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Abstract

We investigate a special class of the PT -symmetric quantum models being perfectly invis-
ible zero-gap systems with a unique bound state at the very edge of continuous spectrum of
scattering states. The family includes the PT -regularized two particle Calogero systems (con-
formal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions
whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour
typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero
subfamily determine the fluctuation spectra around the PT -regularized kinks arising as trav-
eling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar
properties of the quantum systems are reflected in the associated exotic nonlinear supersym-
metry in the unbroken or partially broken phases. The conventional N = 2 supersymmetry
is extended here to the N = 4 nonlinear supersymmetry that involves two bosonic generators
composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of
the superalgebra. Jordan states are shown to play an essential role in the construction.

1 Introduction

PT -symmetric quantum systems [1] have many interesting properties and attract a lot of at-
tention, for reviews see [2, 3]. Some time ago there was revealed their close relationship with
certain two-dimensional integrable quantum field theories in the context of the ODE/IM cor-
respondence [4, 5]. On the other hand, many works were devoted to investigation of diverse
aspects of the PT -symmetric regularizations, extensions and deformations of Calogero systems
[6, 7, 8, 9, 10, 11, 12, 13]. Calogero systems, as is well known, govern the dynamics of the moving
poles of rational solutions to the Korteweg-de Vries (KdV) equation [14, 15, 16]. PT -symmetric
quantum systems also reveal peculiar properties from the perspective of supersymmetric quantum
mechanics [17, 18, 19, 20, 21, 22].

Solitonic (reflectionless) and finite-gap periodic quantum systems and their rational, singular
on real line, limit cases are intimately related to the KdV equation via the inverse scattering trans-
form. The KdV equation (as well as equations of the KdV hierarchy) appears as a compatibility

1

http://arxiv.org/abs/1710.00356v2


condition of the overdetermined system of two equations imposed on one wave function. One of
them has a form of the stationary quantum Schrödinger equation with a spectral parameter. An-
other defines the evolution of the wave function in a time variable on which potential depends as
on external parameter corresponding to an isospectral deformation of the Schrödinger equation.
Such reformulation of the KdV equation, introduced by Lax, naturally explains the appearance
of the inverse scattering transform under construction of soliton solutions. The Lax representa-
tion also plays a fundamental role in algebro-geometric method developed for the construction of
finite-gap (finite-zone) periodic and quasi-periodic solutions [23]. The overdertermined system of
equations in the Lax representation is covariant under Darboux transformations. This covariance
allows to employ the Darboux transformations as alternative method for construction of both
stationary and time-dependent solutions to the KdV equation and equations of the hierarchy
[24]. Darboux transformations can also be used for construction of time-dependent self-similar
rational solutions to the KdV equation [25, 26]. The corresponding potentials in the last case are
of the type of potentials of the Calogero model being singular functions with a double pole on
the real line. Any solution of the KdV equation satisfies the ordinary differential equation known
as Novikov equation which is a higher stationary KdV equation [23]. From the viewpoint of the
associated Schrödinger operator, such higher stationary KdV equation can be reinterpreted in
terms of a nontrivial Lax-Novikov integral. It is this higher order differential operator that de-
tects all the bound states in the associated Schrödinger quantum system with a soliton potential,
or the edge-states of the valence and conduction bands in the spectrum of a system with periodic
finite-gap potential, and both bound and edge states in the solutions to the KdV equation with
solitons in a stationary asymptotically periodic background [27]. This operator also separates the
deformed plane waves of opposite chirality in the reflectionless systems with soliton potentials,
and Bloch states with opposite values of quasi-momentum inside the valence and conduction
bands in finite-gap systems. The Lax-Novikov higher order differential operator also exists in
any quantum system with the KdV rational potential of the Calogero type. However, in rational
case it is a formally commuting with Hamiltonian operator which has a non-physical nature due
to a singularity of the potential : acting on physical quantum states which nullify at the poten-
tial’s pole, it transforms them into non-physical wave functions singular at the position of the
pole [28].

In the present paper we construct and investigate a special class of the perfectly invisible PT -
symmetric zero-gap quantum mechanical systems related to the KdV hierarchy. They represent
the PT -regularized two-particle Calogero systems (conformal quantum mechanics models of de
Alfaro-Fubini-Furlan [29]) and their rational extensions, which have the unique bound state at the
very edge of the continuous spectrum of scattering states, and are characterized by transmission
amplitude equal to one.

The PT -symmetric regularization is achieved here via a simple imaginary shift of the coor-
dinate, x → x + iα, α ∈ R 1. As a result, the Lax-Novikov operator will transform into a true
integral of the corresponding quantum system. The real and imaginary parts of the potential
with ‘reconstructed’ time-dependence will provide us with interesting solutions to the KdV and
higher equations of the hierarchy which exhibit, particularly, the behaviour typical for the ex-
treme (rogue) waves. The corresponding potentials are constructed via Darboux transformations
which use as the seed states a complex non-physical eigenstate of zero energy of a free quantum
particle and the Jordan states related to it. As a consequence, each of the obtained quantum

1 For PT -symmetric deformations of the KdV and other integrable systems in spirit of [1], see refs. [30, 31] and
[32, 33].
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systems will possess a unique bound state of zero energy at the very edge of the continuous part
of the spectrum. Since the quantum PT -symmetric systems are generated from the free particle,
and their potentials are non-singular on the real line, the obtained systems will be reflectionless.
In the case of usual reflectionless systems with soliton potential, the transmission amplitude is
a pure phase which is a rational function of energy of scattering states with zeroes and poles
defined by energies of the bound states. In the the quantum PT -symmetric systems we study
here, there is a unique bound state of zero energy that is located at the very edge of the contin-
uous part of the spectrum. As a consequence, the transmission amplitude does not depend on
energy of the scattering states and reduces to a constant value equal to 1. This means that the
systems we consider are not just reflectionless, but are perfectly invisible systems. Such quantum
systems are studied, particularly, in the context of quantum optics [34, 35, 36]. The described
peculiarities of the perfectly invisible zero-gap quantum systems lead to unusual properties of
the corresponding supersymmetrically extended systems. Because of the presence of the non-
trivial Lax-Novikov integrals of motion, instead of the conventional N = 2 supersymmetry, the
Darboux-related quantum pairs will be described by exotic N = 4 nonlinear supersymmetry.
The anti-commutators of linear and higher order supercharges appearing here generate the Lax-
Novikov integral of the extended system, which plays a role of the bosonic central charge of the
superalgebra. We also will show that the two simplest Hamiltonians from the Calogero subfamily
determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in
the field-theoretical Liouville and SU(3) conformal Toda systems.

The paper is organized as follows. In the next Section 2 we construct the indicated class
of the quantum systems by applying the appropriate Darboux-Crum transformations to a free
particle. We investigate their relationship with the stationary and non-stationary equations of the
KdV hierarchy, and describe the properties of the higher-derivative Lax-Novikov integrals in such
systems. We also consider there some particular time-dependent PT -symmetric potentials whose
real and imaginary parts have a soliton-like form with a behaviour typical for extreme waves.
In Section 3 we study (1 + 1)-dimensional conformal field theoretical kinks appearing in the
Liouville and SU(3) conformal Toda systems and establish their relation with two simplest cases
of perfectly invisible PT -symmetric Calogero systems. In Section 4 we discuss exotic N = 4
nonlinear supersymmetry of the extended systems composed from the pairs of PT -symmetric
zero-gap systems related by the first order Darboux transformations. Section 5 is devoted to the
summary, discussion and outlook. In Appendix we briefly discuss a quantum scattering problem
on the half-line.

2 Perfectly invisible PT -symmetric zero-gap systems

2.1 PT -regularized Calogero systems

Consider a quantum free particle on R1 described by the Hamiltonian H0 = − d2

dx2 . Eigenstates
of H0 are the plane waves ψ0,±k = e±ikx, k > 0, and any positive energy value Ek = k2 > 0
is doubly degenerate. A non-degenerate eigenstate ψ0,0(x) = 1 of zero energy corresponds to a
limit k → 0 case of the plane waves ψ0,±k. Like ψ0,±k, ψ0,0 is a bounded function on R1. A linear

independent from ψ0,0(x) eigenstate of H0 of zero eigenvalue is ψ̃0,0 = x, that is a non-physical
state unbounded at infinity. In general, a linear independent from ψ(x) solution to a stationary
Schrödinger equation Hψ = Eψ can be taken in the form

ψ̃(x) = ψ(x)

∫
dξ

(ψ(ξ))2
. (2.1)
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Normalization in (2.1) corresponds to the Wronskian value W (ψ, ψ̃) = 1. The state ψ̃0,0 = x also
can be obtained from the odd linear combination of the plane wave states of energy k2 in a limit
k → 0 : limk→0(ψ0,+k − ψ0,−k)/2ik = ψ̃0,0.

The Hamiltonian operator H0 has an integral of motion P0 = −i d
dx
, [H0,P0] = 0. It dis-

tinguishes the left- and right-moving plane wave states inside the energy doublets, P0ψ0,±k =
±kψ0,±k. The state ψ0,0 = 1 constitutes the kernel of P0, P0ψ0,0 = 0, while non-physical zero

energy eigenstate ψ̃0,0 is transformed by P0 into the eigenstate ψ0,0, iP0x = 1. As (P0)
2 ψ̃0,0 = 0,

the state ψ̃0,0 is a Jordan state of P0 of order 2 [37].
Within a framework of Darboux transformations, one can construct the annihilator of the

non-physical zero energy state ψ̃0,0(x) = x : D1 = x d
dx
x−1 = d

dx
− 1

x
, D1x = 0. The conjugate

operator is D†
1 = −x−1 d

dx
x = − d

dx
− 1

x
, and these two operators provide a factoirzation of H0 :

H0 = D†
1D1 = H0 . (2.2)

Their permuted product generates a conformal quantum mechanics model [29] given by a Hamil-
tonian for relative motion of a 2-particle Calogero system

H1 = D1D
†
1 = − d

dx2
+

2

x2
(2.3)

with a value g = 2 of the coupling constant. Unlike H0, Hamiltonian H1 is singular at x = 0. If
H1 is considered on a whole real line punctured at the origin, the potential barrier at x = 0 is
not penetrable and the states with supports on x < 0 and x > 0 do not mix dynamically. The
singularity of operators H1, D1 and D†

1 is associated with a node at x = 0 of the non-physical

zero energy eigenstate ψ̃0,0(x) = x of H0.
Potential u1 =

2
x2 in (2.3) is a stationary, singular on R1 solution [14] to the KdV equation

ut − 6uux + uxxx = 0 . (2.4)

It can be obtained from the one-soliton KdV solution

u1(x, t) = − 2κ2

cosh2 κ(x− 4κ2t− τ)
(2.5)

by fixing the soliton centre coordinate to be pure imaginary and equal τ = i π
2κ , and then by

taking a limit κ → 0. The limit κ → 0 eliminates a length scale which controls the size of the
one-soliton solution correlated with its velocity. As a result, the stationary Schrödinger equation
H1ψ = Eψ is invariant under the transformation x → αx, E → α−2E, that corresponds to a
scale invariance of the system (2.3) similarly to the case of the free particle. A time-dependent
solution u1(x, t) = −1

6c +
2

(x−ct)2
to the KdV equation is obtained from the stationary solution

u1(x) =
2
x2 by employing the invariance of (2.4) under Galilean transformations, u(x) → u(x, t) =

−1
6c+u(x−ct). It is a singular solution with a moving along R1 second order pole whose velocity

c is correlated with its background asymptotic value −1
6c. The time-dependent solution u1(x, t)

also can be obtained directly from the one-soliton solution (2.5) in a more tricky way without
making use of the Galilean symmetry. For this, after fixing τ = i π

2κ , in the resulting intermediate

singular one-soliton solution u = 2κ2

sinh2 κX
to the KdV equation we take a limit κ→ 0 by preserving

quadratic in κ2 terms but leaving the composed argument X = x − 4κ2t untouched. In such a
way we obtain u = 2

X2 − 2
3κ

2. Denoting then 4κ2 = c, we arrive at the same time-dependent
singular solution u1(x, t).

4



Let us return to the Hamiltonian operators (2.2) and (2.3). From their factorization properties

it follows that the operators D1 and D†
1 intertwine H0 and H1 : D1H0 = H1D1, H0D

†
1 = D†

1H1.
As a consequence, non-singular at x = 0+ physical states of H1 on half-line x > 0 are obtained
from the odd linear combination of the plane wave eigenfunctions of H0, ψ1,k(x) = D1 sin kx.
They satisfy the relations H1ψ1,k = k2ψ1,k and limx→0 ψ1,k(x) = 0. The operator

P1 = D1P0D
†
1 = i

(
d3

dx3
− 3

x2
· d
dx

+
3

x3

)
, (2.6)

being a Darboux-dressed free particle integral P0, commutes with H1. This is a Lax-Novikov
operator for the two-particle Calogero system (2.3). It is not, however, a true integral of motion
of H1 since acting on physical eigenstates ψ1,k(x) it transforms them into non-physical eigenstates
of H1 of the same energy E = k2 > 0 which are singular at x = 0 : P1ψ1,k(x) = −ik3D1 cos kx =
ik3(k sin kx+ 1

x
cos kx).

The singularity at x = 0 of the intertwining operators D1 and D†
1 and consequently of the

Hamiltonian H1 and operator P1 can be removed by a ‘PT -regularization’. This is achieved by
taking a complex linear combination of non-physical and physical zero energy eigenstates of H0,

ψ̃α
0,0 = x+ iα ≡ ξ . (2.7)

where α is a nonzero real constant which, for definiteness, will be taken positive, α > 0. With
the help of this state we construct the first order differential operators

D1 = ξ
d

dx

1

ξ
=

d

dx
− ξ−1 , D#

1 = −1

ξ

d

dx
ξ = − d

dx
− ξ−1 , (2.8)

whose kernels are, respectively, ξ and ξ−1. As before we have H0 = D#
1 D1 = − d2

dx2 . But now the

partner Hamiltonian operator H1 = D1D
#
1 = − d2

dx2 + 2ξ−2 is non-singular on the real line R1,

Hα
1 = − d2

dx2
+

2

(x+ iα)2
, (2.9)

and the first order differential operators (2.8) intertwine H0 and Hα
1 ,

D1H0 = Hα
1D1 , D#

1 H
α
1 = H0D

#
1 . (2.10)

Potential of the system (2.9) is obtained from the one-soliton solution (2.5) to the KdV equation
if in the procedure described above the soliton centre parameter is fixed in the form τ = i

κ
(π2 −α).

Hamiltonian (2.9) with a complex potential

V1(x) = 2
x2 − α2

(x2 + α2)2
− 4iα

x

(x2 + α2)2
(2.11)

is PT -symmetric, [Hα
1 , PT ] = 0. Here P is a space reflection operator, Px = −xP , P 2 = 1, and

a complex conjugation operator T is defined by Tz = z̄ T , T 2 = 1, where z ∈ C is an arbitrary
complex number. If we extend the definition of time reflection operator T by a requirement
T t = −tT , the time-dependent KdV equation (2.4) will be invariant under the PT transformation
if u(x, t) is PT -symmetric : [u(x, t), PT ] = 0. Then the change x → X = x − ct accompanied
by a shift for −1

6c transforms potential (2.11) being stationary solution of the KdV equation
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into PT -symmetric time-dependent travelling wave solution u(x, t) = V1(X) − 1
6c of the same

equation.
The bounded on real line R eigenstates ψα

1,±k(x) = D1e
±ikξ, k > 0, Hα

1 ψ
α
1,±k = k2ψα

1,±k,
can be considered as physical states of the PT -symmetric system (2.9). They are the Darboux-
transformed plane wave eigenstates of H0 that are obtained by applying to them the intertwining
operator D1 defined in (2.8). Unlike H0, the system (2.9) has a gapless bound state of zero
energy that lies at the very edge of the doubly degenerate continuous part of the spectrum. This
square-integrable on R1 state can be obtained from the bounded but not square-integrable singlet
zero energy eigenstate ψ0,0 = 1 of H0 by applying to the latter the intertwining operator D1 :
−D1ψ0,0 = ξ−1 ≡ ψα

1,0(x), H
α
1 ψ

α
1,0 = 0. The ground state ξ−1 corresponds to a limit k → 0 of the

physical states ψα
1,±k from the continuous part of the spectrum, limk→0(−ψα

1,±k) = ξ−1. It also

can be obtained from the bound eigenstate κ/cosh κ(x+ τ) of eigenavalue −κ2 of the reflectionless
Pöschl-Teller system given by potential (2.5) at t = 0 after fixing τ = i

κ
(π2 − α) and taking a

limit κ→ 0. In this limit the energy gap separating the bound state from the continuous part of
the spectrum disappears, and the bound eigenstate of the Pöschl-Teller system with one-soliton
potential (2.5) transforms into the bound state of the system Hα

1 .
The peculiarity of the reflectionless PT -symmetric system (2.9) in comparison with Hermitian

reflectionless systems is that the square-integrable on R1 singlet state here is not separated by
a gap from the continuous doubly degenerate part of the spectrum with E = k2 > 0. In this
aspect it is similar to the periodic PT -symmetric finite-gap systems considered in [22]. It is also
worth to emphasize here that the translational non-invariance of the PT -symmetric system (2.9)
generated from the original translation-invariant free particle system H0 is rooted in translational
non-invariance of the zero energy eigenstate (2.7) of H0 underlying the Darboux transformation.

Unlike (2.3), the PT -symmetric system (2.9) possesses a true integral of motion being a

Darboux-dressed integral P0 of the free particle, Pα
1 = D1P0D

#
1 , [Pα

1 ,H
α
1 ] = 0. This integral

distinguishes the doublet states in the continuous part of the spectrum, Pα
1 ψ

α
1,±k = ±k3ψα

1,±k,

and annihilates the ground state ψα
1,0 = ξ−1, Pα

1 ψ
α
1,0 = 0. The complete kernel of the third order

differential operator Pα
1 is

kerPα
1 = span {ξ−1, ξ, ξ3} . (2.12)

It includes non-physical (undbounded) states ξ and ξ3. These two states are not eigenstates of
Hα

1 , but they belong to the kernels of the operators (Hα
1 )

2 and (Hα
1 )

3, respectively:

Hα
1 ξ

3 = −4ξ , (Hα
1 )ξ = 2ξ−1 , (Hα

1 )
2ξ = 0 , (Hα

1 )
3ξ3 = 0 . (2.13)

Thus the states ξ and ξ3 are the Jordan states of Hα
1 of orders 2 and 3. In correspondence with

(2.12) and (2.13), the operator Pα
1 satisfies a supersymmetry-like relation [38]

(Pα
1 )

2 = (Hα
1 )

3 (2.14)

concordant with the Burchnall-Chaundy theorem [39, 40]. It is a Lax-Novikov integral for the
finite-gap (zero-gap) PT -symmetric system Hα

1 .
A partner of the zero energy ground state ξ−1 of the system Hα

1 given by relation (2.1) is an
unbounded state ξ2, Hα

1 ξ
2 = 0. It does not belong to the kernel (2.12) like the non-physical zero

energy eigenstate ψ̃α
0,0 = ξ of H0 does not belong to the kernel of the integral P0. The state ξ2

is obtainable from the appropriate linear combination of the doublet states from the continuous
part of the spectrum of Hα

1 in a limit k → 0 :

lim
k→0

−3

2ik3
(ψα

1,k − ψα
1,−k) = ξ2 . (2.15)
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The operator Pα
1 transforms this non-physical zero energy state into a physical ground state,

Pα
1 ξ

2 ∝ ξ−1, that can be compared with a similar picture in the case of the free particle system.
With respect to the Darboux transformation generator D1, the pre-images of the states from

the kernel of P1 are 1, ξ2 and ξ4 : D11 = −ξ−1, D1ξ
2 = ξ, D1ξ

4 = 3ξ3. Unlike the zero energy
eigenstate ψ0,0 = 1 of H0, other two states satisfy the relations H0ξ

4 = −12ξ2 and H0ξ
2 = −2,

i.e. ξ2 and ξ4 are the Jordan states of H0 of orders 2 and 3, respectively. The nature of these
three states related to the system H0 is similar to that of their Darboux-counterparts (2.12) in
the system Hα

1 , cf. Eq. (2.13).

The family of the systems

Hα
n = − d2

dx2
+
n(n+ 1)

(x+ iα)2
(2.16)

characterized by the integer parameter n ≥ 0 is a hierarchy of the PT -symmetric reflectionless
systems that includes the free particleH0 and the system (2.9) as particular cases corresponding to
the values n = 0 and n = 1. For neighbour members of the hierarchy, there are the factorization,

Hα
n−1 = D#

n Dn , Hα
n = DnD

#
n , (2.17)

and the intertwining,
DnH

α
n−1 = Hα

nDn , D#
n H

α
n = Hα

n−1D
#
n , (2.18)

relations. Here the first order operators

Dn = ξn
d

dξ

1

ξn
=

d

dξ
− nξ−1 , D#

n = − 1

ξn
d

dξ
ξn = − d

dξ
− nξ−1 , n = 1, . . . , (2.19)

are generated by zero energy non-physical eigenstates ξn of Hα
n−1, H

α
n−1ξ

n = 0. The bounded but
not square-integrable physical eigenstates of Hα

n from the continuous part of the spectrum are
obtained by applying Dn to the corresponding eigenstates of Hα

n−1 of the same nature, ψα
n,±k =

Dnψ
α
n−1,±k, k > 0. These states can be constructed iteratively from the plane wave eigenstates

of the free particle model,
ψα
n,±k(x) = D̂ne

±ikξ . (2.20)

Here we define differential operators of order n :

D̂n = DnDn−1 . . . D1 , D̂#
n = D#

1 . . . D
#
n−1D

#
n . (2.21)

The square-integrable zero energy ground state ψα
n,0 = ξ−n of Hα

n is obtained from a singlet zero

energy ground state ψ0,0 = 1 of H0 : ψ
α
n,0 ∝ D̂n1.

The operators (2.21) intertwine Hα
n directly with H0,

D̂nH0 = Hα
n D̂n, D̂#

n H
α
n = H0D̂#

n , (2.22)

and correspond to the Darboux-Crum transformation of order n of the free particle based on
non-physical eigenstate ξ of H0 and its certain n− 1 Jordan states, see below. They allow us to
construct a nontrivial integral of the system Hα

n in the form of the dressed momentum operator
of the free particle,

Pα
n = −iD̂n

d

dx
D̂#

n , [Pα
n ,H

α
n ] = 0 . (2.23)

Being differential operator of order 2n+1, it distinguishes the left- and right-moving eigenstates
(2.20) of Hα

n ,
Pα
nψ

α
n,±k = ±k2n+1ψα

n,±k , (2.24)
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and satisfies the Burchnall-Chaundy, supersymmetry-type relation

(Pα
n )

2 = (Hα
n )

2n+1 . (2.25)

Its kernel of dimension 2n+ 1 is

kerPα
n = span {ξ−n, ξ−n+2, . . . , ξ3n−2, ξ3n} . (2.26)

Except the zero energy ground state ξ−n, all other states from the kernel are not eigenstates of
Hα

n but satisfy the relations

Hα
n ξ

−n+2l = 2l(2n − 2l + 1)ξ−n+2l−2 , (Hα
n )

l+1ξ−n+2l = 0 , l = 0, . . . , 2n . (2.27)

Each of the states ξ−n+2l with l = 1, . . . , 2n is the Jordan state of Hα
n of the corresponding order

l + 1.
The partner (2.1) of zero energy ground state ψα

n,0 = ξ−n of Hα
n is a non-physical state ξn+1.

It does not belong to the kernel (2.26), but the action of Pα
n transforms it into the physical

ground state ξ−n. It can be obtained from a linear combination of the physical eigenstates from
the continuous part of the spectrum of Hα

n :

lim
k→0

1

2ik2n+1
(ψα

n,k − ψα
n,−k) = Cnξ

n+1 , (2.28)

where Cn is a constant coefficient. It also can be obtained from the plane wave solutions of the
free particle by employing relation (2.20).

In accordance with relations (2.22) and (2.21), the potential Vn(x) =
n(n+1)

ξ2
can be presented

in the form

Vn(x) = −2
d2

dx2
(
lnWn(ξ)

)
, (2.29)

where Wn(ξ) := W (ξ, ξ3, . . . , ξ2n+1) is the Wronskian of the states ξ, ξ3, . . . , ξ2n+1. Here the
states ξ2r+1 with r = 1, . . . , n− 1 are the Jordan states of H0 of zero energy of the corresponding
order : H0ξ

2r+1 = −2r(2r + 1)ξ2r−1, (H0)
r+1ξ2r+1 = 0. Such a transformation based on Jordan

states corresponds to a confluent case of some Darboux-Crum transformation [41, 35, 42]. For
the eigenstates ψα

n,±k of Hα
n from (2.20) we have (up to a multiplicative constant factor) an

alternative representation :

ψα
n,±k =

W (ξ, ξ3, . . . , ξ2n+1, e±ikξ)

Wn(ξ)
. (2.30)

The case k = 0 is included in (2.30), and corresponds to generation of the unique square-integrable
zero energy eingenstate ψα

n,0 = ξ−n of Hα
n from the eigenstate ψ0,0 = 1 of H0. Note that the argu-

ments ξ2j+1 in the Wronskians also can be presented in the form ξ2j+1 = (−i)2j+1 ∂2j+1

∂k2j+1 e
ikξ|k=0

in terms of the plane wave eigenstates of the free particle. This corresponds to the generalized
Wronskian formula for solutions of the KdV equation considered in ref. [26] that, in turn, can be
obtained via confluent Darboux-Crum transformations [35].

The nature of the family of the PT -symmetric systems (2.16) is rather peculiar. Like any
finite-gap system, each of the systems (2.16) possesses the corresponding Lax-Novikov integral of
motion (2.23) that is a differential operator of order 2n+1. Each of these systems is reflectionless :
the plane wave states eikx and e−ikx of the free particleH0 are transformed into the deformed plane
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wave eigenstates (2.20) of Hα
n which propagate to the left or to the right, and are distinguished

by the Lax-Novikov integral, see Eq. (2.24). The two indicated properties are also characteristic
for any system with a multi-soliton potential as for their simplest one-soliton representative (2.5).
Unlike the indicated conventional reflectionless systems, the PT -symmetric systems (2.16) are
perfectly invisible. Namely, as follows from (2.21) and (2.19), the eigenstates (2.20) corresponding
to the upper sign case in the asymptotic region x→ −∞ have the form of the plane waves Ceikx.
In the asymptotic region x→ +∞ these states have exactly the same form of the plane waves eikx

multiplied by the same constant factor C. A similar picture is valid for solutions that correspond
to the lower sign in (2.20) and have the asymptotic form Ce−ikx in both regions x → +∞ and
x → −∞. The phase shift produced by a nontrivial potential in (2.16) is therefore equal to
zero (mod 2π). The transmission amplitude is equal to one, and any of these systems is indeed
perfectly invisible.

The potential Vn(x) = n(n+1)
ξ2

of Hα
n is a stationary PT -symmetric solution of the corre-

sponding higher order equation of the KdV hierarchy. For instance, the potential V2(x) =
6
ξ2

is
a stationary solution to the equation

ut + 30u2ux − 20uxuxx − 10uuxxx + uxxxxx = 0 . (2.31)

2.2 PT -symmetric rational extensions of the PT -regularized Calogero systems

The shape-invariant family (2.16) is not a unique set of perfectly invisible PT -symmetric systems
that can be constructed by applying Darboux transformations to the free particle. A simple
example of such a system of the form different from (2.16) can be obtained by taking a wave
function

ψ(1)
α,γ = γξ−1 + ξ2 (2.32)

as a seed state for the Darboux transformation. This is a linear combination of the bound state
ξ−1 of zero energy of the system Hα

1 and of its non-physical partner in the sense of (2.1), where
γ is a constant. Requiring that γ is purely imaginary, the seed state (2.32) will be PT -invariant.
Via a PT -odd superpotential

W(1)
α,γ = − d

dx

(
lnψ(1)

α,γ

)
=

1

ξ
− 3ξ2

ξ3 + γ
,

one can generate two super-partner potentials V± = (W(1)
α,γ)2 ± (W(1)

α,γ)′, where V− = 2ξ−2 and

V
(1)
+ (x;α, γ) = 6ξ

ξ3 − 2γ

(ξ3 + γ)2
=

6

ξ2
− 6γ

4ξ3 + γ

ξ2(ξ3 + γ)2
. (2.33)

Potential (2.33) is a stationary PT -symmetric solution to the equation (2.31), which is non-
singular on R1 function provided

γ = iνα3 , ν ∈ R1 , ν 6= −8 , 1. (2.34)

On the other hand, if we put in (2.33)

γ = γ(t) = 12t+ iνα3 , ν ∈ (1,∞) , (2.35)

we obtain a complex PT -symmetric solution V
(1)
+ (x, t;α) of the KdV equation (2.4), which is

non-singular for t ∈ (−∞,∞). If in this time-dependent solution we put α = 0, it takes the
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form of the well known rational singular solution u(x, t) = 6x x3−24t
(x3+12t)2

to the KdV equation (2.4)

[43]. The permitted values of the parameter γ indicated in (2.34) and (2.35) guarantee that
the amplitude of the wave function (2.32) nowhere turns into zero. Note that the fact that the

potential V
(1)
+ (x, t;α) satisfies simultaneously the time-dependent KdV equation (2.4) and the

higher order ordinary differential equation 30u2ux − 20uxuxx − 10uuxxx + uxxxxx = 0 being a
stationary case of (2.31) corresponds to a general property mentioned in Section 1 in relation to
the Novikov equation.

The variation of the form of real and imaginary parts of the potential (2.33), (2.34) as a
stationary PT -symmetric solution (t = 0) to the higher order KdV equation (2.31) are illustrated
by Figures 1 and 2 for various values of the parameters α and ν.
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Figure 1: Real (shown by dashed lines) and imaginary (shown by continuous lines) parts of
potential (2.33) as a complex PT -symmetric stationary (t = 0) solution to Eq. (2.31) at α = 50
and ν = −25 (on the left) and α = 100, ν = −4 (on the right). The graph of imaginary part
undergoes a flip as the parameter ν passes through a critical value −8.
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Figure 2: Real and imaginary parts of (2.33) of a stationary case (2.34) at α = 100, and ν = −0.2
(on the left) and ν = 0 (on the right).

The evolution of this potential in the time-dependent case (2.35) as a PT -symmetric solution
to the KdV equation (2.4) is shown on Figure 3. It is interesting to note that near the critical
value ν = 1 of the parameter ν, the graph of real part of the potential demonstrates a singular δ-
function type behaviour while the imaginary part undergoes a flip and has a typical δ′ form. This
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critical value is at the very lower edge of the infinite interval (2.35) of the permitted values for
the parameter ν in the time-dependent case. As a consequence, for the values of the parameter

ν close to the critical value ν = 1, the inverted potential −V (1)
+ (x;α, γ(t)) = u(x, t) reveals a

behaviour typical for rogue (extreme) waves that is seen already from Fig. 3.
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Figure 3: Evolution of real (on the left) and imaginary (on the right) parts of potential (2.33),
(2.35) as a complex PT -symmetric solution of the KdV equation (2.4) at α = 100, ν = 5; dashed
lines: t = −107, continuous lines: t = 0, dotted lines: t = 107.

On the base of the function (2.32), one can construct the first order differential operators

D(1)
α,γ = ψ(1)

α,γ

d

dx

1

ψ
(1)
α,γ

=
d

dx
+W(1)

α,γ , D(1)#
α,γ =

1

ψ
(1)
α,γ

d

dx
ψ(1)
α,γ = − d

dx
+W(1)

α,γ , (2.36)

which factorize the pair of Hamiltonians (2.9) and H
(1)
α,γ = − d2

dx2 +V
(1)
+ (x;α, γ) : D

(1)#
α,γ D

(1)
α,γ = Hα

1 ,

D
(1)
α,γD

(1)#
α,γ = H

(1)
α,γ , and intertwine them : D

(1)
α,γHα

1 = H
(1)
α,γD

(1)
α,γ , D

(1)#
α,γ H

(1)
α,γ = Hα

1D
(1)#
α,γ . In

correspondence with these relations, the bounded eigenstates of the system H
(1)
α,γ are constructed

from the plane wave eigenstates of the free particle system, ψ
(1)
α,γ,±k = D

(1)
α,γD1e

±ikξ, where the

operator D1 is given by Eq. (2.8). The unique quadratically integrable eigenstate ψ
(1)
α,γ,0(x) =

ξ
ξ3+γ

of zero eigenvalue of the system H
(1)
α,γ corresponds to the limit case k = 0 of the bounded

eigenstates ψ
(1)
α,γ,±k. It is generated by applying the second order operator D

(1)
α,γD1 to the bounded

eigenstate ψ0,0 = 1 of the free particle H0, or, equivalently, by applying the first order operator

D
(1)
α,γ to the ground state ξ−1 of zero energy of Hα

1 . This state is annihilated by the Lax-Novikov
integral

P(1)
α,γ = −iD(1)

α,γD1
d

dx
D#

1 D
(1)#
α,γ , (2.37)

[H
(1)
α,γ ,P(1)

α,γ ] = 0, that satisfies the Burchnall-Chaundy relation
(
P(1)
α,γ

)2
=
(
H

(1)
α,γ

)5
, and dis-

tinguishes the bounded eigenstates ψα,γ
±k : P(1)

α,γψ
α,γ
±k = ±k5ψα,γ

±k . The potential (2.33) can be
produced directly from the free particle system via the relation

V
(1)
+ (x;α, γ) = −2

d2

dx2
(
lnW (ξ,−γ + ξ3)

)
, (2.38)

that corresponds to the second order Darboux-Crum transformation. Here the first argument
of the Wronskian is the non-physical eigenstate ξ of zero eigenvalue of H0, whereas the second
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argument corresponds to a linear combination of the eigenstate ψ0,0 = 1 and the Jordan state ξ3

of the second order, (H0)
2ξ3 = 0.

As yet another example of the PT -symmetric perfectly invisible system we present here the
system described by the potential

V
(2)
+ (x;α, γ) =

2

ξ2
+ 10ξ3

ξ5 − 4γ

(ξ5 + γ)2
=

12

ξ2
− 10γ

6ξ5 + γ

ξ2(ξ5 + γ)2
, (2.39)

where γ is, again, a purely imaginary parameter. This potential can be produced from the system
Hα

2 by constructing the Darboux transformation based on the state

ψ(2)
α,γ = γξ−2 + ξ3 , (2.40)

that is a linear combination of the quadratically integrable zero energy eigenstate ξ−2 of Hα
2 and

of its non-physical partner ξ3. Equivalently, the perfectly transparent potential (2.39) can be
produced by the relation of the form (2.38) with the Wronskian changed for W (ξ, ξ3, 83γ + ξ5),
where ξ5 in the last argument corresponds to the Jordan state of H0 of the third order : (H0)

3ξ5 =
0. The potential (2.39) is a stationary PT -symmetric solution to the equation (2.31), which is
non-singular provided the following restriction on the values of the parameter γ is introduced :

γ = iνα5 , ν ∈ R1 , ν 6= −1 , 4, (2.41)

under which the wave function (2.40) nowhere turns into zero on real line x ∈ R1.
The substitution

γ = γ(t) = −720t+ iνα5 , ν ∈ (24,∞) , (2.42)

in (2.39) transforms the PT -symmetric stationary solution V
(2)
+ (x;α, γ) of (2.31) into the PT -

symmetric function V
(2)
+ (x, t;α) that is a time-dependent PT -symmetric solution of the same

equation (2.31) to be non-singular for all values of t ∈ (−∞,∞). In the case γ = 0, potential
(2.39) reduces to 12

ξ2
, that is a potential of the PT -symmetric perfectly transparent system (2.16)

with n = 3.
The time dependence (2.35) and (2.42) for the corresponding potentials considered here as well

as in a general case can be fixed by exploiting the covariance under Darboux transfromations of
the Lax representation for the KdV equation and for higher equations of the hierarchy mentioned
in Section 1.

The form of potential (2.39) for the stationary and time-dependent cases is illustrated by
Figures 4, 5 and 6. Note that unlike the case corresponding to the potential (2.33), the critical
value ν = 4 here cannot be approached by the time-dependent solutions (2.42).

The corresponding Hamiltonian operator H
(2)
α,γ = − d2

dx2 + V
(2)
+ (x;α, γ) is factorized, H

(2)
α,γ =

D
(2)
α,γD

(2)#
α,γ , and we also have D

(2)#
α,γ D

(2)
α,γ = Hα

2 . Here the factorizing operators have the form

similar to that in (2.36) with the generating function changed for ψ
(2)
α,γ , and with the superpotential

replaced by

W(2)
α,γ =

2

ξ
− 5ξ4

γ + ξ5
.

The perfectly transparent PT -symmetric system H
(2)
α,γ is characterized by the Lax-Novikov inte-

gral

P(2)
α,γ = −iD(2)

α,γD2D1
d

dx
D#

1 D
#
2 D

(2)#
α,γ . (2.43)
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Figure 4: Real (shown by dashed lines) and imaginary (shown by continuous lines) parts of
potential (2.39), (2.41) as a complex PT -symmetric stationary solution to Eq. (2.31) at α = 300
and ν = −60 (on the left) and ν = −5 (on the right).
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Figure 5: Real and imaginary parts of potential (2.39), (2.41) as a complex PT -symmetric
stationary (t = 0) solution to Eq. (2.31) at α = 300 and ν = 0 (on the left) and ν = 1.5 (on the
right).
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Figure 6: Evolution of real (on the left) and imaginary (on the right) parts of potential (2.39),
(2.42) as a complex PT -symmetric solution to Eq. (2.39) at α = 20, ν = 25; dashed lines:
t = −106, continuous lines: t = 0, dotted lines: t = 106.
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This differential operator of order seven satisfies the relations [H
(2)
α,γ ,P(2)

α,γ ] = 0 and (P(2)
α,γ)2 =

(H
(2)
α,γ)7. The bounded eigenstates of the system H

(2)
α,γ are constructed from the plane wave

eigenstates of the free particle system by applying to them the third order differentia opera-

tor D
(2)
α,γD2D1 that intertwines H0 with H

(2)
α,γ . The unique quadratically integrable eigenstate

ψ
(2)
α,γ,0 = ξ2

ξ5+γ
of the system H

(2)
α,γ of zero eigenvalue is given by application of the same third

order differential operator to the eigenstate ψ0,0 = 1 of H0. Equivalently, ψ
(2)
α,γ,0 is produced by

applying the first order differential operator D
(2)
α,γ to the ground state ξ−2 of zero energy of the

system Hα
2 . It is annihilated by the Lax-Novikov integral (2.43).

Potential (2.33) at γ = 0 is reduced to the PT -symmetric potential 6ξ−2, while for |γ| → ∞
it turns into zero. Potential (2.39) at γ = 0 takes a form 12ξ−2, and in the limit |γ| → ∞ it is
reduced to 2ξ−2. Therefore, the quantum system with potential (2.33) interpolates between the
free particle and the PT -symmetric system (2.16) with n = 2, while the system with potential
(2.39) interpolates between the perfectly transparent PT -symmetric systems (2.16) with n = 1
and n = 3. Let us stress, however, that continuous variation of γ between 0 and ∞ is impossible
since, according to (2.34) and (2.41), we have to pass through the excluded purely imaginary
values of γ where the corresponding potentials loose their non-singular in x ∈ R1 nature.

It is interesting to note here what happens with the zero energy ground states of the systems

H
(1)
α,γ and H

(2)
α,γ in the indicated limit cases. The ground state ψ

(1)
α,γ,0 = ξ

ξ3+γ
of H

(1)
α,γ in the case

γ = 0 takes the form of the ground state ξ−2 of Hα
2 , whereas the ground state ψ

(2)
α,γ,0 = ξ2

ξ5+γ
of

H
(2)
α,γ at γ = 0 reduces to the ground state ξ−3 of Hα

3 . In the limit |γ| → ∞, however, both states
turn into zero. These states mutliplied by γ in the indicated limit are transformed into the states
ξ and ξ2, which are the zero energy non-physical eigenstates of H0 and Hα

1 , respectively. On the

other hand, the non-physical partner
˜
ψ
(1)
α,γ,0 of the ground state H

(1)
α,γ given by (2.1) and rescaled

by inclusion of the multiplication factor γ−1 transforms in the limit |γ| → ∞ into the ground

state ψ0,0 = 1 of the system H0. In the same way, the non-physical eigenstate γ−1˜ψ
(2)
α,γ,0 of H

(2)
α,γ

of zero eigenvalue in the limit |γ| → ∞ is transformed into the ground state ξ−1 of the system
Hα

1 . Therefore, in the limit |γ| → ∞, we have a kind of transmutation of physical and non-

physical eigenstates of zero energy of the systems H
(1)
α,γ and H

(2)
α,γ into, respectively, non-physical

and physical states of zero eigenvalue of the corresponding limit systems H0 and Hα
1 .

In conclusion of this section we note that the quantum systems given by the PT -symmetric
potentials (2.33) and (2.39), unlike the PT -regularized Calogero systems (2.16), are not conformal
invariant. This can be related to the difference in the properties of the wave functions (2.32) and
(2.40) in comparison with those of wave functions of the form ξ2n+1 with respect to the scale,
ξ → λξ, and inversion, ξ → 1/ξ, transformations.

3 (1+ 1)-dimensional conformal field theoretical kinks seen from

conformal quantum mechanics

In this Section we discuss how the Hamiltonians Hα
1 and Hα

2 governing the dynamics in confor-
mal invariant PT -symmetric quantum mechanical systems also determine the fluctuation spectra
around the singular kinks arising as traveling waves in the Liouville and SU(3) conformal Toda
systems in field theory. This is remarkable because the conformal group which is infinite dimen-
sional in the two-dimensional Minkowskian setting contracts to a finite subgroup in conformal
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quantum mechanics, see also [44, 45].

3.1 Kinks in Liouville field theory

The classical dynamics of Liouville field theory [46, 47] is governed by the action:

S[φ] =

∫
dt

∫
dx
{1
2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

− m2

β2
· exp [β φ(t, x)]

}
, (3.1)

where m2 is a parameter of dimension (length)−2 in the natural system of units ~ = c = 1. The
coupling constant β > 0, however, is dimensionless. The Liouville field equation

∂2φ

∂t2
(t, x)− ∂2φ

∂x2
(t, x) +

m2

β
· exp [β φ(t, x)] = 0 (3.2)

is completely integrable. The general solution of (3.2) is obtained, in terms of arbitrary functions
of the light-cone coordinates x± = 1√

2
(t ± x), via Bäcklund transformations starting from the

general solution of the free wave equation. In these variables the wave and Liouville equations
read respectively :

2 ∂+∂−φ0(x+, x−) = 0 , 2 ∂+∂−φ(x+, x−) +
m2

β
exp [βφ(x+, x−)] = 0 , (3.3)

where we have denoted ∂± = ∂
∂x±

. Equations (3.3) are thus invariant under the coordinate

transformations x′+ = f+(x+), x
′
− = f−(x−), with f±(x±) arbitrary functions of their arguments,

accomponied by the field redefinition φ′(x′+, x
′
−) = − 1

β
ln[∂+f+(x+)∂−f−(x−)] + φ(x+, x−) [47].

In sum, the Liouville equation is invariant under the infinite-dimensional conformal group, whose
Lie algebra is the Virasoro algebra.

There is a static homogeneous solution of equation (3.3) : φ0 = −∞. Linearization of the
Liouville equation around the constant solution, φ(t, x) = φ0 + δφ(t, x),

(
∂2

∂t2
− ∂2

∂x2

)
δφ(t, x) = O(δ2) ⇒ δφω(t, x) = eiωteikx , ω2 = k2 , (3.4)

shows a semi-classical picture of the Liouville quanta as massless bosons. Liouville quantum
theory in full exhibits a very particular structure as a quantum conformal system, see e.g. [46].
Our goal here, however, is the search for traveling wave type of solutions, that is, we make
the ansatz φ(t, x) = f(λ · x−vt−x0√

1−v2
), λ ∈ R+, |v|2 < 1, x0 ∈ R, which can be obtained from

φ(t, x) = f(x) by applying to x, first, a scale transformation, x′ = λx, and then, a Poincaré
transformation parametrized by (v, x0). Thus, in the frame (λ = 1, v = 0, x0 = 0), one has to
solve the first-order ordinary differential equation

df

dx
=

√
2
m2

β2
· exp [β f(x)] . (3.5)

The invariance under dilatations, Lorentz transformations and spatial translations provides the
family of singular kinks

fK(t, x) =
1

β
log

[
2

m2λ2(x−vt−x0√
1−v2

)2

]
, (3.6)
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which have scales characterized by λ−1, are singular at x = vt + x0, and travel with velocity
−1 < v < 1. The energy

E[f ] =

∫
dx

[
1

2

(
df

dx

)2

+ U [f(x)]

]
=

∫
dx

[
1

2

(
df

dx

)2

+
m2

β2
· exp [β f(x)]

]
(3.7)

of these singular solutions is ill-defined, and computed at x0 + vt = 0 is given by the improper
integral

E[fK ] =
1

λβ2

∫ ∞

−∞
dx

4

x2
. (3.8)

Nevertheless, it is interesting to analyze the small fluctuation spectrum around the singular
kink : φ(t, x) = fK(x) + δφ(t, x). The expansion of the action

S[fK + δφ]− S[fk] ≃
1

2

∫
dtdx δφ(λt, λx)

{
− λ2

d2

dx2
+m2exp[βfk(x)]

}
δφ(λt, λx) +O(δ3) (3.9)

around the singular kink shows that the second order fluctuations are governed by the differential
operator

K = − d2

dx2
+
d2U

dφ2
(fK(x)) = − d2

dx2
+

2

x2
, (3.10)

which is precisely the Calogero Hamiltonian H1 for two particles discussed in the previous Section.
Moreover, the potential in (3.10) is a first member of the family of Schrödinger operators appear-
ing in de Alfaro-Fubini-Furlan quantum mechanics [29]. The scale invariance (t′, x′) = (λt, λx)
manifest in the problem of analyzing the kink fluctuations in Liouville conformal field theory, see
(3.9), descends this way to a spectral problem in conformal quantum mechanics. We infer this
link in the opposite direction as compared to the References [44, 45] where an ascending path is
travelled from conformal quantum mechanics to Virasoro algebra.

So far we have placed the kink singularity at the origin, x0 + vt = 0, but it is interesting
to locate the kink center at the imaginary axis. Setting the scale to unity, λ = 1, and putting
the kink at rest, v = 0, we choose also x0 = −iα, α ∈ R, that is, we displace the kink center
from x0 = 0 to the imaginary axis in the complex x-plane as a way of escaping the singularity.
Either at rest or in motion due to a Lorentz boost the kink profile with its center displaced to
the imaginary axis has zero energy :

fK [x, α] =
1

β
log

[
2(1− v2)

m2λ2(x− vt+ iα)2

]
, E[fK(α] =

1

λβ2

∫ ∞

−∞
dx

4

(x− vt+ iα)2
= 0 . (3.11)

Regarding small fluctuations around these displaced kinks, at rest v = 0 with unit scale λ = 1,
which we write in the mod/arg form,

fK [x, α] =
1

β
log

[
2

m2(x2 + α2)

]
+
i

β
arg[iα+ x] ,

the second-order operator becomes :

Kα = − d2

dx2
+

2

(x+ iα)2
= − d2

dx2
+

x2 − α2

(x2 + α2)2
− i

αx

(x2 + α2)2
, (3.12)

i.e., Kα = Hα
1 is the PT -symmetric Hamiltonian discussed in Section 2.
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In order to investigate the spectrum of Liouville kink fluctuations we profit from the Darboux
transformation between H0 = D†

1D1 and H1 = D1D
†
1. From the plane wave odd eigenfunctions

taming the singularity at the origin, in the spectrum of H0, H0 sin kx = k2 sin kx, k ∈ R, we
obtain the eigenfunctions in the continuous spectrum of H1 :

H1D1(sin kx) = D1D
†
1D1(sin kx) = k2

(
k cos kx− sin kx

x

)
. (3.13)

In addition, the kink fluctuations include a singular zero mode, δφ0(x) =
1
x
, which is not normal-

izable because of the singularity at the origin. The kink fluctuations belonging to the continuous
spectrum are

δφω(t, x) = eiωt
(
d

dx
− 1

x

)
sin kx = eiωt

(
k cos kx− sin kx

x

)
, ω = k .

We again stress that the scale invariance of the Liouville field theory descends to scale invariance
of the conformal quantum mechanics that governs the Liouville kink fluctuations. The dispersion
relation ω = k tells us that kink fluctuations are “massless”as a consequence of (1+1)-dimensional
conformal symmetry. Comparing the H0 and H1 eigenfunctions at long distances, sin(kx) ∝
eikx − e−ikx versus cos(kx) ∝ eikx + e−ikx, we observe that a phase −1 = eiπ, k-independent,
arises for the reflected waves in the n = 1 Calogero potential non-existing in the free motion of
one particle on the right half-line with Dirichlet boundary conditions, see Appendix. This phase
can be interpreted from the well studied fermionic character of kinks and solitons.

In the case of the kinks displaced into the imaginary axis things are identical with respect to
small fluctuations except that now the Darboux-related operators

H0 = D#
1 D1 = − d2

dx2
and Hα

1 = D1D
#
1 = − d2

dx2
+

2

(x+ iα)2
(3.14)

are intertwined by the first-order operators D1 = d
dx

− 1
x+iα

and D#
1 = − d

dx
− 1

x+iα
. Starting

from the odd eigenfunctions of the free particle we find through the action of D1 the continuous
spectrum eigenfunctions of Kα

1 :

δφω(t, x) = eiωt
(
d

dx
− 1

x+ iα

)
sin kx = eiωt

(
k cos kx− x− iα

x2 + α2
sin kx

)
, ω = k . (3.15)

In this case the real part of these eigenfunctions is non-null at the origin, Re δφω(0, 0) = k, but
the imaginary part vanishes at (t = 0, x = 0): Im δφω(0, 0) = 0. Besides the continuous spectrum

eigenfunctions, there is a kink zero mode of fluctuation annihilated by D#
1 ,

dδφ0
dx

+
1

x+ iα
δφ0(x) = 0 ⇒ δφ0(x) =

1

x+ iα
, (3.16)

which is regular and quadratically integrable on real line, but is purely imaginary at x = 0.

3.2 Kinks in the SU(3) conformal Toda model

The SU(3) conformal Toda field theory [48] encompasses two (1 + 1)-dimensional scalar fields
assembled into a vector field through use of the simple roots of the SU(3) Lie algebra: ~α1 · ~α1 =
~α2 · ~α2 = 2 , ~α1 · ~α2 = ~α2 · ~α1 = −1,

~ψ(t, x) = ~α1ψ1(t, x) + ~α2ψ2(t, x) , C = 2




~α1·~α1

|~α1|·|~α1|
~α1·~α2

|~α1|·|~α2|

~α2·~α1

|~α2|·|~α1|
~α2·~α2

|~α2|·|~α2|


 =

(
2 −1
−1 2

)
,
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where C is the SU(3) Cartan matrix. The conformal Toda Lagrangian is

L[~ψ] = 1

2

∂ ~ψ

∂t
· ∂

~ψ

∂t
− 1

2

∂ ~ψ

∂x
· ∂

~ψ

∂x
− m2

β2

[
exp[

β√
2
~α1 · ~ψ(t, x)] + exp[

β√
2
~α2 · ~ψ(t, x)]

]
, (3.17)

and the field equations read

4
∂2ψ1

∂x+∂x−
− 2

∂2ψ2

∂x+∂x−
+
m2

β

[
2 exp[

β√
2
(2ψ1 − ψ2)]− exp[

β√
2
(2ψ2 − ψ1)]

]
= 0 , (3.18)

4
∂2ψ2

∂x+∂x−
− 2

∂2ψ1

∂x+∂x−
+
m2

β

[
2 exp[

β√
2
(2ψ2 − ψ1)]− exp[

β√
2
(2ψ1 − ψ2)]

]
= 0 . (3.19)

The PDE system (3.18), (3.19) is manifestly conformal invariant if the space-time transformations
x′± = f±(x±) are accompanied by the field redefinitions :

ψ′
1(x

′
+, x

′
−) = −

√
2

β
ln[∂+f+(x+)∂−f−(x−)] + ψ1(x+, x−) ,

ψ′
2(x

′
+, x

′
−) = −

√
2

β
ln[∂+f+(x+)∂−f−(x−)] + ψ2(x+, x−) .

Since the eigenvectors of the Cartan matrix C are v1 =

(
1
1

)
and v2 =

(
1
−1

)
, with eigenvalues

1 and 3, respectively, it is convenient to perform the following change of variables in the fields :
φ1 =

1√
2
(ψ1 +

1√
3
ψ2) and φ2 =

1√
2
(ψ1 − 1√

3
ψ2). In the new fields the SU(3) conformal Toda field

theory action becomes :

S[φ1, φ2] =

∫ ∫
dt dx

{1
2

(
∂φ1
∂t

)2

+
1

2

(
∂φ2
∂t

)2

− 1

2

(
∂φ1
∂x

)2

− 1

2

(
∂φ2
∂x

)2

− U(φ1, φ2)
}
,

U(φ1, φ2) =
m2

β2
·
{
exp

[
β

2
(φ1(t, x) +

√
3φ2(t, x))

]
+ exp

[
β

2
(φ1(t, x)−

√
3φ2(t, x))

] }
,

and the Toda field equations are diagonal in the field derivatives :

∂2φ1
∂t2

(t, x)− ∂2φ1
∂x2

(t, x) +
m2

2β

(
e

β

2
(φ1(t,x)+

√
3φ2(t,x)) + e

β

2
(φ1(t,x)−

√
3φ2(t,x))

)
= 0 , (3.20)

∂2φ2
∂t2

(t, x)− ∂2φ2
∂x2

(t, x) +

√
3m2

2β

(
e

β

2
(φ1(t,x)+

√
3φ2(t,x)) − e

β

2
(φ1(t,x)−

√
3φ2(t,x))

)
= 0 . (3.21)

Like the Liouville PDE this system of PDE’s is completely integrable in terms of arbitrary
functions of x+ and x− with the help of the infinite dimensional conformal symmetry with Lie
algebra being some variant of Kac-Moody algebra.

The second-order variations around any solution (φS1 (t, x), φ
S
2 (t, x)) of these PDE system are

governed by the Hessian operator

H =

(
∂2

∂t2
− ∂2

∂x2 + δ2U
δφ2

1

(φS1 (t, x), φ
S
2 (t, x))

δ2U
δφ1δφ2

(φS1 (t, x), φ
S
2 (t, x))

δ2U
δφ2δφ1

(φS1 (t, x), φ
S
2 (t, x))

∂2

∂t2
− ∂2

∂x2 + δ2U
δφ2

2

(φS1 (t, x), φ
S
2 (t, x))

)
, (3.22)
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where

δ2U

δφ21
(φS1 (t, x), φ

S
2 (t, x)) =

m2

4

[
e

β

2
(φS

1 (t,x)+
√
3φS

2 (t,x)) + e
β

2
(φS

1 (t,x)−
√
3φS

2 (t,x))
]
, (3.23)

δ2U

δφ1δφ2
(φS1 (t, x), φ

S
2 (t, x)) =

√
3m2

4

[
e

β

2
(φS

1
(t,x)+

√
3φS

2
(t,x)) − e

β

2
(φS

1
(t,x)−

√
3φS

2
(t,x))

]
, (3.24)

δ2U

δφ2δφ1
(φS1 (t, x), φ

S
2 (t, x)) =

√
3m2

4

[
e

β

2
(φS

1
(t,x)+

√
3φS

2
(t,x)) − e

β

2
(φS

1
(t,x)−

√
3φS

2
(t,x))

]
, (3.25)

δ2U

δφ22
(φS1 (t, x), φ

S
2 (t, x)) =

3m2

4

[
e

β

2
(φS

1 (t,x)+
√
3φS

2 (t,x)) + e
β

2
(φS

1 (t,x)−
√
3φS

2 (t,x))
]
. (3.26)

We first consider the only solution of the PDE system (3.20), (3.21) independent of t and x :
(φ01 = −∞, φ02 = 0), which is the absolute minimum of U(φ1, φ2). Clearly, the Hessian evaluated

at this constant solution is H0 =

(
∂2

∂t2
− ∂2

∂x2 0

0 ∂2

∂t2
− ∂2

∂x2

)
. Since the spectrum of H0 is positive,

the solution (φ01, φ
0
2) is classicaly stable with respect to small fluctuations. Thus, in the quantum

framework these fluctuations of “vacuum” become massless bosons (compatible with conformal
symmetry).

The next step is the search for solitary wave type of solutions, that is, making the ansatz
(φ1(t, x) = f(x), φ2(t, x) = 0) (in the kink center of mass), the PDE system above reduces to the
first-order ODE

df

dx
= 2

m

β
· exp

[
β

4
f(x)

]
. (3.27)

Setting the kink scale to unit, λ = 1, Lorentz and translation invariance provide the family of
singular kinks

fK(t, x) =
2

β
log

[
4(1− v2)

m2(x− vt− x0)

]
(3.28)

traveling with velocity −1 < v < 1. The energy E[(f, 0)] =
∫
dx

[
1
2

(
df
dx

)2
+ 2m2

β2 · exp
[
β
2 f(x)

]]

of these singular solutions is ill defined. Computed at x0 = 0 it is given by the improper integral

E[(fK , 0)] =
1

β2

∫ ∞

−∞
dx

4

x2
. (3.29)

Like in the case of the Liouville kinks it is interesting to analyze the small fluctuation spectrum
around these Toda singular kinks : (φ1(t, x) = fK(x) + δφ1(t, x), φ2(t, x) = δφ2(t, x)). The
fluctuations up to second-order O(δ2) belong to the kernel of H(fK(x), 0) :

H(fK(x), 0) =

(
∂2

∂t2
0

0 ∂2

∂t2

)
+K =

(
∂2

∂t2
0

0 ∂2

∂t2

)
+

(
− ∂2

∂x2 + 2
x2 0

0 − ∂2

∂x2 + 6
x2

)
. (3.30)

The Toda kink fluctuations thus can be expanded in terms of the eigenfunctions of the matrix
differential operator K :

K

(
δφω1 (x)
δφω2 (x)

)
=

(
− d2

dx2 + 2
x2 0

0 − d2

dx2 + 6
x2

)(
δφω1 (x)
δφω2 (x)

)
= ω2

(
δφω1 (x)
δφω2 (x)

)
. (3.31)
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From the explicit form of the hessian (3.30) we clearly see that its kernel Hδφ(t, x) is Fourier
expanded in terms of the K-eigenfunctions:

Hδφ(t, x) = 0 ⇔ δφ(t, x) =

∫ ∞

−∞
dω eiωt

(
δφω1 (x)
δφω2 (x)

)
. (3.32)

Since K is a diagonal matrix of two-particle Calogero Hamiltonians, the conformal Toda kink
fluctuations exhibit similar features to the properties of Liouville kink fluctuations just analyzed
in the previous sub-Section. In particular, the fluctuations in the φ1 field, δφω1 (x), are exactly
the eigenfunctions in the continuous spectrum of H1 vanishing at x = 0. As for Liouville kinks
it is possible to escape from the singularity at x = 0 by sending the kink center to the imaginary
axis.

The novelties arise in the δφ2(t, x) fluctuations. These fluctuations may be expanded in terms
of the eigenfunctions of H2, the n = 2 two-particle Calogero Hamiltonian H2 :

δφω2 (x) =

(
d

dx
− 2

x

)(
d

dx
− 1

x

)
sin kx = −3k

x
cos kx+

3− k2x2

x2
sin kx , ω2 = k2 . (3.33)

This is possible because the hierarchy

H0 = D†
1D1 , H1 = D1D

†
1 , (3.34)

H1 = D†
2D2 , H2 = D2D

†
2 (3.35)

allows us to obtain the eigenfunctions of H2 iteratively from the H0 eigenfunctions :

H2

(
−3k

x
cos kx+

3− k2x2

x2
sin kx

)
= k2

(
−3k

x
cos kx+

3− k2x2

x2
sin kx

)
. (3.36)

Besides the positive eigenfunctions, the spectrum of H2 includes a singular zero mode :

D†
2δφ

0
2(x) = 0 ⇒ δφ02(x) ∝

1

x2
, (3.37)

to be added to the kink translational mode: δφ01(x) ∝ 1
x
.

We omit the description of these singular Toda kinks regularized by pushing their centers to
the imaginary axis because their properties are essentially identical to those of regular Liouville
kinks. We conclude this Section by mentioning that the one-loop mass shifts of Liouville and
Toda kinks are null. Since the kink Hessians are reflectionless, the Cahill-Comtet-Glauber formula
[49, 50, 51] can be applied. Because the discrete and continuous spectra collapse at the point
k = 0, the threshold of the continuous spectrum, the CCG formula gives mass shifts equal to
zero. This is because the CCG formula expresses the one-loop kink mass shift as a sum of terms
collecting the bound state contributions times the scattering threshold that in this case is zero.
The annihilation of one-loop kink mass shifts is thus the consequence of perfect invisibility of the
Calogero Hamiltonians.

4 Exotic supersymmetry of the pairs of perfectly invisible PT -

symmetric systems

In this section we investigate the exotic nonlinear supersymmetry structure appearing in the
extended systems composed from the pairs of perfectly invisible PT -symmetric quantum systems
related by the first order Darboux transformations.
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Consider the simplest extended system composed from the pair H0 and Hα
1 and described by

the matrix Hamiltonian

H =

(
Hα

1 0
0 H0

)
. (4.1)

The extended system has the integrals of motion

Q1 =

(
0 D1

D#
1 0

)
, Q2 = iσ3Q1 , (4.2)

S1 =

(
0 −iD1P0

iP0D
#
1 0

)
, S2 = iσ3S1 , (4.3)

where D1 is the first order differential operator given by Eq. (2.8), and P0 = −i d
dx

is the
momentum operator of the free particle H0. Operators Qa and Sa, a = 1, 2, constitute the set of
four supercharges of the extended system : they commute with the Hamiltonian H,

[H, Qa] = 0 , [H, Sa] = 0 , (4.4)

and their anticommutation relations are

{Qa, Qb} = 2δabH , {Sa, Sb} = 2δabH2 , (4.5)

{Qa, Sb} = 2ǫabL1 . (4.6)

Here

L1 =

(
Pα
1 0
0 H0P0

)
(4.7)

is the bosonic integral of motion composed from the Lax-Novikov integrals of motion of the
subsystems Hα

1 and H0. One also can define a bosonic operator L2 = σ3L1. It is another
nontrivial bosonic integral of the system,

[H,La] = 0 , (4.8)

a = 1, 2. We have the following commutation relations between bosonic, La, and fermionic, Qa

and Sa, integrals of motion of the system H :

[L1, Qa] = 0 , [L1, Sa] = 0 , (4.9)

[L2, Qa] = 2iHSa , [L2, Sa] = −2iH2Qa . (4.10)

The set of (anti)-commutation relations (4.4), (4.5), (4.6), (4.8), (4.9) and (4.10) is the exotic
nonlinear superalgebra of the system (4.1). The Lie superalgebra of conventional N = 2 su-
persymmetry is contained here as a sub-superalgebra generated by the Hamiltonian H and the
first order supercharges Qa. The nonlinear extension of superalgebra emerges here because the
subsystem H0 has its proper integral of motion P0 = −i d

dx
that enters the structure of the pair of

additional supercharges Sa which are matrix differential operators of order two. Like the Hamil-
tonian operator H, the bosonic integral L1 composed from the Lax-Novikov integrals of motion
of the subsystems is a central element of the superalgebra. The second bosonic integral L2 when
commutes with the pair of supercharges Qa (Sa), generates another pair of supercharges Sa (Qa).
The nonlinearity of the superalgebra is related to the appearance of the central charge H in the
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form of multipliers H and H2 in the anticommutator of supercharges Sa and in commutation
relations (4.10) of the supercharges with the bosonic integral L2.

The supersymmetry of the extended system described by a Hamiltonian H = diag (Hα
n ,H

α
n−1)

composed from a pair of perfectly invisible neighbour PT -symmetric systems from the family
(2.16) has a similar structure. Two supercharges Qa are matrix differential operators of the first

order which have the form similar to (4.2) with operators D1 and D#
1 changed for the operators

Dn and D#
n defined in (2.19). The supercharges Sa are matrix differential operators of order 2n.

They have a structure similar to that of the supercharges (4.3) with the operators D1P0 and

P0D
#
1 changed for DnPα

n−1 and Pα
n−1D

#
n , respectively, where Pα

n−1 is the Lax-Novikov integral
of the subsystem Hα

n−1 given by Eq. (2.23). The analog of the bosonic integral (4.7) has in
this case the form L1 = diag (Pα

n ,H
α
n−1Pα

n−1), and, again, another nontrivial bosonic integral is
L2 = σ3L1. The anti-commutator of supercharges Qa with Qb has the same form as in (4.5), the
anticommutator of Qa with Sb has the form (4.6). The anti-commutator between supercharges
Sa and Sb changes here for {Sa, Sb} = 2δab(H)2n, which is a corresponding generalization of the
second relation from (4.5). Here L1 is again a central element of superalgebra generated via the
anti-commutator between supercharges Qa and Sb. The commutator of L2 with Qa has exactly
the same form as in (4.10), while the commutator L2 with Sa is changed for [L2, Sa] = −2iH2nQa,
that is a natural generalization of the second relation from (4.10). Note that the matrix differential
operator K from Eq. (3.31) that controls the Toda kink fluctuations, after PT -regularization
x → x + iα corresponds exactly to the case n = 2 of the supersymmetric Hamiltonian H =
diag (Hα

n ,H
α
n−1) with permuted subsystems. So, the system of PT -regularized kinks of the SU(3)

conformal Toda system is described by the exotic N = 4 nonlinear supersymmetry.
In the same way one can identify the superalgebra of the extended systems composed from

the pairs of the systems H
(1)
α,γ and Hα

1 , and of the systems H
(2)
α,γ and Hα

2 , where H
(1)
α,γ and H

(2)
α,γ

are the perfectly invisible PT -symmeric systems that we described at the end of Section 2.
We also can consider the exotic supersymmetry of an extended system composed from any

two perfectly invisible PT -symmetric systems by taking into account that each such a system is
characterized by a nontrivial Lax-Novikov integral being a Darboux-dressed momentum operator
of the free particle. As a consequence, the corresponding two subsystems always can be inter-
twined by two distinct differential operators, see for such a structure appearing in n-soliton [52]
and periodic finite-gap [53] systems.

Like in the case of reflectionless systems [52, 54, 55], sometimes there could appear the oper-
ators which intertwine the two perfectly invisible PT -symmeric systems directly but not via the
chains of the intertwining operators ascending to the free particle system. Then the structure of
the superymmetry algebra will transmute and include some central element composed from the
complex shift parameters.

As an example where such a situation is realized, let us consider the extended system

H =

(
Hα2

1 0
0 Hα1

1

)
(4.11)

composed from two systems Hα1

1 andHα2

1 of the form (2.9) characterized by two different nonzero
shift parameters α1 and α2. For the sake of definiteness, we assume that α1 > α2. The two
subsystems Hα1

1 and Hα2

1 can be intertwined by the second order differential operators Dα1
D#

α2

and Dα2
D#

α1 , where Dαj
and D#

αj , j = 1, 2, are the first order differential operators of the form

(2.8), Dαj
= d

dx
− (x+ iαj)

−1, D#
αj = − d

dx
− (x+ iαj)

−1, each of which intertwines a subsystem
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H
αj

1 with a free particle H0, see Eq. (2.10). So, we have here the intertwining relations

(Dα1
D#

α2
)Hα2

1 = Hα1

1 (Dα1
D#

α2
) , (Dα2

D#
α1
)Hα1

1 = Hα2

1 (Dα2
D#

α1
) . (4.12)

These second order differential operators intertwine the subsystems Hα1

1 and Hα2

1 effectively

via a ‘virtual’ free particle system H0 : (Dα1
D#

α2
)Hα2

1 = Dα1
(D#

α2
Hα2

1 ) = (Dα1
H0)D

#
α2

=

Hα1

1 (Dα1
D#

α2
). Besides them, we also have here the intertwiners

D =
d

dx
+W , D# = − d

dx
+W , (4.13)

where

W =
1

ξ1
− 1

ξ2
− 1

ξ1 − ξ2
, (4.14)

ξj = x + iαj , and −(ξ1 − ξ2)
−1 = i(α1 − α2)

−1. The first order differential operators (4.13)
intertwine the subsystems directly,

DHα1

1 = Hα2

1 D , D#Hα2

1 = Hα1

1 D# , (4.15)

and also satisfy the relations

D#D = Hα1

1 −∆2 , DD# = Hα2

1 −∆2 , (4.16)

where we have introduced the notation

∆ =
1

α1 − α2
. (4.17)

When α1 → ∞, the Hamiltonian operator Hα1

1 transforms into H0, for function (4.14) we have
W → −ξ−1

2 , and D transforms into the operator D1 given by Eq. (2.8) with ξ changed for ξ2,
that intertwines the H0 with Hα2

1 .
To establish the explicit form of the exotic superalgebraic structure of the system (4.11), the

following relations that involve the operators (4.13), and Dαj
and D#

αj , j = 1, 2, are useful :

DDα1
= Dα2

D0 , D#
α2
D = D0D

#
α1
, (4.18)

D#Dα2
= Dα1

D#
0 , D#

α1
D# = D#

0 D
#
α2
, (4.19)

where we denoted

D0 ≡
d

dx
+ i∆ , D#

0 ≡ − d

dx
+ i∆ . (4.20)

Note that the first order operators (4.13) and the second order operators Dα1
D#

α2
and Dα2

D#
α1

intertwine also the Lax-Novikov integrals of the subsystems,

DPα1 = Pα2D , D#Pα2 = Pα1D# , (4.21)

(Dα2
D#

α1
)Pα1 = Pα2(Dα2

D#
α1
) , (Dα1

D#
α2
)Pα2 = Pα1(Dα1

D#
α2
) . (4.22)

From the described intertwining relations we find that the system (4.11) is characterized by
the supercharges

Q1 =

(
0 D
D# 0

)
, Q2 = iσ3Q1 , (4.23)
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which are the matrix first order differential operators, and by the supercharges

S1 =

(
0 Dα2

D#
α1

Dα1
D#

α2
0

)
, S2 = iσ3S1 , (4.24)

which are matrix differential operators of the second order. Besides, the extended system (4.11)
has two nontrivial bosonic integrals of motion

L1 =

(
Pα2 0
0 Pα1

)
, L2 = σ3L1 . (4.25)

All these integrals of motion generate the following exotic nonlinear superalgebra of the system
(4.11) :

[H, Qa] = 0 , [H, Sa] = 0 , [H,La] = 0 , (4.26)

{Qa, Qb} = 2δab(H−∆2) , {Sa, Sb} = 2δabH2 , (4.27)

{Qa, Sb} = 2 (ǫabL1 + iδab∆H) , (4.28)

[La,Lb] = 0 , [L1, Qa] = 0 , [L1, Sa] = 0 , (4.29)

[L2, Qa] = 2i(H −∆2)Sa + 2∆ · HQa , [L2, Sa] = −2iH2Qa − 2∆ · HSa . (4.30)

In the limit α1 → ∞, the system (4.11) transforms into the system (4.1), and all the integrals
of (4.11) are transformed into the corresponding integrals of motion of the system (4.1) with
parameter α changed for α2. The exotic superalgebra of the system (4.11) in this limit takes the
form of the exotic superalbegra of the system (4.1).

In accordance with distinct exotic nonlinear superalgebraic structures of the supersymmetric
systems (4.1) and (4.11), their spectral properties also essentially differ. Consider first the system
(4.1). Its integrals H, La, Q2 and S1 are PT -even operators, while Q1 and S2 are PT -odd :

PTE = EPT , E = H ,La , Q2 , S1 ; PTO = −OPT , O = Q1 , S2 . (4.31)

For fermionic integrals of this system the following operator identities are valid coherently with
(4.6) : Q1S1 = −S1Q1 = Q2S2 = −S2Q2 = iL2, Q1S2 = S2Q1 = −Q2S1 = −S1Q2 = L1. The
first order supercharges Q1 and Q2 commute, respectively, with the second order supercharges S2
and S1, and the corresponding pairs of the fermionic integrals can be diagonalized simultaneously.
The functions

Ψ±
k (x) =

(
D1e

ikx

∓ikeikx
)
, −∞ < k <∞ , (4.32)

are the common eigenstates of H, L1, Q2 and S1 :

HΨ±
k = k2Ψ±

k , L1Ψ
±
k = k3Ψ±

k , Q2Ψ
±
k = ±kΨ±

k , S1Ψ
±
k = ∓k2Ψ±

k . (4.33)

The integral L1 distinguishes the eigenstates with positive and negative values of k, while both
supercharges Q2 and S1 separate the eigenstates with different values + and − of the upper index.
On the other hand, Q1Ψ

±
k = ±k(iσ3Ψ±

k ), S2Ψ
±
k = ±k2(iσ3Ψ±

k ), L2Ψ
±
k = k3(σ3Ψ

±
k ) . The state

with k = 0, Ψ0(x) = (D11, 0)
t = (−ξ−1, 0)t, where t means a transposition, is a unique eigenstate

of zero energy that is annihilated by all the integrals of motion. The PT -symmetric system (4.1)
corresponds therefore to the case of unbroken exotic nonlinear supersymmetry. The commuting
PT -odd supercharges Q1 and S2 have the common eigenfunctions Ψ̃±

k (x) = (D1e
ikx,±keikx)t
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with real eigenvalues, Q1Ψ̃
±
k = ±kΨ̃±

k , S2Ψ̃
±
k = ±k2Ψ̃±

k . Analogously to the states (4.32), they
are eigenfunctions of H and L1 with eigenvalues k2 and k3, respectively, and satisfy the relations
Q2Ψ̃

±
k = ±k(iσ3Ψ̃±

k ), S1Ψ̃
±
k = ∓k2(iσ3Ψ̃±

k ), L2Ψ̃
±
k = k3(σ3Ψ̃

±
k ).

Consider now the system (4.11). Its integrals satisfy the same parity properties (4.31) with
respect to permutations with the operator PT . Here we have the identities Q1S1 = Q2S2 =
i(σ3L1 + ∆H), S1Q1 = S2Q2 = i(−σ3L1 + ∆H), Q1S2 = −Q2S1 = L1 + ∆σ3H, S2Q1 =
−S1Q2 = L1 −∆σ3H. Unlike (4.1), in the system (4.11) there are no mutually commuting pairs
of the first and second order supercharges, and the complete sets of mutually commuting integrals
are formed by the sets of the bosonic operators H and L1 supplemented by one of the fermionic
first order supercharges Qa, or by one of the second order supercharges Sa.

The common eigenfunctions of the set of the PT -even operators (H, L1, S1) are

Ψ±
k2

=

(
Dα2

eikx

±Dα1
eikx

)
, −∞ < k <∞ , (4.34)

for which S1Ψ
±
k2

= ±k2Ψ±
k2
, HΨ±

k2
= k2Ψ±

k2
, L1Ψ

±
k2

= k3Ψ±
k2
. They also satisfy the relations

Q1Ψ
±
k2

= ±i(kσ3+∆)Ψ±
k2
, Q2Ψ

±
k2

= ∓(k+σ3∆)Ψ±
k2
, S2Ψ

±
k2

= ±k2(iσ3Ψ±
k2
), L2Ψ

±
k2

= k3(σ3Ψ
±
k2
).

The doublet of states Ψ±
0 = (Dα2

1,±Dα1
1)t = (−ξ−1

2 ,∓ξ−1
1 )t corresponding to k = 0 are the

eigenfunctions with the lowest, zero value of energy, HΨ±
0 = 0, which also are annihilated by both

bosonic integrals La and both second order supercharges Sa. However, they are not annihilated by
the first order supercharges, being eigenfuctions of the Q1 with imaginary eigenvalues : Q1Ψ

±
0 =

±i∆Ψ±
0 . Their linear combinations Ψ+

0 ± iΨ−
0 are eigenfunctions of the PT -even first order

supercharge Q2 with the same pure imaginary eigenvalues ±i∆. Unlike (4.1), the PT -symmetric
system (4.11) realizes the case of spontaneously partially broken exotic nonlinear supersymmetry.
Analogously, the states Ψ̃±

k2
= (Dα2

eikx,±iDα1
eikx)t are common eigenstates of H, L1 and S2,

S2Ψ̃
±
k2

= ±k2Ψ̃±
k2
, HΨ̃±

k2
= k2Ψ̃±

k2
, L1Ψ̃

±
k2

= k3Ψ̃±
k2
, for which we also have the relations L2Ψ̃

±
k2

=

k3(σ3Ψ̃
±
k2
), S1Ψ̃

±
k2

= − ∓ k2(iσ3Ψ̃
±
k2
), Q1Ψ̃

±
k2

= ∓(k +∆σ3)Ψ̃
±
k2
, Q2Ψ̃

±
k2

= ∓i(kσ3 +∆)Ψ̃±
k2
. The

states Ψ̃±
0 are annihilated by Sa, H and La, but they are eigenfunctions of Q2 of nonzero, pure

imaginary eigenvalues ∓i∆, and their linear combinations Ψ̃+
0 ± iΨ̃−

0 are eigenstates of Q1 of
eigenvalues ±i∆.

According to the first relation from (4.27), the eigenvalues of the first order supercharges
Qa have to be pure imaginary for 0 ≤ k2 < ∆2, equal to zero for k2 = ∆2, and to be real for
energy eigenvalues k2 > ∆2. In accordance with this, the eigenstates of Q1 with eigenvalues λ =
±i

√
∆2 − k2 are Ψ±

k (x) = (
√
∆+ kDα2

eikx, ∓
√
∆− kDα1

eikx)t for 0 ≤ k2 < ∆2. Particularly,
the states Ψ±

0 = (Dα2
1, ±Dα2

1)t are two eigenstates of eigenvalues ±i∆ of zero energy that
already have been described above. For k2 > ∆2, the eigenstates of Q1 of real eigenvalues
λ = ±

√
k2 −∆2 have the form Ψ±

k (x) = (
√

|∆+ k|Dα2
eikx, ∓iεk

√
|k −∆|Dα1

eikx)t, where εk
denotes the sign of k. These states Ψ±

k (x) also are eigenstates of H and L1 of eigenvalues k2

and k3, respectively. The eigenstates of the PT -even supercharge Q2 can be obtained from
the eigenstates of Q1. Denoting by Ψλ an eigenstate of Q1 of eigenvalue λ, Q1Ψλ = λΨλ, whose
explicit structure for different values of λ we have just described, the eigenstate of Q2 of eigenvalue
−λ is given by Ψ̃−λ = (Π++ iΠ−)Ψλ, Q2Ψ̃−λ = −λΨ̃−λ. Here Π± = 1

2(1±σ3) are the projectors.
In the limit α1 → ∞, we have ∆ → 0, and the described phase of the partially broken exotic

nonlinear supersymmetry of the system (4.11) transmutes into the phase of unbroken exotic
nonlinear supersymmetry of the system (4.1).
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5 Summary, discussion and outllok

We investigated a special class of PT -symmetric quantum mechanical systems. Being generated
via PT -regularized Darboux-Crum transformations of the free particle system H0, each of them
has the same spectrum as H0 but with a bound state ψ0,0(x) = 1 of zero energy of H0 transformed
into a bounded (quadratically integrable on R1) eigenstate of the same energy of the generated
system. Each such a system satisfies a stationary equation of the KdV hierarchy and is character-
ized by a Lax-Novikov integral being a higher order differential operator. It is a Darboux-dressed
free particle momentum integral which distinguishes the left- and right-moving scattering states
inside the spectral doublets and detects the bounded state of zero energy by annihilating it. Other
states from the kernel of this integral are the Jordan states of the corresponding system. The
peculiarity of such systems is that in them not only the reflection coefficient is zero, and so, their
transmission coefficient is a pure phase, but that this phase is equal to one like for the free parti-
cle. We identify this class of the quantum systems as perfectly invisible PT -symmetric zero-gap
systems. Their family includes as particular cases the PT -regularized two-particle Calogero sys-
tems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) with coupling constant
values g = n(n + 1). The generation of the PT -symmetric zero-gap systems more complicated
than the simplest case of the PT -regularized Calogero model with n = 1 includes Jordan states
of the free particle taken as the seed states in the Darboux-Crum construction.

In some systems (different from the Calogero case) we observed an interesting phenomenon
of the mutual transmutation of physical and non-physical eigenstates of zero energy in the limit
when one of the imaginary parameters is sent to infinity. The rational potentials of perfectly
invisible PT -symmetric zero-gap systems, being solutions of stationary equations of the KdV
hierarchy, can be promoted to the solutions of time-dependent equations from the same hierarchy.
The interesting peculiarity of time-dependent solutions we constructed is that under appropriate
choice of the parameters they reveal a behaviour being typical for extreme waves. It is worth
noting here that if we separate a PT -symmetric function u(x, t) in real and imaginary parts,
u(x, t) = v(x, t) + iw(x, t), in the case of the KdV equation we obtain an equivalent system of
two coupled equations

vt − 3(v2 −w2)x + vxxx = 0 , wt − 6(vw)x + wxxx = 0 (5.1)

for two real fields v(x, t) and w(x, t) instead of one equation for the complex-valued field u(x, t).
At w = 0, this system reduces to the KdV equation, while for v = 0 it corresponds to the case
of the linearized KdV equation. We refer here to [61, 62] where different aspects of the system
(5.1) were discussed in the context of the complex KdV equation.

We showed that the two simplest Hamiltonians from the Calogero subfamily with n = 1 and
n = 2 governing the dynamics in conformal invariant PT -symmetric quantum mechanical systems
also determine the fluctuation spectra around the singular kinks arising as traveling waves in the
field-theoretical Liouville and SU(3) conformal Toda systems. By pushing the centers of the kinks
to the imaginary axis we regularize them and the operators governing the fluctuations around
them take the form of the Hamiltonians of the corresponding PT -regularized Calogero systems.
This picture can be related to the contraction of the infinite-dimensional conformal group in the
two-dimensional Minkowskian setting to a finite subgroup in conformal quantum mechanics.

The peculiar properties of the investigated class of the systems are reflected in the quantum
mechanical supersymmetry associated with them. In the extended systems composed from the
pairs of such systems related by a first order Darboux transformation, the conventional N = 2
supersymmetry is extended to exotic N = 4 nonlinear supersymmetry. The latter includes an
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additional pair of supercharges to be matrix differential operators of the even order constructed
from the higher order differential operators which intertwine the Hamiltonians of the subsystems
via a ‘virtual’ free particle system. As a result, the first and higher order supercharges generate
the Lax-Novikov integrals of the subsystems which compose one of the additional bosonic integrals
of the extended system being a central charge L1 of the superalgebra alongside with the Hamil-
tonian operator H. Another additional bosonic integral corresponds to the operator L2 = σ3L1

that generates a rotation between the first and higher order supercharges with coefficients to be
powers of the Hamiltonian. The appearance of the Hamiltonian in the structure coefficients of
the superalgebra corresponds to a nonlinear nature of the exotic supersymmetry of such systems.
This described family of the extended systems realizes the case of the unbroken exotic supersym-
metry in which there is one singlet state of zero eigenvalue of H which is annihilated by all the
four supercharges and by both additional bosonic integrals. The system of the PT -regularized
kinks of the SU(3) conformal Toda system can be described by such unbroken exotic N = 4
nonlinear supersymmetry. There is also another family of the extended two-component systems
corresponding to the case of the partially broken exotic supersymmetry in which a doublet of
zero energy states is annihilated by the bosonic Lax integrals and higher-order supercharges but
is not annihilated by the first order supercharges. We considered a simplest example of such a
supersymmetric system in which the first order supercharges are composed from the first order
operators which intertwine the completely isospectral subsystems directly, while the intertwining
operators in the structure of the pair of the second order supercharges relate the subsystems
via a virtual free particle system. In a certain limit such a system with partially broken exotic
supersymmetry transmutes into the perfectly invisible extended system described by unbroken
supersymmetry.

Having in mind the analogy with the case of reflectionless quantum systems related to the
conventional multi-soliton solutions of the KdV [55], one can expect that there exists an infinite
chain of the the pairs of the perfectly invisible PT -symmetric zero-gap systems in which one
of the neighbour pairs is described by unbroken exotic supersymmetry while another neighbour
pair is characterized by partially broken phase of the exotic nonlinear supersymmetry and the
neighbour pairs with different phases of supersymmetry can be transmuted via the process of
soliton scattering. It would be interesting to construct the indicated infinite chain of the pairs
of the perfectly invisible PT -symmetric zero-gap Schrödinger systems. One of the first order
supercharges in such chains of the systems can then be considered as a Hamiltonian of a (1+1)-
dimensional Dirac system with a perfectly invisible PT -symmetric scalar potential that descirbes
a fermion in a multi-kink-antikink background [56].

The PT -regularized perfectly invisible two-particle Calogero systems we considered possess
conformal symmetry like their conventional counterparts with real inverse square potentials [29].
The interesting question is what happens with conformal symmetry in the perfectly invisible
PT -symmetric zero-gap systems of different form, like in the systems described by the PT -
symmetric potentials (2.33) and (2.39). Another, related question is what happens with the
exotic nonlinear supersymmetry we considered under extension of it by taking into account the
conformal symmetry. A priori it is not clear whether in such a case we obtain some finite
nonlineaer superalgebraic structure or some infinite-dimensional superalgebraic structure will be
generated, cf. [57, 58, 59]. We are going to consider these questions elsewhere [60].

The interesting question also is whether perfectly invisible PT -symmetric zero-gap systems
to be more complicated than the PT -regularized Calogero systems with n = 1 and n = 2 can be
related to the field-theoretical conformal models.

In conclusion we note that in [25] there were considered self-similar solutions of the KdV
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equation with initial conditions of the form N(N + 1)/x2, which are rational singular solutions
on the real line. Following [26], one could consider the solutions to the Schrödinger problem with
such a potential on half-line x > 0 (see Appendix) and then formally extend the same solutions
to another side x < 0 of the pole as it is done in [26] for the so called positon solutions. With
such a formal treatment of solutions one could arrive at the conclusion that the indicated rational
potentials are reflectionless on all the real line, and moreover, that they would be characterized by
the transmission amplitude equal to one. Treated in this way singular potentials are called in [26]
as “super-transparent” or “super-reflectionless”. However, physically such a treatment of singular
potentials on all the real line is completely formal since the second order pole singularity at x = 0,
unlike the case of delta function potential, is not penetrable, and the physically admissible states
in the regions x < 0 and x > 0 do not mix dynamically. The impermissibility of such treatment
of the quantum problem also is reflected by the mentioned in Section 1 observation that the Lax-
Novikov operator commuting with Hamiltonian in this case is not observable since it transforms
physical states into non-physical ones [28]. It is the PT -symmetric regularization considered
here that radically changes the properties of such systems and their interpretation. It would be
interesting to apply the PT -symmetric regularization to the generalized Darboux transformations
used in [26] for the construction of time-dependent positon and soliton-positon solutions of the
KdV equation.
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6 Appendix

Here we briefly discuss a general picture of the quantum scattering problem on the half-line.
Consider a free particle of mass m = 1

2 on the half-line (0,∞) given by the Hamiltonian
operator

H = − d2

dx2
+ U(x) (6.1)

with U(x) = 0 for x > 0 and U(x) = +∞ for x ≤ 0. Its bounded eigenstates of energy E = k2 > 0
with k > 0 are described by wave functions ψk(x) = C sin kx for x > 0 and ψk(x) = 0 for x ≤ 0.
They represent a linear combination of two plane waves, ψk(x) = e−ikx − eikx, in which the first
term can be interpreted as an incident from x = +∞ plane wave, while the second term can be
considered as a reflected wave.

Let us consider now the case of a quantum particle on the half-line (0,∞) subject to a
nontrivial potential U(x) that disappears sufficiently rapidly at x = +∞, and U(x) → +∞ when
x → 0 in such a way that the particle cannot penetrate to the negative half-line : ψ(0) = 0 for
x ≤ 0. Then for eigenfunction corresponding to eigenvalue E = k2 > 0 the probability current
j(x) ∝ ψ∗

k(x)(ψk(x))
′ − (ψ∗

k(x))
′ψk(x) disappears when x→ 0+ : j(0+) = 0. For x→ +∞, we fix

the asymptotic form of the solution of the equation Hψk(x) = k2ψk(x) in a form

ψk(x) = e−ikx + reikx, (6.2)
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where r is a complex constant that can be interpreted as a reflection amplitude. The continuity
equation ∂

∂t
ρ+ ∂

∂x
j = 0 for stationary solutions of the corresponding time-dependent Schrödinger

equation reduces to the condition ∂
∂x
j = 0. Since j(0+) = 0, the probability current j(x) = 0 for

any x ∈ (0,∞). For asymptotic form of the solution (6.2) this gives rr∗ = 1, i.e. the reflection
amplitude r is a pure phase. In the case of the free paticle on the half-line we have r = −1. In the
case of the potential U(x) = n(n+1)/x2, the solutions are given by the Darboux-Crummapping of

the free particle solutions : ψ
(n)
k (x) = Dn sin kx, where Dn = Dn . . . D1, Dj =

d
dx

− j
x
, j = 1, . . . , n.

These eigenfunctions ψ
(n)
k (x) and their derivatives up to (including) the order n annul at x = 0.

For x→ +∞, the asymptotic form of eigenfunctions is ψ
(n)
k (x) = −(−ik)n(e−ikx + (−1)n+1eikx).

From here we find that the system with potential U(x) = n(n+1)/x2 is charcterized by reflection
amplitude r = (−1)n+1. Thus the cases with even n are characterized by the same reflection
amplitude r = −1 as the free particle, while for odd n we have r = +1. By this reason if
(6.1) with U(x) = n(n + 1)/x2 is considered as a Hamiltonian operator in relative coordinate
for a two-particle system, the cases with even and odd n correspond to bosons and fermions,
respectively.

This picture can be generalized to the anyonic case [63, 64] by considering the same po-
tential but with coupling constant changed for g = ν(ν + 1) with ν > 0. The general so-
lution to the stationary Schrödinger equation for eigenvalue E = k2 > 0 with k > 0 is

ψ
(ν)
k (x) =

√
x (C1Jβ(kx) + C2Yβ(kx)), where β = ν + 1

2 and Jβ and Yβ are Bessel functions
of the first and second kind, respectively. The boundary condition at x = 0+ fixes C2 = 0,

and from asymptotic form of the Bessel function for x → +∞, Jβ(x) =
√

2
πx

cos
(
x− βπ

2 − π
4

)
,

we find that in this case r = exp [−iπ(ν + 1)], that generalizes the bosonic and fermionic cases
considered above for the anyonic case of arbitrary ν > 0.
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