quantum states,
the entanglement between separated quantum systems [13,14],
and the storage of quantum information [15–17].

Considering the cavity as a macroscopic system hardly
affected by the presence of the atoms inside, the interaction of
the free EM field with the cavity plates can be integrated out
in an effective Hamiltonian. The resultant EM interactions
of the atoms are commonly referred to as cavity-assisted
interactions [13,18,19]. This is a good approximation, as
long as the absorption and emission spectra of the atoms
and the cavity material do not overlap, and as long as the
time resolution of observation is much larger than the time
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of flight of photons from the atoms to the cavity plates.
Under these conditions, transient transitions average out and
the effective cavity-assisted interactions become stationary.
The net result is that photon states get dressed by multiple-
scattering processes with the cavity plates, and so does the
photon propagator. It is the modes of the dressed EM field
which are commonly referred to as cavity modes of the cavity
field.

On the other hand, dispersion forces between neutral atoms
and between atoms and macroscopic surfaces are the result of
the coupling of the quantum fluctuations of the EM field, the
atomic charges, and the surface currents [9,19]. The interaction
between an atom and a macroscopic surface is known as
Casimir-Polder interaction [19–23], whereas the interaction
between two neutral atoms is known generally as van der Waals
interaction [9,19,24–30]—referred to as London interaction
for interatomic distances smaller than the resonant wavelength
[31]. In this article we combine both kinds of interactions
in a three-body problem. We address the cavity-assisted
dipole-dipole interaction between two atoms placed in the
middle of a perfectly reflecting cavity, at zero temperature, see
Fig. 1. This is a common setup in the generation of quantum
entanglement with Rydberg atoms [13,32], also in the absence
of a cavity [33]. In particular, we study the modification of
the atom-atom interactions varying the size of the cavity. We
compute several quantities of interest in the weak-coupling,
nondegenerate regime. These are the van der Waals (vdW)
potentials for the case that both atoms are in their ground
states, for the case that both atoms are excited, and for the case
that one atom is excited while the other, of a different kind, is
in its ground state. In addition, we calculate the electrostatic
potential between two induced atomic dipoles. We calculate in
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FIG. 1. Sketch of the setup of the problem.

each case the corresponding phase-shift rate of the two-atom
wave function.

Physically, the vdW and electrostatic potentials can be
observed through the forces experienced by each atom when
placed inside harmonic traps, which are proportional to the
displacements of the atoms with respect to their equilibrium
positions in the absence of interaction. On the other hand, the
phase shift of the two-atom wave function can be observed
using atom interferometry. For instance, it is the shift that is
observed in the binary interaction of Rydberg atoms through
the measurement of population probabilities [14,34].

Concerning our approach, we apply time-dependent quan-
tum perturbation theory, up to fourth order, in the electric
dipole approximation [35]. Except for the degenerate interac-
tion addressed at the end of Sec. V, all the calculations are
carried out in the perturbative nondegenerate regime, where
the energy difference between the intermediate and initial
atomic states is much greater than the interaction energy and
the atom-cavity coupling is weak. In particular, the latter
implies that we cannot restrict ourselves to the one-cavity
mode approximation of the Jaynes-Cummings Hamiltonian
[2]. For the case of the interaction between excited atoms, the
excitation is assumed adiabatic with respect to the detuning
between the atomic species, which is a situation commonly
encountered in experiments.

The main achievements of this work are, in the first place,
the computation of the Green function for the cavity field which
mediates the interaction between two atomic dipoles placed in
the middle of the cavity. The effects of the two-dimensional
confinement of the EM field are revealed. Second, we find out
explicit expressions for the resonant components of the vdW
potentials of each atom when excited. The difference between
each atom’s potentials as well as their discrepancy with the
phase-shift rate of the wave function are exposed.

The paper is organized as follows. In Sec. II we describe
the setup of the problem and compute the dyadic Green’s
function of the cavity field. In Sec. III we calculate the vdW
potentials and the phase shifts on two-atom systems in the
nondegenerate regime. In Sec. IV we compute the electrostatic
potential of two induced dipoles. All the formulas derived in
the previous sections are applied in Sec. V to the calculation of
the dipole-dipole interactions between two circular Rydberg
atoms in a cavity. We summarize the conclusions in Sec. VI.

II. GREEN’S DYADIC OF THE CAVITY FIELD

We aim at computing the cavity-assisted dipole-dipole
interactions between two atoms, A and B, placed in the middle
of a perfectly reflecting planar cavity of thickness d and
separated by a distance r along an axis parallel to the cavity

plates (see Fig. 1). These interactions are mediated by virtual
photons created and annihilated at the position of each atom.
Therefore the relevant quantity to be computed is the Green
function of the cavity field that the atomic dipoles induce
at the position of each other. To this end, we use the effective
semiclassical approach outlined in the Introduction. The plates
of the cavity are treated as passive and semiclassical objects
which reflect photons with no losses. The free Hamiltonian of
the atoms and the EM cavity field is H0 = HA + HB + HEM ,
with

HA =
∑

i

h̄ωA
i |Ai〉〈Ai |, HB =

∑
i

h̄ωB
i |Bi〉〈Bi |,

HEM = ε0

2

∫
d3R [|E(R)|2 + c2|B(R)|2]

=
∑
k,�ε

h̄ω(a†
k,�ε ak,�ε + 1/2). (1)

Here, |Ai〉, |Bi〉 denote the ith states of atoms A, B, with
energies h̄ωA

i and h̄ωB
i , respectively. The operators a

†
k,�ε and

ak,�ε are the creation and annihilation operators of photons of
frequency ω = ck, momentum h̄k, and polarization vector �ε,
respectively, in terms of which the electric field operator reads

E(R) =
∑

k

E(−)
k (R) + E(+)

k (R)

= i
∑
k,�ε

√
h̄ck

2Vε0
[�εake

ik·R − �ε ∗a†
ke

−ik·R], (2)

with V being a volume of quantization. The magnetic field
operator relates to E(R) through Maxwell’s equation, ∇ ×
E(R) = −∂B(R)/∂t . Our semiclassical approximation with
regard to the interaction between the EM field and the cavity
plates consists of assuming that the virtual photons created
at the location of one of the atoms reflect off the plates any
number of times before being absorbed either by itself or
by the other atom. In each reflection process the dynamical
excitation of the plates is discarded, and so is the time of
flight of photons between any pair of scattering processes.
Under these conditions, the intermediate photonic states and
the EM vacuum can be considered as dressed by multiple
reflection processes with the cavity plates [7,23]. Equivalently,
the dressing can be assigned to the electric field operator
within the framework of macroscopic QED [18,19]. The net
result is the effective discretization of the modes of the EM field
within the cavity. Mathematically, this is achieved by taking
the cavity volume as the volume of quantization in Eq. (2),V =
VCav, or equivalently, by imposing ideal boundary conditions
in Maxwell’s equations for the electric and magnetic field.
Those conditions consist in the components of the electric
field parallel to the plates and of the associated magnetic
field perpendicular to the plates going to zero [19,36,37].
Alternatively, we can write Maxwell’s equation for the dyadic
Green’s functionG of the electric field induced at a point R′ by
a nonpolarizable electric dipole of frequency ω = ck placed
at R,

[ω2I − ∇ × ∇×]G(R′; R; k) = δ(3)(R′ − R)I, (3)
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and impose the boundary conditions at the plates [37],

n̂ × G(R′; R; k)|R′on the plates = 0,

(n̂ · ∇) · [G(R′; R; k) − k2δ(3)(R′ − R)]|R′on the plates = 0,

(4)

where n̂ is a unitary vector, outward-pointing and orthogonal to
the plates. By doing so, the resultant components of the dyadic
Green’s function for the electric field induced at a point (r,d/2)
by a nonpolarizable electric dipole of frequency ω = ck placed
at (0,d/2) are [37]

G‖‖(r,d/2; k) =
∫

d2q

2(2π )2
eiq·r q2

‖ − k2

k2ρ sin ρd
(1 − cos ρd),

(5)

G⊥⊥(r,d/2; k) =
∫

d2q

2(2π )2
eiq·r q2

⊥ − k2

k2ρ sin ρd
(1 − cos ρd),

(6)

G00(r,d/2; k) =
∫

d2q

2(2π )2
eiq·r q2

k2ρ sin ρd
(1 + cos ρd),

(7)

where q is a two-dimensional reciprocal vector parallel to
the plates and ρ ≡

√
k2 − q2. The quantization axis is taken

perpendicular to the plates, which is denoted by the index 0,
while the indices ‖ and ⊥ refer to the axes parallel to the
plates, which are parallel and perpendicular to r, respectively
(cf. Fig. 1). The off-diagonal components are all null.

The photons mediating the interactions between the two
atoms are created at the position of the atoms by the EM field
operators which enter the interaction Hamiltonian, W . It reads,
in the electric dipole approximation, W = WA + WB , with
WA,B = −dA,B · E(RA,B). Here dA,B are the electric dipole
moment operators of each atom, E is the electric field operator,
and RA,B are the classical position vectors of the atomic centers
of mass, with r = RA − RB . W is considered as a perturbation
to H0. Higher multipole orders in the interaction would be
relevant for values of r or d in the order of a few times the
atomic radius [36]. Throughout this work we restrict ourselves
to values of r and d at least an order of magnitude larger than
the atomic radii, such that the electric dipole approximation
suffices.

According to the fluctuation-dissipation theorem, the
quadratic fluctuations of the electric field in the dressed
vacuum, |0̃γ 〉, read at zero temperature:

〈0̃γ |E(0,d/2; k)E†(r,d/2; k)|0̃γ 〉 = −h̄k2

πε0
Im[G(r,d/2; k)].

(8)

It will be useful in the calculations to use the identity
sin−1 ρd = −2i(1 + eiρd )

∑∞
m=1 eiρmd in order to write G as

an infinite power series. In doing so, it is possible to ascribe a
simple physical meaning to each term of the resultant series.
That is, the term of order m, sayG(m) ∼ ei mdρ , accounts for the
contribution of m reflections off the plates. In the following,
we will use either formulation according to its mathematical
manageability. Lastly, it is also useful to write the components
of G in the spherical basis, with components {0, + ,−}, in
order to trace the polarization of the photons which mediate
the corresponding atomic transitions, {π,σ−,σ+}, respectively.
The change of basis yields the following relationships: G+− =
G−+ = (G‖‖ + G⊥⊥)/2, G++ = G−− = (G‖‖ − G⊥⊥)/2.

The imaginary parts of G‖‖, G⊥⊥, and G00 derive from the
poles of Eqs. (5), (6), and (7), respectively:

Im[G‖‖(r,d/2; k)] =
Int( kd

π
)∑

n=1

(−1)n − 1

4dk2

[
n2π2

d2
J0(r

√
k2 − n2π2/d2) +

√
k2 − n2π2/d2

r
J1(r

√
k2 − n2π2/d2)

]
, (9)

Im[G⊥⊥(r,d/2; k)] =
Int( kd

π
)∑

n=1

(−1)n − 1

4dk2

[
k2J0(r

√
k2 − n2π2/d2) −

√
k2 − n2π2/d2

r
J1(r

√
k2 − n2π2/d2)

]
, (10)

Im[G00(r,d/2; k)] = −1

4d
J0(kr) − 1

2k2d

Int( kd
2π

)∑
n=1

[k2 − 4π2n2/d2] J0(r
√

k2 − 4n2π2/d2), (11)

where J0 and J1 are the Bessel functions of the first kind of orders 0 and 1, respectively. As for the real parts of G, making use
of the Kramers-Kronig relationship, k2Re[G(k)] = 2

π

∫ ∞
0 dk′k′3Im[G(k′)]/(k′2 − k2), we obtain

Re[G‖‖(r,d/2; k)] = −
Int( kd

π
)∑

n=1

(−1)n − 1

4dk2

[
n2π2

d2
Y0(r

√
k2 − n2π2/d2) +

√
k2 − n2π2/d2

r
Y1(r

√
k2 − n2π2/d2)

]

+
∞∑

n=Int( kd
π

)+1

(−1)n − 1

2πdk2

[
n2π2

d2
K0(r

√
n2π2/d2 − k2) +

√
n2π2/d2 − k2

r
K1(r

√
n2π2/d2 − k2)

]
, (12)
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Re[G⊥⊥(r,d/2; k)] = −
Int( kd

π
)∑

n=1

(−1)n − 1

4dk2

[
k2Y0(r

√
k2 − n2π2/d2) −

√
k2 − n2π2/d2

r
Y1(r

√
k2 − n2π2/d2)

]

+
∞∑

n=Int( kd
π

)+1

(−1)n − 1

2πdk2

[
k2K0(r

√
n2π2/d2 − k2) −

√
n2π2/d2 − k2

r
K1(r

√
n2π2/d2 − k2)

]
, (13)

Re[G00(r,d/2; k)] = 1

4d
Y0(kr) + 1

2k2d

Int( kd
2π

)∑
n=1

[k2 − 4π2n2/d2] Y0(r
√

k2 − 4n2π2/d2) − 1

πk2d

∞∑
n=Int( kd

2π
)+1

[k2 − 4π2n2/d2]

×K0(r
√

4n2π2/d2 − k2), (14)

where Y0,1 and K0,1 are the Bessel functions (Y ) and modified Bessel functions (K) of the second kind, of orders 0 and 1,
respectively.

Alternatively, the above expressions can be written as a series in powers of the number of reflections off the plates,

G‖‖(r,d/2; k) = −eikr

4πk2

[
2

r3
− 2ik

r2

]
−

∞∑
n=1

(−1)n
ik

2π

∫ 1

0
dζ eiζknd

[
1 + ζ 2

kr
√

1 − ζ 2
J1(kr

√
1 − ζ 2) − ζ 2J2(kr

√
1 − ζ 2)

]

−
∞∑

n=1

(−1)n
k

2π

∫ ∞

0
dζ e−ζknd

[
1 − ζ 2

kr
√

1 + ζ 2
J1(kr

√
1 + ζ 2) + ζ 2J2(kr

√
1 + ζ 2)

]
, (15)

G⊥⊥(r,d/2; k) = −eikr

4πk2

[−1

r3
+ ik

r2
+ k2

r

]
−

∞∑
n=1

(−1)n
ik

2π

∫ 1

0
dζ eiζknd

[
1 + ζ 2

kr
√

1 − ζ 2
J1(kr

√
1 − ζ 2) − J2(kr

√
1 − ζ 2)

]

−
∞∑

n=1

(−1)n
k

2π

∫ ∞

0
dζ e−ζknd

[
1 − ζ 2

kr
√

1 + ζ 2
J1(kr

√
1 + ζ 2) − J2(kr

√
1 + ζ 2)

]
, (16)

G00(r,d/2; k) = −eikr

4πk2

[−1

r3
+ ik

r2
+ k2

r

]
−

∞∑
n=1

(−1)n
ik

2π

∫ 1

0
dζ eiζknd (1 − ζ 2)J0(kr

√
1 − ζ 2)

−
∞∑

n=1

(−1)n
k

2π

∫ ∞

0
dζ e−ζknd (1 + ζ 2)J0(kr

√
1 + ζ 2), (17)

where the dimensionless variable of integration ζ is such that k
√

1 − ζ 2 is the norm of the two-dimensional reciprocal vector
parallel to the plates. In Appendix A we give the expressions of the Green function components in the spherical basis in the
asymptotic limits d � r,k−1 [i.e., three-dimensional (3D) limit] and d  r,k−1 [i.e., two-dimensional (2D) limit].

III. VAN DER WAALS POTENTIALS

At leading order in time-dependent perturbation theory, i.e., order four in W , 24 processes contribute to the vdW potentials of
each atom in which two photons are exchanged between the two atoms in all possible orders in time, two terms for each of the
diagrams in Figs. 2 and 3 [28,38,39]. In terms of the vdW potentials, 〈WA,B/2〉, the forces on each atom are FA,B = ∓∇r〈WA,B/2〉,
respectively, with r = RA − RB [38]. In every case, i.e., either for ground- or for excited-state atoms, virtual transitions between
atomic levels are accompanied by the exchange of off-resonant photons of frequency ω � c/r . Their contribution to the vdW
potentials are referred to as off-resonant vdW potentials. In addition, for the case that one or both atoms are excited, transitions
to lower-energy atomic levels proceed through the exchange of photons which resonate with the transitions. Their contribution
to the vdW potentials are referred to as resonant vdW potentials [18,23]. Interestingly, while the off-resonant potentials of each
atom are equivalent, their resonant potentials differ [38,39].

For the sake of illustration we give below the expression of diagram (1) in Fig. 2,∑
l,j

1

h̄3

∫ ∞

0

Vk2dk

(2π )3

∫ ∞

0

Vk
′2dk′

(2π )3

∫ 4π

0
d�

∫ 4π

0
d�′

{[
i〈a,b,0̃γ |ei(ωa+ωb)T |a,b,0̃γ 〉

∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

× eη(t+t ′+t ′′)〈a,b,0̃γ |dA · E(−)
k′ (RA)|l,b,1̃k′ 〉e−i(ω′+ωl+ωb)(T −t)〈l,b,1̃k′ |dB · E(+)

k′ (RB)|l,j,0̃γ 〉

× e−i(ωl+ωj )(t−t ′)〈l,j,0̃γ |dB · E(−)
k (RB)|l,b,1̃k〉e−i(ω+ωl+ωb)(t ′−t ′′)〈l,b,1̃k|dA · E(+)

k (RA)|a,b,0̃γ 〉e−i(ωa+ωb)t ′′
]

+ [k ↔ k′]†
}
, η → 0+, (18)
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FIG. 2. Diagrammatic representation of the 24 terms which
contribute to 〈WA(T )〉, two for each of the 12 diagrams. Thick straight
lines stand for propagators of atomic states, while wavy lines stand
for photon propagators. In diagram (1), the initial states a, b, and the
generic intermediate states of each atom l, j are indicated. Although
not shown, the same states appear in the rest of the diagrams in
analogous sites. The atoms A and B are separated by a distance r along
the horizontal direction, whereas time runs along the vertical. The
gray circles on the left of each diagram stand for the insertion of the
Schrödinger operator WA whose expectation value is computed. Each
diagram contributes with two terms, one from each of the operators
WA inserted. They are sandwiched between two time propagators,
U(T ) and U†(T ) (depicted by vertical arrows), which evolve the initial
state |a,b,0̃γ 〉 towards the observation time at which WA applies.

where |a,b,0̃γ 〉 is the quasistationary (initial) two-atom–zero-
photon state, |l〉 and |j 〉 are intermediate atomic states of the
atoms A and B, respectively, |1̃k〉 is a one-cavity photon state
of momentum k and frequency ω = ck, the complex time
exponentials are the result of the application of the free time-
evolution operator U0(t) = e−ih̄−1H0t between the interaction
vertices WA,B , and the real time exponential eη(t+t ′+t ′′) takes
care of the adiabatic approximation. After integrating in time
and solid angles, and using the fluctuation-dissipation relation
of Eq. (8), one arrives at

∑
l,j

8αf c3

πε0e2

dm
lad

n
jbd

s
bj d

p

al

ωa + ωb − ωl − ωj

Re
∫ ∞

0
dk

k2ImGmn(r,k)

ω − ωa + ωl − iη

×
∫ ∞

0
dk′ k′2ImGsp(r,k′)

ω′ − ωa + ωl − iη
, η → 0+, (19)

where αf is the fine-structure constant and summation over
repeated tensor indices is implicit. Generally, the rest of the
diagrams yield integrands analogous to the one in Eq. (19),
which may contain poles at the transition frequencies. Those
poles are slightly shifted along the imaginary axis as a
consequence of the adiabaticity parameter η → 0+. When
performing the integral over k and k′ in the complex plane
along the quarter-circle of infinite radius in the first quadrant,

FIG. 3. Diagrammatic representation of the 24 terms which
contribute to 〈WB (T )〉, two for each of the 12 diagrams. Thick
straight lines stand for propagators of atomic states, while wavy lines
stand for photon propagators. In diagram (1), the initial states a, b

and the generic intermediate states of each atom l, j are indicated.
Although not shown, the same states appear in the rest of diagrams
in analogous sites. The atoms A and B are separated by a distance r

along the horizontal direction, whereas time runs along the vertical.
The white circles on the right of each diagram stand for the insertion
of the Schrödinger operator WB whose expectation value is to be
computed. Each diagram contributes with two terms, one from each
of the operators WB inserted. They are sandwiched between two time
propagators, U(T ) and U†(T ) (depicted by vertical arrows), which
evolve the initial state |a,b,0̃γ 〉 towards the observation time at which
WB applies.

one can separate the integral along the positive imaginary
axis from the sum over residues. The former is part of
the off-resonant vdW interaction, while the latter is part
of the resonant vdW interaction [19,23,40,41]. We compile
in Appendix B the equations of the contributions of some
diagrams to the resonant components of the vdW potentials
and phase shifts.

A. Off-resonant van der Waals potentials and off-resonant
phase-shift rate

The off-resonant component of the vdW potentials is
present in the interaction between any pair of atoms, re-
gardless of whether they are in excited or ground states. It
includes upwards and downwards virtual transitions to any
intermediate atomic levels in the 12 diagrams of Figs. 2 and
3. In the calculation, the imaginary shifts of the poles in
equations analogous to Eq. (19), with η → 0+ in the adiabatic
approximation, play no role, and the off-resonant potentials
can be also computed within the framework of stationary
perturbation theory [18,19,23–25]. This explains also the
fact that the off-resonant potentials of each atom coincide,
〈WA/2〉off = 〈WB/2〉off, and so does the associated phase-shift
rate of the two-atom wave function, δEoff = 〈WA,B/2〉off [38].

Let us denote by a and b the states of the atoms A and
B, respectively. By adding up equations analogous to that in
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Eq. (19) coming from the 12 diagrams of Figs. 2, 3, or 5, one
obtains the following integral along imaginary frequencies
[18,24,25], k = iu:

〈WA,B/2〉off = −2

πh̄ε2
0c

3

∑
i,j

∫ ∞

0
du

u4ωiaωjb(
u2 + k2

ia

)(
u2 + k2

jb

)
× dai · G(r; iu) · djb dbj · G(r; iu) · dia

= δEoff, (20)

with ωia = ωi − ωa , kia = ωia/c, ωjb = ωj − ωb, kjb =
ωjb/c, dai = 〈a|dA|i〉, and dbj = 〈b|dB |j 〉. As it stands, it
suffices to substitute the expressions of the Green function
components in order to calculate the off-resonant vdW
potential for any particular case. Evaluating Eqs. (15)–(17)
at imaginary frequencies and performing the summation over
any number of reflections, we find in the spherical basis,

G+−(r; iu)

= e−ur

8πu2
[1/r3 + u/r2 − u2/r]

+
∫ ∞

1

dζ

4π

euζd − 1

e2uζd − 1
u(1 + ζ 2)J0(ur

√
ζ 2 − 1), (21)

G++(r; iu)

= e−ur

8πu2
[3/r3 + 3u/r2 + u2/r]

+
∫ ∞

1

dζ

4π

euζd − 1

e2uζd − 1
u(1 − ζ 2)J2(ur

√
ζ 2 − 1), (22)

G00(r; iu)

= e−ur

−4πu2
[1/r3 + u/r2 + u2/r]

+
∫ ∞

1

dζ

2π

euζd + 1

e2uζd − 1
u(ζ 2 − 1)J0(ur

√
ζ 2 − 1), (23)

where the dependence of G on d/2 has been omitted in its
argument for brevity. In all the expressions above the first
terms are the components of the Green function in free space,
whereas the second terms result from multiple scattering of the
cavity plates. As a consequence, the factor G2 in the integrand
of Eq. (20) contains terms with two free-space factors which
decay exponentially from u ≈ 2/r , terms with two multiple-
scattering factors which are exponentially suppressed from
u ≈ 2/d, and terms which combine free-space and scattering
factors that decay exponentially from u ≈ min(1/r,1/d).

The calculation of 〈WA,B/2〉off requires the numerical inte-
gration of Eq. (20), which depends generally on the transition
frequencies of both atoms. Nonetheless, assuming that those
frequencies are of the same order, say K � kia,kjb ∀ i,j ,
the dependence of 〈WA,B/2〉off on the particular values of
transition frequencies and dipole moments can be factored out
such that approximately universal potentials can be defined as
functions of r and d only. This is, for instance, the case of the
vdW interaction between circular Rydberg atoms (see Sec. V

FIG. 4. Graphic representation of the three components of the
dimensionless tensor potential Voff of Eq. (25) normalized by their
values in free space, Vfree

off . The interatomic distance is fixed at r =
1/5K , whereas d varies between 0 and 1.4/K .

below). That is, we can write

〈WA,B/2〉off � −2K5

πh̄ε2
0c

∑
i,j

Cij

[∣∣d0
i0d

0
0j

∣∣2
V 00

off (r,d)

+ (|d+
iad

+
bj |2 + |d−

iad
−
bj |2)V ++

off (r,d)

+ (|d+
iad

−
bj |2 + |d−

iad
+
bj |2)V +−

off (r,d)
]
, (24)

where Cij is a numerical factor of order unity whose sign
is given by sgn(ωaiωjb); d

p

ia = 〈Aa|dp

A|Ai〉 is the pth-vector
component of the ith transition dipole moment of atom A, and
likewise for atom B; and

V
ps

off (r,d) =
∫ ∞

0
dχ χ4G2

ps(r; iKχ )/[K(χ2 + 1)]2, (25)

with p,s = {+, − ,0}, are the components in the spherical
basis of the dimensionless off-resonant vdW tensor potential,
which depend only on r,d. The dimensionless variable of
integration χ is the imaginary frequency u in units of K .

The components of Voff are represented in Fig. 4 as
functions of d for a fixed value of the interatomic distance, r =
1/5K , normalized by their values in free space. We observe
that the effects of the cavity confinement become relevant as
d approaches r . Interestingly, three different behaviors are
found. Whereas V ++

off decreases monotonically to zero for
d  r , the component V +−

off shows a bump around d ≈ r , after
which it goes to zero as well. In contrast, V 00

off gets minimum
around d ≈ r and increases monotonically as d approaches
0. The vanishing of the components V +−

off and V ++
off is an

effect of the confinement of the lines of the electric field
parallel to the plates. The decrease of both components is
indeed exponential as d/r → 0 and so is the decrease of
their associated Green’s functions, see Eqs. (A3) and (A4).
On the contrary, for d/r → 0, the field lines perpendicular
to the plates bounce infinite times off the plates when going
from one atom to the other, augmenting the strength of V 00

off as
∼1/d2. As a matter of fact, G00 goes like 1/d as d/r → 0,
see Eq. (A2).
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B. Resonant van der Waals potentials
and resonant phase-shift rate

In contrast to the off-resonant interaction, part of the vdW
interaction between excited atoms is mediated by virtual
photons which resonate with the transitions of one or the
other atom, which is referred to as resonant interaction [23].
Correspondingly, we refer to the resonant contributions to the
potentials and to the phase shift as resonant vdW potentials
(res) and resonant phase-shift rate, respectively. On the other
hand, these resonant photons mediate also the periodic transfer
of the excitation between both atoms. In the perturbative
nondegenerate regime this transfer has a small probability
proportional to |〈W 〉|/h̄|�AB |  1, where �AB is the detuning
between the relevant transition frequencies of the atoms. It
is due to this partial and periodic transfer, as well as to the
finite lifetime of excited states, that the vdW potentials with
excited atoms become dynamical and are to be computed
within the framework of time-dependent perturbation theory
[27–30,38,39]. Further, for the usual case that the excitation
of the atoms be adiabatic with respect to the detuning �AB

[27,38], the calculation simplifies to assuming that in the far
past the atoms are initially excited and the interaction potential
W is turned on adiabatically.

1. Two dissimilar atoms, one of them excited

For the case that the atoms are of different kinds and only
one of the them is excited, say atom A at state a > 0, while
atom B is in its ground state with b = 0, only the diagrams (1)
and (3) of Figs. 2 and 3 contribute to the resonant potentials
of atoms A and B, respectively, yielding [38,39]

〈WA/2〉res =
∑
j,i<a

2ωj0k
4
ai

ε2
0 h̄

(
ω2

ai − ω2
j0

)dm
aid

n
0j d

p

j0d
s
ia

×{Re[Gmn(r,kai)]Re[Gps(r,kai)]

− Im[Gmn(r,kai)]Im[Gps(r,kai)]}, (26)

〈WB/2〉res =
∑
j,i<a

2ωj0k
4
ai

ε2
0 h̄

(
ω2

ai − ω2
j0

)dm
aid

n
0j d

p

j0d
s
ia

×{Re[Gmn(r,kai)]Re[Gps(r,kai)]

+ Im[Gmn(r,kai)]Im[Gps(r,kai)]}, (27)

where the tensor indices are m,n,p,s = {+, − ,0} in the
spherical basis and summation over repeated tensor indices
is implicit.

For the sake of illustration, we write in Appendix B the
explicit expressions of the contributions of diagrams Fig. 2(3)
and Fig. 3(2) to 〈WA/2〉res and 〈WB/2〉res, respectively. Again,
assuming that those frequencies are roughly of the same order,
say K � kai,kj0 ∀ i,j , Eqs. (26) and (27) can be approximated
by

〈WA,B/2〉res � 2K5

πh̄ε2
0c

∑
i,j

C ′
ij

[∣∣d0
iad

0
0j

∣∣2
V 00

A,Bres(r,d)

+ (|d+
iad

+
0j |2 + |d−

iad
−
0j |2)V ++

A,Bres(r,d)

+ (|d+
iad

−
0j |2 + |d−

iad
+
0j |2)V +−

A,Bres(r,d)
]
, (28)

FIG. 5. Diagrammatic representation of the 12 terms which
contribute to the phase-shift rate of the two-atom wave function,
δE . The explanation of the symbols is as in Figs. 2 and 3. Diagrams
(1, 3, 5, 7, 9, 12) contain gray circles on the left which stand for the
insertion of a Schrödinger operator WA, whereas diagrams (2, 4, 6, 8,
10, 11) contain white circles on the right which stand for the insertion
of an operator WB . Differently to the diagrams which contribute to
〈WA(T )〉 and 〈WB (T )〉 in Figs. 2 and 3, respectively, as in diagrams
(1) and (2), here the operators WA or WB are sandwiched between two
time propagators, one of which is the free time-evolution operator,
U0(T ). The explanation of this can be found in Ref. [38].

where C ′
ij is a numerical factor of order unity, of the same sign

as ωai − ωj0, and the dimensionless potentials read

V
pq

Ares(r,d) = {Re2[Gps(r,K)] − Im2[Gps(r,K)]}/K2,

(29)

V
pq

Bres(r,d) = {Re2[Gps(r,K)] + Im2[Gps(r,K)]}/K2,

(30)

with p,s = {+, − ,0}. As for the resonant phase-shift rate,
the addition of diagrams (1) and (3) of Fig. 5 is in this
case δEres = 〈WA/2〉res [27,38]. As in free space, it is the
discrepancy between the signs of the second terms on the
right-hand side of Eqs. (29) and (30) that gives rise to a net
force on the two-atom system [29,38,39]. The difference is,
however, negligible in the nonretarded regime, rK � 1. On
the contrary, in the retarded regime, it was already found in
Refs. [29,38] that, in free space, while the components ofVAres

oscillate in space changing sign periodically, the components
of VBres decrease monotonically as r increases.

In the presence of a cavity the behavior of the potentials
depend on the value of d as well. The components of
VAres and VBres are represented in Fig. 6 as functions of
the interatomic distance r , with rK > 1, for two different
values of d, 2/K (upper inset) and 20/K (lower inset). In
contrast to the results in free space, for d < π/K , only the
component V 00

Ares oscillates in space, whereas V ++
Ares and V +−

Ares
decrease monotonically and are equivalent to the potential
components of atom B. The reason is that, for d < π/K ,
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FIG. 6. Graphic representation of the three components of the dimensionless potentials in Eqs. (29) and (30), as functions of rK , for two
different values of d , 2/K (upper inset) and 20/K (lower inset).

only the oscillating terms of G00 entering Eqs. (29) and
(30) are different from zero, (1/4d)[Y0(kr) − i J0(kr)]. On
the contrary, for d > π/K (lower inset of Fig. 6) all the
components of VAres oscillate along r and so do, although with
longer periods, the components of VBres. The latter, however,
do not change sign and constitute a sort of envelope of the
oscillating curves of VAres.

2. Two dissimilar atoms excited

When both atoms are excited, say on states a > 0 and
b > 0, in addition to diagrams (1) and (3), also the diagrams
(2), (4), and (5)–(10) of Figs. 2, 3, and 5 are relevant. The

perturbative nondegenerate regime implies in this case that
|〈W 〉|  h̄|ωai − ωjb|, for any pair of intermediate states
i,j , with i < a,j > b, and |〈W 〉|  h̄|ωbj − ωai | for any
i > a,j < b. For the sake of illustration, explicit expressions
of the contributions of diagrams (9) and (10) of Figs. 2, 3, and
5 to 〈WA/2〉res, 〈WB/2〉res, and δEres, respectively, have been
included in Appendix B for the case of two dissimilar atoms
excited.

Generically, we can distinguish three different contributions
to 〈WA,B/2〉res. These are, a first one in which the intermediate
states satisfy i > a,j < b, a second one in which they satisfy
i < a,j > b, and a third one for which i < a,j < b. Putting
them all together we have

〈WA/2〉res =
∑

j>b,i<a

2ωjbk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
jb

)dm
aid

n
bj d

p

jbd
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] − Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i>a

2ωiak
4
bj

ε2
0 h̄

(
ω2

bj − ω2
ia

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] + Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}

−
∑

j<b,i<a

2ωbjk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
aid

n
jbd

p

bj d
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] − Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i<a

2ωaik
4
bj

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] + Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}, (31)

〈WB/2〉res =
∑

j>b,i<a

2ωjbk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
jb

)dm
aid

n
bj d

p

jbd
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] + Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i>a

2ωiak
4
bj

ε2
0 h̄

(
ω2

bj − ω2
ia

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] − Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}
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−
∑

j<b,i<a

2ωbjk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
aid

n
jbd

p

bj d
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] + Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i<a

2ωaik
4
bj

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] − Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}, (32)

where the tensor indices are m,n,p,s = {+, − ,0} in the spherical basis and summation over repeated tensor indices is implicit.
Note that analogous expressions were obtained by Barcellona et al. in Ref. [29] in free space.

Lastly, as for the phase-shift rate of the two-atom wave function we find,

δEres =
∑

j>b,i<a

2ωjbk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
jb

)dm
aid

n
bj d

p

jbd
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] − Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i>a

2ωiak
4
bj

ε2
0 h̄

(
ω2

bj − ω2
ia

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] − Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}

−
∑

j<b,i<a

2ωbjk
4
ai

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
aid

n
jbd

p

bj d
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] − Im[Gmn(r,kai)]Im[Gps(r,kai)]}

+
∑

j<b,i<a

2ωaik
4
bj

ε2
0 h̄

(
ω2

ai − ω2
bj

)dm
bjd

n
aid

p

iad
s
jb{Re[Gmn(r,kbj )]Re[Gps(r,kbj )] − Im[Gmn(r,kbj )]Im[Gps(r,kbj )]}. (33)

3. Two identical atoms excited

We consider next the case in which the two atoms are identical, A = B, and find in the same excited state a > 0. The
nondegenerate condition necessary for the calculation to be perturbative and nondegenerate reads in this case |〈W 〉|  h̄|ωai −
ωja|, for any pair of intermediate states i,j , with i < a,j > a.

In comparison to the case of dissimilar atoms, the only difference in the calculation is the presence of double poles when
i = j in the frequency integrals which derive from the diagrams (3), (4), (9), and (10). Explicit expressions of the contributions
of diagram (4) in Figs. 2 and 5 to 〈WA/2〉res and δEres, respectively, have been included in Appendix B for this case. As for the
resonant vdW potential, it reads,

〈WA/2〉res =
∑

i<a,j �=i

4ωjak
4
ai

ε2
0 h̄

(
ω2

ai − ω2
ja

)dm
aid

n
jad

p

aj d
s
iaRe[Gmn(r,kai)]Re[Gps(r,kai)] +

∑
i<a,j=i

k2
ai

ε2
0ch̄

dm
aid

n
iad

p

aid
s
ia

×
{
kaiRe[Gmn(r,kai)]Re[Gps(r,kai)] − 2Re[Gmn(r,kai)]

∂

∂k
[k2Re[Gps(r,k)]]k=kai

}
, (34)

whereas the phase-shift rate of the two-atom wave function is

δEres =
∑

i<a,j �=i

4ωjak
4
ai

ε2
0 h̄

(
ω2

ai − ω2
ja

)dm
aid

n
jad

p

aj d
s
ia{Re[Gmn(r,kai)]Re[Gps(r,kai)] − Im[Gij (r,kai)]Im[Gps(r,kai)]}

+
∑

i<a,j=i

k2
ai

ε2
0ch̄

dm
aid

n
iad

p

aid
s
ia

{
kaiRe[Gmn(r,kai)]Re[Gps(r,kai)] − kaiIm[Gmn(r,kai)]Im[Gps(r,kai)]

− 2Re[Gmn(r,kai)]
∂

∂k
[k2Re[Gps(r,k)]]k=kai

}
. (35)

IV. ELECTROSTATIC POTENTIAL BETWEEN
INDUCED DIPOLES

Another case of interest commonly encountered in exper-
iments is that of the electrostatic interaction between two
atomic dipoles induced by an external static field E0. The
contribution of the 24 diagrams of Fig. 7 reduces to the

electrostatic interaction between two induced electric dipoles,
A and B, with moments αa

A(0)E0 and αb
B(0)E0, where α

a,b
A,B(0)

are the static polarizabilities of each atom in the states a and b,
respectively. The interaction potentials of each atom coincide
in this case, and so does the associated phase-shift rate of the
two-atom wave function. If we denote the electrostatic poten-
tial by V st

AB(r), it holds 〈WA〉 = 〈WB〉 = δE st ≡ V st
AB(r), and
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FIG. 7. Diagrammatic representation of the 24 terms (2 times 12
after the exchange A ↔ B) which contribute to V st

AB under the action
of a constant and uniform external field E0. Vertices of the interaction
Hamiltonian, −(dA + dB ) · E0, are depicted by horizontal arrows. In
diagram (1), the initial states a, b and the generic intermediate states
of each atom i, j are indicated. Although not shown, the same states
appear in the rest of diagrams in analogous sites.

FA,B = ∓∇rV
st
AB(r) for the forces on each atom.1 The addition

of all the contributions of the diagrams of Fig. 7 (which refer
to 〈WA〉, in particular) yields

V st
AB(r) = 8

πε0c2h̄2

∑
i,j

〈a|dA|i〉 · E0〈b|dB |j 〉 · E0

ωiaωjb

×
∫ ∞

0
dω ωTr{〈i|dA|a〉 · Im[G(r,d/2; ω)] ·

· 〈j |dB |b〉}. (36)

Next, in application of the Kramers-Kronig relations on the
Green function and writing its tensor components in the
spherical basis, the above equation can be written as

V st
AB(r) = 4

ε0c2h̄2

∑
i,j

〈a|dA|i〉 · E0〈b|dB |j 〉 · E0

ωiaωjb

lim
ω→0

ω2

× Tr{〈i|dA|a〉 · Re[G(r,d/2; ω)] · 〈j |dB |b〉}
= 4π

ε0h̄
2d3

∑
i,j

1

ωiaωjb

[(|〈i|dA
+|a〉|2|〈j |dB

+|b〉|2(E+
0 )2

+ |〈i|dA
−|a〉|2|〈j |dB

−|b〉|2(E−
0 )2)V st

++(r)

+ |〈i|dA
0 |a〉|2|〈j |dB

0 |b〉|2(E0
0

)2
V st

00(r)

+ (|〈i|dA
+|a〉|2|〈j |dB

−|b〉|2 + |〈i|dA
−|a〉|2|〈j |dB

+|b〉|2)

×E−
0 E+

0 V st
+−(r)],

where the dimensionless potentials read

V st
00(r) = 4

∑
n=1

n2K0

(
2πr

d
n

)
,

V st
++(r) =

∑
n=1

(−1)n − 1

4

[
n2K0

(
πr

d
n

)
+ 2d

πr
n K1

(
πr

d
n

)]
,

V st
+−(r) =

∑
n=1

(−1)n − 1

4
n2K0

(
πr

d
n

)
, (37)

1Note the absence of the factor 1/2 in the expression for the
electrostatic potential in comparison to the vdW potentials. This is
due to the fact that the calculation is order 1 in WA,B for V st

AB while it
is order 2 for the vdW potentials.

FIG. 8. Graphic representation of the three dimensionless poten-
tials, V st

00 –red (middle gray) line, V st
+− –blue (dark gray) line, and

V st
++ –green (light gray) line, as functions of d/r and normalized by

the corresponding potentials in the 3D free space, V st free
00,+−,++.

with K0 and K1 being the modified Bessel functions of the
second kind, of zero order, and of first order, respectively. In
the asymptotic limit r/d → 0 the above functions respectively
approach the free-space potentials in 3D:

V st
00(r) � d3

4π2r3
− 3 ζR(3)

4π2
+ 3 ζR(5)

π2

r2

d2
,

V st
++(r) � − 3d3

8π2r3
+ 15 ζR(5)

64π2

r2

d2
, (38)

V st
+−(r) � − d3

8π2r3
− 3ζR(3)

4π2
+ 45 ζR(5)

16π2

r2

d2
, r/d → 0,

where the first terms on the right-hand side of each equation
are the free-space potentials in 3D and ζR is the Riemann ζ

function.
In this opposite limit, d/r → 0, the functions approach zero

exponentially as the EM field is confined to live in 2D:

V st
00(r) � 2 e−2πr/d

√
d/r,

V st
++(r) � − 1

2
√

2
e−πr/d

√
d/r,

V st
+−(r) � − 1

2
√

2
e−πr/d

√
d/r, d/r → 0. (39)

In Fig. 8, the ratios between the three components of the
cavity electrostatic potential and their corresponding values
in free space are represented as functions of d/r . While
the components V st

00 and V st
++ decrease monotonically as d/r

decreases, the component V st
+− presents a maximum at around

r ≈ d which overtakes the value in free space.

V. DIPOLE-DIPOLE INTERACTIONS BETWEEN TWO
CIRCULAR RYDBERG ATOMS WITHIN A CAVITY

In this section we illustrate the effect of a perfectly reflecting
cavity on the dipole-dipole interactions between two identical
alkali atoms in Rydberg states. This calculation is of particular
relevance to the manipulation of entangled two-atom states
[33,34]. A similar calculation has been carried out in Ref. [42]
in free space, in the nonretarded regime, and neglecting the off-
resonant component of the vdW potential. In our case, in order
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to simplify the calculation, we will consider that the atoms
are prepared in a certain circular state |nc〉. This will allow
us to restrict considerably the number of atomic transitions
involved in the computations [12,43]. We will consider a pair
of alkali atoms, e.g. 87Rb atoms, placed at the middle of a
planar cavity and excited at circular Rydberg states. For the
calculations in the nondegenerate regime we will take both
atoms with nc = 50. At the end of this section and for the
sake of completeness, we will compute the Rabi frequency, in
the degenerate regime, between two alkali atoms in the states
nc = 50 and n′

c = 51.
Circular states are the states of maximum angular mo-

mentum with quantum numbers n = nc, l = nc − 1, m =
±(nc − 1). In a cavity, their stability against mixing with
elliptical states of the same energy is achieved by applying
an external uniform field E0 perpendicular to the cavity plates
[12,43]. In practice, E0 is taken large enough so that the
corresponding Stark shift lifts the degeneracy between the
circular states and the states with l = nc − 2, preventing their
mixing due both to the coupling to stray electric fields parallel
to the plates and to the vdW interaction between the dipoles.
Typical values of E0 are of the order of 10–100 V/m [12].
With this proviso, we proceed to compute the dipole-dipole
interactions between two circular Rydberg atoms of 87Rb with
nc = 50 and placed at the middle of a cavity of variable width
at a fixed interatomic distance, r = 50 μm. This is the distance
at which retarded effects are not yet relevant and, at the same
time, a realistic design of the cavity makes it possible to
achieve the condition d ≈ r , at which the confinement effect
of the cavity on the EM field is notorious. Experimentally, the
atoms are excited by the action of two pulses, being the typical
Rabi frequency of the excitation process much less than the
frequency of the atomic transitions involved in the interatomic
interaction (cf. Ref. [34]). In addition, the calculation of
the resonant component of the vdW interaction meets the
conditions outlined in Sec. III B 3. This way, we can fairly
apply our perturbative-adiabatic approach to the calculation
of all the dipole-dipole interactions between the atoms. Lastly,
the fact that the two atoms are identical and excited at the same
state guarantees the equivalence between their potentials. The
phase-shift rate of the two-atom system is in general different
from the potential energy [38]. However, we will show that
in the nonretarded regime this discrepancy is negligible for
any value of the cavity width. In the following, we compute
the electrostatic potential, the off-resonant vdW potential, the
resonant vdW potential, and the resonant phase-shift rate
for r = 50 μm. As for the values of d, we consider the
range between 10 μm and 0.50 mm for the calculation of
the potentials, and up to 50 mm for the calculation of the
phase-shift rate. Atomic data are taken from Ref. [44]. For the
calculation of the relevant transition dipole moments we make
use of Ref. [43].

In the electrostatic potential between two dipoles induced
by an external field E0 perpendicular to the cavity plates,
only the component V st

00 is nonzero. Labeling the atomic
states with the three quantum numbers |n,l,m〉, at leading
order, the intermediate states which enter the sum of V st

00(r) in
Eq. (37) are |nc + 1,nc,nc − 1〉 and |nc + 2,nc,nc − 1〉. The
result is depicted graphically in Fig. 9, leaving E0 as a free
parameter.

FIG. 9. Graphic representation of the electrostatic potential of
two identical Rydberg atoms of 87Rb, in the circular state nc = 50,
separated a distance r = 50 μm in the middle of a planar cavity of
variable width d , subjected to an electric field perpendicular to the
cavity plates. The field strength E0 is left as a free parameter. The
dashed line stands for the asymptotic value of the potential in 3D
without the cavity.

Regarding the calculation of the off-resonant vdW poten-
tial, which is equivalent to the off-resonant phase-shift rate
δEoff, we first notice that the component V 00

off in Eq. (24)
contains two � atomic transitions on each atom, whereas
the components V ++

off and V +−
off contain pairs of [σ+]2 and

[σ−]2 transitions. As explained in Ref. [43], the dipole
moments of σ+ transitions from circular states, |nc〉, to the
nearest circular states, |(n ± 1)c〉, are of the order of nc times
greater than those of � transitions and n2

c times greater
than those of σ− transitions. Therefore, the off-resonant
vdW potential will be dominated by the component V ++

off
and the transition wavelengths λ51,50 ≈ λ50,49 � 6 mm. The
result is shown graphically by the red (middle gray) curve of
Fig. 10.

FIG. 10. Graphic representation of the phase-shift rate δE (equiv-
alently, vdW potential) of two identical Rydberg atoms of 87Rb, in the
circular state nc = 50, separated a distance r = 50 μm in the middle
of a planar cavity of variable width d . The off-resonant, resonant, and
total phase-shift rates are represented separately by the lines in red
(middle gray), blue (dark gray), and green (light gray), respectively.
Dashed lines stand for the asymptotic values of the energies in free
space.
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FIG. 11. Graphic representation of the difference between the
resonant phase-shift rate, δEres, and the resonant vdW potential,
〈WA/2〉res, of two identical Rydberg atoms of 87Rb, in the circular
state nc = 50, separated a distance r = 50 μm in the middle of a
planar cavity of variable width d . The dashed line stands for the
asymptotic value of the energy difference in free space.

Finally, concerning the calculation of the resonant vdW
potential, it is dominated by the dyadic components +− of
Eq. (34), in which the leading terms are proportional to the
transition dipole moments between the states |nc〉 and |(n ±
1)c〉 [43]. In particular, the greatest contribution comes from
the quasiresonant diagram (1) of Fig. 3, which includes a term
proportional to the inverse of the detuning, 1/(ω50,49 − ω51,50)
[38]. The resonant vdW potential is depicted graphically by
the blue (dark gray) line in Fig. 10. It is worth noting that the
resonant phase-shift rate δEres coincides with the resonant vdW
potential for d � 3 mm. The reason is that the imaginary part of
the Green function which enters Eq. (35) vanishes unless d �
λ51,50/2 ≈ 3 mm. For greater values of d, resonances show up
with periodicity �6 mm. This is shown in Fig. 11, where the
difference between δEres and 〈WA/2〉res is represented. In the
nonretarded regime this difference is 7 orders of magnitude
less than δEres, and is hence negligible.

The graphs represented in Fig. 10 show that for cavity
widths much smaller than the interatomic distance the strength
of the vdW interaction decreases exponentially, whereas for
values of d close to r the strength of the interaction is
higher than its value in the absence of cavity. The latter is
a consequence of the dominance of the dyadic components
+− in the resonant vdW potential. It is also worth mentioning
that, even in free space, the ratio between the strength of
the off-resonant (red line of Fig. 10) and the strength of the
resonant vdW potentials (green line) is approximately 1/5 but
not negligible, in contradiction to what is usually assumed
in the literature for the binary interactions between Rydberg
atoms (see, e.g., Ref. [42]).

We conclude this section with the calculation of the Rabi
frequency induced by the cavity field on the symmetric states
|50c,51c〉 and |51c,50c〉 of two atoms of 87Rb separated 50 μm.
A rigorous time-dependent treatment of this interaction is
complicated since the adiabatic approximation considered in
our previous calculations is not valid generally [45], the reason
being that the interaction takes place in the degenerate regime.
However, in the nonretarded regime a great simplification is
possible. It suffices to consider the diagrams of the kind of

FIG. 12. (a) Graphic representation of the Rabi frequency in-
duced by the cavity field on the symmetric states |50c,51c〉 and
|51c,50c〉 of two 87Rb atoms separated a distance r = 50 μm in
the middle of a planar cavity of variable width d . The dashed line
stands for the asymptotic value of the Rabi frequency in 3D without
the cavity. (b) Diagrammatic representation of the processes which
contribute to the probability amplitudes 〈51c,50c (0)|50c,51c (T )〉
and 〈51c,50c (0)|51c,50c (T )〉. In all the diagrams the circular states
50c and 51c (only shown in the first diagrams on the right-hand
side of the equalities) alternate after each vertex of interaction
along the temporal vertical axis. Note that whereas in the diagrams
contributing to 〈51c,50c (0)|50c,51c (T )〉 the initial and final states
differ, they coincide in those for 〈51c,50c (0)|51c,50c (T )〉. Hence,
while 〈51c,50c (0)|50c,51c (T )〉 is proportional to sin (�RT/2),
〈51c,50c (0)|51c,50c (T )〉 is proportional to cos (�RT/2) instead.

those in Fig. 12(b), in which the circular states 50c and 51c

alternate after each vertex of interaction and only one-photon
states appear as intermediate states. The net result is a Rabi
oscillation of frequency �R between the states |50c,51c〉 and
|51c,50c〉. As shown in Ref. [46], this approach is equivalent
to the usual one based on degenerate stationary perturbation
theory in the subspace {|50c,51c〉, |51c,50c〉} [47]. For this
reason, and just for the sake of illustration, we will restrict
ourselves to the nonretarded regime in which the expression
of the Rabi frequency �R associated reads

�R � 2π

ε0h̄d3
〈50c|d|51c〉 · Vst · 〈51c|d|50c〉, (40)

where the only component of Vst which enters Eq. (40) is V st
+−.

The graph of Fig. 12(a) shows the variation of �R with the
cavity width d.
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VI. CONCLUSIONS

In this article we have computed the dyadic Green’s
function of the cavity field which mediates the interaction
between two atomic dipoles placed in the middle of a perfectly
reflecting planar cavity. The components of the Green tensor
are given in Eqs. (9)–(14) and as a series in the number of
reflections in Eqs. (15)–(17). Asymptotic expressions in the
2D and 3D limits can be found in Appendix A.

The van der Waals potentials of each atom as well as the
associated phase-shift rates of their wave function have been
calculated in the weak-coupling, nondegenerate regime for
several cases of interest: for the case that both atoms are in
their ground states, for the case that both atoms are excited,
and for the case that one atom is excited while the other,
of a different kind, is in its ground state. The discrepancies
between the resonant components of the vdW potentials
and the phase-shift rates have been exposed for each case.
However, those discrepancies are relevant only in the retarded
regime and, generally, for cavity widths larger than half the
resonant wavelengths, see Figs. 6 and 11. In addition, we
have calculated the electrostatic potential between two induced
atomic dipoles [Eqs. (37)–(39)]. The latter has been used also
to compute the Rabi frequency on a two-Rydberg-atom state
in the degenerate regime [Eq. (40), Fig. 12].

The effect of the two-dimensional confinement of the
electromagnetic field by the cavity on the dipole-dipole inter-
actions has been analyzed. The effect depends on the atomic
polarization of induced and fluctuating dipoles. For values
of the cavity width much less than the interatomic distance,
for dipole moments oriented parallel to the plates, both
the electrostatic and the vdW interactions are exponentially
suppressed; on the contrary, for dipole moments perpendicular
to the plates, while the electrostatic interaction decreases
exponentially, too, the strength of the off-resonant vdW
interaction increases with respect to its value in the absence of
cavity (Figs. 4 and 8). These behaviors can be explained by the
asymptotic expressions of the Green’s function components in
the 2D limit [see Eqs. (39), (A2)–(A4)]. For values of the
cavity width close to the interatomic separation, d ≈ r , for

dipole moments oriented parallel to the plates, the strengths
of both the electrostatic and the vdW interactions are larger
than their values in the absence of cavity; on the contrary,
for dipole moments perpendicular to the plates, the vdW
interaction presents a minimum much less than its value in
the absence of cavity.

The confinement effects have been illustrated in Sec. V
through the computation of the dipole-dipole interactions
between two circular Rydberg atoms of 87Rb. As shown in
Fig. 10, for cavity widths much smaller than the interatomic
distance, the strength of the vdW interaction decreases expo-
nentially, whereas for values of d close to r the strength of the
interaction is larger than its value in the absence of cavity.
The inhibition or the enhancement of the vdW interaction may
have an impact on the experimental manipulation of entangled
atomic states, for instance, in the Rydberg blockade regime
[33,34]. In this regime, however, the interatomic distance lies
in the range of 1–10 μm, which is much less than any realistic
value of the width of a metallic cavity. For d � 10 μm the
stray charges on the plates would have a strong influence
on the plate-atom interaction, disturbing the experimental
measurements. Therefore, other materials should be used in the
construction of the cavity to diminish these unwanted effects.
Nonetheless, confinement effects in metallic cavities could be
still relevant in the retarded regime of the vdW interaction.

The application of our approach to the cavity-assisted
interaction between atomic dipoles in the strong coupling
regime, of interest in the building of quantum gates with neutral
atoms [15,48], is left for future work.
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APPENDIX A: ASYMPTOTIC EXPRESSIONS OF THE GREEN DYADIC COMPONENTS OF THE CAVITY FIELD

The expressions of the Green dyadic components computed in Sec. II adopt the following form in the 3D limit, d � r,k−1,
in the spherical basis:

G00(r,d/2; k) � eikr

−4πk2

[−1

r3
+ ik

r2
+ k2

r

]
+ i

eikd

πk d2
(1 + i/kd) + eikd

π

r2

d3
(1 + 3i/kd − 3/k2d2),

G++(r,d/2; k) � eikr

8πk2
[3/r3 − 3ik/r2 − k2/r] − eikd

4π

r2

d3
(1 + 3i/kd − 1/k2d2),

G+−(r,d/2; k) � eikr

8πk2
[1/r3 − ik/r2 + k2/r] + 1

πd
[log (1 − eikd ) + i eikd/kd − eikd/k2d2]

+ i k
eikd

2π

r2

d2
(1 + 3i/kd − 6/k2d2 − 6i/k3d3), d � r,k−1. (A1)
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As for the 2D limit, d  r,k−1, the dyadic components read

G00(r,d/2; k) � 1

4d
[Y0(kr) − i J0(kr)] + 2πe−2πr/d

k2d2
√

rd
(1 − k2d2/4π2), (A2)

G++(r,d/2; k) � −πe−πr/d

2
√

2k2d2
√

rd
(1 + k2d2/π2), (A3)

G+−(r,d/2; k) � −πe−πr/d

2
√

2k2d2
√

rd
(1 + 2d/πr − k2d2/π2), d  r,k−1. (A4)

APPENDIX B: RESONANT CONTRIBUTIONS OF SOME DIAGRAMS TO THE VAN DER WAALS
POTENTIALS AND PHASE-SHIFT RATES

In the following, we write the expressions of the resonant contributions of some diagrams to the vdW potentials and phase-shift

rates at order four in W . The rules to read off each diagram are as follows. The four vertices yield a tensor factor 2αf c3

πε0e2 dm
aid

n
jbd

p

jbd
s
ai ;

each wavy line contributes with a cavity field Green’s function, k2ImGps(r,k); and free time-propagators are inserted between
any pair of consecutive vertices, with time evolving from above and from below in the far past, towards the observable vertex at
instant T , as sketched in diagram (1) of Figs. 2 and 3, and in diagrams (1) and (2) of Fig. 5.

For the case of one atom excited, we give the expressions of the contributions of diagrams Fig. 2(3) and Fig. 3(2) to 〈WA/2〉res

and 〈WB/2〉res, respectively, in the adiabatic approximation. As for diagram Fig. 2(3), its contribution to 〈WA/2〉res is

2αf c3

πε0e2

∑
i<a,j

dm
aid

n
j0d

p

j0d
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)[(i eiωaiT e−i(T −t)ωe−i(t−t ′)(ω+ω′+ωj0)e−i(t ′−t ′′)ω′

e−it ′′ωai ) + (ω ↔ ω′)∗]

= −4αf c3

πε0e2
Re

∑
i<a,j

dm
aid

n
j0d

p

j0d
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞

dk′ k2ImGmn(r,k) k′2ImGps(r,k′)
[ω + ω′ − (ωai − ωj0)](ω − ωai − iη)(ω′ − ωai − iη)

, η → 0+, (B1)

where a summation over repeated tensor indices is implicit. The contribution of diagram Fig. 3(2) to 〈WB/2〉res reads

Re
2αf c3

πε0e2

∑
i<a,j

dm
aid

n
j0d

p

j0d
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ T

−∞
dt ′′ eη(t+t ′+t ′′)[(−iei(T −t)ωB ei(t−t ′)ωeiωAt ′ e−i(T −t ′′)ω′

e−it ′′ωA) + (ω ↔ ω′)]

= 4αf c3

πε0e2
Re

∑
i<a,j

dm
aid

n
j0d

p

j0d
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞
dk′ k2ImGmn(r,k) k′2ImGps(r,k′)

(ωai − ωj0)(ω − ωai − iη)(ω′ − ωai + iη)
, η → 0+. (B2)

As for the case of two dissimilar atoms excited, we give the expressions of the contributions of diagrams (9) and (10) of
Figs. 2, 3, and 5 to 〈WA/2〉res, 〈WB/2〉res, and δEres, respectively, in the adiabatic approximation. The contributions of diagram
(9) are, respectively,

2αf c3

πε0e2

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
[ ∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(i e−i(T −t)(ω+ωbj )e−i(t−t ′)(ω+ω′)e−i(t ′−t ′′)(ω+ωai )e−it ′′(ωai+ωbj ))

+
∫ T

−∞
dt

∫ T

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)i ei(ωai+ωbj )T e−i(T −t)(ω+ωai )e−it(ωai+ωbj )ei(T −t ′)(ω+ω′)ei(t ′−t ′′)(ω+ωbj )eit ′′(ωai+ωbj )

]

= −2αf c3

πε0e2
Re

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞
dk′

[
k2ImGmn(r,k) k′2ImGps(r,k′)

(ω + ω′ − ωai − ωbj − 2iη)(ω − ωbj − iη)(ω − ωai − 3iη)

+ k2ImGmn(r,k) k′2ImGps(r,k′)
(ω + ω′ − ωai − ωbj + 2iη)(ω − ωbj − iη)(ω − ωai + iη)

]
, η → 0+, to 〈WA/2〉res; (B3)
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2αf c3

πε0e2

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
[ ∫ T

−∞
dt

∫ t

−∞
dt ′

∫ T

−∞
dt ′′ eη(t+t ′+t ′′)(−i e−i(T −t)(ω+ω′)e−i(t−t ′)(ω+ωai )e−it ′(ωbj +ωai )ei(T −t ′′)(ω+ωbj )eit ′′(ωai+ωbj ))

+
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(−i e−i(ωai+ωbj )T ei(T −t)(ω+ωai )ei(t−t ′)(ω+ω′)ei(t ′−t ′′)(ω+ωbj )eit ′′(ωai+ωbj ))

]

= −2αf c3

πε0e2
Re

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞
dk′

[
k2ImGmn(r,k) k′2ImGps(r,k′)

(ω + ω′ − ωai − ωbj − 2iη)(ω − ωai + iη)(ω − ωbj − iη)

+ k2ImGmn(r,k) k′2ImGps(r,k′)
(ω + ω′ − ωai − ωbj + 2iη)(ω − ωai + iη)(ω − ωbj + 3iη)

]
, η → 0+, to 〈WB/2〉res; (B4)

and

2αf c3

πε0e2

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(i e−i(T −t)(ω+ωbj )e−i(t−t ′)(ω+ω′)e−i(t ′−t ′′)(ω+ωai )e−it ′′(ωai+ωbj ))

= −2αf c3

πε0e2
Re

∑
i<a,j<b

dm
aid

n
jbd

p

jbd
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞

dk′ k2ImGmn(r,k) k′2ImGps(r,k′)
(ω + ω′ − ωai − ωbj − 2iη)(ω − ωbj − iη)(ω − ωai − 3iη)

, η → 0+,

(B5)

to δEres.
The corresponding contributions of diagram (10) are identical to those of diagram (9), but for the exchange of subindices

ai ↔ bj in all the expressions above.
Finally, for the case of two identical atoms excited, in the perturbative regime, we give the expressions of the contributions of

diagram (4) of Figs. 2 and 5, with double poles, to 〈WA/2〉res and δEres, respectively, in the adiabatic approximation. These are,

4αf c3

πε0e2
Re

∑
i<a

dm
aid

n
aid

p

aid
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
∫ T

−∞
dt

∫ T

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(−i ei(T −t)(ω+ωai )e2itωai e−i(T −t ′)(ω+ω′)e−i(t ′−t ′′)(ω′+ωai )e−2it ′′ωai )

= −4αf c3

πε0e2
Re

∑
i<a

dm
aid

n
aid

p

aid
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞

dk′ k2ImGmn(r,k) k′2ImGps(r,k′)
(ω + ω′ − 2ωai − 2iη)(ω′ − ωai − iη)(ω − ωai + iη)

, η → 0+, (B6)

to 〈WA/2〉res; and

4αf c3

πε0e2
Re

∑
i<a

dm
aid

n
aid

p

aid
s
ai

∫ +∞

−∞
dk k2ImGmn(r,k)

∫ +∞

−∞
dk′ k′2ImGps(r,k′)

×
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(i e2iT ωai ei(T −t)(ω+ωai )e−i(t−t ′)(ω+ω′)e−i(t ′−t ′′)(ω′+ωai )e−2it ′′ωai )

= −4αf c3

πε0e2
Re

∑
i<a

dm
aid

n
aid

p

aid
s
ai

∫ +∞

−∞
dk

∫ +∞

−∞

dk′ k2ImGmn(r,k) k′2ImGps(r,k′)
(ω + ω′ − 2ωai − 2iη)(ω′ − ωai − iη)(ω − ωai − 3iη)

, η → 0+, (B7)

to δEres. In this case, the results of the frequency integrals in Eqs. (B6) and (B7) coincide.
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