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Abstract. Solutions of the one-dimensional Schrödinger equation are found when point
interactions of the type aδ(x − q) + bδ′(x − q) are placed either in a couple of points or in
a regular lattice. The results obtained in the present study are a first step toward a rigorous
mathematical model of real metamaterials is Solid State Physics.

1. Introduction

One dimensional (1D) models with point interactions have received much attention in the
recent literature (see Ref. [1] and references therein). They can model small and abrupt
defects in materials allowing to perform analytic calculations such as the tunnel effect and the
Casimir force. They are also interesting in the analysis of heterostructures in connection to an
abrupt effective mass change. The general inquiry of point interactions of the free Hamiltonian

H0 = − ~2

2m
d2

dx2 is mainly due to Kurasov [2] and it is based on the construction of self-adjoint
extensions of symmetric operators with identical deficiency indices. Muñoz-Castañeda and
coworkers [3] reformulated the theory of self-adjoint extensions of symmetric operators over
bounded domains in terms of meaningful quantities from a Quantum Field Theory (QFT) point
of view, allowing a rigorous study of the theory of quantum fields over bounded domains and the
quantum boundary effects. In this context, it is well known that set of self-adjoint extensions of
H0 defined over the space (−∞, q) ∪ (q,∞) is given by the unitary group U(2) and therefore is
a 4-parameter family of operators. Some of some of these self-adjoint extensions are associated
to the Hamiltonians H0 plus point-supported potential aδ(x − q) + bδ′(x − q), see [4]. This
perturbation is of great interest in Quantum Mechanics from mathematical and physical points
of view, and has been largely discussed in [4, 5]. Although it is totally clear which self-adjoint
extension corresponds to the 1D-Dirac delta, there is no consensus on which one should be
assigned to its derivative.

In the framework of QFT the spectra and eigenstates of non-relativistic Schrödinger operators
provide one-particle states in scalar (1+1)-QFT systems. Point supported potentials can be used
in scalar QFT on a line to model impurities and classical singular backgrounds that interact with
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quantum vacuum fluctuations. The most successful results in the frame of QFT are obtained in
Casimir-type set-ups where the scattering data allow to compute the distance dependence finite
part of the quantum vacuum energy for the quantum vacuum fluctuations that live between two
plane parallel plates. In particular, configurations of two pure delta potentials added to the free
Schrödinger Hamiltonian allowed to compute the quantum vacuum interaction energy between
two parallel semitransparent Dirac δ-plates in terms of the scattering data of the pure double
delta potential on the real line, see [5]. The same configuration of delta interactions is addressed
as a perturbation of the Salpeter Hamiltonian. Additionally, generalized Dirichlet boundary
conditions were discussed, showing that the use of δ-δ′ potentials provides a much larger set of
admissible boundary conditions, and the quantum vacuum energies between two plane parallel
plates represented by a δ-δ′ potential in arbitrary space-time dimension were computed [5].

Since the zero range potentials mimic the plates in a Casimir effect setup, it is interesting to
consider a three-plate configuration (Casimir pistons) and investigate the Casimir forces acting
of the plate in the middle that is supposed to be mobile in a piston configuration. In particular,
it is meaningful to displace the central plate towards one of the other two placed in the boundary;
thus, we find the main physical motivation to study the particular situation where two δ − δ′

interactions are superimposed. This is the first problem that will be addressed in Section 2, and
the outcome is surprising: a non-abelian addition law emerges and it corresponds to the group
law of the Borel subgroup of the SL2(R) group. The other focus of interest is the case where
the δ′-couplings are exceptional, i.e., those couplings for which the transmission coefficients are
zero and the plates become completely opaque: the left-right decoupling limit. It happens
that the distinguished Dirichlet/Robin boundary conditions are implemented in this case by the
δ − δ′-potentials but the superposition law just mentioned becomes singular [6].

An ideal model of electric conductivity in solids is provided by a δ-Dirac comb where δ-point
interactions sit at the ions sites. This model can be enriched by adding a δ′ potentials at every
site of the lattice. This is the objective of Sec. 3, which is a work presently in progress [7].

2. One and two singular perturbations on a line

First of all, let us consider first the one-dimensional Schrödinger equation with singular potential

− ~
2

2m

d2

dx2
ψ(x) + aδ(x− d)ψ(x) + bδ′(x− d)ψ(x) = E ψ(x). (1)

Introducing the dimensionless quantities x = ~

mc
y, d = ~

mc
p, w0 = 2a

~c
, w1 = mb

~2
, ε = 2E

mc2
, and

ϕ(y) = ψ(x), the Hamiltonian is simply

− d2

dy2
ϕ(y) + w0δ(y − p)ϕ(y) + 2w1δ

′(y − p)ϕ(y) = εϕ(y). (2)

The point potential we are interested in is usually defined via the theory of self-adjoint extensions
of symmetric operators of equal deficiency indices, so that the total Hamiltonian in (2) is self-
adjoint. The crucial point is to find the domain of wave functions ϕ(y) that makes H0 self-
adjoint over the domain R/{p} and characterizes the potential V (y). As these functions and
their derivatives should have a discontinuity at y = p, we have to define the products of the form
δ(y − p)ϕ(y) and δ′(y − p)ϕ(y). These can be done in several ways, and we choose the following:

δ(y − p)ϕ(y) = ϕ(p+) + ϕ(p−)

2
δ(y − p) , (3)

δ′(y − p)ϕ(y) = ϕ(p+) + ϕ(p−)

2
δ′(y − p)− ϕ′(p+) + ϕ′(p−)

2
δ(y − p) . (4)



3

1234567890

International Conference on Quantum Phenomena, Quantum Control and Quantum Optics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 839 (2017) 012007  doi :10.1088/1742-6596/839/1/012007

To obtain a self-adjoint determination of H = H0 + V (y) = H0 + w0δ(y − p) + 2w1δ
′(y − p),

we have to find a self-adjoint extension of H0. To do it, we have to find a domain on which
this extension acts, which is given by the Sobolev space W 2

2 (R \ {p}) of absolutely continuous
functions f(y) with absolutely continuous derivative f ′(y), both having arbitrary discontinuities
at p, such that the Lebesgue integral given by

∫ ∞

−∞

{|f(y)|2 + |f ′′(y)|2} dy

converges, and such that at p satisfy the following matching conditions:

(

ϕ(p+)

ϕ′(p+)

)

=







1 + w1

1− w1
0

w0

1− w2
1

1− w1

1 + w1







(

ϕ(p−)

ϕ′(p−)

)

. (5)

These results could be extended to interactions of the type
∑
(

aiδ(y−pi)+2biδ
′(y−pi)

)

, where
the sum could be either finite or infinite.

2.1. Two singular perturbations on a line

We assume now that the total Hamiltonian is H = H0 + V +W , with

H0 = −
d2

dy2
, V = v0δ(y) + 2v1δ

′(y), W = w0δ(y − p) + 2w1δ(y − p). (6)

V is supported at the origin y = 0 and W is supported at p > 0. The potential V + W is
related to the Casimir effect. One of the motivations of this work is the study of the effect of
the superposition of the two point potentials V and W at the same point (taking the limit as
p → 0). We shall see that we obtain a point potential of the type u0δ(y) + 2u1δ

′(y), where u0
and u1 are not the sums v0 + w0 and v1 + w1.

2.1.1. Matching conditions and scattering coefficients. In order to analyze ϕ(y), the solution
of (6), let us split the real line into the regions (1) y < 0, (2) 0 < y < p, and (3) p < y, where

ϕi(y) = Ai e
−iky +Bi e

iky , ϕ′i(y) = −ik(Ai e
−iky −Bi e

iky) , i = 1, 2, 3 , k2 = ε > 0.

Since the point potential V is defined by matching conditions like those in (5), we have

(

A2

B2

)

= K−1MvK

(

A1

B1

)

, Mv =







1 + v1
1− v1

0

v0
1− v21

1− v1
1 + v1






, K =

(

1 1
−ik ik

)

. (7)

This expression gives the matching conditions at y = 0. At the point y = p we get
(

A3

B3

)

= Q−1K−1MwKQK−1MvK

(

A1

B1

)

= Tp

(

A1

B1

)

, (8)

where the definition of Tp is obvious, while Q and Mw are respectively:

Q =

(

e−ipk 0
0 eipk

)

, Mw =







1 + w1

1− w1
0

w0

1− w2
1

1− w1

1 + w1






. (9)
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The Tp-matrix in (8) relates the asymptotic behavior of the two linearly independent Jost
scattering solutions at y << 0 with their counterparts at y >> 0. Remark that

detTp = T 11
p T 22

p − T 12
p T 12

p = 1 , T 11
p = T̄ 22

p , T 12
p = T̄ 21

p ⇒ Tp ∈ SL2(C).

From the Tp-matrix one obtains the 2× 2 unitary scattering matrix Sp:

Sp =
1

T 11
p

(

1 −T 12
p

T 21
p detTp

)

, S†p =
1

T̄ 11
p

(

1 T̄ 21
p

−T̄ 12
p detTp

)

, S†pSp =

(

1 0
0 1

)

. (10)

The transmission and reflection coefficients provide the usual form of writing the Sp matrix:

Sp =

(

t(k) rR(k)
rL(k) t(k)

)

, (11)

where t(k) is the amplitude of the transmitted waves coming from the far left or from the far
right. Time-reversal invariance implies tR(k; p) = tL(k; p) = t(k; p). However, as the potential is
not parity invariant, the reflection amplitudes are different for incoming waves either from the
far right or the far left: rR(k; p) 6= rL(k; p). We explicitly find:

rL(k; p) = −[e−2ipk
(

2k
(

v21 + 1
)

+ iv0
)

(4kw1 − iw0) + (4kv1 − iv0)
(

2k
(

w2
1 + 1

)

− iw0

)

]/∆(k),

rR(k; p) = [e2ipk
(

2k
(

v21 + 1
)

− iv0
)

(4kw1 + iw0) + (4kv1 + iv0)
(

2k
(

w2
1 + 1

)

+ iw0

)

]/∆(k),

t(k; p) = 4k2(1− v21)(1− w2
1)/∆(k),

where ∆(k) = e2ikp(v0 + 4ikv1)(w0 − 4ikw1) + (2kv21 + 2k + iv0)(2kw
2
1 + 2k + iw0) is a function

of k and the other parameters of the problem.

2.2. Bound/antibound states and resonances

Complex zeroes of T 11
p (k) = ∆(k)/[4k2(1−v21)(1−w2

1)] (poles of the Sp-matrix) give rise to bound
or antibound states if are located on the purely imaginary, respectively positive or negative half-
axis. Complex zeroes coming in pairs having opposite real part and identical imaginary part
correspond to resonances. Then the relevant physical information is encoded in the analysis of
complex zeroes of ∆(k). If we make the changes

2kp = z, σ =
pv0

1 + v21
, τ =

pw0

1 + w2
1

, v =
v1

1 + v21
, w =

w1

1 + w2
1

, (12)

then, ∆(k) = 0 is equivalent to

eiz = −
(

z + iσ

σ + 2ivz

)(

z + iτ

τ − 2iwz

)

, z = zr + izi, zr, zi ∈ R. (13)

Equation (13) is a generalization of the so-called generalized Lambert equation, from where we
can obtain two real equations, corresponding to its real and imaginary parts
[

4vwz2r − (2vzi − σ)(2wzi + τ)
]

cos zr − 2zr(τv + 4vwzi − σw) sin zr =
[

(zi + σ)(zi + τ)− z2r
]

ezi .

2zr(τv + 4vwzi − σw) cos zr +
[

4vwz2r − (2vzi − σ)(2wzi + τ)
]

sin zr = −zr(2zi + σ + τ)ezi .

A simpler compatibility condition is this Lambert equation in two real variables

e2zi =
(4v2z2r +

(

2vzi − σ)2
) (

4w2z2r + (2wzi + τ)2
)

(z2r + (zi + σ)2) (z2r + (zi + τ)2)
. (14)

We can easily check that a simple solution of the system is zr = 0, zi = 0, but this corresponds
to k = 0, which is a pole of T 11

p (k). The typical behavior of the solutions of these equations is
shown in Fig. 1, where the blue curves are the real part, the yellow ones the imaginary part and
the green curve is the compatibility condition (14).
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Figure 1.

2.3. The addition law at the p = 0 limit

We can summarize what happens in the limit p → 0 as follows: the Tp matrix for two-pairs of
δ − δ′ interactions displaced from each other a distance p becomes:

(

A3

B3

)

= K−1Mw ·MvK

(

A1

B1

)

= K−1MuK

(

A1

B1

)

. (15)

Then, the superposition of these two δ − δ′ is equivalent to a single δ − δ′ where the matching
conditions are characterized by the Kurasov matrix

Mu =







1 + u1
1− u1

0

u0
1− u21

1− u1
1 + u1






, u1 =

v1 + w1

1 + v1w1
, u0 =

v0(1− w1)
2 + w0(1 + v1)

2

(1 + v1w1)2
. (16)

This addition law is quite interesting. It can be proved [6] that the Kurasov matrices is the
Borel subgroup of SL2(R), with the product law Mv ·Mw = Mu given by (16). It can be also
shown that the p→ 0 limit of the scattering coefficients of two a priori separated pairs of δ− δ′
interactions is

lim
p→0

Sp(Mv,Mw) = S(Mv ·Mw) = S(Mu) (17)

Hence, the scattering matrices produced by two superimposed pairs of δ − δ′ interactions give
rise to a representation of the non-abelian composition law of Kurasov matrices. In other words,
the non-abelian addition law (16) also works for the scattering coefficients.

2.4. The left-right decoupling values of the δ′ couplings

It is interesting to stress that there are singularities of the Kurasov matrix Mv,Mw in (7) and
(9) at the critical points v1 = ±1 and w1 = ±1. One may expect that these critical cases, where
the transmission coefficients are zero, do not contribute to the group structure that we have
previously explained. The completely opaque potentials have one of the following forms:

V = v0δ(y)± 2δ′(y) and/or W = w0δ(y − p)± 2δ′(y − p) . (18)

In order to define these potentials, we cannot use the same matching conditions as before.
Instead, following the work of Kurasov, we shall impose:

(i) For v1 = 1: ϕ(0−) = 0 , ϕ′(0+) = v0 ϕ(0
+)/4.

(ii) For w1 = 1: ϕ(p−) = 0 , ϕ′(p+) = w0 ϕ(p
+)/4 .

(iii) For v1 = −1: ϕ(0+) = 0 , ϕ′(0−) = −v0 ϕ(0−)/4.
(iv) For w1 = −1: ϕ(p+) = 0 , ϕ′(p−) = −w0 ϕ(p

−)/4 .
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Thus, we set Dirichlet boundary conditions on one side of the two points y = 0 and y = p, whereas
Robin boundary conditions are chosen on the other. There are eight possible configurations
involving at least one decoupling configuration of the couplings: either the two δ−δ′ interactions
build opaque walls both at y = 0 and y = p, or there is no transmission only at one point. We
discuss first the four cases when the two δ′ couplings take the decoupling limit.

2.4.1. Two δ′ couplings in the decoupling limit. There are four cases in which we have
decoupling situations both at y = 0 and y = p. Let us consider them separately.

Case 1: v1 = 1, w1 = 1. The boundary conditions are given by ϕ(0−) = 0, ϕ′(0+) =
v0 ϕ(0

+)/4, ϕ(p−) = 0, ϕ′(p+) = w0 ϕ(p
+)/4. For y = 0+, the condition is written as:

− ik(A2 −B2) =
v0
4
(A2 +B2) =⇒

A2

B2
= −v0 − 4ik

v0 + 4ik
= − exp

(

−2i arctan 4k

v0

)

. (19)

For y = p−, we obtain A2 e
−ikp + B2 e

ikp = 0. Then, we have a transcendental equation, which
can be written either in the form of a generalized Lambert equation e2ikp = (v0−4ik)/(v0+4ik),
or tan(kp) = −4k/v0. This equation has a countably infinite number of solutions, kn, that give
the energy levels corresponding to this case. In the limit p = 0, we have only one solution, k = 0.
Outside the interval [0, p], we have the equations

ϕ(0−) = 0 =⇒ A1 +B1 = 0 ϕ′(p+) =
w0

4
ϕ(p+) =⇒ A3

B3
= −e2ikp w0 − 4ik

w0 + 4ik
. (20)

These are relations between coefficients, which do not provide of any further information, so
that we shall not refer for similar situations which will appear for all other cases.

Case 2: v1 = 1, w1 = −1. The boundary conditions are ϕ(0−) = 0, ϕ′(0+) = v0 ϕ(0
+)/4,

ϕ(p+) = 0, ϕ′(p−) = −w0 ϕ(p
−)/4. The condition at y = 0 has already been studied. From the

new boundary condition at y = p:

− kp = arctan
4k

w0
+ arctan

4k

v0
=⇒ tan(kp) = − 4k(w0 + v0)

w0v0 − 16k2
. (21)

This new transcendental equation gives another set of energy eigenvalues, seen in the left hand
side of next Figure. In the limit p→ 0, we have only one solution: k = 0.

Case 3: v1 = −1, w1 = 1. The boundary conditions are such that A2+B2 = 0 and ϕ(p−) = 0,
which is A2/B2 = −e2ikp, so that

A2

B2
= −1 = −e−2ikp =⇒ k =

πn

p
. (22)

Again, in the limit p = 0, the only solution is k = 0.

Case 4: v1 = −1, w1 = −1. This correspond to ϕ(0+) = 0, ϕ′(0−) = −v0 ϕ(0−)/4, ϕ(p+) = 0,
ϕ′(p−) = −w0 ϕ(p

−)/4. Then, the transcendental equation giving the energy levels is given by

e2ikp =
w0 − 4ik

w0 + 4ik
⇐⇒ tan(kp) = −(4k)/(w0). (23)

This transcendental equation also has a countably infinite number of solutions, kn, that give the
energy levels corresponding to this situation, seen in the right hand side of Fig. 2. Once more,
in the limit p→ 0, only the solution k = 0 remains.
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Figure 2.

2.4.2. Only one δ′ coupling in the decoupling limit. Let us consider the following four cases:

Case 1: v1 = 1, w1 6= ±1. Skipping the technical details, the system behaves as if there is an
impenetrable barrier at y = 0. The coefficients A3, B3 are obtained from A2, B2:

(

A3

B3

)

=









2k(1 + w2
1) + iw0

2k(1− w2
1)

e2ikp
4kw1 + iw0

2k(1− w2
1)

e−2ikp
4kw1 − iw0

2k(1− w2
1)

2k(1 + w2
1)− iw0

2k(1− w2
1)









(

A2

B2

)

. (24)

All the relevant information about bound states, anti-bound states and resonances is obtained
imposing the purely outgoing boundary condition, which in our case is A3 = 0. Then, we get

e2ikp =
v0 − 4ik

v0 + 4ik

2k(1 + w2
1) + iw0

4kw1 + iw0
. (25)

This equation is the equivalent of ∆(k) = 0, which provides the relevant information in the
non-decoupling case. Indeed, (25) is obtained making v1 = 1 in ∆(k) = 0. The analysis in this
case is similar to the one carried out previously. We are very interested in the limit p → 0.
Then, from (25) we get (v0 + 4ik)(4kw1 + iw0) = (v0 − 4ik)(2k(1 + w2

1) + iw0). The complex
solutions of this equation are k0 = 0, k1 = −i(4w0 + v0(1 − w1)

2)/(4(1 + w1)
2). The solution

k = 0 is not relevant, but the other produces interesting results:

• If 4w0 + v0(1− w1)
2 < 0, k1 is on the positive imaginary axis and it is a bound state.

• If 4w0+ v0(1−w1)
2 > 0, k1 is on the negative imaginary axis and it is an anti-bound state.

The curves solving the equations Re(∆) = 0 (blue) and Im(∆) = 0 (yellow) are represented on
the left hand side of the next Figure (the green line is the real exis).

Case 2: v1 = −1, w1 6= ±1. The system behaves also as if there were an impenetrable
barrier at y = 0. Now, the purely outgoing boundary condition A3 = 0 implies that
e2ikp = (2k(1 + w2

1) + iw0)/(4kw1 + iw0). See the right hand side of Fig. 3. In the limit
p→ 0 we get the unique solution k = 0.

Case 3: v1 6= ±1, w1 = 1. It is similar to the previous one.

Case 4: v1 6= ±1, w1 = −1. This is similar to the first case studied before. Imposing the
purely outgoing boundary condition B1 = 0, we get

e2ikp = −w0 − 4ik

w0 + 4ik

2k(1 + v21) + iv0
4kv1 − iv0

. (26)

In the limit p→ 0, we have the complex solutions k0 = 0, k1 = −i(4v0+w0(1+v1)
2)/(4(1−v1)2).

The solution k = 0 is not relevant, but the other one, k1, corresponds either to a bound state if
4v0 + w0(1 + v1)

2 < 0, or to an anti-bound state if 4v0 + w0(1 + v1)
2 > 0.
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Figure 3.

3. A hybrid δ − δ′ Dirac comb

A very well known example of exactly solvable periodic potential used in Solid State Physics
is the Kronig-Penney model, which describes electron motion in a period array of rectangular
barriers. The Dirac-Kronig-Penney model can be considered as a special case of the Kronig-
Penney model obtained by taking the appropriate limit in such a way that the rectangular
barriers become Dirac delta distributions. Hence, very naturally comes the idea of considering
a modified Dirac comb adding a δ′ in every singular point. The dimensionless Schrödinger
equation for such an hybrid Dirac comb becomes:

− d2ψ(y)

dy2
+

(

∑

n∈Z

[

w0δ(y − na) + 2w1δ
′(y − na)

]

)

ψ(y) = εψ(y). (27)

To solve it, first, we will solve the equation in (−a, 0) (region I) and (0, a) (region II):

ψI(y) = AI e
iky +BI e

−iky, ψII(y) = AII e
iky +BII e

−iky , ε = k2. (28)

Hence, ψ′I(y) = ikAI e
iky − ikBI e

−iky, ψ′II(y) = ikAII e
iky − ikBII e

−iky. In compact matrix
form, these solutions can be written as follows (J = I, II):

(

ψJ(y)
ψ′J(y)

)

= KQy

(

AJ

BJ

)

, K =

(

1 1
ik −ik

)

, Qy =

(

eiky 0
0 e−iky

)

. (29)

Now, we impose Kurasov’s matching conditions at y = 0, as in the previous Section:
(

AII

BII

)

= K−1TwK

(

AI

BI

)

. (30)

Finally, as the potential is periodic, Floquet-Bloch theory establishes that for a periodic potential
of period a, the wave functions are quasi-periodic, a plane wave times a periodic function:

ψ(y) = eiqyφ(y) , q ∈ R , q ' q +
2π

a
n , n ∈ Z , φ(y + a) = φ(y) ,

which implies that ψ(y + a) = eiqaψ(y), henceforth ψ′(y + a) = eiqaψ′(y). The Floquet index q
is conventionally referred to as quasi-momentum. Thus, we write for y ∈ (−a, 0),

(

ψII(y + a)
ψ′II(y + a)

)

= eiqa
(

ψI(y)
ψ′I(y)

)

. (31)

Using the explicit form of the solutions in that equation we get

KQyQa

(

AII

BII

)

= eiqaKQy

(

AI

BI

)

. (32)
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In order to find non-trivial solution, we must have det
[

eiqa I−QaK
−1TwK

]

= 0. After some
algebra, we obtain the following dispersion relation guaranteeing that the determinant is null:

cos qa = f(w1)

[

cos ka+
a

2
w0 g(w1)

sin ka

ka

]

, f(w1) =
1 + w2

1

1− w2
1

, g(w1) =
1

1 + w2
1

. (33)

If the δ′ interactions are switched off, w1 = 0, the band spectral equation for the standard Dirac
comb reappears. On the other hand, if we define the 2 × 2-matrix Ω(1) = MaK

−1
TwK, the

band spectrum condition or dispersion relation can re-written as cos(qa) = tr(Ω(1))/2. Since
cos(qa) ∈ (−1, 1) only those momenta/energies that satisfy

∣

∣tr(Ω(1))
∣

∣ ≤ 2 comply with the
spectral condition and therefore characterize the allowed band spectrum of the ideal 1D crystal
described by the δ − δ′ comb.

3.1. Analysis of the structure of the band spectrum

The analysis of the band structure of the energy spectrum of a periodic but not even potential
with period a demands the solution of the transcendent equation:

cos qa =

[

t2(k)− rR(k)rL(k) + 1
]

cos ka+ i
[

t2(k)− rR(k)rL(k)− 1
]

sin ka

2t(k)
(34)

=
cos [ka+ δ(k)]

|t(k)| ,

which depends only on the scattering data for a single point-potential. In the case of a single
δ − δ′ interaction in the y ∈ [0, a) interval these magnitudes are:

t(k) =
(1− w2

1)k

(1 + w2
1)k + iw0/2

, |t(k)| = 2|k||1− w2
1|

√

4k2(1 + w2
1)

2 + w2
0

,

rR(k) = −
2kw1 + iw0/2

(1 + w2
1)k + iw0/2

, rL(k) =
2kw1 − iw0/2

(1 + w2
1)k + iw0/2

,

δ(k) =
1

2i
log
(

t2(k)− rR(k)rL(k)
)

=
1

2i
log

2ik(1 + w2
1) + w0

2ik(1 + w2
1)− w0

+ θ(w2
1 − 1)π,

where θ(x) is the Heaviside step function. Notice that the reflection amplitudes for incoming
particles from either the left or the right are different since the δ′ coupling breaks parity
invariance. Time reversal invariance, however, is preserved and the transition amplitude is
the same whatever the incoming direction of the particle is.

It follows that a given value of k belongs to an allowed band if

1

|t(k)| cos (ka+ δ(k)) ≤ 1.

The right hand side of (34) is an oscillating function of k that tends asymptotically to a periodic
function of amplitude 1/|t(k → ±∞)| ≥ 1. Thus, there are pairs of points kj and kj+1 where

cos (kja+ δ(kj)) /|t(kj)| = ±1 and cos (kj+1a+ δ(kj+1)) /|t(kj+1)| = ∓1,

which are the edges of allowed bands: in the intervals [kj , kj+1] the spectral function varies
between ±1 and ∓1, and there are intersections with the k-independent functions g = cos qa ∈
[−1, 1], giving solutions of the spectral equation. In the interval (kj+1, kj+2), where kj+2 is the
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next point for which cos (kj+2a+ δ(kj+2)) /|t(kj+2)| = ∓1, the modulus of the spectral function
is greater than one and there are no solutions: we find a forbidden band or gap.

The distribution of allowed and forbidden bands in the hybrid Dirac comb depends thus of the
w0 and w1 couplings through the dependence in these parameters of the scattering data. There
are several points and/or lines in the parameter space (w0, w1) that lead to critical behavior:

(i) The origin: (w0 = 0, w1 = 0). In this case |t(k)| = 1, ∀k, and there is only one allowed band:
the whole real line. Trivially, we end with the continuous spectrum of the free particle. All
the forbidden bands disappear.

(ii) The infinite lines: (w0 = ±∞, w1). When the point δ-interactions are either infinitely
repulsive walls or attractive wells the transition amplitudes are null, |t(k)|w0=±∞ = 0,
for all k. There are only solutions to the secular equation (or dispersion relation) (34) if
cos (ka+ δ(k)) |w0=±∞ is also zero. Because δ(k)|w0=±∞ = iπ this happens only if

kn =
π

a
n, where n ∈ Z.

The spectrum is purely discrete and all the allowed bands collapse to a point. The reflection
amplitudes are constant, r(k,±∞, w1) = −1, and the eigenfunctions are standing waves
with n nodes between two adjacent impenetrable walls/wells. Notice that, given a fixed n,
there is an infinite number of eigenfunctions with energy proportional to εn = k2n. All the
other possibilities interpolate between these two extreme cases. There are however other
exceptional cases.

(iii) The singular lines: (w0, w1 = ±1). Over thes two lines in the space of couplings the δ − δ′
potentials are also opaque: t[k, w0,±1] = 0. There are solutions of the equation (34) if and
only if:

kna+ δ(kn) = kna+
1

2
Arg

[

w0i− 4kn
w0i+ 4kn

]

+
π

2
= (n+

1

2
)π , n ∈ Z .

All the allowed bands collapse to points and the spectrum is discrete. The dependence on
n of the physical momenta kn is not linear like in the previous case because the reflection
amplitudes are not trivial and phase shifts vary with k, specially at low momenta:

rR[k, w0,−1] = rL[k,w0, 1] =
4k − iw0

4k + iw0
, rR[k, w0, 1] = rL[k,w0,−1] = −1 .

The standing wave eigenfunctions incorporate in this case phase shifts after rebounding at
the walls.

(iv) The ordinate axis: (w0 = 0, w1). In this limit where only the δ′-coupling w1 is non null we
find a pathological behaviour. All the scattering amplitudes are independent of the energy:

t[k, 0, w1] =
1− w2

1

1 + w2
2

, rR[k, 0, w1] = −
2w1

1 + w2
1

, rL[k, 0, w1] =
2w1.

1 + w2
1

.

Moreover, the phase shifts in the even and odd channels are also k-independent

δ+(k, 0, w1) =
1

2
Arg

[

2|w1|
1− w2

1

]

, δ−(k, 0, w1) = −
1

2
Arg

[

2|w1|
1− w2

1

]

,

but the total phase shift is δ(k, 0, w1) = δ+(k, 0, w1) + δ−(k, 0, w1) = 0. Thus, the secular
equation simplify to

cos qa =
1 + w2

1

|1− w2
1|

cos ka. (35)
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3.2. More details on the distribution of allowed and forbidden bands in the hybrid Dirac comb

Another interesting line in the plane of couplings is the axis w1 = 0. There is no δ′ interaction
which means that f(0) = g(0) = 1 and the spectral equation reduces to the well known secular
equation for the Dirac comb potential:

cos qa = cos ka+ aw0(2ka)
−1w0 sin(ka) , (36)

which identifies the band edge points as the discrete solutions of the transcendent equations:

√

4k2j + w2
0

4k2j
cos

[

kja+
1

2
Arg(4k2j − w2

0 + 4ikjw0)

]

= ±1 . (37)

Implicitly we have focused until now on solutions to the secular equations for real momenta,
k ∈ R, corresponding to propagating (conducting) band states.

Another important band state solutions respond to purely imaginary momenta, k = iκ,
κ ∈ R, which give rise to non-propagating states filling the so called valence bands. For the
Dirac comb arrangement with attractive couplings the secular equation for purely imaginary
momenta is well known:

cos qa = v(κ, a, |w0|) , v(κ, a, |w0|) = coshκa− a

2
|w0|

sinhκa

κa
, (38)

One checks easily that v(0, a, |w0|) = 1− a
2 |w0| and that ∂v

∂κ
(κ, a, |w0|)

∣

∣

∣

κ=0
= 0. Thus, κ = 0 is a

critical point of the even function v(κ, a, |w0|). In the range 0 < |w0| < 4
a
the spectral function v

intersects with the straight line v0 = 1 at two points ±κ1. Moreover, in this range the function
v is always less than 1 but greater than −1 in the interval κ ∈ [−κ1, κ1]. Thus, there is one
valence band with upper and lower edge points respectively of zero and −κ21 energy.

Note that κ = 0 is a minimum of v, whereas 1 > v > −1. Observe also that
limκ→±∞(κ, a, |w0|) = +∞. If 4

a
< |w0| < 6

a
the spectral function v intersect also with the

straight line v0 = −1 at the points ±κ2. κ = 0 is still the minimum of v but it does not belong
to the valence band and the upper edge energy −κ22 is lower than zero. For 6

a
< |w0| the band

structure of negative energy states is similar but a little more subtle because κ = 0 becomes
a local maximum of v prompting also the appearance of two minima of v at κ = ±κ0. For
attractive coupling stronger than this the valence band width becomes more and more thin.

3.3. Differences between the band structures of the hybrid and standard Dirac combs

The strategy to analyze the differences between the band structures will be to fix a value of w0,
the strength of the δ-coupling, and to study, mainly graphically, how the solutions of the secular
equation vary with w1. In particular, variations in the width of the forbidden and allowed bands
as function of the δ′-coupling w1 will inform us about the modulation of the band distribution
of the hybrid Dirac comb.

To start with we recall again that, since | cos(qa)| ≤ 1, the allowed bands are characterized
by the inequality:

∣

∣

∣

∣

f(w1)

[

cos(a
√
ε) +

a

2
w0 g(w1)

sin(a
√
ε)

a
√
ε

]∣

∣

∣

∣

≤ 1 . (39)

Here, we have written the dispersion relation in terms of ε = k2 instead of using k as independent
variable. This election of independent variable allows us to encode as a function of a single real
variable the spectral function determining both the valence and conduction bands, without the
need of going to the complex k-plane. The use of k as the independent variable in the spectral
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function that characterize the bands requires that the conducting bands lie in the real k-axis
while the valence bands are found in the pure imaginary k = iκ-axis. Thus, we shall plot both
the valence bands, if they exists, the values of the energy where the inequality (39) is satisfied
with ε < 0, and the conduction bands, energy intervals compatible with (39) for ε > 0, in a
single 2D graphic.

This work is presently in progress [7] and we present here just some plots. For example, in
Fig. 4 we show a plot of the allowed (yellow) and forbidden (blue) energy bands inferred from
the spectral condition for w0 = −0.5 and a = 1. In the graphic on the left it is seen how the
width of several energy bands complying with the inequality (39) varies with w1. Forbidden
energy bands missing this inequality are also plotted in blue. The graphic on the right shows
only the lowest allowed and forbidden energy bands for identical choice of w0. This zoom of
the graphic allows to recognize the merging of the valence with the lower conduction band at
values of w1 slightly greater than 0. Note also that the secular equation is invariant under the
exchange w1 ↔ −w1. Thus, there are mirror images of the Figures shown here on the negative
w1-axis.

Figure 4.
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[7] Gadella M, Mateos-Guilarte J, Muñoz-Castañeda J M and Nieto L M, Adding δ′-point interactions to the

theeth of the Dirac δ-comb potential (in progress).




