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Resumen

En este TFM se discute la implementacion de un modelo de evaporacién en un codigo
WENO-Z de alto orden basado en el modelo Euleriano-Lagrangiano (EL) para un flujo
de particulas a alta velocidad en camaras de combustion supersonicas. EI método EL
aproxima la equacioens de Euler que gobiernan el movimiento del gas con el esquema
mejorado “high order weighted essentially non-oscillatory” (WENO-Z), mientras que
las particulas individuales son trazadas en el marco Lagrangiano utilizando esquemas de
integracion de alto orden. Tanto el gas portador como las particulas derivadas en
funcién el tiempo mediante el método Runge-Kutta TVD de tercer orden. Una
interpolacion de alto orden (ENO) determina las propiedades del gas portador en la
posicion de las particulas. La evaporacién de una particula es verificada con la ley D2 de
evaporacion y se estudia el problema unidimensional de la interaccion de una onda de
choque con una nube de particulas.

Palabras clave: Particulas, Evaporacion, Onda de choque, Euleriano-Lagrangiano,
WENO, WENO-Z.

Abstract

This thesis discusses the implementation of a evaporation model into a high-order
WENO-Z based Eulerian-Lagrangian (EL) code for simulation of high-speed droplet-
laden flow in supersonic combustors. The EL method approximates the Euler equations
governing gas dynamics with the improved high order weighted essentially non-
oscillatory (WENO-Z) scheme, while individual particles are traced in the Lagrangian
frame using high-order time integration schemes. Both the carrier gas and the particles
are updated in time without splitting with a third-order Runge-Kutta TVD method. A
high-order ENO interpolation determines the carrier phase properties at the particle
position. A high-order central weighting deposits the particle influence on the carrier
phase. The droplet evaporation is verified against the D?-law and study the one-
dimensional problem of a shock wave running into a cloud of particles.

Palabras clave: Droplet, Evaporation, Sock-wave, Eulerian-Lagrangian, WENO,
WENO-Z.
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ABSTRACT

NUMERICAL SIMULATION OF EVAPORATION MODEL IN A WENO-Z BASED
EULERIAN-LAGRANGIAN CODE

José Alejandro Arenas Garrido
Universidad de Valladolid
July of 2018

This thesis discusses the implementation of a evaporation model into a high-order
WENO-Z based Eulerian-Lagrangian (EL) code for simulation of high-speed droplet-laden
flow in supersonic combustors. The EL method approximates the Euler equations governing
gas dynamics with the improved high order weighted essentially non-oscillatory (WENO-Z2)
scheme, while individual particles are traced in the Lagrangian frame using high-order time
integration schemes. Both the carrier gas and the particles are updated in time without splitting
with a third-order Runge-Kutta TVD method. A high-order ENO interpolation determines the
carrier phase properties at the particle position. A high-order central weighting deposits the
particle influence on the carrier phase. The droplet module is verified against the D? -law and
study the one dimensional problem of a shock wave running into a cloud of particles.

Keywords:  Droplet:  Evaporation;, Shock-wave; Eulerian-Lagrangian, WENO;
WENO-Z.
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CHAPTER 1

Introduction

A large diversity of multi-phase gas-liquid involve evaporation of near spherical liquid
droplets in high-speed gas flows. Examples may be found in technologies such as supersonic
aircraft, hypersonic space vehicles, gas turbines and explosions. Shocks are encountered in
these type of flows and in many high-speed flows applications, shocks interact with solid or
liquid particles. For example, fuel droplets interact with a chemically reacting gas containing
shock waves in high-speed combustors. Droplet evaporation plays a crucial role in the fuel -air
mixing process and consequently the performance of the combustor. The precise prediction
of the evaporation time and the movement of droplets is important for optimum design of
scramjet combustion chambers. All of these situations involve a dispersed liquid phase species
in the form of a large number of discrete droplets convecting and vaporizing in a continuous
gas phase species, and their mathematical description involves complex nonlinear coupling of
momentum, energy and mass exchange.

The classical WENO schemes owe their success to the use of a dynamic set of stencils,
where a nonlinear convex combination of lower order polynomials adapts either to a higher
order approximation at smooth parts of the solution , or to an upwind spatial discretization that
avoids interpolation across discontinuities and provides the necessary dissipation for shock
capturing. The classical WENO schemes are designed based on the successful class of high
order schemes called the essentially non-oscillatory or ENO schemes of Harten et al. [1,2]. The
first classical WENO scheme was introduced by Liu et al. in their pionnering paper citeliu1994,
in which a third order accurate fine volume WENO scheme was designed. In 1996, Jiang and
Shu [3] provided a general framework to construct arbitrary order accurate finite difference
WENO schemes, which are more efficient for multi-dimensional calculations. Higher order
finite difference classical WENO schemes are designed in [4]. Jacobs and Don developed
a high order WENO-Z interpolation from the carrier flow to the particles and a high order
weighing of the momentum and energy from the particle t the carrier flow , yielding a high order
solution of particle-laden gas flow with shocks in the Eulerian-Lagrangian (EL) frame [5].

In this paper, we discuss the implementation of a evaporation models presented by
Miller [6] into a high-order WENO-Z based Eulerian-Lagrangian code [5] for simulation of
high-speed droplet-laden flow in supersonic combustor.

A significant body of literature exists for modeling droplet evaporation. Mashayek et al.
[7] simulate doplet dispersion in isotropic turbulence for wich the evaporation is governed by
the D%-law and the mass loading is considered small enough to neglect turbulence modulation
by the dispersed phase. The first well established evaporation model is the spherically
symmetric D?-law developed by Spalding [8] for an isolated single-component droplet in
a stagnant environment. In this basic lumped model, quasi-steadiness is assumed and the
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droplet temperature is uniform and held constant at a reference temperature. Under these
assumptions the D? -law predicts a linear relationship for the change in droplet surface area
with time. Mashayek et al. [7] removed this restriction and considered droplet dispersion
in compressible homogeneous turbulence with two-way coupling and droplet evaporation
governed by a heat-mass model.

This paper is organized as follows: In chapter2, the physical model of the carrier flow and
the particles are presented. In chapter 3, the coupling of the carrier flow in the Eulerian frame
and the particle in the Lagrangian frame is discussed in detail. We describe the high order ENO
interpolation scheme that is used to interpolate the gas properties from the Eulerian frame to
the particle in the Lagrangian frame. The high order weighing for exchange of momentum
and energy from the Eulerian frame to the carrier are also given. We validate the numerical
methods against analytical solution in chapter 3 and we present simulations for an evaporating
cloud of liquid droplets in chapter 4. Finally, we consider the one dimensional problem of a
shock wave running into a cloud of particles as conclusionin the chapters 5 and direction of
future research are reserved in chapter 6 .



CHAPTER 2

Governing Equations

2.1 Droplet Equations

2.1.1 Dimensional Form

Particles are tracked individually in the Lagrangian frame. The kinematic equation
describing the particle’s position x;, is given as

dx!
=, .1

where v/, is the dimensional particle velocity.

The particles acceleration is governed by Newton’s second law forced by the drag on the
particle. With particles assumed spherical, we take the drag as as combination of the Stokes
drag corrected for Reynolds and March number and the pressure drag leading to the following
equations governing the particle velocity,

dv;  18uf

]

dt P

* (u, — vl), (2.2)

where v’ is the dimensional velocity of the gas at the particle position, and p;, the dimensional
particle density. The first term describes the particle acceleration resulting from the velocity
difference between the particle and the gas. The second term in the right hand represents the
particle acceleration introduced by the pressure gradient in the carrier flow at particle position.

From the first law of thermodynamics and Fourier’s law for heat transfer , the equation
for temperature is derived as,

! /

/C’dTp—N K;D(T'—T'))+ L,—*~
My ldt/ = INumi g p( o p)+ vy

(2.3)

where Nu is the Nusselt number correcter for high Reynolds number.

Finally, the droplet continuity equation The mass rate of change of the droplet due to mass
flux through the control surface is

/

dmp , ,
i —Shprﬁdp(Y; —Yy), 2.4)
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where Y and Y are mass fraction of vapor at the droplet surface and mass fraction of vapor in
carrier phase respectively, and Sh is the Sherwood number. The Sherwood number is 2 for a
droplet which is evaporation with radial symmetry (no forced or free convection effects) [9].

2.1.2 Normalization

All of the variables are normalized by using reference values p,, u,, [, and 7.

x; =}/l ti=t/(l,/uy) = uot'/l,
U = U/ Up, pi =1/ (poud)
T="1/T,

Non-dimensional numbers:

Re, = Pouolo’ Sc = %’ D, = kiolo’
4 I °
— _Ys — Ly
M, = TR A= o

2.1.3 Non-Dimensional Form

The droplet trajectories, mass and temperature in non-dimensional form are obtained by
using the normalization equivalences described in below. The non-dimensional Lagrangian
equations governing the position z,, velocity u, and temperature 7;, of each droplet that consist
of diameter d,, and mass m,,

dl’i
dt = VUi, (25)
dv; f
di = T_l(ufpvi — Upi), (2.6)
P
dTp f2A2Cy f3
- Try —T,) — 22(Yy — Yins), 2.7
7= Ty = 1) = (= Yy @7)
dmy, 0.5

where Sherwood (Sh) numbers are the empirically modified convective correlations to heat
and mass transfer by Ranz-Marshal

2+ 0.6Reg'5Pr0'33
Nu = - , 2.9)




Cpp
pPr=—-— 2.1
"= K, (2.10)
Sh =24 0.6Re)°Sc"* =2 (2.11)

The evaporation rate [10] can be determined by the local slip vapor mass fraction.
It is equal to the non-dimensional vaporization pressure of the droplet and obeys the
Clausius-Clapeyron equation, in normalized form given by:

Pp { Yo ( TB)}
= ex 1—-—1]1, (2.12)
Priuid b (a—1)Tp Tp

where 7'z is the boiling point of the liquid and is assumed to be independent of pressure, which
is generally a small varying parameter for evaporation conditions.

Y

In Equation 2.12 the density of the droplet is considered to be constant and much larger
than the density of the carrier phase such a that only the inertia and the drag forces are
significant to the droplet dynamics.

In the code we have implemented a simplification presented by Mashayek [7] for slow
evaporation,

_ v _Ts
Y, =exp [(a— )T (1 Tp)] . (2.13)

Correction factor f; is for Stokes drag, f, represents a correlation for the convective
heat transfer coefficient, and the Nusselt (Nu). Finally, f3 and f4 are both an function of the
empirically correcter Sherwood number.

fi= %7 (2.14)
fo= 3]]5701;2, (2.15)
fa= éﬁz psSh, (2.16)
Ja= %mﬂ%, (2.17)

where A; = is the normalized latent heat of evaporation: A; = L,,/(C, ,T) and A, is the ratio
of gas capacities between the carrier gas and the liquid droplet phase is Ay = C,,,/C,. In the
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code we use a simplification presented by Mashayek, A, = 0. The particle response time, 7,
is defined in terms of d,,, 7, = p,d> Re,/18.

In the present study study we use this correlation for the standard drag curve,

24(1 + 0.15Re) %
Re,(1+ B

Cp = (2.18)

2.2 Continuum Equations

The governing Euler equations for the continuum phase are the conservation laws for
mass, momentum and energy. As such, the carrier phase is modeled as a compressible
Newtonian and inviscid fluid in this code. We shall denote the subscript p or part for the
droplet variables and f or fluid for the gas variables at particle position. The equations are
presented in a non-dimensional form,

dp  9(pus)
il = 2.1
5+ oz, Smass (2.19)
= 2.2
815 + ('3xj Smomentum> ( 0)
E E ) U
0 i 0 [( +pZ)Uz] _ Senergy7 (2.21)

where p, u;, p and E are the density, velocitu, thermodynamic pressure, and total energy per
volume unit. The heat conduction, is modeled within the source terms and it is assumed that
the carrier gas obeys the perfect gas law. The conservation for the vapor mass fraction in
non-dimensional form is described as:

opY N d(pYiu;)

with Y, the mass fraction of the evaporated liquid vapor species.

= Smassy (222)

For simplicity, the vapor is assumed to have the same molecular weigh, mass diffusivity
and specific heat as those of hte gas. In this manner, the gas-vapor mixture is trated as one
entity and the equations for the continuum describe the combined gas-vapor flow. The energy
equation is written sich that it governs the total energy,

p 1 2 2
EFE=—+- 2.23
7_1+2p(u +v7) (2.23)



The set of equations is closed by the following equations of state,

o

- (2.24)
yM7

p

where the refence Mach number is My = U/ /vR1s. Here R denotes the universal gas
constant, -y denotes the ratio of C,/C,,. All the variables used in the equations are normalized
using refences values (see 2.1.2).

2.3 Source terms S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow. The volume
averaged summation of all these contribution of all these contributions give a continuum source
contribution on the momentum and energy equation,

NP
S =Y K (&, )W, (2.25)
=1
NP
Se =Y K(&, @)W, + Wo), (2.26)

i=1
where K (x,y) = K(|z — y|)/V is normalized weighing function that distributes the influence

of each particle onto the carrier flow. And N p is the total number of particles in a finite volime
V.

Weigh functions describing the momentum and energy contribution of one particle to the
carrier flow.

W,, = ﬁ(vf — ), (2.27)
Tp
w, =2y~ My ), (2.28)

Tp Tp



CHAPTER 3

Numerical Model

The numerical mehrod used in this work is the high-order Eulerian-Langrangian (EL)
method bases on the Weighted Essentially Non-Oscilatory (WENO) conservative finite
difference scheme (WENO-Z) on a uniform mesh [5].

The particle and the carrier phase exhcange momentum and energy. The carrier phase
velocity, temperature and mss at the particle position determines the influence of hte carrier
phase on the particle. This velocity and temperature is determined by interpolation of carrier
flow values at the cell centers, i, surrounding the particle position. The particle indluence
is distributed on hte carrier phase by the beightink funcion K. The interpolation method and
weighing function determine the accuracy and characteristics of the Eulerian-Lagrangian frame
coupling.

Low-order interpolation are well known to lead to aliasing errors and instability
in particle-mesh methods [11]. High-order interpolation and weighing reduces theser
inaccuracies [11, 12]. We therefore seach for the high-order interpolation and weighing that
is consistend with the high-order WENO-Z mehtod.

In what follows, we preset both the lower-order and higher-order interpolation, and
weighing.

3.1 Low-order Interpolation

In smooth flow areas without shocks, the WENO-Z method uses a central difference
scheme. Under these conditions, centered interpolation to the particle position is more accurate
and therefore preferred. Lagrange interpolating polynomials of degree k,

ipth/2
Pu(z)) = Y Qai)li(xy) (3.1)
i=ip—k/2
where i, represents the nearest cell center to the left of the particle position. The number of
interpolating points k equals the number of points used in the k-th order WENO scheme. In
the case of the fifth order WENO scheme, k = 5.In shocked regions the centered interpolation

will produce undesirable Gibbs oscillations. With an ENO interpolation [18], these oscillations
are essentially removed. In ENO interpolation, the interpolating points are determined based
on smoothness of the function measured by the divided differences. The k-th degree divided
differences are determined first.



ENO stencil (k=3)

A

k=2 stencil

|
.________________________

m

nearest grid
point

Figure 3.1: One dimensional ENO stencil for interpolation to a particle located near a shock.
The interpolation stencil is determined based on the divided differences at the particles nearest
grid point to the left of the particle.

The 0—th order divided differences of q are defined by:

Qlri] = Q(x:). (3.2)
The j—th degree divided difference for j > 1 are defined by

Q[:ci, ...,xi+j] _ Q[$i+1, --~,$z‘+j] - Q[%‘a -~'7xi+j—1]. (3.3)

Litj — Ti

Starting from a two point stencil, ;,, x;p41, the interpolation stencil is expanded to k
points based on a comparison of the divided differences of the increasing order at i, (See Fig.
3.1). The smallest second order divided differences at ¢, of the two potential three point stencils
minQw;,—1, Ti,, Ti,+1), Q[4,, Ti,+1, Ti,+2) indicates the smoothest interpolation stencil and is
therefore chosen. This procedure is repeated until a &£ point interpolation is found.

In the Figure 3.1 , we give an example of a typical ENO stencil close to a shock. We
find the nearest grid point to the left of the particle. The magnitude of the first order divided
differences at this grid point are larger than the divided differences to the left because of the
shock jump. The stencil is therefore extended to the left. The same holds for the divided
difference of a higher order than one. So, the ENO stencil will be preferential one-sided
to the left of the particle if the particle is located in the cell including a shock. In two
dimensions, the same procedure can be used along the separate dimension on the tensor grid.
The divided differences are determined along horizontal and vertical lines in the grid. With the
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one dimensional approach outlined above, we find the left most and bottom most grid point of
the interpolation stencil with k k points for each grid point in the domain.

3.2 Weighing

Low-order particle-methods usually weigh with a zeroth or first order function for K(x,
y) in (11) as shown in Figure 3.2.

—
T
In

T
TT VTV

0.8

1
OO wWwMN-=0

0.6

K(x

0.4

-2 -1 0 1 2
X/AX

Figure 3.2: The p—th order weighing function.
The 0—th order weighing function is a tophat function,

1 1

that weighs the particle influence to the nearest grid point. The first order weighing
function,

1 Az —=x
K(JC,O):A—x Ay

(3.5)

typically used, can be interpreted as a local area weighing. The particle splits a cell into
two subcells. The area of the sub-cell to the left determines the particle influence to the grid
point on the right of the particle and vice versa. In two dimensions the quadrilateral cell is
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divided into four new subcells by the particle. The subareas of these are weighted to opposite
grid points.

The lower order weighing functions are inconsistent with the higher-order method. The
lack of smoothness of the particle shape results in Gibbs type phenomena that affect accuracy
and introduce noise in the source term, S. The non-smooth shape is also enhancing instability.

3.3 Weighted Essentially Non-Oscillatory Schemes

In the numerical simulation of compresible flows modeled by means of hyperbolic
conservation laws in the form:

ou
o AP =0, (3.6)

Without loss of generality, we will restrict our discussion to the one dimensional scalar
case. Extensions to the system of equations and higher spatial dimensions present no extra
complexity.

= » = & = - = ]
i-2 xi-1 i xi+‘.'2 xi+1 i+2
s° @ ® ® ® ® 1
s, ® ® ®
N & ® b
5, @ & ® b,

Figure 3.3: The computational uniform grid z; and the five points stencil S, composed of
three 3-points stencils Sy, S1, So, used for the fifth-order WENO reconstruction step.

In this section we describe the fifth-order weighted essentially non-oscillatory
conservative finite difference scheme WENO-Z [13] when applied to hyperbolic conservation
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laws. The extension to a system of equations and to higher spatial dimensions is straightforward
in the Cartesian coordinates.

Considering an uniform grid defined by the points x; = i0x,i = 0, ..., N, which are also
called centers, with cell boundaries given by x,, 1 = x; + A”” , where Ax is the uniform grid
spacing. The semi-discretized form of Equatlon 3 6 by the method of lines, yields a system of
ordinary differential equations:

= — =0,...N .
7 I 1=0,..,N, (3.7)

T=x;

where u;(t) is a numerical approximation to the point value u(xi, t).

A conservative finite-difference formulation for hyperbolic conservation laws requires
high-order consistent numerical fluxes at the cell boundaries in order to form the fix differences
across the uniformly-spaced cells. The conservative property of the spatial discretization is
obtained by implicitly defining the numerical flux function A(x) as

a:—&—%
f(2) = — / h(e)de, (3.8)

Ax o Ae

such that the spatial derivative in Eqn. 3.7 is exactly expressed by a conservative finite
difference formula at the cell boundaries,

duc;t(t) _ AL:U <hi+1 _h %> (3.9)

where b1 = h(z;y1).

All the cell faces, hii% are interpolated from the known flux function F'(x) at the cell
centers, f; = F(z;). The fifth-order WENO-Z scheme uses a 5-points global stencil S°,
which is subdivided into three sub-stencil Sy, Sy, Ss, as shown in Figure 3.3. The fifth-order
polynomial approximation fii 1= hii% + O(Ax?) is built through the convex combination of
the interpolated values f*(z,_ 1 ), in which f*(x) is the third degree polynomial below, defined
in each one of the stencils S};:

2
fier =D wif* (wiss (3.10)
k=0
where ,
fH(wiwr) = Z’jtl = crjfikjpi=0,...N. (3.11)
=0

The c;;are Lagrangian interpolation coefficients, qith depend on the left-shift parameter k& =
0, 1, 2, but not on the values f;.
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The WENO-Z weights w; are defined as

: d
= ot —aj= k=012 (3.12)
D=0 Qi

Bf’
The coefficients dy = 1%, dy = %, dy = % are called the ideal weights since they generate the
central upstream fifth-order scheme for the 5-points stencil S°. The weights wf are a function

of the smoothness indicators /37, namely,

Bi = <1 + (6]:1 6)) : (3.13)

where € is a small number (typically ¢ = 107'2) used to avoid the division by zero in the
denominator and the classical smoothness indicators [, measure the regularity of the kth
polynomial approximation hat f*(z;) at the stencil Sy, and are given by

2 T 1 1 R 2
By, = Zszll/ : (%f’“@)) dz. (3.14)
I=1 Ty

i—

z
W

N

The expresion of the [ in terms of the cell averaged values of f(x), f; are given by

1 1

Po = 1—;(122 —2fisa+ i)’ + iz —4fia+ 3£i)%, (3.15)
13 , 1 )

b= Uiz = 2fit fi)™ + g (fie = )%, (3.16)

1 1
pr = é(fi — 2fip1 + fir2)* + 1Bfi—Afin + 3fir2)?, (3.17)

and

75 = |fo = B2}, (3.18)

being all 3; smaller than unity and they are all close to 1 at smooth parts of the solution.

The idea of the weighths definiton is that on smooth parts of the solution the smoothness
indicators [, are all small and about the same size, generating weights wy, that are good
aproximations to the ideal weights dj.
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CHAPTER 4

Evaporation Model Verification

4.1 D? Law Verification

4.1.1 Analitycal Method

For the analytical verification, we can reduce the number of unknowns taken these
assumptions [14].

1. The evaporation process is quasi-steady.

2. The droplet temperature is uniform and, furthermore, the temperature is assumed to be
some fixed value below the boiling point of the liquid.

3. The mass fraction of vapor at the droplet surface is determined by liquid-vapor
equilibrium at the droplet evaporation problem.

4. We also assume that all thermophysical properties -specifically, the pDD product- are
constant.

We can find the mass evaporation rate, 712, and the droplet radius history, rs(t), by writing
a droplet vapor species conservation equation.

m:47rrspDAB(Y;—Yf), (41)

Starting from the mass balance we obtain the droplet diameter evolution,

dmy
T 4.2

where the droplet mass, mg, is given by
mq = pV = prD?/6 (4.3)

and V and D are the droplet volume and diameter, respectively.

Substituting Eqn. 4.1 and Eqn. 4.3 into 4.2 leads,
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m = 4nrspDap(Ys — Yy), (4.4)
dD  4pDap
@ Y.~ Y. 45

In the combustion literature, however, Eqn.4.5 is commonly expressed in terms of D?
rather than D. This forms is:

dD2 . SpDAB
dt N PZD

(Y = Yy), (4.6)

Eqn.4.6 tells us that the time derivative of the square of the droplet diameter is constant;
hence, D? varies linearly with ¢ with the slope —(8pD a5/ (pD)(Ys—Y7). This slope is defined
to be the evaporation constant K:

8pD 4B

K=-—
oD

(Y = Y5). 4.7

We can use Eqn. 4.6 to find the time it takes a droplet of given initial size to evaporate
completely; i.e., the droplet lifetime, ¢,. Thus,

/ dD? = / Kdt, (4.8)

wich yields

ty= D?/K. (4.9)

We change upper limits of the integral to provide a general relationship expressing the
variation of D whti time (¢):

D?(t) = D? — K, (4.10)

Equation (4.10) is referred to as the D? Law for droplet evaporation.

4.1.2 Numerical Method

To use Eqn.2.8 in the code, m, is written in terms of 7,. In order to verify the D?
evaporation law, m,, has to be write in terms of d,,.
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The expresion of 7, is,

Reopyd;
=" P 4.11
Tp 18 ( )
Substituting Eqn.4.11 into Eqn.2.8 and rearranging,
dm mprd,Sh
p _  TPrap v, —Yf). (4.12)

dt Re,Sc

2
Finally, substituting m, = %7? (%") pp and taking the simplification of low Reynolds

number, Sherwood number (2.11) can be considered equal to 2. The analog expression of
Eqn.4.6 is obtained,

dd? 82t
S ey, vy (4.13)
dt Re,Sc* " ° !

Eqn.4.13 and Eqn.4.6 are equivalent and the results of both methods can be compared
directly.

4.1.3 Problem Setup

In order to verify the numerical method implemented in the code and the analytical form,
we consider single n—dodecane droplet evaporating in dry nitrogen at 1 atm if the droplet
temperature is 10 K below dodecane boiling point in a quiescent environment.

For simplicity, we assume that the mean gas density is that of nitrogen at a mean temperature
of 800 K. The density of liquid dodecane is 749 kg/m?3.

Name Simbol Value
Density Ppart 730kg/m3
Temperature Thart 437 7K
Evaporation Temperature Thoil 447 TK
Particle Velocity Upart Om/s
Molar weight MwWP 142g/mol

Table 4.1: N-dodecane Droplet values

4.1.4 Normalization
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Name Simbol Value
Density PN, 0.4267kg/m?
Temperature Trigtn SO00K
Velocity Uright 0m/s

Molar weight MWG 28.97g/mol

Table 4.2: Nitrogen (Gas-phase) - Initial conditions

For numerical solutions the dimensional form is not convenient get the equivalent solution
between both analytical and numerical methods according to the 2.1.2. All variables are
non-dimensionalized by references values [15] .

Name Simbol Value

Mach number M,y lud/ud
Velocity User 29.30m/s
Tunnel width Lyes 5.302107%m
Density Pref 1.29kg/m?
Specific heat ratio vy 1.4
Temperature Trey 10K
Viscosity at 1" = 300K Href 0.187
Reynolds number Re, 1.3800210°
Particle response time To 2.1413210°

Table 4.3: Normalized values.

4.1.5 Properties Calculations

This models takes the assumption that gas and vapor properties are constant in space, and
therefore independent of the temperature [16]. Thus, for a physical consistency, these models
must be bases on characteristic average constant property values that accurately account for the
real spatial and thermal property variations.

These properties are generally used at each numerical time step and can add significant
computational expense when many droplets are involved. For this study we chose to calculate
each step, computational time does not increase in a significant time.

At the beginning, estimated wel bulb temperature is calculated [17],

TBTref
373.15

0.68
TWB = 137 < > l0910<TfluidTref) — 45, (414)
itis essentially the steady state surface temperature achieved during evaporation. This approach
assumes that droplet surface temperature is quickly raised from initial condition to the wet bulb
value and that this surface temperature is the appropriate condition for evaluating both the vapor
and carrier gas properties.
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The temperature dependent properties for the carrier gas and vapor species are required
for the reference condition methods described by Harpole [18],

(4.15)

Twr > 600, Pr = 0.647 + 5.510 °Ty 5
Twp < 600, Pr=0.815 — 4.95810 *Tyy 5 + 4.51410° T3, 5,

where Pr is Prandtl numer and Sec. is Schmidt number. In this specie neither the diffusivity
nor the Schmidt number are provided we take the assumption Pr = Se.

Heat capacities of particle are calculated using these aproximations [19],

L, = 1.04(3.95810*(619 — T — W B2) —° .38).J/kg (4.16)

C,y = 2.5210"J/(kgK), 4.17)

{TWB2 > 0.8, C,, = 0.982 + 1.304 Ty g2 — 0.593T 5 gy + 0.10175, 5, J /(K gK) 4.18)

Twpz <0.8,C,, = 0.2547 + 1.377 Ty o — 0.4 gy + 0.113T5 5o J /(K gK),

where TWB2 = TWB/l()OO

4.1.6 Results

Considering the problem setup, droplet and gas properties are defined in Table.4.1 and 4.2
respectively. Solving the problem for both methods the D? Law is validated.
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Figure 4.1: Analytical (D?) and numerical (WENO) droplet diameter evolution.

In the Figure 4.1 the evolution of the particle diameter is plotted for a initial diameter of
200 pm. It can be easily seen that these solutions do not differ much. The numerical results
slightly overestimate the droplet lifetime, the result is not fully accurate because the numerical
calculation error.

4.2 Particle Physics Verification

The particle tracking physics have been validated by comparing the WENO solution and
the analytical solution of the non-dimensional Lagrangian equations for the particle position
(Egn. 2.5) and velocity (Eqn. 2.6).

For the analytical solution particle position and particle velocity have been derived using
the same time step that the numerical program.

The program is run in the same conditions that for the D? Law Verification, except for the
particle velocity, v, being the initial value of this parameter equal to 1 m/s.
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Figure 4.2: Graphic representation of particle velocity vs. position.

Analytical solution match with the WENO simulation as we can see in Figure 4.2. It
is important to check if the particle velocity is affected by the Reynolds number. At low
Reynolds numbers, where viscous forces are dominant, particle velocity decreases when
Reynolds number increase. In order to verify this evolution, particle velocity is plotted for
low Reynolds numbers in Figure 4.3.

0.9584 | ——— WENO Re=0 H
——— WEND Re=25
WENQ Re=50
09582 F WENO Re=100 H
0.958 .
=
[y
= 09578 F =
0.9576 | g
0.9574 F g

1 1 1 1 1
2.5887 25887 2.5585 25888 2.5889 2.5889
Fpart

Figure 4.3: Influence of Reynolds Number in WENO solution.



21

CHAPTER 5

Conclusions

We have implemented an evaporation model in a high-order Eulerian-Lagrangian solver
and verified the results in with D?-law and analytical calculations of the physics. We consider
one dimensional shock interacting with a cloud of particles, that case has been studied and
verified by Jacobs and Don [5] based on the work of Boiko er al. [15].

To demonstrate the validation of the WENO-Z code with the evaporation model included,
we have compared the original WENO-Z scheme in the one dimensional solution presented
by Jacobs and Don with the new WENO-Z with the evaporation simulation deactivated. In
particular, the Mach number used is M = 2.8 with the shock at x5 = 0. A reflective boundary
conditions is imposed on both ends of the shock tube. A cloud of particles with a volume
concentration of 4% is initialize in the interval [0, 0.2981]. The particle response time is
7, = 3.929610° and the density is p, = 1200. We take the Reynolds number needed to
compute the particle traces according to the documentation at Re,.; = 1.7630210°.

These results are presented in Figure 5.1 and shown that the new scheme obtain a pressure
profile slightly higher in the shock wave interaction, this solution is valid and the difference is
caused by the new procedure to obtain parameters as Prandtl number or response time.
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Figure 5.1: Pressure profile at time t_0.275 for the original WENO-Z method and the new
WENO-Z with the evaporation model deactivated.

For the simulation discussed next, in order to compare the behavior of the shock wave
with the could of particles for both the evaporation subroutine included and deactivated, a sock
tube problem is setup inte domain x € [—5, 6] with length, L = 11. The state of the sock flow
is

[pRyuRapR] = [1707 1] (51)

The post-shock state can be computed via the well-known Rankine-Hygoniot relations
for given Mach number M. Here, we use M, = 2.8 with the shock at z; = 0. A reflective
boundary conditions is imposed on both ends of the shock tube.

A cloud of particles with a volume concentration of 4% is inialitez in the interval [0,
0.2981]. The particle response time is 7, = 3.929610% and the density is p, = 730kg/m?,
corresponding to the values from d?-law verification. We take the Reynolds number needed
to compute the particle traces according to the documentation at Re,.; = 1.7630210°. The
droplet size is setup considering a diameter, d, = 200um and a initial temperaturel, 7, =
437.7K.

A left moving shock is generated when the shock hits the cloud of particles shortly after
the time ¢ > 0. Moreover, an expansion fan is formed at the rear end of the cloud after the
shock has passed the cloud of particles.
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From Figures [5.2, 5.3 and 5.4] we can extract that the final state of the gas behind the
could of particles is determined by irreversible losses of the gas flow in the sock wave and in the
cloud of particles due to friction and heat exchange with particles. In the case of evaporation
this loses are lower than the convectional simulation, the increase of the pressure is produced
by the contribution of the evaporation droplet. The evaporation droplet contributes energy to
the continuum phase and the increase of pressure is directly related to the increase of velocity
after the sock wave.

All the initial parameters of the particle and gas phase are summarized in Tables 5.1 and
5.2.

Name Simbol Value
Particle Density DPpart 730kg/m?
Particle Response Time Tp 3.929610°
Reynolds Number Re 1.763010°
Temperature Toart 437. 7K
Droplet size d, 200pm

Table 5.1: Initial particle parameters for the simulation of evaporation model

Name Simbol Value
Mach Number M, 2.8

Density pr 1291kg/m?
Shock Initialization Ty 0

Shock tube domain x [—5, 6]

Table 5.2: Initial Fluid parameters and Shock Wave for the evaporation model simulation
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Figure 5.2: Pressure profile (a) and Velocity profile (b) at time ¢; = 0.275 for WENO-Z
mehtod and WENO-Z method including evaproation model.
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Figure 5.3: Pressure profile (a) and Velocity profile (b) at time t2 = 0.55 for WENO-Z mehtod
and WENO-Z method including evaproation model.
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Figure 5.4: Pressure profile (a) and Velocity profile (b) at time ¢35 = 0.825 for WENO-Z
mehtod and WENO-Z method including evaproation model.
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CHAPTER 6

Future Work

In future work, capabilities of the numerical numerical model will be extended to include
species conservation law in source

— Include species conservation law in source term.
— The simulation with different particle elements.
— Simulate the behavior with different shock types.

— Include combustion and chemical reaction.



28

BIBLIOGRAPHY

[1] S. Osher A. Harten, B. Engquist and Chakravarthy. Uniformly high order essentially
non-oscillatory. J. Comp. Phys, 71:231-303, 1987.

[2] C.W. Shu and S. Osher. Efficient impletation of essentially non-oscillatory sock capturing
schemes. J. Comp. Phys, 83:32-78, 1989.

[3] G.S. Jiang and C.W. Shu. Efficient implementation of weighted eno schemes. J. Comp.
Phys, 126:202-228, 2000.

[4] D. Balsara and C.W. Shu. Monotonicity preserving weighted essentially non-oscillatory
schemes with increasingly high order of accuracy. J. Comp. Phys, 160:405—-452, 2000.

[S5] G.B. Jacobs and W.S. Don. A high orden weno-z finite differences based
particle-source-in-cell method for computation of particle-laden flows with shocks. J.
Comp. Physics, 2008.

[6] K. Harstad nad J. Bellan R.S. Miller. Evaluation of equilibrium and non-equilibrium
evaporation models for many-droplet gas-liquid flow simulations. International Jouernal
of Multiphase Flow, 24:1025-1055, 1998.

[7] E. Mashayek. Droplet-turbulence interaction in low mach number homogeneous shear
two-phase flows. J. Fluid Mech, 376:163-203, 1998.

[8] D.B. Spalding. The combustion of liquid fuels. in: Proceedings of the fourth symposium
(international) on combustion. Combustion Institute, Baltimore, MD:847-864, 1953.

[9] M. P. Sharma C. T. Crowe and D. E. Stock. Multiphase Flows with Droplets and Particles.
Press LLC, Boca Raton, FL, 1998.

[10] J. Meijerink and B. Jacobs. A weno-z based eulerian-lagrangian code for simulation of
shocked flows laden with evaporating droplets. American Institute of Aeronautics and
Astronautics, 2010.

[11] C.K. Birdsall and A.B. Langdon. Plasma physics via computer simulation. McGraw-Hill,
Inc., 1985.

[12] S. Natsuhiko H. Abe and R. Itatani. High-order spline interpolations in the particle
simulation. J. Comp. Phys, 63:247-267, 1997.

[13] B. Costa R. Borges, M. Carmona and W.S. Don. An improved weighted
essentially non-oscilatory scheme for huperbolic conservation laws. J. Comp. Phys.,
227(6):3101-3211, 2009.

[14] Stephen R. Turns. An Indtrocution to Combustion: Concepts and applications.
McGraw-Hill ., 2000.

[15] V.M. Boiko et al. Interaction of a shock wave with a cloud of particles. Combustion,
explosion, and Shock Waves, 32(2):191-203, 1996.



29

[16] C.K.Law and H.K. Law. Quasi-steady diffusion flame theory with varaible specific heat
and transportation coefficients. Comb. Sci. Tech., 12:207-216, 1976.

[17] M.C. Yuen and L.W. Chen. On drag of evaporating liquid droplet. Comb. Sci. Tech.,
14:147-154, 1976.

[18] G.M. Harpole. Droplet evaporation in high temperature environments. J. Heat Transfer,
103:86-91, 1981.

[19] B. Abramzon and W.A. Sirignan. Droplet vaporization model for spray combystion
calculations. J. Heat Transfer, 32(9):1605-1457, 1989.



APPENDIX

A - Main modifications in scrip of the FORTAN code

30



A - Main modifications in scrip of the FORTAN code

Main modifications in the code.

A.0.1 Particle Stuff

integer :: N_Frame = 10
integer :: Shock_Type =0
character (LEN=1) :: Variable_Type = ’'C’
integer :: Shock_Profile = 0
REALTYPE :: Gamma = 1.40d0
REALTYPE :: Mach = 3.0d0
REALTYPE :: P_Ratio = 1.0d0
REALTYPE :: Wave_Number = 1.0d0
REALTYPE ;1 Amplitude = 0.2d0
REALTYPE :: Begin_Time = ZERO
REALTYPE :: Final_Time = 1.0d 4
integer ;. Step =0
REALTYPE :: Time = ZERO
integer :: Restart =0
integer :: Central_Order = 6
integer :: Filter_Choice =1
integer :: Filter_Order = 6
REALTYPE :: Filter_Viscosity = 0.2
integer :: IEVAP = 0 ! Evaporation 1=ON, 0=OFF
REALTYPE, dimension (3) ;1 Q_Left, Q_Right
REALTYPE, ALLOCATABLE :: Sourcel (:,:)
REALTYPE, ALLOCATABLE i1 Stats_P (:,:)
INTEGER it Nstats = 11
integer :: i, j

REALTYPE :: Shock_Location, Shock_Speed, Shock_Position

REALTYPE :: dt, dt_Original
REALTYPE :: CPU_Begin, CPU_End, CPU_Start

logical :: Save_Indicator = .TRUE.
REALTYPE :: Movie_Resolution = 0.10d0
REALTYPE :: Next_Save_Time = 0.0d0

REALTYPE :: x_Left, x_Right
REALTYPE :: Rho_Left, Rho_Right
REALTYPE :: U_Left, U_Right

REALTYPE :: P_Left, P_Right



REALTYPE :: T_Left, T_Right
REALTYPE :: C_Left, C_Right
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REALTYPE :: MW_Gas_1=ZERO, Rho_Gas_1=ZERO, T_Pre_Shock=ZERO

!

! Particle Stuff

!

'INTEGER, PARAMETER
INTEGER, PARAMETER
REALTYPE, dimension(Npart)
REALTYPE, dimension(Npart)
REALTYPE, dimension(Npart)
REALTYPE, dimension(Npart)
REALTYPE, dimension (Npart)
INTEGER

REALTYPE

REALTYPE

REALTYPE

REALTYPE

REALTYPE

REALTYPE

! Input Data
!

call Input

call PS_Shock_Specification (Shock_-Type,
Mach,
Rho_Left
Rho_Gas_1,
Final_Time ,
C_Left,

! Setup Operators
!

call Domain_Setup

call Index_Setup

call Allocate_Variables
call Operator_Setup

ALLOCATE( Sourcel (NO:N5,NV))
ALLOCATE( Stats _P (NO:N5, Nstats))
Sourcel = 0.0d0

Stats_P = 0.0d0

! Setup Initial Shock Profile
!

P_Ratio ,

Npart
Npart
Xpart,
f3, f4
Ufluid
Rhoflu

=0

= 86000

Upart, Tpart, fl, {2

, deltaY , Al, A2

, Tfluid, Pfluid, dpdxfluid
id , Mpart, P_B

PD, Taup, T_-B, T-WB, Sc, Pr
np, update_particle
Source_factor

Stokes , dxpart

TAUPO, RHOPref, re, PDO, PMO

CRE,CF2, pi, Rhofp, RHOP

Ufluct

Mref, Tref, Uref, R, MWG MWP, T _particle

Variable_Type , &
MW _Gas_1, Gamma, Shock_Speed, &
U_Left , P_Left , T_Left , &
U_Right, P_Right, T_Pre_Shock, &
x_Left, x_Right, Shock_Location, &

C_Right,

Q_Left, Q_Right)
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Initial_Condition

Setup Initial Particle Conditions

Source_factor = 86000.0d0/DBLE( Npart)
!Source_factor = 3.18310d5/DBLE( Npart)
!Source_factor = 3.1831d7/DBLE(Npart)

pi = 3.1415926535897932d0

TAUPO = 3.9296¢e03 ! particle response time
ITAUPO = 1.7845d03 ! particle response time
ITAUPO = 2.1413d3

RHOPref = 1290.0d0 ! Ref non dimensional particle density
!RHOP = 7.41670d3 ! non dimensional particle density
RHOP = 730.0d3/RHOPref ! Decane for D2 Laq comprobatio
re = 1.7638¢e06 ! fluid Reynolds number

Ire = 9.6503d05

Ire = 1.7638d6

PDO = dsqrt(18.0d0«TAUPO/( re *RHOP) ) ! particle diameter

PMO = pi*RHOP+PDO«%3 /6.d0 ! particle mass

Rhofp = 1.0d0 !0.4232d0/RHOPref

CRE = re*Rhofp*PD0

Reference Values and values for Evaporation model

Mref = 1.0d0 ! Refence Mach number

Tref = 10.0d0 I K

T_particle = 437.7 ' K

R = 8.314410d7 I erg/K

MWG = 28.970d0 ! g/mol, Molar weight, Air
MWP = 142.0d0 !

Uref = Mref*SQRT(Gamma+=R/MWG: Tref)

dxpart = (1.55d 2/52d 3) /DBLE(Npart 1)
DO np=1,Npart

Xpart(np) = ((0.0d 2)/52.0d 3) + DBLE(np 1)=sxdxpart
ENDDO

call Interpolate_Fluid_To_Particle_.ENO (Xpart, Upart, Tpart, Npart, Q, &
Ufluid , Tfluid, f1, f2,dpdxfluid, &
TB, TWB, Sc, Pr)

DO np=1,Npart
!Upart(np) = Ufluid(np) *2.0
CALL RANDOMNUMBER (Ufluct )
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Ufluct = 0.5d0
Upart(np) = Ufluid(np) + ((Ufluct 0.5d0)%2.0d0)=*0.2d0

!Tpart(np) = Tfluid(np)

Tpart(np) = T_particle/Tref

Mpart(np) = PMO !1.5922d 5 !1.9902d 6 !1.5922d 5 !1.2d 4

PD(np) = PDO !(6.0d0«Mpart(np)/( PI+RHOP) ) x+(ONE/THREE)
ENDDO

A.0.2 Runge Kutta

Subroutine Runge_Kutta(Xpart, Upart, Npart, Ufluid, Tfluid ,b dpdxfluid)
implicit none
integer Runge_Kutta_Stage
integer i,]j
REALTYPE Time_n, Time_Now
REALTYPE, dimension(NO:N5,NV) :: QI, D_Flux, Source
'REALTYPE, dimension (NO:N5,NV) :: Ql1, D_Flux
INTEGER Npart
REALTYPE, dimension(Npart) Xpart ,Upart, Ufluid, Tfluid
REALTYPE, dimension(Npart) f1,f2,dpdxfluid, f3, f4, deltaY
REALTYPE, dimension(Npart) Xpartl , Upartl, Tpartl, Mpartl
Time_n = Time dt
Ql = Q ; D_Flux = ZERO
! Source = ZERO
! Stage 1
Runge_Kutta_Stage = 1 ; Time_Now = Time._n + dt
call Interpolate_Fluid_To_Particle ENO (Xpart, Upart, Tpart, Npart, Q, &
Ufluid , Tfluid, f1, f2,dpdxfluid, &
TB, TWB, Sc, Pr)
call Particle_Evaporation (Xpart, Upart, Tpart, Npart, Q, Ufluid, &
Tfluid , f3, f4, dpdxfluid, deltaY, Al, A2, &
PD, Taup, Mpart)
call Weigh_Particle_.To_Grid (Xpart, Upart, Tpart, Npart, Ufluid, Tfluid, &
f1, f2, Source, f3, f4, deltaY, Mpart)
call Fluxes (Q , D_Flux)

DO np=1,Npart
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Xpartl (np) Xpart(np) + dtxUpart(np)

Upartl (np) = Upart(np) + dt=(fl(np)=(Ufluid(np) Upart(np))/Taup(np))
Tpartl (np) Tpart(np) + dt=(f2(np)=*(Tfluid (np) Tpart(np)) &
f3(np)xdeltaY (np))/Taup(np)

Mpart (np) dt«f4 (np)=deltaY (np)=sqrt(Taup(np))

Mpartl (np)

ENDDO
if (update_particle == 0) Source = 0.0
Q1 =Q + dtx(D_Flux + Source)

call Boundary_Condition (Ql)
! Stage 2

Runge_Kutta_Stage = 2 ; Time_Now = Time.n + dt/2

call Interpolate_Fluid_To_Particle . ENO (Xpartl, Upartl, Tpartl, Npart, Q, &
Ufluid , Tfluid, fl1, f2,dpdxfluid, &
TB, T-WB, Sc, Pr)

call Particle_Evaporation (Xpartl, Upartl, Tpartl, Npart, Ql, Ufluid, &
Tfluid , f3, f4, dpdxfluid, deltaY, Al, A2, &
PD, Taup, Mpartl)

call Weigh_Particle . To_Grid (Xpartl , Upartl, Tpartl, Npart, Ufluid, Tfluid, &
f1, f2, Source, f3, f4, deltaY, Mpart)

call Fluxes (Q1, D_Flux)

DO np=1,Npart
Xpartl (np) = (THREE#Xpart(np) + Xpartl (np) + dt=Upartl (np))/FOUR
Upartl (np) (THREE+Upart(np) + Upartl (np) + dt=(fl(np)=*(Ufluid(np) &
Upartl (np))/Taup(np) dpdxfluid (np)/RHOPref) )/FOUR
(THREE+ Tpart(np) + Tpartl (np) + dt=(f2(np)=*(Tfluid(np) &
Tpartl (np)) f3(np)=deltaY (np))/Taup(np))/FOUR
(THREE«Mpart(np) + Mpartl (np) dtxf4 (np)=deltaY (np)* &
sqrt (Taup (np)) ) /FOUR

Tpartl (np)

Mpartl (np)

ENDDO
if (update_particle == 0) Source = 0.0d0
Q1 = (THREE+Q + QI + dt=(D_Flux + Source))/FOUR

call Boundary_Condition (Ql)
! Stage 3:
Runge_Kutta_Stage = 3 ; Time_Now = Time._n + dt
call Interpolate_Fluid_To_Particle . ENO (Xpartl, Upartl, Tpartl, Npart, Q, &
Ufluid, Tfluid, fl1, f2,dpdxfluid, &
TB, TWB, Sc, Pr)

call Particle_Evaporation (Xpartl, Upartl, Tpartl, Npart, Ql, Ufluid, &
Tfluid , 3, f4, dpdxfluid, deltaY, Al, A2, &
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PD, Taup, Mpartl)

call Weigh_Particle_.To_Grid (Xpartl , Upartl, Tpartl, Npart, Ufluid, Tfluid, &
f1, f2, Source, f3, f4, deltaY, Mpart)

call Fluxes (Q1, D_Flux)

DO np=1,Npart
Xpart(np) = (Xpart(np) + TWO«Xpartl (np) + TWO=«dtxUpartl (np))/THREE
Upart(np) = (Upart(np) + TWO«Upartl (np) + TWOxdt«(fl (np)*«(Ufluid (np) &
Upartl (np))/Taup(np) dpdxfluid (np) /RHOPref) )/THREE
(Tpart(np) + TWO«Tpartl (np) + TWOsxdt=(f2(np)*(Tfluid (np) &
Tpartl (np)) f3(np)=deltaY (np))/Taup(np))/THREE
Mpart(np) = (Mpart(np) + TWO«Mpartl (np) TWOsxdt=f4 (np)=+deltaY (np)* &
sqrt (Taup(np)))/THREE

Tpart(np)

ENDDO
if (update_particle == 0) Source = 0.0d0
Q = (Q + TWO«QIl + TWOxdt=(D_Flux + Source))/THREE

call Boundary_Condition (Q )

Sourcel (:,2:3) = Source(:,2:3)
'if (Time > 0.1) stop
!write (% ,%) ’stop._here’

I'stop

END Subroutine Runge_Kutta

A.1 Weigh Particle To Grid

Subroutine Weigh_Particle . To_Grid (Xpart, Upart, Tpart, Npart, Ufluid, Tfluid, &
f1, f2, Source, f3, f4, deltaY, Mpart)

INTEGER :: Npart

REALTYPE, dimension(Npart) :: Xpart, Upart, Tpart, Mpart

REALTYPE, dimension(Npart) . Ufluid, Tfluid, f1, f2, f3, f4, deltaY
REALTYPE, dimension (NO:N5,NV) :: Source

REALTYPE :: domain_length ,dist]l , dist2

REALTYOE 11 weight , weightl , xfirst

INTEGER :: npart_loc, np

domain_length x (N5) x (NO)

xfirst = x(NO)

Source = 0.0

DO np = 1, Npart
npart_loc = INT(( Xpart(np) xfirst)/domain_length+DBLE(NS NO)) + NO
distl = (Xpart(np) x(npart_loc))/dx



dist2

weight

Sourcel (npart_loc ,1)
Sourcel (npart_loc+1,1)
Source (npart_loc ,2) =
Source(npart_loc+1,2)
weight

weightl =

Source (npart_loc ,3)
Source(npart_loc+1,3) =
ENDDO
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1.0 distl

Mpart(np)*fl (np)*(Ufluid (np) Upart(np))/Taup(np)

= Sourcel (npart_loc ,2) + Mpart(np)*dist2

= Sourcel (npart_loc+1,2) + Mpart(np)=distl
Source(npart_loc ,2) + weight=dist2
Source(npart_loc+1,2) + weight=xdistl
weightsUpart(np)

Mpart(np) #(f2 (np) *( Tfluid (np) Tpart(np)) &
f3(np)xdeltaY (np))/Taup(np)/(gamma 1.0)

Source (npart_loc ,3) + weightxdist2 + weightl*xdist2
Source (npart_loc+1,3) + weightxdistl + weightl=xdistl

Source = SourcexSource_factor/dx
Sourcel = SourcelxSource_factor/dx
!'stop

!
END Subroutine Weigh_Partic

le_To_Grid

A.1.1 Interpolate Fluid To Particle ENO

Subroutine Interpolate_Fluid_To_Particle_.ENO (Xpart, Upart, Tpart, Npart, &

Q, Uflu
INTEGER, PARAMETER
INTEGER
INTEGER

INTEGER, DIMENSION(NO:N5)
REALTYPE, dimension(Npart
REALTYPE, dimension(Npart
REALTYPE, dimension (NO:N5
REALTYPE, dimension (NO:N5
REALTYPE, dimension(norde
REALTYPE, dimension (NO:N5
REALTYPE
REALTYPE
REALTYPE
REALTYOE
REALTYPE
REALTYPE
REALTYPE

id , Tfluid, f1, f2,dpdxfluid, TB, TWB, Sc, Pr)
norder = 5
Npart
np, npart_loc, nlocl ,pl,i,n,is m,k
. left
) :: Xpart, Upart, Tpart, T.B, TWB, Sc, Pr
) :: Ufluid , Tfluid, f1, f2, dpdxfluid
,NV) 0 Q
,norder+1):: cl
r+1) iroc,xl
) :: dpdx,p
11 orep

domain_length

xa, xb, ua, ub, Ta, Tb

rhoa, rhob, xfirst, pa, pb

map,cd, fltemp, distl , som

hx (norder), cx(norder),Qpart(norder)
argexp

! Determine divided differences

DO i=NO+norder ,N5 norder
x1(:) = x(i:i+norder)
c(:) = Q(i:i+norder ,2
DO pl=1,norder 1

DO k=norder ,pl+1,
c(k) = (c(k) c(
ENDDO

)

1
k 1))/(x1(k) x1(k pl))



cl(i,pl) =
ENDDO
ENDDO

determine left

C

(k)

most

DO i=NO+norder ,N5

is = i

DO m=2,norder 1
IF (abs(cl(is 1 ,m)) < abs(cl(is,m))) THEN

is = 1
ENDIF
ENDDO
left(i) = is
ENDDO

DO n=1,norder

S

s

L

cx(n) = (n 1)=xdx

ENDDO

DO n=NO,N5

p(n) = (Q(n,3)

ENDDO
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interpolating point with ENO approach

0.5xQ(n,2) *%2/Q(n,1))*(gamma 1.0)

call PS_Diff WENO (1, WENO_Order, NO, N5, N2, N3, dx, p, dpdx)

domain_length
xfirst

x (N5)
x (NO)

DO np = 1, Npart

npart_loc
nlocl

distl

DO n=1,norde

T

x (NO)

INT (( Xpart(np) xfirst)/domain_length«DBLE(N5 NO)) + NO
left (npart_loc)

(Xpart(np) x(npart_-loc)) + (npart_-loc nlocl)=dx

CALL polynl (n,distl ,norder ,cx,hx(n))

ENDDO

DO i = 1,3
som = 0.0

DO n=1,norder
som + Q(nlocl + n 1,i)*hx(n)

som =
ENDDO
Qpart (i) =

ENDDO
Rhofluid (np)
Ufluid (np)
Tfluid (np)
Pfluid (np)

som = 0.0

som

Qpart (1)

Qpart(2)/Qpart(1l)

(Qpart(3)/Qpart(1l) Ufluid(np)*%2/2.0) «x(gamma 1.0 ) xgamma
Tfluid (np)*Qpart(1)/gamma
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DO n=1,norder

som = som + dpdx(nlocl + n 1)*hx(n)
ENDDO
dpdxfluid (np) = som

'if (abs(dpdxfluid(np)) > 5.0) dpdxfluid(np) = 0.0

Rhofluid (np)*CRE*sqrt (( Ufluid (np) Upart(np)) *%2)
sqrt ((Ufluid (np) Upart(np))=*%2)/sqrt(Tfluid(np)) + 1d 15

rep
map

! Evaporation Model

! Boiling (normalized) and Wet Bulb Temperature (K)

T_B(np) = 447.70d0/ Tref

TWB(np) = (137.0d0*((T_B(np)*Tref/373.150d0)*%0.680d0)=* &
loglO(Tfluid (np)=Tref) 45.0d0)

! Prandtl and Schmidt (assuming Lewis number is unity)

if (T'WB(np) > 600.0d0) Pr(np) = 0.647d0 + 5.5d 5«T-WB(np)

it (T'WB(np) <= 600.0d0) Pr(np) 0.815d0 4.958d 4+«TWB(np) + &
4.514d 7+ T_WB(np) =*TWO

Sc(np) = Pr(np)

CF2 = 1.0d0/(3.0d0*Pr(np))

'f1(np) = (1.+.15%xrep*=(.687))/(1.)

!'fltemp = (1.+.15%xrep*=(.687))/(1.)

!'f1(np) = 1.0d0

12 (np) = 1.0d0

argexp = max( 100.0d0, 0.43d0/(map*%4.67d0))

cd = ( 24.0d0 + 0.38d0xrep + 4.0d0O=xsqrt(rep))=(1.0+exp(argexp))
f1(np) = 3.0d0%cd/(4.0d0%18.0d0)*1.4d0

f2 (np) = CF2%(2.+.6xsqrt(rep)*Pr(np)==(.33))/(1.)*1.4

'if (np==100) write (*,%) ’check._argexp’, np,map, argexp, cd,fl(np)
'if (rep> 20000) WRITE(6,%) ’'Re_p.is_too.large ,.change_setup’, rep
ENDDO

END Subroutine Interpolate_Fluid_To_Particle_.ENO

A.1.2 Particle Evaporation (New Subroutine)

Subroutine Particle_Evaporation (Xpart, Upart, Tpart, Npart, Q, Ufluid, Tfluid, &
f3, f4, dpdxfluid, deltaY, Al, A2, PD, Taup, Mpart)

IMPLICIT NONE

INTEGER :: Npart
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REALTYPE, dimension(Npart) Xpart, Upart, Tpart, Al, A2, PD, Taup, Mpart
REALTYPE, dimension (NO:N5,NV) 0 Q

REALTYPE, dimension(Npart) Ufluid , Tfluid, f1, f3, f4, dpdxfluid, deltaY
INTEGER np, npart_loc

REALTYPE, parameter bl = 24.0d0 , b2 = 0.380d0 , b3 = FOUR
REALTYPE, parameter b4 = 0.430d0 , b5 = 4.670d0
REALTYPE, parameter dl = TWO , d2 = 0.60d0 , d3 = 0.330d0
REALTYPE, parameter el = THREE/(FOURx18.0d0)

REALTYPE :: Yinf

REALTYPE :: Pfp

REALTYPE :: U2, Repl, Mapl, sRep

REALTYPE :: Nu, Sh, Ys_eq, Ys, Bm, Bt, G

REALTYPE :: Lk, beta, Ys_neq

REALTYPE :: A3, CTAUP, CYS, CF3, CF4

REALTYPE :: MWP, CPG, CVG, CPL, CPV, CVV

REALTYPE :: MUref, Rhoref, Uref

REALTYPE :: MU, LV, LV2

REALTYPE :: R, CRel, CD

REALTYPE :: T_WB2

R = 8.314410d7 I erg/K

Yinf = 0.0d0

DO np=1,Npart

Physical parameters carier phase and liquid phase in CGS UNITS in the code:
(G) continuum = gas/carrier phase
(L) particle liquid phase

(V) particle vapor and air mixture
Air

Heat capacities (erg/g/K for constant P, erg/cm3/K for constant V)

CPG = Pr(np)#(3.227d 3 + 8.3894d 5+TWB(np) 1.958d 8 +T_WB(np)++TWO)/ &
(6.109d 6 + 4.604d 8+T.WB(np)  1.051d 11+T.-WB(np) **TWO)

CPG = CPGx1.0d4

CVG = CPG R/MWG

Property evaluation
Gamma = CPG/CVG
!'write (% ,%) ’check.Gamma’, Gamma, CPG, CVG, T_B, T_WB
MU = (6.10d 6 + 4.60d 8« (T_WB(np)) 1.050d 11+ (T-WB(np) ) =*TWO) «TEN

Decane
Iwrite (% ,%)
PB(np) =

"check.P_B’, Rhofluid(np), T_-B, Gamma,
Rhofluid (np)*T_B (np) /(GammasMref 2)

Mref



41

TWB2 = TWB(np)/1000.0d0
! Heat capacities (erg/g/K for constant P, erg/cm3/K for constant V)
CPL = 2.520d+7

if (T-WB2 > 0.80d0) CPV = 0.0982d0 + 1.304d0+T_-WB2 0.593d0+T_-WB2++TWO &
+ 0.101d0+T-WB2x+THREE

if (T-WB2 <= 0.80d0) CPV = 0.02547d0 + 1.377d0=T_WB2 0.4d0+T_-WB2x+TWO &
+ 0.113d0+T-WB2++THREE

CPV = CPV%4.1868d0+1000.0d0=1.0d+4
CVV = CPV R/MWP
! mass averaging of the gas mixture heat capacity
1CPG = CPG+(1 Yinf)+CPV=xYinf ! not used since Yinf remains 0

! Property evaluation (Latent heat, erg/g)
LV = (3.9580d+4%(619.0d0 T-WB(np))*%0.380d0) «1.0d+4
LV2 =1LV + (CPL CPV)*T_WB(np)

! constant coefficients used in particle equations

Al(np) = LV/(CPG#Tref) ! normalized Latent heat
A2(np) = ONE ! A2=1 is used by Mashayek
CTAUP = (RHOP:x#(ONE/THREE)xre/18.0d0) «(SIX/PI) %+ (TWO/THREE)
CYS = GammaxAl(np) /((Gamma ONE)+T_B(np))

CF3 = Al(np)=*A2(np)/(THREE*Sc(np))

CF4 = PI*SQRT(18.0d0/RHOP) /(re**(1.50d0)*Sc(np))

!write (% ,+) ’check_.CF4’, CF3, Al(np), LV, CPG, TWB(np)

U2 = SQRT(ABS(( Ufluid (np) Upart(np)))*=2)

CRel = rexRhofluid (np) *(SIX/( PI*RHOP) ) % (1.0d0/3.0d0)

Repl = Rhofluid (np)*CRel+«U2xMpart (np) =+ (ONE/THREE) ! particle re
sRep = SQRT(Repl)

Mapl = U2xMref/SQRT( Tfluid (np)) + EPSILON(ONE) ! Mach number
Taup (np) = CTAUP+Mpart(np) *%(2.0d0/3.0d0) !

Sh = TWO !+d2+sRep=*Sc(np)x*(d3) ! Sherwood nu

INu = TWO+d2=sRep+Pr(np) *+(d3) ! Nusselt number
Nu = Sh

! Particle Diameter

PD(np) = (6.0d0=Mpart(np) /( PI*RHOP) ) +%(ONE/THREE) ! variable particle diame
!write (% ,%) ’check.PD’, np, PD(np), Mpart(np), Tpart(np)

! Evaporation model by Mashayek

1Ys_eq = (P_B(np)/Pfluid (np) )*EXP(CYS*(ONE T_B(np)/Tpart(np)))
Ys_eq = EXP(CYS*(ONE T_B(np)/Tpart(np))) ! used by Mashayek for slow evap.
Ys = Ys_eq

! for verification of the analtical solution take Y_s=const
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Ys 0.948766699d0
1Ys = 1.0d0
Bm (Ys Yinf)/(ONE Ys)

!write (% ,%) ’check.Ys’, np, Ys_eq, T_-B, Tpart(np), Al(np)

deltaY (np) = Bm
deltaY (np) = Ys Yinf ! used by Mashayek for slow evap.
CD = (bl + b2«Repl + b3xSRep) x(ONE+EXP ( b4 /(Mapl=+xb5)))

SELECT CASE (IEVAP)

CASE (0)

f3 (np) =0

f4 (np) =0

CASE (1)

f3 (np) = CF3%«Rhofluid (np)=*Sh

f4 (np) = CF4«Rhofluid (np)*Sh
END SELECT

!write (% ,%) ’check_evap’, f3(np), f4(np), Rhofluid(np)
!write (*,%) ’check._f3’, CF3, Rhofluid(np), Sh, f3(np)
!write (*,%) ’“check.f4’, Repl, f4(np), CF4, Rhofluid(np), Sh
ENDDO
I'stop

END Subroutine Particle_Evaporatio
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