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Abstract

We give a brief exposition of the formulation of the bound state problem for the one-dimensional
system of N attractive Dirac delta potentials, as an N×N matrix eigenvalue problem (ΦA = ωA). The
main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down
for the equidistantly distributed Dirac delta potential, where the matrix Φ becomes a special form of
the circulant matrix. We then give an elementary proof that the ground state is always non-degenerate
and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem.
We also prove that removing a single center from the system of N delta centers shift all the bound
state energy levels upward as a simple consequence of the Cauchy interlacing theorem.

Keywords. Point interactions, Dirac delta potentials, bound states.

1 Introduction

Dirac delta potentials or point interactions, or sometimes called contact potentials are one of the exactly
solvable classes of idealized potentials, and used as a pedagogical tool to illustrate various physically
important phenomena, where the de Broglie wavelength of the particle is much larger than the range
of the interaction. They have various applications in almost all areas of physics, see e. g., [1] and [2],
and references therein. For instance, mutually non-interacting electrons moving in a fixed crystal can be
modeled by periodic Dirac delta potentials, known as the Kronig-Penney model [3]. Another application
is given by the model consisting of two attractive Dirac delta potentials in one dimension. This is used
as a very elementary model of the chemical bound for a diatomic ion (H+

2 , for example) and has been
discussed in [4, 5].

The interest of Dirac delta potentials and other one dimensional point potentials provides us with
solvable (or quasi-solvable) models in quantum mechanics that give an insight for a better understanding
of the basic features of the quantum theory. This makes them suitable for the purpose of teaching the
discipline. In the recent pedagogical review [2], several interesting features of one-dimensional Dirac
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delta potentials have been illustrated and multiple δ-function potential has been studied in Fourier space.
Moreover, the bound state problem has been formulated in terms of a matrix eigenvalue problem.

In this paper, we first give a brief review of the bound state spectrum of the N Dirac delta potentials in
one dimension by converting the time independent Schrödinger equation Hψ = Eψ for the bound states
to the eigenvalue problem for an N ×N Hermitian matrix. This method is rather useful especially when
we deal with large number of centers since the procedure that uses the matching conditions for the wave
function at the location of the delta centers become cumbersome for large values of N . Once we formulate
the problem as a finite dimensional eigenvalue problem, we show that there are at most N bound states
for N centers, using Feynman-Hellmann theorem (see page 288 in [6]). One of the main purposes of
this paper is to show that this simple one-dimensional toy problem for more than three centers allows
us to give an analytical example of the breakdown of the well-known non-degeneracy theorem for one-
dimensional bound state problems[7]. This shows us that we should not take the non-degeneracy theorem
for granted particularly for singular interactions, where it may not be valid. This was first realized for the
so-called one-dimensional Hydrogen atom [8], where the non-degeneracy theorem breaks down and has
been studied for other one-dimensional singular potentials since then [9, 10, 11, 12, 13, 14]. In contrast
to the degeneracies that appear in bound states, we give an elementary proof that the ground state is
non-degenerate and the ground state wave function can be always chosen real-valued and strictly positive.
In addition, we also show that all the bound state energies for N attractive Dirac delta potentials increase
if we remove one center from the system. All these results mentioned above become more transparent
using some basic theorems from linear algebra, namely Perron-Frobenius theorem, the Cauchy interlacing
theorem [15]. The simple proof of these theorems are given in Appendices so as not to interrupt the flow
of the presentation. Our presentation is kept simple so that it is also accessible to a wide audience.

2 Bound States for N Dirac Delta Potentials

We consider a particle moving in one dimension and interacting with the attractive N Dirac delta po-
tentials located at ai with strengths λi > 0, where i = 1, 2, · · · , N . The time independent Schrödinger
equation is then given by

− ~2

2m

d2ψ

dx2
−

N∑
i=1

λiδ(x− ai)ψ(x) = Eψ(x) . (1)

The above equation is actually a formal expression and its exact meaning can only be given by self-adjoint
extension theory [16, 17, 18]. Here we follow a more traditional and heuristic approach used in the most
quantum mechanics textbooks since the results that we obtain is completely consistent with the rigorous
approach. As is well-known, the above equation can also be written as

Hψ = Eψ (2)

in the operator form, where H = P 2

2m + V and the potential energy operator V for the above particular
case in the bra-ket formalism is

V = −
N∑
i=1

λi|ai〉〈ai| . (3)
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Here |ai〉 is the position eigenket. In the coordinate representation, the action of V on the state vector
|ψ〉 is

(V ψ)(x) = 〈x|V |ψ〉 =
N∑
i=1

λiδ(x− ai)ψ(ai) =
N∑
i=1

λiδ(x− ai)ψ(x) , (4)

where we have used the fact δ(x − ai)ψ(ai) = δ(x − ai)ψ(x). This justifies the above formal potential
operator (3) corresponds to the Schrödinger equation (1) with multiple Dirac delta potentials. Let us
absorb the strengths λi’s into the bras and kets, i.e.,

√
λi|ai〉 = |fi〉 and similarly for bras. In terms of

the rescaled bras and kets, the potential operator becomes V =
∑N

i=1 |fi〉〈fi|. Substituting this into (2)
in the coordinate representation, we obtain

〈x|P
2

2m
|ψ〉 −

N∑
i=1

〈x|fi〉〈fi|ψ〉 = E〈x|ψ〉 , (5)

The rescaling is introduced to formulate the bound state problem in terms of an eigenvalue problem of a
symmetric matrix, as we will see. Inserting the completeness relation

∫ dp
2π~ |p〉〈p| = 1 in front of |ψ〉 and

|fi〉, we obtain the following integral equation, which is actually the Fourier transformation:∫ ∞
−∞

dp

2π~
e
i
~px ψ̃(p)

(
p2

2m
− E

)
=

N∑
i=1

√
λi

∫ ∞
−∞

dp

2π~
e
i
~p(x−ai) φ(ai) (6)

where 〈x|p〉 = e
i
~px, 〈p|ψ〉 = ψ̃(p), and φ(ai) = 〈fi|ψ〉 =

√
λiψ(ai). Since two functions with the same

Fourier transforms are equal, equation (6) implies that:

ψ̃(p) =
N∑
i=1

√
λi

e−
i
~pai

p2

2m − E
φ(ai) . (7)

It is interesting to remark that this solution depends on the unknown coordinate wave function at ai and
the energy E. If we use the relation between the coordinate and momentum space wave function through
the Fourier transformation

ψ(x) =

∫ ∞
−∞

dp

2π~
e
i
~px ψ̃(p) , (8)

and insert (7) into above for x = ai, we obtain the following consistency relation

ψ(ai) =
N∑
j=1

√
λj

∫ ∞
−∞

dp

2π~
e
i
~p(ai−aj)

p2

2m − E
φ(aj) . (9)

Multiplying both sides of (9) by
√
λi and separating the j = i th term, we have[

1− λi
∫ ∞
−∞

dp

2π~
1

p2

2m − E

]
φ(ai)−

∫ ∞
−∞

dp

2π~

N∑
j=1
j 6=i

√
λiλj

[
e
i
~p(ai−aj)

p2

2m − E

]
φ(aj) = 0 . (10)
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This equation can be written as a homogeneous system of linear equations in a matrix form:

N∑
j=1

Φij(E)φ(aj) = 0 , (11)

where

Φij(E) =



1− λi
∫ ∞
−∞

dp

2π~
1

p2

2m − E
if i = j ,

−
√
λiλj

∫ ∞
−∞

dp

2π~
e
i
~p(ai−aj)

p2

2m − E
if i 6= j .

(12)

As usual, the matrix elements are denoted by Φij(E) and the matrix itself by Φ, so that Φ = {Φij(E)}.
Let us first assume that E < 0, i.e., E = −|E|, so that there is no real pole in the denominators of the
integrands. Let us now consider the integral in the off-diagonal part. The function under the integral
sign has simple poles located at the points (p = ±i

√
2m|E|) in the complex p-plane. In order to calculate

this integral by the residue method, we have to take into account separately the situations ai < aj and
ai > aj . We note that only the pole with sign plus (minus) lies inside the contour of integration for
ai > aj (aj > ai). Due to the exponential function, the integral over the semicircle vanishes as its radius
goes to infinite [19]. Then, the value of the integral is obtained multiplying by 2πi the residue at that
point:

∫ ∞
−∞

dp

2π~
e
i
~p(ai−aj)

p2

2m − E
=


m

~
√

2m|E|
exp

(
−
√

2m|E|(ai − aj)/~
)
, if ai > aj ,

m

~
√

2m|E|
exp

(
−
√

2m|E|(aj − ai)/~
)
, if ai < aj .

(13)

The diagonal part of the matrix Φ can be evaluated similarly, so equation (12) becomes:

Φij(E) =


1− mλi

~
√

2m|E|
if i = j ,

−
m
√
λiλj

~
√

2m|E|
exp

(
−
√

2m|E||ai − aj |/~
)

if i 6= j .

(14)

Equation (11) has only non-trivial solutions if det Φ(E) = 0. Therefore, the bound state problem is solved
once we find the solution to the transcendental equation det Φ(E) = 0. After that, we can find the bound
state wave functions in the coordinate representation through (8). Suppose that the bound state energy,
say EB, is the root of det Φ(E) = 0, and we find φB(aj) =

√
λjψB(aj) from Eq.(11) associated with EB.

Then, the bound state wave function at ai is

ψB(ai) =
1√
λi
φB(ai) . (15)
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Taking into account the above considerations, we use (15) into the bound state wave function in momen-
tum space (7) so as to obtain

ψ̃B(p) =
N∑
i=1

√
λi

e−
i
~pai

p2

2m − EB
φB(ai) . (16)

Then, the bound state wave function in the coordinate space can be found by just taking the inverse
Fourier transform of the above momentum space wave function

ψB(x) =

N∑
i=1

λi φB(ai)
√
m/2

e−
√

2m|EB |
~ |x−ai|

~
√
|EB|

, (17)

where φB(ai) is defined by
∑N

j=1 Φij(−|EB|) φB(aj) = 0. Suppose now that E > 0. In this case, we have
to find the wave function and contour integrals of the form∫ ∞

−∞

dp

2π~
e
i
~p(ai−aj)

p2

2m − E
, (18)

whose poles are now located at p = ±
√

2mE on the real axis, and there are four different choices of
contours, each of which gives different result [20]. It is easy to see that the wave function becomes now
the linear combination of the complex exponentials

e±i
√

2mE/~|x−ai| . (19)

Such a function cannot be square integrable unless it is identically zero . Therefore, there is no bound
state for E > 0. A similar analysis can be done for E = 0, where the wave function becomes divergent
over the whole real axis. Therefore, we conclude that E must be negative for bound states. From the
physical point of view, the bound state energies are expected to be less than the values of the potential
at asymptotes. For this reason, the bound state energies for finitely many Dirac delta potentials are
negative.

For a single center located at x = 0 with coupling constant λ, the matrix Φ is just a 1× 1 matrix, i.e.,
a single function: Φ(E) = 1− mλ

~
√

2m|E|
. Now, the condition det Φ(E) = 0 means that Φ(E) = 0, so that

the bound state energy is EB = −mλ2

2~2 for a single center [6]. After having found the bound state energy,
we can find the bound state wave function. For N = 1, φB(ai) is some constant, say C. Then, the bound
state wave function in momentum space becomes

ψ̃B(p) =
√
λ

1
p2

2m − EB
C . (20)

The constant C can be determined from the normalization constant:

λ |C|2(2m)2

∫ ∞
−∞

dp

2π~
1

(p2 + m2λ2

~2 )2
= 1 . (21)

The integral in Eq. (21) can also be evaluated using the residue theorem. However, in this case the

residues are at p = ±imλ~ and of order two. Taking the integral, we find C =
√
mλ
~ . Now we can find the
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wave function associated with this bound state in the coordinate space by taking its Fourier transform.
We perform the integration exactly as we did in (13), and obtain [6]

ψB(x) =

√
mλ

~
e−

mλ
~2 |x| . (22)

Let us first consider the special case of two centers, namely twin attractive (λ1 = λ2 = λ) Dirac δ
potentials located at a1 = 0 and a2 = a. Then, the expression det Φ(E) = 0 yields to the following
transcendental equation:

e−
a
√

2m|E|
~ = ±

(
~
√

2m|E|
mλ

− 1

)
. (23)

For convenience, we define κ ≡
√

2m|E|
~ . Suppose that κ+(κ−) corresponds to the solution of Eq. (23)

with the positive (negative) sign in front of the parenthesis, i.e.,

e−aκ+ =
~2κ+

mλ
− 1 , (24)

or

e−aκ− = 1− ~2κ−
mλ

. (25)

The bound state energies correspond to non-zero solutions for κ± of the above equations (24) and (25).
The first transcendental equation (24) always has one real root, which implies the presence of at least one
bound state. This is clear from the following considerations: the left hand side of (24) is a monotonically
decreasing function, which goes to zero asymptotically, while the right hand side is a monotonically
increasing function without any asymptote. However, the second transcendental equation (25) may or
may not have a real positive solution. One real root of Eq. (25) is expected for κ− = 0. However, this
cannot correspond to a bound state. In order to obtain a non trivial root, we must impose the condition
that the slope of the right hand side of (25) must be smaller than the slope of the left hand side in absolute
value. ∣∣∣∣ ddκ

(
1− ~2κ

mλ

) ∣∣∣∣
κ=0

∣∣∣∣ <

∣∣∣∣ ddκ (e−κa)
∣∣∣∣
κ=0

∣∣∣∣ . (26)

This means that the distance between the centers must be greater than some critical value for two bound
states:

a >
~2

mλ
. (27)

Hence, we conclude that there are at most two bound states for attractive twin Dirac delta potentials.
The first one appears unconditionally so that it corresponds to the ground state. On the other hand, the
second bound state appears only if a is sufficiently large ( ~2

maλ < 1). This corresponds to the excited state
of the system.

Actually, the explicit solutions to Eq.(24) and Eq.(25) can be easily found and then the bound state
energies are

E+ = −
(
λ

2
+

1

a
W

[
aλ

2
e−

aλ
2

])2

,
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E− = −
(
λ

2
+

1

a
W

[
−aλ

2
e−

aλ
2

])2

. (28)

where W is the Lambert W function [21], defined as the solution of the transcendental equation y ey = z,
i.e., y = W [z]. The above explicit solutions given in terms of Lambert W function have been known in
the literature, see for instance [22] and the recent work [23], where the non-linear generalization of the
problem has been discussed.

3 Bound States as a Finite Dimensional Eigenvalue Problem

In order to study location and properties of bound states more systematically, we consider the equation
(11) as the particular case of an eigenvalue problem for the matrix Φ:

Φ(E)A(E) = ω(E)A(E) , (29)

where ω is any of the eigenvalues of the matrix Φ. Then, the zeros of the eigenvalues of Φ are just the
bound state energies. In other words, the roots of the equation

ω(E) = 0 (30)

give the bound state energies. Hence, the eigenvalues of the linear differential equation Hψ(x) = Eψ(x)
are obtained through a non-linear transcendental algebraic problem, ω(E) = 0.

Let us consider the N = 2 case. For twin centers, located at a1 = 0, a2 = a, the eigenvalues can be
explicitly calculated:

ω1 = 1 +
mλ

~
√

2m|E|

(
−1− e−

1
~

√
2m|E|a

)
ω2 = 1 +

mλ

~
√

2m|E|

(
−1 + e−

1
~

√
2m|E|a

)
(31)

As shown in above Fig. 1, there are always two eigenvalues of the matrix Φ. However, for λ = 2
with ~ = 2m = 1, there are two bound states only if the distance between the centers is greater than the
critical value a = 1. Otherwise there is only one bound state, which is consistent with the result given in
the previous part. When the centers are sufficiently close to each other, one of the bound states seems to
disappear, since the zeros of the first eigenvalue seems to move to the negative real axis.

We also observe from Fig. 1 that the bound state energies come closer and closer as the distance
between them increases. This is not surprising since the eigenvalues (31) converge to 1 − mλ

~
√

2m|E|
as

a → ∞ so that zeroes of these degenerate eigenvalues lead to degenerate bound states in the limiting
case.

Now, we shall show why our method is much easier to investigate the bound state spectrum as we
increase the number of Dirac delta potentials. The number of bound states is an important characteristic
of any system. There are several ways to determine it for some regular potentials [24]. It is noteworthy
that we can determine the maximum number of bound states of this system from the behavior of the
eigenvalues of the matrix Φ(E) through the Feynman-Hellmann theorem [25, 26].
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Figure 1: The flow of the eigenvalues of the matrix Φ as a function of |E| for different values of a. Here
λ = 2 and ~ = 2m = 1.

To find the behavior of the eigenvalues as a function of E, let us first take the derivative of Φij(E)
with respect to E. We may interchange this derivative and the integral sign in (14), since all the matrix
elements Φij are analytic functions on the half plane <(E) < 0. Hence, we obtain

dΦij

dE
= −

√
λiλj

∫ ∞
−∞

dp

2π~
e
i
~p(ai−aj)

( p
2

2m − E)2
. (32)

Now, let us make use of the Feynman-Hellmann theorem, which states that

dω(E)

dE
= 〈Ak|dΦij

dE
|Ak〉 , (33)

where Ak is a given normalized eigenvector for ω(E). In other words, the Feynman-Hellmann theorem
states that the derivative of the eigenvalue of a parameter dependent Hermitian matrix is equal to the
expectation value of the derivative of the matrix with respect to its normalized eigenvector. The Feynman-
Hellmann theorem can be generalized for the degenerate states [27] but it does not change our conclusion
that we will draw. Thus, we have

dω(E)

dE
= −

√
λiλj

N∑
i,j=1

(Aki )
∗
∫ ∞
−∞

dp

2π~
e
i
~p(ai−aj)

( p
2

2m − E)2
Akj

= −
∫ ∞
−∞

dp

2π~
1

( p
2

2m − E)2

∣∣∣∣∣
N∑
i=1

e−
i
~pai

√
λi A

k
i

∣∣∣∣∣
2

< 0 . (34)

For E = −|E|, dω(E)
d|E| > 0. Since there are at most N distinct eigenvalues of the N×N matrix Φ and these

eigenvalues are monotonically increasing functions of |E|, there must be at most N bound states. This
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conclusion would have been rather difficult to arrive just by following the standard method, in which the
properties of the bound states are just determined by matching conditions at the locations of the delta
centers.

4 Degeneracies in the Bound States for Periodically Distributed Cen-
ters

Let us consider N Dirac delta potentials located equidistantly, i.e., a0 = 0, a1 = a, a2 = 2a, . . . , aN =
(N − 1)a and λ1 = . . . = λN = λ. Then, the matrix Φ given in Eq. (14) takes the following form

c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1
. . .

. . .
...

...
...

. . .
. . . c1

c1 c2 · · · cN−1 c0


N×N

(35)

where c0 = 1− mλ

~
√

2m|E|
and

cj = cN−j = − mλ

~
√

2m|E|
exp

(
−
√

2m|E|ja/~
)

(36)

for all j = 1, . . . , N − 1. The form of the matrix above (35) is usually known as the circulant matrix. By
using the Fourier matrix, it can be diagonalized and its eigenvalues can be found easily [15]. However,
showing this is the beyond the scope of the main aim of this paper. Nevertheless, it is a simple exercise
to show that 

c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1
. . .

. . .
...

...
...

. . .
. . . c1

c1 c2 · · · cN−1 c0




1
ζ l

ζ2l

...

ζ(N−1)l

 = λl


1
ζ l

ζ2l

...

ζ(N−1)l

 , (37)

where ζ is the N th root of the unity, i.e., ζ = e2πi/N and j = 0, 1, . . . , N − 1 and λl’s are the eigenvalues
of the matrix Φ, given by

ωj =

N−1∑
k=0

ck ζ
jk . (38)

Note that the above formula is reduced to (31) for N = 2. We realize that for N ≥ 3, the eigenvalues are
degenerate

ωj = ωN−j (39)
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for all j = 1, . . . , N − 1 since

ωj = c0 +
N−1∑
k=1

ck ζ
jk = c0 +

N−1∑
k=1

cN−k ζ
jk = c0 +

N−1∑
l=1

cl ζ
j(N−l) = c0 +

N−1∑
l=1

cl ζ
(N−j)l = ωN−j , (40)

where we have used ζN = 1 and j(N − l) = (N − j)l mod N [28]. Note that ω0 and ωN cannot
be degenerate. Since the matrix Φ is Hermitian, its algebraic multiplicity is equal to its geometric
multiplicity 1, the eigenvectors Aj associated with the degenerate eigenvalues ωj span the degenerate
space. The functions ωj(E) are monotonic functions of |E|, so there exists a one-to-one relation between
ωj(E) and its zeros. From the monotonic behavior of the eigenvalues ωj(E) and the explicit relation
between the bound state wave function and the eigenvectors Aj , we conclude that the bound state
energies are degenerate and the dimension of the degeneracy subspace of Φ is equal to the dimension of
the degeneracy subspace of the bound state wave functions. This is contrary to the common belief that
there is no degeneracy in one-dimensional bound state problems [7].

In order to understand why the non-degeneracy theorem breaks down, we first recall the standard
proof of the non-degeneracy theorem for one-dimensional bound state problem of a generic potential V .
Suppose that there are two bound states ψ1 and ψ2 associated with the same energy E. Then, it is easy
to show [7] that the Wronskian of these solutions must be equal to a constant C, i.e.,

W = ψ2
dψ1

dx
− ψ1

dψ2

dx
= C , (41)

for all x. For bound states, we expect that ψ → 0 as x → ±∞. As a consequence of this, one can
conclude that C = 0 as long as there is no blow up in the derivatives (this is one argument, where the
nondegeneracy theorem breaks down for potentials, see [12] ). This implies that

ψ2
dψ1

dx
= ψ1

dψ2

dx
. (42)

At points, where ψ1 and ψ2 are nonzero, the division to ψ1ψ2 is possible so that we have a separable
differential equation

ψ′1
ψ1

=
ψ′2
ψ2

. (43)

Hence, the solution to this is given by
ψ1 = c ψ2 .

This contradicts with the initial assumption, which proves that there can not be degeneracy in the bound
states of one-dimensional systems. This is the well-known standard proof of the nondegeneracy theorem.
However, the above solution is not necessarily true at the points where ψ1ψ2 = 0. Hence, the above
solution is valid only between the adjacent zeroes of the ψ1ψ2. As a result, c is constant in each region
where ψ1ψ2 6= 0 but this does not guarantee that the values of c are the same for all regions. We could
have multiple constant c′s, jumping to each other at the location of zeroes of ψ1ψ2. As Loudon [8] pointed
out that a discontinuous c implies that ψ1 and ψ2 cannot both have a continuous, finite derivative at their
zeroes. Since ψ1 and ψ2 satisfy the Schrödinger equation with the same eigenvalue, one can heuristically

1The algebraic multiplicity of an eigenvalue λ is the number times it is repeated as a root of the characteristic polynomial,
whereas the geometric multiplicity of λ is the maximal number of linearly independent eigenvectors associated with λ.
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expect that the potential V must have a singularity at the zeroes of ψ1ψ2. Therefore, the nondegeneracy
theorem does not have to be valid for potentials having singularities and there exist one-dimensional
singular potentials (e.g., one dimensional Hydrogen atom [8]), where degeneracies may occur.

Let us now explicitly show that the above argument is indeed the case for our problem. The explicit
form of the wave function associated with bound state energy EB = −|EB| can easily be computed by
substituting the solution Eq.(16) for λ1 = λ2 = · · · = λN = λ and the centers of delta potentials are
located equidistantly into Eq.(8) in the manuscript, so that we have

ψB(x) = λ

∫ ∞
−∞

dp

2π~
e
i
~px

N∑
i=1

e−
i
~pai

p2

2m + |EB|
φB(ai)

= λ
N∑
i=1

φB(ai)
√
m/2

e−
√

2m|EB |
~ |x−ai|

~
√
|EB|

. (44)

It is important to notice that φB is the eigenvector of the matrix Φ(E) associated with its zero eigenvalues
(see Eqs. (29), (30), and Eq. (11)). As explicitly shown in Eq. (37), we have

φB =


1
ζ l

ζ2l

...

ζ(N−1)l

 , (45)

where ζ is the Nth root of unity and j = 0, 1, · · · , N − 1. As a consequence of this, we obtain

ψB(ai) =
λ
√
m/2

~
√
|EB|

N∑
i=1

φB(ai)

=
λ
√
m/2

~
√
|EB|

(1 + ζ + ζ2 + · · ·+ ζ(N−1))

= 0 , (46)

due to the fact that (1 + ζ + ζ2 + · · ·+ ζ(N−1)) = 0 [29]. This shows that the bound state wave function
vanishes at the location where the potential has a singularity, namely at the location of the Dirac delta
centers. This is exactly the situation where the non-degeneracy theorem may break down as discussed
above. Hence, we explicitly show the reason why non-degeneracy theorem breaks down for our problem
when the Dirac delta centers are located equidistantly.

Actually, it has been demonstrated recently that the one-dimensional Hydrogen atom model may not
be indeed a counter example of the non-degeneracy theorem when it is investigated by a more rigorous
approach, namely the self-adjoint extension theory [30]. Although the method we have used in this paper
is heuristic rather than a rigorous analysis using the self-adjoint extension theory, where one has to deal
with the technicalities of the domain of the unbounded operators, it is completely consistent with the
self-adjoint extension treatment of the Dirac delta potentials given in [16], as shown in Appendix A.
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5 Non-degeneracy of the Ground State

For a generic distribution of centers, it is not obvious whether the ground state is non-degenerate or not.
Here, we shall show that this is indeed the case by using the Perron-Frobenius theorem (see page 661 in
[15]) for symmetric matrices. Actually, the proof of the non-degeneracy of the ground states for some class
of potentials has been discussed in [31] and the non-degeneracy of the ground state for point interactions
has been proved using the positivity preserving semi-groups generated by Φ and Beurling-Deny conditions
in [16]. Here we give a more elementary proof, which was also used in the two and three dimensional
version of the model in [32].

Let us first recall the Perron-Frobenius theorem:
Let A = (aij) be an N×N symmetric matrix with elements aij > 0 and let λ be the largest eigenvalue.

Then,

1. λ > 0.

2. There exists a corresponding eigenvector (xj) with every component xj > 0.

3. λ is non-degenerate.

4. If µ is any other eigenvalue, λ > |µ|.

In order to make our presentation self-contained, an elementary proof (just using the basic knowledge of
linear algebra) of this theorem is given in Appendix B [33].

Since the matrix Φ given in (14) is symmetric but not positive, we can not directly apply the Perron-
Frobenius theorem. Nevertheless, we can make Φ positive in such a way that the spectrum of the problem
is invariant. One simple way to achieve this is to subtract from Φ a diagonal matrix whose elements
coincide with the maximum of the diagonal elements of Φ and, then, reversing the overall sign:

Φ′(E) := −
[
Φ(E)− (1 + ε) max

Egr≤E<∞
diag (Φ11(E), . . . ,ΦNN (E))

]
> 0 , (47)

where ε is arbitrarily small positive number. Let Egr be the ground state energy. Since Φii(E) is a
decreasing function of E, maxE Φii(E) = Φii(Egr). Let us simplify this further by replacing Φii(Egr)
with maxi Φii(Egr) =: Φ(Egr, λmin), where λmin := mini λi. Here, we have used the fact that Φii is a
decreasing function of λi. Then, we define

Φ′′(E) := − [Φ(E)− (1 + ε) I Φ(Egr, λmin)] , (48)

where I is the identity matrix. Adding a diagonal matrix to Φ does not change its eigenvectors whereas
its eigenvalues are shifted by a constant amount. However, this is equivalent to an overall translation in
the bound state spectrum, which is physically unobservable. Hence, the transformed positive matrix Φ′′

and Φ have common eigenvectors and this guarantees that there exist a strictly positive eigenvector A for
Φ′′ and

Φ′′(E)A(E) = − [ω(E)− (1 + ε) I Φ(Egr, λmin)] A(E) = ω′′(E) A(E) . (49)
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The minimum eigenvalue of Φ corresponds to the maximum eigenvalue of Φ′′. For a given E, there exists
a strictly negative non-degenerate minimum eigenvalue of Φ, say ωmin(E) as a consequence of the Perron-
Frobenius theorem. Since we are looking for the zeros of the eigenvalues ω(E), ωmin goes to zero at the
ground state energy Egr = −|Egr|, as can be easily seen in Fig. 2. In other words, we must have

ωmin(Egr) = 0 . (50)

Then, from the remaining part of the Perron- Frobenius theorem, we conclude that there exists a corre-
sponding positive eigenvector Ai(Egr) associated with the non-degenerate minimum eigenvalue ωmin(Egr).
Using

ψgr(x) =
N∑
i=1

√
λi

∫ ∞
−∞

dp

2π~

(
e
i
~p(x−ai)

p2

2m + |Egr|

)
Ai(Egr)

=
N∑
i=1

√
λi Ai(Egr)

(
m

~
√

2m|Egr|
exp

(
−
√

2m|Egr||x− ai|/~
))

, (51)

we also conclude that ψgr(x) is positive so it has no node.

absolute value of the ground state energy

Ω

 E¤

Ω1

Ω2

»

»

ΩN

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Figure 2: Flow of the eigenvalues of Φ

Another important result about the bound states is that the ground state energy increases when we
remove one of the centers from the system. This can be seen from the Cauchy interlacing theorem and
the monotonic behavior of the eigenvalues ω of the matrix Φ. The Cauchy interlacing theorem states the
following (page 552 in [15]):

Let A be a Hermitian matrix of order N and let B be a principal submatrix of A of order N − 1. Let
us list the eigenvalues of A in decreasing order as λN ≤ λN−1 ≤ · · · ≤ λ2 ≤ λ1 and the same with the
eigenvalues of B as µN ≤ µN−1 ≤ · · · ≤ µ2. Then, we have

λN ≤ µN ≤ λN−1 ≤ µN−1 ≤ · · · ≤ λ2 ≤ (52)
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A simple proof of this theorem using the intermediate value theorem in Calculus is given in Appendix
C. Suppose now that we have N Dirac delta centers along with the associated N ×N matrix Φ. As we
remove one single center, its spectrum is determined from the principal submatrix of Φ of order N − 1.
From Cauchy interlacing theorem, the eigenvalues of the matrix Φ, with order N , are interlaced with
those of any principal submatrix of Φ of order N − 1. This means that the minimum eigenvalue of the
principal submatrix of Φ is greater than or equal to the minimum eigenvalue of Φ. Since the eigenvalues
are increasing functions of |E|, we conclude that new minimum eigenvalue goes to zero at a lower point in
the |E| axis. Hence, the ground state energy increases for the new system. Actually, this argument can
be applied to all other bound states as well. In other words, the bound state spectrum is shifted upwards
as we remove one center from the system.

The analysis of the resonance phenomena of the simpler version of the above model with positive
strengths of the delta potential has been recently discussed by [34]. Our formulation here can be also
useful for studying the resonances but we shall study the analysis of resonances for a future work
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Appendix-A: The relation Between Our Formalism and the Self-Adjoint
Extension Treatment of the Problem

The resolvent formula associated with the finitely many point interactions is well-known and given as a
Theorem 2.1.1 in [16]

(−∆α,Y − k2)−1 = Gk +

N∑
i,j=1

[Γα,Y (k)]−1
ij (Gk(.,−aj), .)Gk(.,−ai) , (A-1)

where ai ∈ Y , Y = {a1, a2, · · · , aN}, ∆α,Y is the self-adjoint extension of the free Hamiltonian defined in
(2.1.5) in [16], Gk = (−∆− k2)−1, with k2 is in the resolvent set of −∆α,Y , =k > 0, and

[Γα,Y (k)]ij =


−
[
α−1
i +

i

2k

]
if i = j ,

− i

2k
eik|ai−aj | if i 6= j .

(A-2)

Here the free resolvent kernel is given by Gk(x − y) = i
2ke

ik|x−y|. Theorem 2.1.3 in [16] states that the
bound state spectrum of the problem (as can be seen from the above resolvent formula) can be found
from the zeroes of the det[Γα,Y (k)]. It is important to notice that ~ = 2m = 1 in [16].
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Let us explicitly show that our heuristic formulation of the point interactions is completely consistent
with the one given above. If we choose αi → −λi and restrict the matrix Γ onto the negative real E axis,
namely k = i

√
|E| (E = k2 and =k > 0), we obtain

[Γλ,Y (E)]ij =



[
λ−1
i −

1

2
√
|E|

]
if i = j ,

− 1

2
√
|E|

e−
√
|E||ai−aj | if i 6= j .

(A-3)

It is easy to show that our matrix Φ given in Eq. (14) is related by Γ(E) through the following similarity
transformation

S Γ(E) ST = Φ(E) , (A-4)

where S = diag(
√
λ1, · · · ,

√
λN ). Here we have removed the subscripts λ and Y of Γ. This shows that

det Γ(E) = det Φ(E) so that our formulation is equivalent to the one given in [16]. The only difference is
that we exclude the case, where λi’s are infinite and consider only the bound states.

Appendix-B: A Proof of Perron-Frobenius Theorem

We give the simple proof of the Perron-Frobenius theorem for symmetric matrices given in [33]. Since the
eigenvalues of A are real and the sum of the eigenvalues are equal to the trace of A, we have TrA > 0.
Then, λ > 0. Let (uj) be any real normalized eigenvector associated with the eigenvalue λ. Then, we
have

Aui = λui =
∑
j

aij uj , (B-1)

for i = 1, . . . , n . Setting xj = |uj |, we get

0 < λ =
∑
ij

aij ui uj =
∣∣∣∑
ij

aij ui uj

∣∣∣ , (B-2)

and

λ ≤
∑
ij

|aij | |ui| |uj | =
∑
ij

aij xi xj . (B-3)

By means of the variational theorem, the right hand side is less than or equal to λ (it is equal if and only
if (xj) is the eigenvector associated with the eigenvalue λ). Hence, we obtain

λxi =
∑
j

aij xj , (B-4)

for i = 1, . . . , n. Therefore, if xi = 0 for some i, then because of aij > 0 for all j, xj = 0 which cannot be
true. Thus, xj > 0. This completes the first two part of the theorem.
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For the third part, let us assume that λ is degenerate. Hence, we can find two real orthonormal
eigenvectors (uj) and (vj) associated with λ. Suppose that ui < 0 for some i. From the addition of Eq.
(B-1) and (B-4), we have

λ(ui + xi) =
∑
j

aij (uj + xj)⇒ λ (ui + |ui|) =
∑
j

aij (uj + |uj |) . (B-5)

Then, uj = −|uj | for every j. If we assume that ui > 0 for some i and subtracting Eq. (B-4) from
(B-1), we obtain uj = |uj |. That means uj = ±|uj | and by applying the same procedure, we also have
vj = ±|vj |. Therefore, ∑

j

vj uj = ±
∑
j

|vj uj | . (B-6)

Since |uj |, |vj | 6= 0 for all j, |vj uj | 6= 0 which means that u and v cannot be orthogonal. Because of the
contradiction with the first assumption, we conclude that λ is non-degenerate.

As for the last part, let (wj) be a normalized eigenvector associated with µ such that µ < λ,∑
j

aij wj = µwi . (B-7)

From the variational property and the non degeneracy of λ, we have

λ >
∑
ij

aij |wi| |wj |
∣∣∣ ≥ ∣∣∣∑

ij

aij wiwj

∣∣∣ = |µ| . (B-8)

Appendix-C: A Proof of Cauchy Interlacing Theorem

Here we give a simple proof of Cauchy interlacing theorem using intermediate value theorem. This proof
is originally given in [35] and we give it here in order to be self-contained. Without loss of generality, the
submatrix B occupies rows 2, 3, . . . , N and columns 2, 3, . . . , N . Then, the matrix A has the following
form:

A =

(
a y†

y B

)
(C-1)

where † denotes the Hermitian conjugation. Since B is also Hermitian, we can diagonalize it by a unitary
transformation U :

U †B U = D , (C-2)

where D = diag(µ2, µ3, . . . , µN ). For simplicity, let us define a new vector z = (z2, z3, . . . , zN )T := U † y,
where T denotes the transposition. Here we only give the proof for the special case, where µN < µN−1 <
· · · , < µ3 < µ2 and zi 6= 0 for all i = 2, 3, . . . , N . The complete proof can be found in [35]. Let

V =

(
1 0T

0 U

)
, (C-3)
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where 0 is the zero vector. Since U is unitary, V is also unitary. It is easy to see that

V †AV =

(
a z†

z D

)
. (C-4)

Let us define the following function f :

f(x) := det(xI −A) , (C-5)

where I denotes the identity matrix. Since the determinant is invariant under unitary transformations,
we have f(x) = det(xI − V †AV ), or explicitly

f(x) =



x− a −z2
∗ −z3

∗ · · · −zN−1
∗ −zN ∗

−z2 x− µ2 0 0 · · · 0

−z3 0 x− µ3 0
. . .

...
...

...
...

...
. . . 0

−zN−1 0 · · · 0 x− µN−1 0
−zN 0 0 0 0 x− µN


. (C-6)

If we expand this determinant along the first row, we get

f(x) = (x− a)(x− µ2) · · · (x− µN )−
N∑
i=2

fi(x) , (C-7)

where fi(x) = |zi|2(x − µ2) · · · ̂(x− µi) · · · (x − µN ) for i = 2, 3, . . . , N . Here the factor with a hat is
deleted. Note that fi(µj) = 0 for j 6= i and

fi(µi)


> 0 if i is even ,

< 0 if i is odd .

(C-8)

Since f(µi) = −fi(µi), the sign of f(µi) is opposite to that of fi(µi). It is easy to see that f(x) is a
polynomial of degree N with positive leading coefficient. Using this and the fact f(x) is the characteristic
equation for the matrix A, and intermediate value theorem [36], we conclude that there exist N roots
λ1, λ2, · · · , λN of the equation f(x) = 0 such that

λN < µN < λN−1 < µN−1 < · · · < λ2 < µ2 < λ1 . (C-9)

This is the result we wanted to show.
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