
i
i

i
i

i
i

i
i

Escuela Técnica Superior de
Ingeniería Informática

Departamento de Informática

Tesis Doctoral:

Easing Parallel Programming on
Heterogeneous Systems

Presentada por Ana Moretón Fernández para optar al grado
de doctor por la Universidad de Valladolid

Dirigida por:
Dr. Arturo González Escribano

Valladolid, 2018

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Resumen
El modo más frecuente de resolver aplicaciones de HPC (High performance Computing) en
tiempos de ejecución razonables y de una forma escalable es mediante el uso de sistemas de
cómputo paralelo. La tendencia actual en los sistemas de HPC es la inclusión en la misma
máquina de ejecución de varios dispositivos de cómputo, de diferente tipo y arquitectura.
Sin embargo, su uso impone al programador retos específicos. Un programador debe ser
experto en las herramientas y abstracciones existentes para memoria distribuida, los modelos
de programación para sistemas de memoria compartida, y los modelos de programación
específicos para para cada tipo de co-procesador, con el fin de crear programas híbridos que
puedan explotar eficientemente todas las capacidades de la máquina. Actualmente, todos
estos problemas deben ser resueltos por el programador, haciendo así la programación de
una máquina heterogénea un auténtico reto.

Esta Tesis trata varios de los problemas principales relacionados con la programación en
paralelo de los sistemas altamente heterogéneos y distribuidos. En ella se realizan propuestas
que resuelven problemas que van desde la creación de códigos portables entre diferentes
tipos de dispositivos, aceleradores, y arquitecturas, consiguiendo a su vez máxima eficiencia,
hasta los problemas que aparecen en los sistemas de memoria distribuida relacionados con
las comunicaciones y la partición de estructuras de datos.

Palabras clave
Computación paralela, Entornos paralelos, Sistemas heterogeneos, Nuevos modelos de
programación, Memoria distribuida, Cálculo de comunicaciones

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Abstract
The use of parallel computing systems frequently represents the only scalable way to solve
HPC (High performance Computing) problems in reasonable execution times. The current
trend in high performance computing platforms is to include in the same machine several
parallel devices, of different type and architectures, and to interconnect them to form highly
parallel and heterogeneous distributed systems. Programming efficient and portable parallel
applications that can really exploit these systems, imposes specific and complex challenges to
the programmers. A programmer must be proficient in distributed-memory communication
tools or layers, shared-memory programming models, and specific programming models
for the available co-processors, in order to create hybrid programs that will exploit all the
machine capabilities. Moreover, she also has to deal with the proper workload distribution
among the different nodes and devices, assigning to each one an amount of workload related
to their computation power and features. Nowadays, all these issues should be solved by the
programmer, making the programming of heterogeneous platforms an actual challenge.

This PhD. Thesis addresses several main problems related to the parallel programming
for highly heterogeneous and distributed systems. It first tackles problems to allow the
developing of efficient coordination codes, portable across different kind of devices, acceler-
ators, and architectures. Then, it also targets problems related to the data communication
and partition issues concerning the use of devices in distributed-memory systems. In this
dissertation we introduce abstractions, mechanisms, and methods to solve many of these
problems. We also discuss their practical application to develop research prototypes and
actual programming tools. Experimental works conducted using these tools validates the
applicability of the proposed techniques and the portability, efficiency, and versatility of the
programs that can be obtained.

Keywords
Parallel programming, Parallel frameworks, Heterogeneous systems, New programming
models, Distributed-memory, Communication calculation.

i
i

i
i

i
i

i
i

This research has been partially supported by Universidad de Valladolid (UVa), MICINN (Spain),
the ERDF program of the European Union and Junta de Castilla y Leon: HomProg-HetSys pro-
ject (TIN2014-58876-P), PCAS (TIN 2017-88614-R), CAPAP-H5 network (TIN2014-53522-REDT),
CAPAP-H6 (TIN2016-81840-REDT), COST Program Action IC1305: Network for Sustainable Ul-
trascale Computing (NESUS), FEDER Grant VA082P17 (PROPHET Project), and by the computing
facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by
the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the
Government of Spain.

i
i

i
i

i
i

i
i

Agradecimientos

Tras casi 7 años con ellos (y por aguantarme tanto tiempo yo creo que se lo merecen), empiezo
mis agradecimientos a mis tutores Diego y Arturo. En especial dar las gracias a Arturo,
por las innumerables horas gastadas juntos escribiendo papers con fórmulas matemáticas
inentendibles, por la paciencia que tuvo hasta que aprendí a escribir dos frases seguidas, y por
no desistir ni dejar de confiar a pesar de los dos millones de papers rechazados (más o menos
echando las cuentas a ojo). Muchas gracias a ambos por darme la oportunidad de realizar el
doctorado con vosotros y compartir laboratorio y puesto de trabajo con un motón de gente
maravillosa. Gente a la que le debo la Tesis. No se si hubiese sido capaz de acabarla sin los
coffe-breaks y la compañía de: Sergio, Alvaro, Héctor, Javi, Yuri, Dani, Edu y un montón más
de personas haciendo proyectos fin de carrera, que aunque no pueda nombrar a todas les sigo
teniendo muy en cuenta. Tampoco me quiero olvidar de mis compañeros de carrera, con
los que empecé este camino, y con los que se me metió esta idea de doctorado en la cabeza.
Agradecer también a Ana Lucia Varbanescu la opción de realizar mi estancia de tres meses en
Delft, y agradecerla a ella y al resto de compañeros de allí también el trato recibido durante
la estancia.

Y cómo no agradecer a mis amigos, empezando por la gente con la que he crecido, con
la que mantengo decenas de años de amistad y que en todo momento me han apoyado; y
terminando por los Muy Mejores Amig@s y la peña Despiporre que, a pesar de la diversidad
de ideas y vidas que hay en el grupo, han sido y son una fuente inagotable de risas, fiestas,
alegrías, positivismo y el mejor ejemplo que conozco a seguir como grupo. Como solemos
decir: Poco nos vemos, para lo mucho que nos queremos.

Por último agradecer a mi familia. Empezaré por orden inverso de antigüedad =). A
Adri por estar siempre ahí apoyándome en lo bueno y en lo malo, animarme en este camino
siempre que lo he necesitado, y disfrutar conmigo los buenos momentos. A mi hermano,
por ser siempre la cabeza pensante, objetiva y razonable de la familia. Seguiría dudando de
cualquier tontería de hace 5 años si no fuese por él. A mi madre. Sería banal decir que ella
me ha ayudado en este camino, porque en realidad ella me ha ayudado en todos (una Santa
como dicen mis amigos). No sería la persona que soy sin ella. Y por último a mi padre, la
persona que más orgullosa ha estado de mi, que más me ha apoyado durante los estudios y la
que, por qué no decirlo también, la que más presumía de hija. Siempre guardaré tus consejos,
y haré todo lo posible para que sigas orgulloso de mi allá donde estés.

Ana Moreton-Fernandez

- v -

i
i

i
i

i
i

i
i

VI |

i
i

i
i

i
i

i
i

Contents

Resumen de la Tesis Doctoral 1
R.1 Motivación . 2

R.1.1 Computación paralela . 2
R.1.2 Sistemas para la computación paralela 3
R.1.3 Modelos de programación paralelos 4

R.2 Objetivos de la Tesis Doctoral . 7
R.2.1 Metodología de investigación . 7
R.2.2 Objetivos . 8

R.3 Resumen de contribuciones . 14
R.3.1 Respuesta a la pregunta de investigación y conclusiones 14
R.3.2 Simplificando la programación sobre sistemas heterogéneos basa-

dos en aceleradores . 14
R.3.3 Automatizando el manejo de datos en sistemas heterogéneos con

memoria distribuida. 15
R.4 Conclusiones . 18

1 Introduction 19
1.1 Motivation . 20

1.1.1 Parallel computing . 20
1.1.2 Machines for parallel computing 20
1.1.3 Parallel programming models . 22

1.2 Objectives of this Thesis . 24
1.2.1 Research methodology . 24
1.2.2 Milestones . 25

1.3 Document structure . 30

I Simplifying the programming on accelerator-based heterogen-
eous systems 33

2 State of the art on heterogeneous programming 35
2.1 Motivation . 36

- vii -

i
i

i
i

i
i

i
i

VIII | CONTENTS

2.2 Proposals for standardizing parallel programming 36
2.3 Proposals targeting directly heterogeneous systems 38
2.4 Summary . 38

3 Controllers: An abstraction to ease the use of hardware accelerators 39
3.1 Motivation . 40
3.2 Controller Model . 41

3.2.1 Kernel management . 42
3.2.2 Data management . 43

3.3 The Controllers library . 45
3.3.1 Data structures and Hitmap . 45
3.3.2 Controllers and variables management 47
3.3.3 Declaration and configuration of kernels 50
3.3.4 Kernel characterization . 51
3.3.5 Kernel launching . 51
3.3.6 Programming example . 54

3.4 Experimental study . 56
3.4.1 Case studies . 56
3.4.2 Development effort and code complexity 58
3.4.3 Performance study . 60

3.5 Summary . 63

4 Supporting the Xeon Phi coprocessor in the Controller ProgrammingModel 65
4.1 Approach to support MIC accelerators . 66
4.2 Integrating MIC coprocessors in the Controller library 68

4.2.1 Attaching and detaching data structures on the MIC 68
4.2.2 New kernel definitions . 69
4.2.3 Queue management and Kernel launching 71

4.3 Experimental study . 72
4.3.1 Study cases . 72
4.3.2 Performance study . 72
4.3.3 Development effort measures . 73

4.4 Summary . 75

5 Multi-Device Controllers 77
5.1 Introduction . 78
5.2 Multiple-Device Controller (MCtrl) library 79

5.2.1 Multi-Controller construction . 80
5.2.2 Data structures and domains . 80
5.2.3 Kernel launching . 82
5.2.4 Programming methodology and example 84

5.3 Experimental study . 86

i
i

i
i

i
i

i
i

CONTENTS | IX

5.3.1 Study cases . 86
5.3.2 Development effort . 87
5.3.3 Performance results . 88

5.4 Summary . 92

II Automatizing the datamanagement for distributed-memory spaces
in heterogeneous systems 95

6 State of the art on automatic management of distributed-memory spaces 97
6.1 Motivation and related Work . 98

6.1.1 Parallel libraries . 100
6.2 Summary . 101

7 Analyzing the current limitations of communication code generators 103
7.1 The FOP communication scheme . 104
7.2 Cost model . 105

7.2.1 General cost for a distributed loop 106
7.2.2 Problem size and number of iterations 108
7.2.3 Distribution policy . 108
7.2.4 Packing stage . 108
7.2.5 Coordination and communication stage 109
7.2.6 Unpacking stage . 109
7.2.7 Total cost . 110

7.3 Proposal: Implementation alternative . 110
7.4 Case study: 1-D Jacobi . 112

7.4.1 Cost model parametrization . 112
7.4.2 Simulation study . 113

7.5 Experimental Study . 115
7.5.1 Experimental environment . 115
7.5.2 Results . 115

7.6 Summary . 117

8 Automatically calculating communications forDMS fromdata-access expres-
sions 119
8.1 Introduction . 120
8.2 Illustrative example and Overview . 121

8.2.1 Programming with an SPMD model 122
8.2.2 Overview of the communication determination technique 123

8.3 The Trasgo Model . 125
8.3.1 Overview of the code transformation framework 126
8.3.2 Notations and definitions . 127

i
i

i
i

i
i

i
i

X | CONTENTS

8.3.3 Extensions to the Hitmap library 128
8.4 Implementation of the technique to determine communication patterns . . 129

8.4.1 Functions to calculate working set indexes 129
8.4.2 Determining communications patterns 132
8.4.3 Communication patterns for specific applications 134

8.5 Experimental study . 136
8.5.1 Study cases . 137
8.5.2 Experimental platforms and setup 139
8.5.3 Improvement achieved by tuning the tile size for each process . . 140
8.5.4 General communications model vs. patterns for specific applications141
8.5.5 Comparison with MPI references 143
8.5.6 Comparison with a state-of-the-art tool 144

8.6 Summary . 148

9 Calculating communications for applications on periodic domains 149
9.1 Introduction . 150
9.2 Related work targeting problems with periodic domains 150
9.3 Illustrative example . 151
9.4 Aggregated-communication model . 153

9.4.1 Definitions . 154
9.4.2 Model for calculating communication patterns in 1-D applications 155
9.4.3 Multi-dimensional model . 158

9.5 Implementation on a parallel programming framework 159
9.6 Discussion: Analyzing the technique . 161
9.7 Experimental study . 162

9.7.1 Design and setup of the experimental study 162
9.7.2 Study 1: Performance comparison with MPI reference codes . . . 163
9.7.3 Study 2: Ease of programming . 164
9.7.4 Study 3: Relative cost of calculating communications 164

9.8 Summary . 166

10 Operators for data redistribution 167
10.1 Introduction . 168
10.2 Motivating example . 168
10.3 Proposal: Redistribution operators . 171

10.3.1 ArrayRemapRange: Remap of an array range 171
10.3.2 ArrayRemapMask: Remap of an irregular selection using a mask . . 172
10.3.3 ArrayDivide: Dividing an array in several balanced parts using a

multivalued mask . 172
10.3.4 ArrayMerge: Merging array parts 173

10.4 Implementation of the operators . 174

i
i

i
i

i
i

i
i

CONTENTS | XI

10.4.1 Supporting data redistributions at Hitmap runtime level 174
10.4.2 Implementation of the new operators 175

10.5 Experimental studies . 178
10.5.1 Experimental platform and setup 178
10.5.2 Applying the operators: case studies 178
10.5.3 Impact of redistributing workload on performance 181
10.5.4 Using the STL library for analyzing the four operators 182
10.5.5 Evaluating the use of the proposal on a real-world application:

Raytracing algorithm . 185
10.6 Summary . 186

11 Conclusions 187
11.1 Summary of contributions . 188

11.1.1 Simplifying the programming on accelerator-based heterogeneous
systems . 188

11.1.2 Automatizing the data management for distributed-memory spaces
in heterogeneous systems . 189

11.2 Answer to the research question . 191
11.3 Future Directions . 192

Bibliography 195

i
i

i
i

i
i

i
i

XII | CONTENTS

i
i

i
i

i
i

i
i

List of Figures

1 Objetivos y estructura de la Tesis Doctoral. 9

1.1 Objectives and structure of this Thesis. 26

3.1 Diagram of the Controller model architecture. 42
3.2 Examples of the kernel characterization and definition for a stencil program. 48
3.3 Example of the main code, for a stencil program. 49
3.4 Excerpt of theController library code generated for kernel deployment/launch-

ing on a CUDA capable GPU device. 52
3.5 Excerpts of theController library code generated for kernel deployment/launch-

ing on a group of CPU-cores. 53
3.6 Characterization of the generic or GPU specialized kernels for the case

studies (left). Example of kernel wrapper to execute a specialized GPU
library function (right). 55

3.7 Execution times (seconds) in Heracles machine of the baseline (Base) and
the Controller versions for CPU device (Ctrl.CPU) with a variable number
of cores. 62

4.1 Old and New Controller model. 66
4.2 Kernel definition and configuration, and host program of a matrix addition

using the Controller library. 67
4.3 Excerpts of the internal codes that perform data transfers of a HitTile object. 68
4.4 Functions internally generated by the MIC kernel definition. 70
4.5 Auxiliary macros defined for a one parameter kernel. 71

5.1 Diagram of the Multiple-Device Controller library (MCtrl). 79
5.2 Calculating the domains to compute for each device. 83
5.3 Typical programming stages using the MCtrl library. 83
5.4 Matrix addition example programmed using our approach. 85
5.5 An image of the Mandelbrot set with the limits xmin: −1.4748333, xmax:

−0.9748333, ymin: −0.1791667, ymax: 0.1958333. 87
5.6 Performance results (in seconds) for experiments on Hydra using a group of

10 CPU-cores and a GPU. 90

- xiii -

i
i

i
i

i
i

i
i

XIV | LIST OF FIGURES

5.7 Performance results (in seconds) for experiments on Hydra using a group of
10 CPU-cores and a GPU. 91

7.1 Sequential code of the Jacobi-1D benchmark. 106
7.2 Excerpt of the communication generated code by Pluto compiler for the

array b for the Jacobi-1D solver using the FOP scheme 107
7.3 Pseudo-codes of the original π (top left) and Π (top right) functions, and our

alternative implementation proposed. 111
7.4 Execution times with the original and alternative π function with different

problem sizesN and different number of processes P 113
7.5 Execution times of the codes generated using the FOP scheme, with the

original and the alternative π function implementation. 116

8.1 Sequential algorithm for the illustrative example. 121
8.2 Block diagram of the parallel algorithm following an SPMD model for the

illustrative example (left), and code excerpts for the main blocks (right). . . 122
8.3 Using the read and write data-access expressions inside the parallel structure

of the illustrative example to calculate the working input and output index
sets (W 2

I ,W
1
O) for M_temp at a generic process. 124

8.4 Calculation of Communication Receive (CR) pattern between the two par-
allel structures of the illustrative example. 124

8.5 Structure of the Trasgo transformation framework. 126
8.6 CMAPS code for the illustrative example. 127
8.7 Generated code for illustrative example. 131
8.8 Working-set index functions used to tailor the communication constructor

algorithms for the four possible situations. 134
8.9 Excerpt of generated code for illustrative example: main program. 135
8.10 Application of the proposed communication calculation technique when

using a hierarchical QuadTree mapping policy to distribute a matrix on 64
processes. 142

9.1 Sequential algorithm for the illustrative example assuming a positive value
of rot. 151

9.2 Parallel algorithm for the illustrative example in a SPMD model. 152
9.3 Communication structures calculation. 153
9.4 Communications in a Stencil-2D application. 158
9.5 Trasgo input code for the illustrative example. 159
9.6 Excerpt of the generated function that applies the input-code affine access

expressions and periodic conditions to compute T (WA,k
I (p, L, rot)) for

the illustrative example. 160
9.7 Calling both the communication calculation and execution functions in the

target program of the illustrative example. 161

i
i

i
i

i
i

i
i

LIST OF FIGURES | XV

9.8 Computation, communication calculation, and communication execution
times in seconds for the Heat examples on the distributed-memory machine
(log scale), using the problem sizes of Tab. 9.1. 165

9.9 Computation, communication calculation, and communication execution
times in seconds for the Heat examples on the shared-memory machine (log
scale), using the problem sizes of Tab. 9.1. 166

10.1 Motivating example algorithms using two different approaches. 169
10.2 Data redistribution performed by theArrayRemapRange operator. In this case

the call to the operator isM_out = ArrayRemapRange(M, 〈2, 10〉, L). 171
10.3 Data redistribution performed by the ArrayRemapMask operator. In this case

the call to the operator isM_out = ArrayRemapMask(M,Mask, L). 172
10.4 Data redistribution performed by the ArrayDivide operator. 173
10.5 Operation performed by the ArrayMerge operator. 174
10.6 Sequence of operations performed in theQuickSort algorithm in a distributed-

memory system using the ArrayDivide and ArrayMerge operators. 175
10.7 Internal code of the ArrayRemapRange operator along with some auxiliary

macro functions. 176
10.8 Consecutive applications of the RayTracing algorithm on a moving sphere. 180
10.9 Performance scalability results (in seconds) for the for_each algorithm in

CETA, the distributed-memory system (logarithmic scale). Size = 1000000.
. 183

10.10 Performance scalability results (in seconds) for the RayTracing algorithm in
CETA with different image sizes (logarithmic scale). 185

i
i

i
i

i
i

i
i

XVI | LIST OF FIGURES

i
i

i
i

i
i

i
i

List of Tables

3.1 Measurements of the development effort metrics for the codes of the case
studies. 59

3.2 Comparison in terms of the percentage of words that are common and can
be reused, should be deleted, or should be changed, when porting codes
between GPU and CPU versions using the native models, or the Controllers
model. 60

3.3 Input data sizes and number of iterations selected for each case study in the
performance experimental study. 61

3.4 Execution time (seconds) for the case studies versions using CUDA, or Con-
trollers for GPUs, with different input sizes. 61

4.1 Performance results (seconds) comparing LEO reference codes with Con-
troller codes for different input sizes. 73

4.2 Comparison of number of code lines, code tokens, and cyclomatic complex-
ity between the Controller version and the version using native program-
ming models. 74

4.3 Comparison in terms of the percentage of words that are common and can
be reused, should be deleted, or should be changed, when porting codes
between GPU and MIC versions using the native models, or the Controller
library. 74

5.1 Development effort measures for the four benchmarks when they are pro-
grammed using Cuda, OpenMP, and the proposed Multi-Controller library.
. 88

8.1 Input data sizes (N × N), time loop iterations (T), and threshold para-
meter, for the different benchmarks in the experimental studies conducted
in Heracles and CETA. 139

8.2 Computation times (seconds), of the matrix multiplication benchmark on
the cluster Atlas with different tunning of the tile size. 140

8.3 Execution time for the communication determination for Jacobi-2D solver
(seconds). 141

- xvii -

i
i

i
i

i
i

i
i

XVIII | LIST OF TABLES

8.4 Performance (in seconds) obtained for the three benchmarks chosen. . . . 143
8.5 Maximum variation in the execution times for each benchmark in Heracles

and CETA, when using Trasgo and Pluto. 145
8.6 Main execution times (in seconds) for the five benchmarks chosen from the

Polybench. 145
8.7 Performance (in seconds) of Polybench codes, generated for distributed-

memory by Trasgo, and by Pluto-MPI, broken down into computation and
communication times (including calculation and execution). 147

9.1 Input data sizes (N) and time loop iterations (T), for benchmarks in the
experimental studies. 162

9.2 Study 1: Performance (in seconds) for the illustrative example, Cannon's
algorithm, and the MG real-world application. 163

9.3 Comparison of development effort measures for three case studies. 164

10.1 Summary of the implemented STL routines for one dimensional numeric
arrays, for distributed-memory systems, using the new four operators. . . 179

10.2 Measures of development effort for the STL study cases, comparing our
proposal with MPI. 184

10.3 Measures (inmiliseconds) of performance for the STL study cases comparing
our proposal with MPI, using 128 MPI processes in CETA. 184

10.4 Measures of development effort for the RayTracing algorithm, comparing
our proposal with MPI. 185

i
i

i
i

i
i

i
i

Resumen de la Tesis Doctoral

E l modo más frecuente de resolver aplicaciones de HPC (High performance Computing)
en tiempos de ejecución razonables y de una forma escalable es mediante el uso de

sistemas de cómputo paralelo. Sin embargo, su uso enfrenta al programador retos específicos.
Este capítulo describirá esos retos, y de acuerdo a los problemas que se vayan identi-

ficando, presentará los objetivos, la pregunta de investigación de esta Tesis Doctoral, y se
describirán de forma general las contribuciones aportadas a lo largo de la Tesis Doctoral, para
resolver las cuestiones planteadas por la pregunta de investigación, y conseguir los objetivos
descritos.

- 1 -

i
i

i
i

i
i

i
i

2 | RESUMEN DE LA TESIS DOCTORAL

R.1 Motivación

En esta sección presentamos la motivación que da lugar al planteamiento de esta Tesis Docto-
ral. En primer lugar repasaremos la evolución de los sistemas de computo paralelos. Veremos
como esta evolución ha llevado a la necesidad de diseñar nuevos modelos de programación
y nuevos sistemas de control y gestión del paralelismo durante la ejecución. Analizaremos
diferentes clases de propuestas para dichos modelos y herramientas, y descubriremos cues-
tiones aún no resueltas. Esta observación nos llevará a plantear los diversos retos que esta
Tesis Doctoral trata de resolver. En esta sección introduciremos también el trabajo realizado
en este ámbito por el grupo de investigación Trasgo, en el que se ha desarrollado el trabajo
principal que se describe en este volumen.

R.1.1 Computación paralela
Existen muchos problemas de cómputo, como por ejemplo los relacionados con las simula-
ciones médicas, el análisis de tráfico o flujo en redes, o la navegación de coches autónomos,
que requieren simulaciones muy complejas, niveles de precisión muy altos o respuestas al
problema en un tiempo limitado y generalmente muy corto [9]. Estos requisitos se corres-
ponden con programas de un alto coste computacional y hacen que la ejecución de estos
programas sea prohibitiva con programas o máquinas que ejecutan las instrucciones de forma
únicamente secuencial.

Una solución para reducir el tiempo de ejecución de este tipo de aplicaciones es el aumento
de la frecuencia de reloj en los sistemas hardware que ejecutan los programas. Sin embargo,
la evolución de la velocidad de reloj de los procesadores y chips basados en una alta escala de
integración de transistores se está viendo limitada. El consumo de energía y el calor disipado
aumenta demasiado rápido con la frecuencia con las tecnologías actuales [47]. Por ello, la
tendencia actual pasa por utilizar la enorme cantidad de transistores que se puede integrar
en un reducido espacio para construir chips con varios elementos de computo que pueden
trabajar de forma simultánea o paralela. Así mismo, dentro de la misma máquina se pueden
colocar varios dispositivos paralelos, e interconectar con tecnología de red varias máquinas
para formar enormes y complejos sistemas capaces de ejecutar multitud de subprogramas o
tareas simultáneamente. Por tanto, la división de los trabajos en varias tareas independientes
puede ser una solución para los problemas de alto coste computacional mencionados [3].
Cuántas más unidades de procesamiento tenga una máquina, más tareas pueden ser creadas
y ejecutadas simultáneamente, reduciendo el tiempo total de ejecución. Este método de
diseño de programas nos proporciona soluciones escalables. Así, los problemas que necesitan
cada vez más cantidad de cómputo, cuya carga computacional crece, se pueden resolver en
tiempos razonables con un número proporcionalmente mayor de elementos de cómputo.
Esta característica ha hecho que hoy en día los sistemas paralelos se estén convirtiendo
en la base de la computación de alto coste o alto rendimiento (HPC, High-Performance
Computing).

i
i

i
i

i
i

i
i

R.1 MOTIVACIÓN | 3

La necesidad de dar con una solución para los problemas de HPC ha fomentado el
desarrollo de los sistemas paralelos, haciendo que durante las últimas décadas el número
de elementos de procesamiento en los sistemas paralelos vaya aumentando. Por otra parte,
el tiempo y el esfuerzo necesario para el desarrollo de programas para su ejecución en
paralelo ha crecido desmesuradamente [56] debido a: (1) la inherente complejidad de crear y
coordinar las tareas a ejecutar por cada elemento de procesamiento; (2) la falta de modelos
de programación, herramientas de desarrollo y estrategias de diseño que realmente permitan
la portabilidad de los códigos entre sistemas diferentes; y (3) la gran diversidad de tipos y
arquitecturas en las plataformas de cómputo paralelo.

A lo largo de esta sección repasaremos las arquitecturas de las máquinas más usadas
actualmente para la computación en paralelo. Después, describiremos los modelos de pro-
gramación más conocidos y usados para cada arquitectura.

R.1.2 Sistemas para la computación paralela
La evolución de los sistemas de cómputo se ha focalizado en el diseño de nuevas arquitecturas
con un creciente nivel de paralelismo, en lugar de en el desarrollo de procesadoresmás rápidos.
La computación paralela representa en muchas situaciones la única solución escalable para
resolver ciertos problemas en tiempos de ejecución razonables.

Existen diversos términos y denominaciones referidos a sistemas cuyas arquitecturas
incluyen múltiples elementos de cómputo independientes. El término multi-core se refiere a
la integración de varias unidades de procesamiento en un único chip, donde además cada
unidad de procesamiento puede operar como un procesador de propósito general. El uso
de varias unidades de procesamiento a la vez implica un aumento del rendimiento, sin la
necesidad de aumentar la frecuencia de reloj, debido a que la carga de trabajo puede ser
distribuida entre los diversos elementos de procesamiento. De acuerdo a su diseño, los
elementos de procesamiento pueden compartir espacio de memoria, formando una memoria
global, o no. La presencia de un único espacio de memoria global hace la programación de
estas plataformas más natural para los programadores habituados a los modelos clásicos de
programación secuencial. Las operaciones de memoria de solo lectura serán invisibles para
el programador, y programadas de forma similar que en los programas secuenciales. Sin
embargo, las operaciones de escritura requieren que el programador use sistemas de exclusión
mutua para los accesos concurrentes, o sincronizaciones de lectura-escritura, haciendo su
tarea mucho más complicada.

Por otra parte, los sistemas que no comparten espacio de memoria presentan retos apa-
rentemente diferentes al programador. Cada unidad de procesamiento de una máquina
puede tener su propio espacio de memoria local. Así, todas las interacciones entre diferentes
elementos de procesamiento deben ser realizadas, por ejemplo, mediante el uso de abstrac-
ciones de comunicación como son los mensajes, los cuales podrán transferir datos, trabajo o
simplemente sincronizar acciones entre los procesos.

i
i

i
i

i
i

i
i

4 | RESUMEN DE LA TESIS DOCTORAL

Coprocesadores para la computación paralela

Un coprocesador puede ser considerado como un dispositivo de computación que se añade a
un sistema por otra parte completo, con el fin de ejecutar software especializado. Los copro-
cesadores más usados para supercomputación hoy en día son las GPUs (Graphics Processing
Unit) [133]. Las GPUs fueron originalmente diseñadas para ayudar al procesador principal
en el procesamiento gráfico. En las aplicaciones de procesamiento gráfico, la reutilización de
datos es pequeña, y los programas sonmuy simples. Por ello, el diseño de las GPUs está basado
en el uso de pequeñas cachés on-chip con una colección de Unidades Aritmético-Lógicas
(ALUs) sencillas. El uso de coprocesadores como procesadores de propósito general ha sido
tendencia en la supercomputación desde que Nvidia lanzase la tarjeta Tesla en 2007. Aunque
las GPUs [133] fueron originalmente diseñadas para el procesamiento gráfico, sus potentes
capacidades de cómputo masivamente paralelo han hecho su uso muy popular en las apli-
caciones de HPC, creando una nueva tendencia basada en ellas, GPGPU (General-Purpose
Computing on Graphics Processing Units).

Durante los últimos años han surgido nuevos dispositivos aceleradores para atacar efi-
cientemente el tipo de problemas que no encajan bien con la arquitectura de las GPUs. Un
ejemplo es la familia de tarjetas Intel Xeon Phi (lanzada en 2012), la cual también es conocida
comoMany Integrated Cores (MICs) [73]. El coprocesador Xeon Phi es un acelerador conmu-
chos cores de propósito general basados en la tecnología x86, con unidades de vectorización
mejoradas y mejor ancho de banda de memoria.

Computación Heterogénea: Sacando partido a todos los tipos de arquitecturas a
la vez.

La evolución de los supercomputadores puede seguirse gracias al proyecto Top500 [130],
que cada seis meses publica una clasificación de los 500 computadores más potentes en el
mundo, en base a su velocidad de ejecución de unos programas de prueba concretos. Los
supercomputadores actuales están compuestos por varios nodos (máquinas interconectadas)
con memoria distribuida donde cada nodo puede tener diferentes capacidades de cómputo,
jerarquías de memoria o coprocesadores asociados como GPUs o Xeon Phis. En muchos
casos, las características de computación de cada nodo son muy diferentes. Este tipo de
sistemas son denominados Sistemas Heterogéneos [26].

R.1.3 Modelos de programación paralelos
Según el trabajo de Balaji [12], un modelo de programación puede entenderse como una má-
quina abstracta para que un programador escriba instrucciones. Típicamente, estos modelos
de programación son instanciados en lenguajes en si mismos, o en bibliotecas de funciones.

Esta nueva era de la computación en paralelo está requiriendo un continuo esfuerzo de
investigación en el diseño y desarrollo de nuevos modelos de programación, apropiados para
explotar la computación paralela en aplicaciones de alto coste computacional. Programar

i
i

i
i

i
i

i
i

R.1 MOTIVACIÓN | 5

sistemas paralelos es complicado. Con el fin de lograr una ejecución correcta del programa y
que realmente aproveche el nivel de paralelismo que ofrecen las arquitecturas modernas, el
programador debe razonar teniendo en cuenta los comportamientos estocásticos asociados
con la ejecución simultánea y los costes asociados a los movimientos de datos entre múltiples
unidades de procesamiento y entre sus diferentes niveles en la jerarquía de memoria. Así, los
modelos de programación paralelos definen de forma explícita o implícita dos submodelos.
El primero es un modelo de ordenación y sincronización entre las secuencias de operaciones
que el código ejecutará, generalmente llamado modelo de ejecución. El segundo es un modelo
que determina como mover los datos entre los nodos y las jerarquías de memoria del sistema
paralelo, llamado modelo de memoria.

Existen cuatro pilares o características fundamentales que representan las posibles prefe-
rencias del programador entre las características de un modelo de programación, indepen-
dientemente de que sea secuencial o paralelo: (1) Productivo, capaz de expresas algoritmos
abstractos con facilidad, (2) Portable, capaz de ser usado en cualquier arquitectura de compu-
tación, (3) Eficiente, capaz de producir un buen rendimiento adecuado con el hardware donde
se esta ejecutando, y (4) Expresivo, capaz de representar o expresar un gran rango de clases de
algoritmos.

Sería ideal diseñar un lenguaje de programación que cumpla con las cuatro características
expuestas, sin embargo esto parece imposible por el momento. Por ello, existen muchos
lenguajes de programación secuencial, cada uno aportando diferentes soluciones a la hora
de expresar algoritmos y transformarlos a código ejecutable, focalizándose en una com-
binación particular de las anteriores características. Este comportamiento no es diferente
para los sistemas paralelos. Los diferentes usuarios tienen preferencias entre los niveles de
abstracción que nos dan las combinaciones de los cuatro pilares. En esta sección veremos un
resumen de los modelos de programación paralela más conocidos y usados para HPC y la
supercomputación actualmente.

Clasificación de los modelos de programación paralela

Muchos modelos y lenguajes de programación han surgido para la programación en paralelo,
con el fin de abstraer al programador de muchos de los problemas de implementación que
típicamente aparecen en este tipo de computo. Algunos nos abstraen por completo del
modelo de arquitectura, pero suelen tener problemas de eficiencia en la implementación
sobre arquitecturas completas. Para poder utilizar formas de implementación más eficientes y
específicas, otros se focalizan en alguno de los modelos fundamentales de arquitectura, como
son por ejemplo los modelos de memoria compartida, o de memoria distribuida. OpenMP y
el paradigma de paso de mensajes (implementado por ejemplo en bibliotecas MPI) son los
métodos de programación paralela más extendidos y usados para memoria compartida y
distribuida respectivamente [32, 59]. Ambas aproximaciones han sido declaradas como los
modelos más básicos de programación paralela, y dominan el campo de la programación
para HPC desde finales de los años 90 del siglo pasado [44].

i
i

i
i

i
i

i
i

6 | RESUMEN DE LA TESIS DOCTORAL

OpenMP [33, 40] es una API (application programming interface) que facilita la progra-
mación en paralelo para sistemas de memoria compartida. Está compuesta por un conjunto
de directivas, pragmas, funciones de biblioteca y un sistema de tiempo de ejecución que es
capaz de manejar la creación de hilos, su sincronización y por tanto de sus operaciones, y las
interacciones que se producen en las operaciones en memoria compartida. Originalmente,
OpenMP fue diseñado para paralelizar códigos secuenciales con un bajo esfuerzo de pro-
gramación. Los códigos secuenciales son anotados con una serie de pragmas o anotaciones
que no son parte del lenguaje, pero incluyen información extra para el compilador. Estas
anotaciones son procesadas por el compilador, que debe tener la tecnología adecuada para
entenderlas y utilizarlas para producir un código que resuelva los problemas de la para-
lelización siguiendo las pautas indicadas en los pragmas. Originalmente OpenMP estaba
orientado a la paralelización de iteraciones de bucles. Actualmente, OpenMP también provee
herramientas orientadas a tareas dinámicas y estructuras para la programación paralela más
complejas [10].

Existen también otros modelos menos abstractos para memoria compartida como POSIX
threads (PThreads) [29, 78], que es la herramienta en la que se apoyan muchos compiladores
de OpenMP para la gestión de las tareas a bajo nivel. Se trata de un estándar que define un
conjunto de tipos y funciones, para el que se han implementado bindings en los lenguajes de
programación más populares, como por ejemplo C/C++, Fortran, Python, etc. La biblioteca
de Pthreads nos da una serie de funciones para la creación y destrucción de hilos y para
la coordinación de las actividades de los hilos. Sin embargo, comparado con OpenMP, la
interfaz de Pthreads es de un nivel más bajo, necesitando el programador un mayor esfuerzo
de desarrollo.

La programación en sistemas de memoria distribuida impone retos específicos. El paso de
mensajes es el modelo de programación más extendido para estos sistemas. Toda la informa-
ción necesaria para la ejecución del proceso local, que pueda estar contenida en un proceso
remoto, debe ser enviada antes al proceso local mediante un intercambio de mensajes. El
estándar MPI ha dominado el campo de las propuestas de este modelo, existiendo implemen-
taciones muy eficientes, y siendo hoy en día el estándar de facto para las aplicaciones de HPC
en arquitecturas distribuidas [58, 59, 89]. Sin embargo, cuando el programador usa las especi-
ficaciones de MPI aun tiene que tratar con problemas de diseño e implementación complejos,
como son las decisiones acerca de la partición y la localidad de datos vs. la sincronización
y los costes de las comunicaciones. No solo MPI trata con los retos de la programación en
sistemas distribuidos. También existen soluciones como GASnet [20] que proveen una capa
de programación de bajo nivel para la implementación de lenguajes y bibliotecas paralelas
con un espacio de memoria global (modelos PGAS), que proveen de una capa de abstracción
similar a la memoria compartida, con el objetivo de simplificar la programación a los usuarios
finales.

La programación de co-procesadores es diferente de la programación de sistemas mul-
ticore o en memoria distribuida en muchos aspectos. El programador tiene que tratar con
muchos detalles manualmente, como por ejemplo las transferencias de datos al dispositivo, o

i
i

i
i

i
i

i
i

R.2 OBJETIVOS DE LA TESIS DOCTORAL | 7

la configuración de los parámetros de ejecución de cada bloque paralelo. NVIDIA presentó
en 2007 CUDA [102], un nuevo modelo de programación especialmente diseñado para los
aceleradores GPU de NVIDIA. El modelo de programación CUDA solo se puede utilizar
actualmente con los aceleradores GPU de NVIDIA. Para otros tipos de GPUs existen otros
modelos de programación similares como son OpenCL [127] o BrookGPU [27]. Para otros
tipos de aceleradores como la Xeon Phi, modelos de programación basados en pragmas,
como LEO [101], ofrecen mecanismos de programación similares.

Programación paralela para sistemas heterogéneos multinivel.

Diferentes modelos de programación han sido establecidos para cada diferente tipo de
dispositivo o arquitectura como hemos descrito previamente. Esto nos indica, que para
aprovechar los sistemas paralelos heterogéneos actuales, un programador debe ser experto en
las herramientas y abstracciones existentes para memoria distribuida (e.g MPI, GASNet [20],
etc), los modelos de programación para sistemas de memoria compartida (e.g OpenMP), y
los modelos de programación específicos para para cada tipo de co-procesador (e.g CUDA,
OpenCL, o tecnologías equivalentes), con el fin de crear programas híbridos que puedan
explotar eficientemente todas las capacidades de la máquina [141]. Además, el programador
también tiene que tratar con la distribución de trabajo apropiada para cada caso entre los
diferentes nodos y dispositivos, asignando a cada uno, una carga de trabajo proporcional
a sus capacidades y capacidad de cómputo. Actualmente, todos estos problemas deben ser
resueltos por el programador, haciendo así la programación de una máquina heterogénea un
auténtico reto.

R.2 Objetivos de la Tesis Doctoral

De acuerdo con los problemas encontrados y descritos en la sección anterior, la pregunta de
investigación que esta Tesis doctoral trata de resolver es la siguiente:

Es posible desarrollar: (1) Abstracciones simples que hagan transparente y uni-
forme el desarrollo, despliegue y coordinación de programas entre diferentes sistemas
y arquitecturas paralelas de cómputo, y (2) nuevas técnicas de tiempo de ejecución
que, basándose en las dependencias de datos de un programa, puedan distribuir y
comunicar de forma automática los datos, de forma transparente para el programador,
una vez que las características de la plataforma de ejecución sean conocidas?

R.2.1 Metodología de investigación
La metodología de investigación usada en esta Tesis esta basada en el método experimen-
tal y el método de ingeniería software, compuestos ambos for cuatro fases: Observar la

i
i

i
i

i
i

i
i

8 | RESUMEN DE LA TESIS DOCTORAL

solución existente, proponer una solución mejor, desarrollar las soluciones propuestas y
hacer mediciones de índices de calidad, comparar y analizar las nuevas soluciones [1]. Es una
metodología iterativa donde en cada iteración la solución se refina hasta encontrar la más
apropiada, recordando las etapas de cada iteración a las fases del clásico método científico:
Búsqueda de problema, formulación de hipótesis, predicción y validación de hipótesis.

1. Observar las soluciones existentes.

En la fase exploratoria se estudiará la literatura y el estado del arte del campo de
investigación tratando de determinar posibles mejoras.

2. Proponer soluciones mejores.

Esta fase está dedicada al análisis y diseño de soluciones mejores, tratando de superar
los límites de las propuestas previas o mejorando los métodos existentes en la literatura.

3. Desarrollar la solución.

El objetivo de esta fase es desarrollar un prototipo para demostrar las características
de nuestra solución.

4. Medir y analizar la nueva solución.

Por último, los prototipos implementados son empíricamente evaluados y compara-
dos con las diferentes alternativas. El objetivo de esta evaluación es validar la nueva
solución propuesta y corroborar que los problemas descubiertos en la primera fase
fueron resueltos.

R.2.2 Objetivos
Hemos definido dos tareas principales con el fin de resolver la pregunta de investigación.
Cada tarea se trata en una de las dos partes en las que se organiza esta Tesis Doctoral, y
propone diferentes objetivos o items a cumplir para resolver el problema de investigación
global considerado (ver Fig. 1). La metodología de investigación descrita se aplicará a cada
objetivo.

Trabajo previo

En los últimos años el grupo de investigación Trasgo [61] ha diseñado y desarrollado Hit-
map [48, 55], una biblioteca altamente eficiente para el particionado y mapeado jerárquico en
memoria distribuida de estructuras de datos indexadas como vectores, matrices multidimen-
sionales, matrices dispersas o grafos. Hitmap esta diseñada para utilizar una abstracción que
permita simultáneamente una visión global o local de una computación paralela, permitiendo
la creación, manipulación, distribución y eficiente comunicación de estructuras de datos
teseladas (particionadas) de forma abstracta. El programador no necesita pensar en el número
de procesos y procesadores. En su lugar, Hitmap usa una abstracción para la construcción de

i
i

i
i

i
i

i
i

R.2 OBJETIVOS DE LA TESIS DOCTORAL | 9

Modelo para uniicar la
programación paralela de

CPUs y GPUs

Implementación del modelo
en una biblioteca

Adaptando a una flexible
Computación heterogenea

Modelo simple, eficiente
y adaptable a cualquier
plataforma

Parte I: Programación paralela
 usando aceleradores

Soporte para el
co-procesadore XeonPhi

Parte II: Automatizando el control de
 datos para memoria distribuida

 en sistemas heterogeneos

Trabajo
Previo

Hitmap:
Bilioteca para

simplificar la partición,
reserva, y comunicación
de datos en sistemas de

memoria distribuida.

Continuación
del trabajo

PasoProgramación para
sistemas heterogeneos

con memoria distribuida.

Cálculo automático de
comunicaciones entre nodos

Modelo para aplicaciones
con expresiones afines

Modelo para aplicaciones
con expresiones afines

y condiciones de
contorno periódicas.

Objetivo 1

Objetivo 4 Objetivo 5

Objetivo 2

Objetivo 3

Modelo para soportar
aplicaciones irregulares.

Simplificando las
redistribuciones de datos

Objetivo 6

Tesis Doctoral

Figura 1: Objetivos y estructura de la Tesis Doctoral.

patrones de comunicación para las estructuras distribuidas de cualquier nivel, con estados
globales claramente identificados. Así, las operaciones de codificación y verificación son
mucho más fáciles.

Esta biblioteca da soporte a funcionalidades de: (1) Organización de los elementos de
proceso en topologías virtuales; (2) Partición y asignación de partes de las estructuras de datos
a los diferentes procesos usando diferentes técnicas de equilibrio de carga de forma modular;
(3) Determinación y gestión automática de los procesos inactivos en cualquier estado de
la computación; (4) Identificación de los procesos vecinos o relacionados para mejorar las
comunicaciones en su caso; y (5) Construcción abstracta de patrones de comunicación, que
además son reutilizables en algoritmos iterativos.

Parte I: Simplificando laprogramaciónde sistemasheterogéneosbasadosenace-
leradores

En la primera parte de la Tesis Doctoral presentaremos un modelo de programación que
simplifica la programación en paralelo de sistemas heterogéneos, entendiendo un sistema

i
i

i
i

i
i

i
i

10 | RESUMEN DE LA TESIS DOCTORAL

heterogéneo como aquel sistema compuesto por un host (proceso principal) y diferentes
dispositivos de computación asociados al host (grupos de núcleos de CPU, o aceleradores del
tipo GPUs o XeonPhi).

Objetivo 1: Diseñar y desarrollar un modelo de programación para unificar la
programación de CPUs y GPUs.

(Observación) Actualmente el uso de aceleradores hardware, como las unidades de procesamiento
gráfico (GPUs), es clave para resolver problemas de alto coste computacional que
requieren HPC. Sin embargo, programar soluciones para un eficiente despliegue en
este tipo de dispositivos es una tarea muy difícil, que requiere del tratamiento manual
de las transferencias dememoria y de los parámetros de configuración. El programador
es el responsable de realizar un estudio de los datos necesarios en cada momento para
la computación en cada diferente coprocesador, teniendo en cuenta a su vez los detalles
de la arquitectura de ejecución.

(Propuesta e
implementación)

Proponemos el concepto de Controller, una entidad abstracta que permite ocultar los
detalles de las comunicaciones y lanzamientos de kernels en los aceleradores hardware,
facilitando su programación. El modelo también ofrece la posibilidad de definir y
lanzar kernels para CPU en procesadores multi-core, usando la misma abstracción y
metodología que para las GPUs.

(Resultados) Presentaremos una implementación del modelo de los Controladores en un prototipo
construido como una biblioteca de funciones, junto con una serie de casos de estudio.
Demostraremos que el uso de esta biblioteca reduce el esfuerzo de programación y
los costes de portar el código entre dispositivos, sin añadir sobrecostes en los tiem-
pos de ejecución cuando se comparan con soluciones directamente programadas y
optimizadas con CUDA u OpenMP.

Objetivo 2: Soporte para un nuevo tipo de aceleradores como el coprocesador
Xeon Phi.

(Observación) Soportar diferentes tipos de dispositivos como las GPUs o las Xeon Phis en los modelos
de programación actuales es vital para explotar los sistemas paralelos. Diferentes tipos
y familias de aceleradores son usados en las arquitecturas modernas de cómputo,
como podemos observar en la configuración de los los supercomputadores de la lista
TOP500 [130]. Sin embargo, los modelos de programación usados típicamente para
GPUs y Xeon Phis son muy diferentes.

(Propuesta e
implementación)

En este punto proponemos una extensión del modelo de programación heterogéneo
anterior para GPUs y CPUs, obteniendo una nueva aproximación a la programación
homogénea de CPUS, GPUs y XeonPhis. Esta contribución extiende el modelo de los
Controladores anterior y su implementación, combinando el modelo de comunicacio-
nes diseñado para GPUs con el modelo de ejecución diseñado para CPUs. Esto resulta
en una nueva solución para dar soporte a la Xeon Phi.

i
i

i
i

i
i

i
i

R.2 OBJETIVOS DE LA TESIS DOCTORAL | 11

(Resultados) Los resultados experimentales de esta parte muestran que usando la nueva solución,
el esfuerzo de programación necesario para cambiar la plataforma de ejecución ha
sido muy reducido en muchos casos de estudio. Por ejemplo, usando nuestro modelo
para programar el benchmark Mandelbrot, el 97 % del código es reutilizado entre la
implementación para GPU y la de Xeon Phi.

Objetivo 3:Diseñar y desarrollar unmodelo de programación adaptable, simple y
eficiente para la programación de sistemas conmúltiples dispositivos heterogéneos.

(Observación) Existen muchas propuestas para simplificar la programación, el manejo de varios
aceleradores, y la programación de sistemas híbridos mezclando aceleradores y CPUs.
Sin embargo, la portabilidad muchas veces compromete la eficiencia de los programas
en los diferentes dispositivos. Además, hay detalles acerca de la coordinación y el
manejo de memoria que deben ser todavía atacados por el programador.

(Propuesta e
implementación)

En este objetivo proponemos la entidad Multi-Controlador (MCtrl), una entidad abs-
tracta implementada también en una biblioteca. Esta entidad coordina los diferentes
dispositivos (incluyendo aceleradores o grupos de CPUs) que se pueden encontrar
en un sistema heterogéneo. Nuestra propuesta usa el modelo de Controladores y
la biblioteca Hitmap para crear un nuevo modelo de programación que mejora las
soluciones del estado del arte, simplificando la partición y mapeo de datos y haciendo
transparente la computación de los kernels en los diferentes dispositivos. El sistema
runtime selecciona y ejecuta automáticamente la mejor implementación de kernel
existente (entre las suministradas por el programador) para cada dispositivo, hacién-
dose cargo también de los movimientos necesarios de datos y ocultando los detalles
del lanzamiento de los kernels en los diferentes dispositivos.

(Resultados) Los resultados de un estudio experimental con varios casos de estudio indican que nues-
tra abstracción permite el desarrollo de programas flexibles y eficientes en múltiples
dispositivos o unidades computacionales, que se adaptan a los entornos heterogéneos.

Al final de esta parte de la Tesis Doctoral obtendremos un modelo de programación
que simplifica la programación en paralelo sobre sistemas heterogéneos, logrando una gran
eficiencia en términos de tiempo de ejecución para aplicaciones que no tengan dependencias
de datos.

El soporte de aplicaciones con dependencias de datos en sistemas que incluyen disposi-
tivos con espacios de memoria separados, requiere el diseño y desarrollo de técnicas para
realizar automáticamente las transferencias de datos entre dispositivos. Este tipo de técnicas
son presentadas en la parte II.

i
i

i
i

i
i

i
i

12 | RESUMEN DE LA TESIS DOCTORAL

Parte II: Automatizandoelmanejo dedatos en sistemasheterogéneos conmemo-
ria distribuida.

Los casos más significativos donde los dispositivos tienen un espacio de memoria separado
son los sistemas distribuidos. En esta parte de la Tesis Doctoral presentamos un conjunto de
técnicas genéricas y automáticas que simplifican la programación en paralelo sobre sistemas
de memoria distribuida. Estas hacen transparente al programador muchos de los problemas
relacionados con la partición, reserva y transferencia de datos.

Objetivo 4: Diseño y desarrollo de una técnica en tiempo de ejecución que calcula
automáticamente las comunicaciones agregadas para las aplicaciones con expresio-
nes afines y uniformes en el acceso a datos.

(Observación) La programación de aplicaciones en sistemas distribuidos es un verdadero reto para los
programadores. Éstos tienen que tratar con muchas decisiones que no están relaciona-
das con el algoritmo, como son las decisiones acerca de la partición de datos, localidad,
costes de comunicación, sincronización, etc. Las técnicas actuales de compilación no
pueden tener en cuenta muchas decisiones que están basadas en información global y
particular de los sistemas de ejecución y sus dispositivos asociados. Por ello, es deseable
estudiar qué tipo de técnicas pueden ser aplicadas en tiempo de ejecución, con el fin
de tomar esas decisiones lo más adecuadamente posible.

(Propuesta e
implementación)

Presentamos una nueva técnica para el cálculo de las comunicaciones de manera
automática. La técnica es aplicada entre diferentes bloques SPMD (Single Program
Multiple Data) y puede ser usada en códigos con expresiones de acceso a datos afines
y uniformes. La técnica propuesta calcula en tiempo de ejecución las comunicaciones
agregadas y exactas necesarias para procesos distribuidos, haciendo transparente al
programador los problemas relacionados con el código de las comunicaciones.

(Resultados) Los resultados experimentales muestran que, a pesar de el coste potencial de nuestro
cálculo en tiempo de ejecución, nuestra solución puede producir automáticamente
códigos eficientes comparados con programas desarrollados directamente en MPI, y
comparados también con los códigos generados por los compiladores autoparaleliza-
dores del estado del arte.

Objetivo 5: Extensión de la técnica anterior para dar soporte a aplicaciones con
dominios periódicos.

(Observación) Hay muchas aplicaciones reales que usan accesos a datos en dominios periódicos. Así,
cada vez es más interesante dar soporte a este tipo de aplicaciones en los entornos de
programación paralelos o compiladores actuales.

(Propuesta e
implementación)

Hemos realizado una extension de la técnica de cálculo de comunicaciones anterior,
con el fin de soportar códigos de entrada con expresiones de acceso a datos uniformes
con condiciones de contorno periódicas.

i
i

i
i

i
i

i
i

R.2 OBJETIVOS DE LA TESIS DOCTORAL | 13

(Resultados) Hemos evaluado nuestra propuesta usando varios casos de estudio. Los resultados ex-
perimentales muestran que el uso de nuestra solución puede obtener automáticamente
códigos eficientes comparada con implementaciones directamente desarrolladas en
MPI. Además, nuestra solución simplifica la programación eliminando la necesidad
de desarrollar el código de comunicaciones y partición de datos.

Objetivo 6: Proposición de una abstracción para simplificar las redistribuciones
de datos.

(Observación) La programación en sistemas distribuidos impone una serie de retos específicos. Una
de las optimizaciones más compleja de desarrollar de forma genérica, con propensión
a introducir errores en la programación, y sin embargo más útil en sistemas distribui-
dos, es la redistribución de datos. Esta optimización cambia la afinidad de los datos
seleccionados, moviéndolos a las nuevas localizaciones que son determinadas por
unas técnicas de partición y mapeo diferentes de las originales. Las redistribuciones
de datos permiten una mejora en el rendimiento gracias a la creación de un mejor
equilibrio de carga entre los procesos que se encuentren activos en la computación
cada momento.

(Propuesta e
implementación)

Nuestra propuesta se basa en el diseño de cuatro operadores para redistribuir una
selección de datos en memoria distribuida de una forma eficiente y simple. En nuestra
propuesta la partición, recolocación y movimiento de datos es transparente para el
programador. Los operadores abstraen al programador los detalles de implementación
que son dependientes de la máquina de ejecución como por ejemplo el número de
procesos activos donde los datos están localizados antes y después de la redistribución.
La combinación de estos cuatro operadores permite un simple y eficiente desarrollo
de muchas estructuras de aplicación, incluyendo muchos patrones de paralelismo que
encontramos en la biblioteca C++ STL.

(Resultados) Los resultados experimentales muestran que nuestra solución no implica sobrecos-
tes de ejecución comparada con las redistribuciones manualmente escritas en MPI,
mientras el esfuerzo de programación ha sido altamente reducido.

Al final de la segunda parte de la Tesis Doctoral obtendremos un conjunto de técnicas que
hacen transparente al programador muchos de los problemas relacionados con la partición de
datos y la transferencia de estos entre dispositivos, en aplicaciones diseñadas para ejecutarse
en sistemas con espacios de datos disjuntos o distribuidos.

Continuación del trabajo

Una continuación natural de las propuestas incluidas en este trabajo de tesis, es unificar
las diferentes técnicas en un modelo de programación para memoria distribuida simple y
adaptable a los sistemas heterogéneos. Proponemos para ello la combinación del modelo de
programación presentado en el final de la primera parte de la Tesis Doctoral y las técnicas

i
i

i
i

i
i

i
i

14 | RESUMEN DE LA TESIS DOCTORAL

presentadas en la segunda parte para tratar automáticamente con las transferencias de datos
entre los dispositivos encontrados en las máquinas heterogéneas. Así, la plataforma de eje-
cución podría ser un sistema de memoria distribuida, donde cada nodo podría tener varios
procesadores y coprocesadores asociados (e.g GPUs, XeonPhi, o grupos de núcleos de CPU).

R.3 Resumen de contribuciones

Esta sección resume las contribuciones de esta Tesis Doctoral, y las publicaciones asociadas
a ella.

R.3.1 Respuesta a la pregunta de investigación y conclusiones
Durante la Tesis Doctoral presentaremos, de acuerdo a los objetivos marcados, una serie de
contribuciones que nos llevarán finalmente a la respuesta de la pregunta de investigación. En
este caso la respuesta será afirmativa, ya que presentaremos: (1) Un modelo de programación
simple y adaptable a los diferentes sistemas heterogéneos de ejecución compuestos por
diversos aceleradores, y (2) varias técnicas automáticas capaces de realizar las transferencias
de datos necesarias en sistemas de memoria distribuida o con espacios de memoria separados.

Nuestras soluciones han llevado a la publicación de varios artículos de investigación
como veremos en esta sección. El resumen de las contribuciones está dividido en dos partes,
de forma similar a la estructura de la Tesis Doctoral y a la pregunta de investigación.

R.3.2 Simplificando laprogramaciónsobresistemasheterogéneos
basados en aceleradores

La programación de soluciones para una eficiente ejecución de los programas en un sistema
heterogéneo es una tarea muy compleja, donde el programador debe manualmente consi-
derar los detalles de la arquitectura de la máquina. En la primera parte de la Tesis Doctoral,
presentaremos varias propuestas para reducir este problema. Las publicaciones derivadas de
este trabajo de investigación son las siguientes:

5. Presentamos una nueva entidad abstracta denominada Controllers implementada como
una biblioteca de funciones. Esta entidad permite la creación de códigos portables
de coordinación para diferentes dispositivos como GPUs o grupos de núcleos de
CPU. Esta solución también permite la programación de kernels simples y genéricos
que pueden ser ejecutados en ambos tipos de dispositivos, y hace transparente al
programador los movimientos de datos entre las diferentes jerarquías de memoria.
Esta solución cumple el Objetivo 1: Diseñar y desarrollar un modelo de programación
para unificar la programación de CPUs y GPUs.
Publicación:

i
i

i
i

i
i

i
i

R.3 RESUMEN DE CONTRIBUCIONES | 15

Journal JCR Q2: [99] Ana Moreton–Fernandez, Hector Ortega–Arranz
y Arturo Gonzalez–Escribano. ‘Controllers: An abstraction to ease the use
of hardware accelerators’. En: The International Journal of High Performance
Computing Applications, 2017. 2017. doi: 10.1177/1094342017702962.
eprint: http://dx.doi.org/10.1177/1094342017702962. url:
http://dx.doi.org/10.1177/1094342017702962

6. Introducimos en el modelo anterior de Controllers el soporte para un nuevo tipo de
dispositivo, el coprocesador Intel Xeon Phi (MIC). Se ha introducido sin realizar
ninguna modificación semántica del modelo anterior. Para ello, se ha unido el modelo
de ejecución usado para los grupos de núcleos de CPU y el modelo de comunicaciones
usado para las GPUs, mientras su implementación se ha realizado con el lenguaje
específico para la Xeon Phi.
Con ello logramos elObjetivo 2: Soporte para un nuevo tipo de aceleradores como el
coprocesador Xeon Phi.
Publicación:

ConferenceCOREA: [100] AnaMoreton-Fernandez, EduardoRodriguez-
Gutiez, Arturo Gonzalez-Escribano y Diego R Llanos. ‘Supporting the
Xeon Phi Coprocessor in a Heterogeneous Programming Model’. En: Euro-
pean Conference on Parallel Processing. Springer, Cham. 2017, págs. 457-469

7. En este punto proponemos una entidad abstracta que es capaz de coordinar de ma-
nera transparente las operaciones realizadas por varios Controllers sobre diferentes
dispositivos de cómputo, sin importar el tipo de dispositivo que el Controller tenga
asociado.
Con ello cumplimos elObjetivo 3: Diseñar y desarrollar un modelo de programación
adaptable, simple y eficiente para la programación de sistemas heterogéneos.
Publicación:

Journal JCRQ3: [96] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
y Diego R. Llanos. ‘Multi-device Controllers: A library to Simplify Parallel
Heterogeneous Programming’. En: International Journal of Parallel Program-
ming, 2017, págs. 1-20. Springer, 2017

R.3.3 Automatizandoelmanejodedatosensistemasheterogéneos
conmemoria distribuida.

La programación paralela de aplicaciones con dependencias de datos ha sido un gran reto
para los programadores, especialmente en sistemas con las memoria separada, donde este
tipo de aplicaciones implica comunicaciones de datos. En la segunda parte, se han trata-
do diferentes problemas relacionados con los sistemas de memoria distribuida. Nuestras
propuestas, basadas en el movimiento de técnicas de compilación a tiempo de ejecución,

http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962

i
i

i
i

i
i

i
i

16 | RESUMEN DE LA TESIS DOCTORAL

mejoran las propuestas encontradas en la literatura ya que: son independientes de decisiones
en tiempo de compilación, generan comunicaciones exactas y de grano grueso o producen
un eficiente equilibrio de carga de trabajo.

Las publicaciones derivadas de este trabajo de investigación son las siguientes:

8. Estudio de los costes de tiempo de ejecución producidos por los códigos generados
automáticamente en los sistemas de memoria distribuida por las herramientas del
estado del arte basadas en el polyhedral model. Este estudio analiza las limitaciones de
las técnicas actuales y propone una simplificación que elimina un factor de complejidad.
Publicación:

Conference CORE B: [97] Ana Moreton-Fernandez, Arturo Gonzalez-
Escribano y Diego R Llanos. ‘On the run-time cost of distributed-memory
communications generated using the polyhedral model’. En: High Perfor-
mance Computing & Simulation (HPCS), 2015 International Conference on.
IEEE. 2015, págs. 151-159

9. Desarrollamos una herramienta básica de programación para la comprobación de
nuevas técnicas de programación. Se tratará de un framework de programación que
simplifica el desarrollo de códigos paralelos y la extracción automática de las depen-
dencias de datos.
Publicaciones:

InternationalConference: [8] ArturoGonzalez-EscribanoAnaMoreton-
Fernandez y Diego R. Llanos. ‘Trasgo 2.0: Code generation for parallel
distributed- and shared-memory hierarchical systems’. En: Compilers for
Parallel Computing (CPC). London, 2015

InternationalConference: [93] AnaMoreton-Fernandez, ArturoGonzalez-
Escribano y Diego R Llanos. ‘A NewHigh-Level Parallel Portable Language
for Hierarchical Systems in Trasgo’. En: Computational and Mathematical
Methods in Science and Engineering (CMMSE). 2015

10. Presentamos una nueva técnica capaz de calcular en tiempo de ejecución las comunica-
ciones necesarias para ejecutar programas de forma paralela sin variar la semántica del
código. Esta técnica es aplicable a aquellos trozos de código que contengan expresiones
en los accesos a datos afines y uniformes.
Con esta técnica cumplimos elObjetivo 4:Diseñar y desarrollar un técnica de runtime
capaz de calcular automáticamente las comunicaciones necesarias, de forma agregada,
en códigos con expresiones afines y uniformes.
Publicaciones:

Poster International School: [7] ArturoGonzalez-EscribanoAnaMoreton-
Fernandez y Diego R. Llanos. ‘Simple and Efficiente parallel programming
for distributed-memory systems’. En: Advanced Computer Architecture and

i
i

i
i

i
i

i
i

R.3 RESUMEN DE CONTRIBUCIONES | 17

Compilation for High-Performance and Embedded Systems (ACACES). Fiuggy,
Italy, 2016

Journal JCRQ2: [94] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
y Diego R Llanos. ‘A Technique to Automatically Determine Ad-hoc Com-
munication Patterns at Runtime’. En: Parallel Computing, 2017. North-
Holland, 2017

11. Basándonos en los conceptos de la técnica anterior, desarrollamos una nueva técnica
para el cálculo de comunicaciones en tiempo de ejecución capaz de trozos de código
con expresiones periódicas en los accesos afines y uniformes a los datos.
Con ello cumplimos el Objetivo 5: Extensión de la técnica anterior para dar soporte
a aplicaciones con dominios periódicos.
Publicaciones:

PosterConferenceCOREA: [90] AnaMoreton, ArturoGonzalez-Escribano
y Diego R. Llanos. ‘A Runtime Analysis for Communication Calculation’.
En: Proceedings of the International Symposium on Code Generation and Opti-
mization (CGO). poster, 2017

Conference CORE C: [91] Ana Moreton-Fernandez y Arturo Gonzalez-
Escribano. ‘Automatic Runtime Calculation of Communications for Data-
Parallel Expressions with Periodic Conditions’. En: 10th International Sym-
posium on High-Level Parallel Programming and Applications (HLPP). Vallado-
lid, Spain, 2017

Journal JCRQ3: [92] AnaMoreton-Fernandez yArturoGonzalez-Escribano.
‘Automatic Runtime Calculation of Communications for Data-Parallel Ex-
pressions with Periodic Conditions’. En: Concurrency and Computation:
Practice and Experience, 2018. Wiley, 2018

12. Finalmente, hemos atacado un problema importante para los sistemas de memo-
ria distribuida cuando se tratan aplicaciones que cambian dinámicamente su carga
computacional. Proponemos cuatro nuevos operadores que pueden ser usados para
rebalancear la carga de múltiples tipos de aplicaciones.
Estos operadores tienen la finalidad de cumplir el Objetivo 6: Proposición de una
abstracción para simplificar las redistribuciones de datos.
Publicaciones:

ConferenceCOREC: [6] ArturoGonzalez-EscribanoAnaMoreton-Fernandez
y Diego R. Llanos. ‘Four abstract array distribution operators’. En: 9th In-
ternational Symposium on High-Level Parallel Programming and Applications
(HLPP). Muster, Germany, 2016

Journal JCRQ2: [98] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
y Diego R. Llanos. ‘Operators for Data Redistribution on the STL library

i
i

i
i

i
i

i
i

18 | RESUMEN DE LA TESIS DOCTORAL

and RayTracing Algorithm (Submitted)’. En: Journal of Parallel and Distribu-
ted Computing, 2018. Elsevier, 2018

R.4 Conclusiones

Esta Tesis Doctoral trata varios problemas importantes relacionados con la programación
en paralelo de los sistemas heterogéneos. Las contribuciones de la primera parte de la Tesis
Doctoral habilitan la creación de estructuras de programación que permiten la programación
de código de coordinación portable entre diferentes dispositivos, aceleradores y arquitecturas,
manteniendo a su vez una eficiencia máxima gracias al uso interno de herramientas de bajo
nivel y específicas de los proveedores. En la segunda parte, se ha tratado con muchos de
los problemas relacionados con los sistemas de memoria distribuida. Nuestras propuestas,
basadas en el movimiento de técnicas de compilación a el tiempo de ejecución, abren la
puerta a un futuro soporte de un mayor rango de aplicaciones en los futuros compiladores o
entornos de programación.

La combinación de ambas contribuciones conllevará una nueva solución para sistemas
heterogéneos con varios nodos distribuidos. Será posible gracias a la integración de las
técnicas realizadas en la parte dos de la Tesis Doctoral, sobre el modelo de programación
propuesto en la primera parte.

i
i

i
i

i
i

i
i

CHAPTER 1

Introduction

T he use of parallel computing systems frequently represents the only scalable way to
solve HPC (High performance Computing) problems in reasonable execution times. The

current trend in high performance computing platforms is to include in the same machine
several parallel devices, of different type and architectures, and to interconnect them to form
highly parallel and heterogeneous distributed systems. Programming efficient and portable
parallel applications that can really exploit these systems, imposes specific and complex
challenges to the programmers.

This chapter discusses some of these challenges, mainly focused on the portability of
programs across different device types, and the coordination of devices with disjoint or
distributed memory spaces. We identify problems that lead to the objectives and the research
question proposed in this Thesis.

- 19 -

i
i

i
i

i
i

i
i

20 | INTRODUCTION

1.1 Motivation

This section presents the motivation of theThesis, discussing the evolution of parallel systems
and the need for new programmingmodels and runtime systems to control them. Wewill also
introduce the work of the Trasgo research group in this particular topic and the challenges
that this Thesis aims to solve.

1.1.1 Parallel computing

Many computing problems such asmedical simulations, networks algorithms, or autonomous
car navigation require complex simulations with high precision levels or an answer to the
problem in a limited and generally short time [9]. These requirements imply the execution of
programs with a high computational cost, making prohibitive their sequential execution.

A solution for reducing the execution time of these applications can be the increase of
the execution-system clock frequency, and hence the processor performance. However, the
single processor evolution is reaching a frequency limit. The generated heat when clock
frequency increases, leads to excessive power consumption and dissipation problems. This
phenomena has stalled the development of the speed in single processor units [47].

The division of the works in several independent tasks, where each processing element
of a machine is capable of executing a task independently, can provide a solution for this
kind of high-computational problems [3]. More processing units in an execution platform
imply that more tasks can be created (being simultaneously executed), and the time spent in
the computation will be reduced, achieving in this way a scalable solution for the current
applications that are continuously increasing its computational load. This feature nowadays
makes the parallel systems the base of the high-performance computing (HPC).

The need to provide a solution to solve HPC problems has pushed forward the develop-
ment of parallel systems, thus increasing during the last decades the number of processing
elements available in the execution systems. On the other hand, the inherent complexity of
specifying and coordinating concurrent tasks, the lack of portable algorithms and software
development toolkits, and the amount of different kinds of parallel platforms have increased
the time and effort needed by the programmer to develop parallel software [56].

In this section, first we describe the main-trend architectures used for parallel computing.
After that, we provide a description of the most-known parallel programming models used
for each architecture.

1.1.2 Machines for parallel computing

Parallel computing frequently represents the only scalable way to solve problems in reason-
able execution times. For this reason, computing evolution has been focused on the design
of new computer architectures, instead of the development of faster processors.

i
i

i
i

i
i

i
i

1.1 MOTIVATION | 21

The multi-core term refers to the integration of several processing units in a single chip,
where each one of the processing units operates as an all-purpose processor. The use of
several processing units at the same time implies an increase of the performance, without
rising the clock speed, as long as the workload can be efficiently distributed among the
processing units. The processing elements, according to the processor design, can share
memory space, forming a global memory space. The presence of a global memory space
make programming such platforms more natural. The read-only memory operations are
invisible to the programmer, as they are coded similarly to sequential programs. However,
write operations are harder, as they may require mutual exclusion for concurrent accesses,
or read-write synchronizations, analyzed and hard-wired in the code by the programmer.

On the other hand, parallel systems which do not share memory spaces present other
challenges to the programmer. Each processing node of the platform has its own exclusive
address space, so all the interactions among the different nodes should be performed by using
communication abstractions such as messages. These messages are used to transfer data,
work, or to synchronize actions among the processes.

Co-processors for parallel computing

A co-processor can be considered as a device added to a computing system dedicated to the
execution of specialized software. Themost representative co-processors for supercomputing
nowadays are the GPUs [133]. They were originally designed to help the CPU in graphic
processing. In graphic processing algorithms the data reuse is small and the programs
are relatively simple. Thus, the design of the GPUs was based on the use of small on-chip
caches along with a collection of simple ALUs. The use of co-processors along with the
general-purpose processors, has been a main trend in supercomputing since Nvidia launched
its Tesla GPU (Graphics Processing Unit) card in 2007. GPUs [133] were originally designed to
help the CPU in graphic processing, but its powerful computational features made their use
very popular in high performance computing, creating the trend of GPGPU (General-Purpose
Computing on Graphics Processing Units).

New accelerator devices have arisen in the last years to tackle efficiently different kinds
of problems that do not suit perfectly with the GPU architectures. An example is the Intel
Xeon Phi (released in 2012), also known as Many Integrated Cores (MICs) [73]. The Intel
Xeon Phi coprocessor is an accelerator with many general-purpose cores, based on x86
technology, with improved vector units and memory bandwidth, that can be programmed as
a co-processor, or with distributed parallel programming frameworks.

Heterogeneous computing: Taking advantage of all the kinds of machines to-
gether

The evolution of supercomputers has been recorded by the Top500 project [130], which
ranks the 500 most powerful computer systems in the world. Current supercomputers are
composed by several nodes with distributed memory, where each node can have different

i
i

i
i

i
i

i
i

22 | INTRODUCTION

computing capabilities, memory hierarchies and co-processor devices associated, such as
GPUs or Xeon Phis. In many cases, the computation capabilities associated to each node or
different computational units inside a node are highly different, leading to what we know as
heterogeneous systems [26].

1.1.3 Parallel programmingmodels

According to Balaji [12], a programming model can be defined "as the abstract machine for
which a programmer is writing instructions". Typically, these programming models are
instantiated in languages or libraries.

With the coming of the parallel computing era, new programming models, that suit well
for high-performance parallel computing and supercomputing systems, are being designed
by computer science researchers. Programming parallel systems is complicated because
the programmer should reason taking into account the stochastic situations and behaviors
associated to the simultaneous computation ofmultiple processing units and datamovements,
to achieve a correct execution of the program. For this reason, parallel programming models
usually include a model, defining the path that the code execution takes, named execution
model, and the memory model, the method determining how data move in the system between
the computing nodes and the memory hierarchies of each computing unit.

There are four pillars of programming which represent the possible programmer prefer-
ences in the features of a programming model: (1) Productive, capable of expressing abstract
algorithms with ease; (2) Portable, capable of being used on any computer architecture; (3)
Performant, capable of delivering performance commensurate with that of the underlying
hardware; and (4) Expressive, capable of expressing a broad range of algorithms. It would
be ideal to design a programming languages which would achieve the four characteristics,
however it is nearly impossible. This situation leads to a big amount of programming mod-
els, each one focused in providing different features. This behavior is not different for the
parallel systems. Different users prefer different levels of abstraction and different sets of
tradeoffs among the four pillars of programming. In this section, we provide and overview
of the most-known parallel programming models used on high-performance computing and
supercomputing systems nowadays.

Classification of parallel programmingmodels

Many programming languages and models for parallel computing have arisen for both
shared- and distributed-memory systems, with the goal of abstracting to the programmer
many implementation issues. OpenMP and the message-passing paradigm (implemented
for example by MPI libraries) are the most extended parallel frameworks for shared- and
distributed-memory respectively [32, 59]. Both approaches are defined as the pure parallel
models, as they are dominating the HPC parallel programming landscape since the late
1990s [44].

i
i

i
i

i
i

i
i

1.1 MOTIVATION | 23

OpenMP [33, 40] is an application programming interface (API) that eases the parallel
programming for shared-memory systems. It is compounded by a set of directives, prag-
mas, library functions, and a runtime system able to manage the creation of threads, the
synchronization operations, and the memory interactions. Originally, OpenMP was de-
signed to parallelize sequential codes with low programmer effort. Sequential codes are
annotated with pragmas, and a specialized compiler with support for OpenMP is in charge
of the management of the rest of the parallel issues. Nowadays, OpenMP provides new
parallel programming structures oriented to dynamic tasks and other more complex parallel
structures [10].

There are other models targeting shared-memory systems such as POSIX Pthreads [29,
78]. It is a set of programming language types and procedure calls, with bindings in the
most popular programming languages, like for example C/C++, Fortan, Python, etc. The
PThreads library provides functions for creating and destroying threads and for coordinating
thread activities. However, compared to OpenMP, the Pthreads interface is much lower-level,
needing more effort in the code development and maintenance.

Programming for distributed-memory systems imposes specific challenges. Message
Passing is themore widespread parallel programmingmodel for distributed-memory systems.
All the needed information for the local execution contained in a remote process should be
send to the local process by interchanging messages. The MPI standard has dominated this
model, being currently the de facto standard for HPC applications on distributed architec-
tures [58, 59, 89]. However, using directly the MPI specification, the programmer still has
to deal with many implementation issues, such as decisions about partition and locality vs.
synchronization/communication costs, or scheduling details. Not only tries MPI to deal with
distributed-memory programming challenges, but also low-level networking layers, such as
GASnet [20], provide network-independent, high-performance communication primitives
tailored for implementing parallel global address space SPMD languages (PGAS) and libraries,
with the goal of simplifying the distributed-memory parallel programming to the end users.

Programming a co-processor differs from the multi-core and distributed-memory pro-
gramming in many aspects. The programmer has to deal with many details such as the
manual management of memory transfers to the accelerator device, or the configuration of
running parameters that are new for these platforms. For this reason, NVIDIA released in
2007 CUDA [102], a new programming model especially designed for the NVIDIA-GPU
accelerators. CUDA programming model is only valid for NVIDIA-GPU accelerators. As for
other kinds of co-processors, other programming models for generic GPUs have been pro-
posed such as OpenCL [127] or BrookGPU [27]. Also, for XeonPhi co-processors, LEO [101]
offers a similar programming framework.

Parallel programming for multilevel heterogeneous systems

Different programming models have been settled for each different kind of computation
architecture, as we described previously. In order to be able to take advantage of the current
heterogeneous parallel systems, a programmer must be proficient in distributed-memory

i
i

i
i

i
i

i
i

24 | INTRODUCTION

communication tools or layers (e.g MPI, GASNet [20], etc), shared-memory programming
models (e.g OpenMP), and specific programming models for the available co-processors
(e.g CUDA, OpenCL, or equivalent technologies), for creating hybrid programs that will
exploit all the machine capabilities [141]. Moreover, the end user also has to deal with the
proper workload distribution among the different nodes and devices, assigning to each one
an amount of workload related to their computation power and features.

Nowadays, all these issues should be solved by the programmer, turning the programming
of the heterogeneous platforms in an actual challenge.

1.2 Objectives of this Thesis

According to the identified problems described in the previous section, the research question
to be solved in this Ph.D Thesis is the following:

It is possible to introduce: (1) Simple abstractions to make transparent and uniform
the program deployment and coordination on parallel computational units of different
types and architectures; and (2) new runtime techniques that take into account the
data dependences in order to automatically coordinate the data communication across
disjoint or distributed memory spaces, in a transparent way for the programmer, once
the features of the execution machine are known?

1.2.1 Research methodology
The research methodology used in this Thesis is based on the experimental method and
a software engineering method that has four different stages: Observe existing solution,
propose better solutions, build or develop the proposed solutions, and measure and analyze
the proposal [1]. It is an iterative methodology that is repeated to refine the solutions.
It resembles the stages of the classical scientific method: Propose a question, formulate
hypothesis, make predictions, and validate hypothesis.

1. Observe existing solutions.

This is an exploratory phase where the literature and the state-of-the-art tools related
to our research field should be studied in order to determine possible improvements.

2. Propose better solutions.

This phase is dedicated to the design and analysis of better solutions, trying to overcome
the limits of previous proposals or to improve methods of the literature.

3. Build or develop the solution.

In this phase, we focus on building a prototype to demonstrate the feasibility of the
solution.

i
i

i
i

i
i

i
i

1.2 OBJECTIVES OF THIS THESIS | 25

4. Measure and analyze the new solution.

Finally, the implemented prototypes are empirically evaluated and compared with
different alternatives. The goal of this evaluation is to validate the new solution
proposed, and to corroborate that the problems discovered in the first step have been
solved.

1.2.2 Milestones

In order to be able to answer the research question, we define two main huge tasks. Each one
of these tasks is presented in a part of the Thesis, and contains different goals/items in order
to solve the considered research problem (see Fig. 1.1). The research methodology previously
described has been applied on each goal.

Previous Work:

During the last years, the Trasgo group [61] has designed and developed Hitmap [48, 55], a
highly-efficient functions library for hierarchical tiling and mapping, in distributed memory,
of indexed data-structures such as multidimensional array, sparse matrices, or graphs. It is
designed to simplify the programming of parallel applications using simultaneously a global
and local view of the computation. It allows the creation, manipulation, distribution, and
efficient communication of tiles and tile hierarchies of the data structures. The programmer
does not need to reason in terms of the number of physical processes or processors. Instead,
it uses highly abstract communication patterns for the distributed tiles at any grain level.
Thus, coding and debugging operations with entire data structures are easy.

The Hitmap library supports functionalities to: (1) Organize the processors in virtual
topologies; (2) Part and map the data grids to the different processors using modular partition
and load-balancing techniques; (3) Automatically determine and manage inactive processors
at any stage of the computation; (4) Identify the neighbor processors to exploit their relations
in communications; and (5) Build communication patterns to be reused across algorithm
iterations.

Part I: Simplifying theprogrammingonaccelerator-basedheterogeneoussystems

In this first part of the Thesis, we present a programming model that simplifies the paral-
lel programming on heterogeneous systems, defining a heterogeneous system as a system
composed by a host (executing a main program) and different computational units (GPUs,
XeonPhi, or groups of CPU-cores).

Goal 1: Design and develop a programmingmodel to unify the parallel program-
ming of CPUs and GPUs.

i
i

i
i

i
i

i
i

26 | INTRODUCTION

Model to unify the parallel
programing of CPUs and GPUs

Implementation of the model
in a compiler-agnostic library

Adapting to Flexible
Hetereogeneus Computing

Model simple, efficient
and adaptable to any
platform

Part I: Parallel programming
 using accelerators

Supporting the
XeonPhi Coprocessor

Part II: Automatizing the data
management for distributed-memory

spaces in heterogeneous systems

Previous
Work

Hitmap: A library to
simplify data partition,

allocation, and
data communication in

distributed-memory
systems.

Next
Step

Programming for
Hetereogeneus systems
with distributed memory.

Automatic calculation of
communications among nodes

Model for applications
with affine expressions

Model for applications
with affine expressions
and periodic boundary

conditions

GOAL 1

GOAL 4 GOAL 5

GOAL 2

GOAL 3

Model supporting
irregular applications.

Simplifying data
redistributions

GOAL 6

Doctoral Thesis

Figure 1.1: Objectives and structure of this Thesis.

i
i

i
i

i
i

i
i

1.2 OBJECTIVES OF THIS THESIS | 27

(Observation) Nowadays the use of hardware accelerators, such as the Graphics Processing Units
(GPUs), is key to solve computationally costly problems that require High Performance
Computing (HPC). However, programming solutions for an efficient deployment in
this kind of devices is a very complex task that relies on the manual management of
memory transfers and configuration parameters. The programmer has to carry out a
deep study of the particular data needed to be computed at each moment, in different
computing platforms, also considering architectural details.

(Proposal and
implementation)

We propose the Controller concept as an abstract entity that hides the communications
and kernel launching details on hardware accelerators, easing their programming.
This model also provides the possibility of defining and launching CPU kernels in
multi-core processors with the same abstraction and methodology used for the GPUs
accelerators.

(Results) We present the implementation of the Controller model in a prototype library, to-
gether with its application in several case studies. Its use has led to reductions in the
development effort and porting costs, with significantly low overheads in the execu-
tion times when compared to manually programmed and optimized solutions using
directly CUDA or OpenMP.

Goal 2: Support for new kind of accelerators such as the Xeon Phi Co-processor.

(Observation) Supporting computational accelerators such as GPUs or Xeon Phi coprocessors in
current programming models is vital to exploit modern parallel platforms. Different
kinds and families of accelerators are used in modern high-performance platforms, as
we observe in the configuration of the TOP500 supercomputers [130]. However, the
usual programming models for GPUs and Xeon Phi platforms are quite different.

(Proposal and
implementation)

We propose an extension of the previous GPU-CPU heterogeneous programming
model, to include support for Intel Xeon Phi coprocessors. This contribution extends
the previous Controller model and its implementation, by taking advantage of the
GPU communication model and the CPU execution model of the original approach,
to derive a new approach for the Xeon Phi.

(Results) Our experimental results show that using our approach, the programming effort
needed for changing the kind of target devices is highly reduced for several study cases.
For example, using our model to program a Mandelbrot benchmark, the 97% applica-
tion code is reused between a GPU implementation and a Xeon Phi implementation.

Goal 3: Design and develop an adaptable, simple, and efficient programming
model for multiple heterogeneous devices.

i
i

i
i

i
i

i
i

28 | INTRODUCTION

(Observation) There are many proposals to simplify the programming and management of several
accelerator devices, and the hybrid programming mixing accelerators and CPU cores.
However, the portability compromises in many cases the efficiency on different devices.
The combined use of different programming models, synchronization and communic-
ation techniques, and the details about the coordination and memory management of
different types of devices simultaneously, are difficult to be tackled by the programmer.

(Proposal and
implementation)

We propose the Multi-Controller (MCtrl), an abstract entity implemented in a library,
that coordinates the management of several heterogeneous devices of the same or
different type, including accelerators with different capabilities and groups of CPU-
cores. Our proposal uses the previous Controller model and the Hitmap library to
create a programming model that improves state-of-the-art solutions, simplifying
the data partition, mapping, and transparent deployment of kernels. The run-time
system automatically selects and deploys the most appropriate implementation of each
kernel for each device among the ones provided by the programmer, managing the
data movements, and hiding the launching details of kernels distributed across several
devices.

(Results) Results of an experimental study with several study cases indicate that our abstraction
allows the development of flexible and high efficient programs in multiple devices or
computational units, that adapt to the heterogeneous environment.

At the end of this first part of the Thesis, we obtain a programming model that simplifies
the parallel programming on heterogeneous systems, achieving good efficiency in terms of
execution time using the simple methods proposed in the Controller and Multi-Controller
abstractions, for applications where there are no data dependences or they are manually
solved by the programmer.

The support of applications with data dependences in heterogeneous systems composed
by devices with separated memory spaces, requires the design and development of different
techniques to automatically perform efficient data transfers among the devices. These kind
of techniques are presented in Part II.

Part II: Automatizing the data management for distributed-memory spaces in
heterogeneous systems

Coprocessors with disjoint memory spaces are just a particular case of distributed-memory
systems. The latencies of data transfers between host and coprocessors, or across distributed
nodes, is high in comparison with the computational capabilities of the devices. Thus, minim-
izing the amount and volume of such transfers and communications is key for performance.
In this part we present a set of generic and automatic runtime techniques that simplify the
parallel programming on systems with different memory hierarchies or distributed-memory
systems in general, making transparent to the programmer all the issues related to the data
partition, data allocation, and data transfers.

i
i

i
i

i
i

i
i

1.2 OBJECTIVES OF THIS THESIS | 29

Goal 4: Design and develop a runtime technique to automatically calculate ag-
gregated communications for applications with uniform affine expressions.

(Observation) Programming parallel applications for distributed-memory systems is an actual chal-
lenge for developers. The programmer has to deal with many decisions not related
with the parallel algorithms, but with implementation issues, such as decisions about
partition and locality vs. synchronization/communication costs, scheduling details,
etc. Current compile-time techniques cannot take into account many of the tun-
ing decisions that are based on global information and the particular features of the
distributed-memory system and its associated devices. It is desirable to study what
kinds of techniques can be applied at runtime, in order to deal with the partition
and communication issues derived from data-dependences in distributed-memory
machines. In particular, we focus on the minimization of the amount and volume of
data transfers or communications.

(Proposal and
implementation)

We present a new automatic communication calculation technique to be applied across
different SPMD (Single Program Multiple Data) blocks, that can be used in codes
with uniform affine expressions for data accesses. The proposed technique computes
at runtime exact coarse-grained communications for distributed message-passing
processes, making transparent to the programmer the implementation issues related
with data communications.

(Results) Our experimental results show that, despite the potential cost of our runtime calcula-
tion, our approach can automatically produce efficient programs compared with MPI
reference codes, and with codes generated with state-of-the-art auto-parallelizing
compilers.

Goal 5: Extend the technique to automatically calculate aggregated communica-
tions in applications with periodic domains.

(Observation) Several real-world applications feature data accesses on periodic domains. Thus,
it is increasingly interesting to support these applications on the current parallel
programming frameworks or compilers.

(Proposal and
implementation)

We propose an extension of the previous automatic communication calculation tech-
nique, in order to support input codes with uniform affine data-access expressions
with periodic boundary conditions.

(Results) We evaluate our proposal using several study cases. Our experimental results show
that the use of our approach can automatically obtain efficient codes when they are
compared with pure MPI implementations. Moreover, our approach simplifies the
programming by eliminating the need for developing data communication and data
partition codes.

Goal 6: Propose an abstraction to simplify data redistributions.

i
i

i
i

i
i

i
i

30 | INTRODUCTION

(Observation) One of the distributed-memory optimizations which is most difficult to develop in a
generic form, which is error-prone, but is highly useful at the same time, is the data
redistribution. It changes the ownership or affinity of selected data to processors,
moving the data to their corresponding new locations. Data redistributions allow the
improvement of performance in many applications by creating a balanced workload
among the active processes during the computation evolution. However, there are
many different possibilities and conditions that should be taking into account by the
programmer to derive a data redistribution strategy for a specific application, some of
them related to information only known at run-time.

(Proposal and
implementation)

We propose four operators to redistribute selected data on distributed-memory sys-
tems in an efficient and simple way, making the data partition, relocation, and data
movement transparent to the programmer. They abstract to the programmer imple-
mentation details which are dependent on the execution machine such as the number
of active processes where the data are located before and after the redistribution. The
combination of these four operators enable to express many common application
structures, including parallel patterns found in the C++ STL Library.

(Results) Our experimental results show that our approach does not imply significant overheads
compared with data redistributions directly written using MPI, while highly reducing
the code development effort.

At the end of this second part of the Thesis, we obtain a set of techniques which make
transparent to the programmer many of the issues related to the data partition, and the data
transfers among different nodes, in applications to be executed on systems with disjoint or
distributed-memory spaces.

Continuing Work

We propose as continuing work, the design and development of a simple and adaptable
programming model for distributed-memory heterogeneous systems, using as baseline the
combination of the programming model presented at the end of the first part, and the tech-
niques presented in the second part, to deal automatically with data transfers among the
computational devices found in a heterogeneous machine o cluster. The target execution plat-
form could be a distributed-memory system, where each host will have several computational
units associated (e.g GPUs, XeonPhi, or groups of CPU-cores).

1.3 Document structure

This document is structured in two parts. In the first part, Chapter 2 discusses the related
work of the first part, in Chapter 3 we present the Controller library (Goal 1), its extension

i
i

i
i

i
i

i
i

1.3 DOCUMENT STRUCTURE | 31

to support the Xeon Phi co-processor in Chapter 4 (Goal 2), and finally in Chapter 5 a
heterogeneous programming model for heterogeneous systems (Goal 3).

In the second part, we describe first in Chapter 6 the work related to this part. Chapter 7
analyses the most sophisticated compilation technique related to our research. In Chapter 8
we introduce a runtime technique to automatically calculate aggregated communications for
applications with affine expressions (Goal 4). Chapter 9 redesigns the previous technique
to support periodic boundary conditions (Goal 5). Chapter 10 proposes an abstraction to
simplify data redistributions (Goal 6). Finally, we present the conclusions and the publications
associated to this Thesis.

i
i

i
i

i
i

i
i

32 | INTRODUCTION

i
i

i
i

i
i

i
i

Part I

Simplifying the programming on
accelerator-based heterogeneous

systems

I n this part of the Thesis we tackle the problems related to the difficulty of generating
portable and efficient programs that can be executed on heterogeneous systems, mixing

diverse co-processors or accelerators with multi-core and many-core processors. Issues
related to the coordination of computations launched in several and/or different devices,
transparent memory transfers, and portability of the codes are discussed, and a solution is
proposed and studied.

i
i

i
i

i
i

i
i

34 |

i
i

i
i

i
i

i
i

CHAPTER 2

State of the art on heterogeneous
programming

In this chapter we expose the different solutions proposed in the community to ease the
parallel programming on platforms with accelerators. They cover since completely new
programming tools and compilers, to new programming libraries for specific kinds of ap-
plications, or new programming methodologies combining several programming models.

- 35 -

i
i

i
i

i
i

i
i

36 | STATE OF THE ART ON HETEROGENEOUS PROGRAMMING

2.1 Motivation

In this chapter we discuss the approaches presented in the literature to tackle the difficulty of
programming for heterogeneous systems. There are two main problems when programming
for heterogeneous systems that are compound by several accelerators of different nature.
Thus, we divide the chapter in two sections:

• The first issue came from the different programming methodologies settled for each
different kind of computation architecture. In the first section, we study the proposals
that try to unify the programming methodology, independently of the composition of
the devices of the execution platform, thus easing to the programmer the management
of the different computational devices.

• The second issue refers to the complexity related to the distribution of the compu-
tation on several different devices at the same time. It includes, among others, the
management of the synchronizations, computation distribution, load balancing, or
asynchronous data transfers. In the second section, we study the proposals that not
only abstract the programming of the execution platform, but also manage the compu-
tation distribution, synchronizations, load balancing, or data transfers programming
issues among the different computational devices that compound the execution ma-
chines.

2.2 Proposals for standardizing parallel programming

In this section we analyse different works proposed in the literature that target the simplific-
ation of parallel programming on heterogeneous systems that have different computational
devices, including accelerators. These proposals avoid the need for using a manual combina-
tion of the specific or vendor-provided programming models for each computation device.
They introduce unified programming models or tool abstractions to manage the architectural
differences between computational units of different nature or capabilities.

One of these models, widely known, is OpenCL [127]. It provides the Context abstraction,
defining a memory model in which associated data is shared or moved between the host
and the device memories when needed. Although OpenCL is internally exploiting the
vendor drivers and native programming tools, its abstractions have been proved to prevent
obtaining the same efficiency as when using directly the vendor programming models, for
several common situations [76]. Moreover, the implementations are not easily reachable with
respect to the definition of the management policies of the internal queues, or the possibility
of changing them. Another drawback of this model is the manual management of kernel
compilation at run-time, for different architectures in different contexts, that is desired to be
generalized and simplified.

i
i

i
i

i
i

i
i

2.3 PROPOSALS FOR STANDARDIZING PARALLEL PROGRAMMING | 37

Using current heterogeneous code generators or compilers, the code should be recom-
piled for each different execution platform in order to better exploit the performance cap-
abilities of the system. One example is OpenAcc [139]. It provides a simple and abstract
programming framework for accelerators. However, the code should be recompiled with
their specific compilers for each different execution architecture in order to achieve a good
performance.

The framework presented in [64] allows the development of hybrid MPI+OpenMP
programs, generating parallel code depending on the features extracted for the sequential
functions. However, it does not support conversions for CUDA.

The llCoMP tool [116] is a source-to-source compiler that translates C annotated code to
MPI+OpenMP or CUDA. However, it does not support the joint use of CUDA with the other
parallel models. SkelCL [125] enhances the OpenCL interface to allow the coordination
of different GPUs on the same machine. The works [37, 77] introduce hybrid MPI+CUDA
approaches to coordinate GPUs in the same or different host machines. Apart from their
specific limitations, they do not have an abstract support to easily manage homogeneously
units of different nature, including CPU cores.

There are other approaches that are more domain specific, but include small abstrac-
tions to ease the management between the accelerator and the host (e.g. MCUDA [128] or
hiCUDA [65]). They do not consider guided optimizations, nor allow the programmer to
control the load distribution or the devices coordination. Other approaches with similar
limitations also consider CUDA, MPI, and OpenMP combinations (e.g. [71, 142]).

More general approaches propose complete integrated frameworks, such as OMPICUDA
[84], StarPU [72], or the skeleton programming framework based on it, SkePU [41]. In
general, they hide the coordination details to the programmer, to the point of constraining
the potential optimizations that could be achieved manually. The selection of launching
parameters like the thread-block size is tackled in SkePU, but using a trial-and-error method,
thus leaving no possibility to extrapolate the results to other kernel codes or architectures.
A higher-level approach is to rely on compiler technology to transparently generate code
for different kinds of devices (both for coordination and for kernels) from a single unified
language. For example, C++14 is used in PACXX [62], a transformation system integrated
into the LLVM compiler framework. It transforms explicit parallel constructions that use
the concept of kernel and launching in an abstract an elegant form. On the other hand, some
of the solutions are dependent on features of this language, and they are not easily portable
to other ones. The decisions about launching parameters, such as the thread-block choice,
are still the programmer responsibility alone.

Some specific-domain libraries address the portability problem internally using several
native programming models. For example, MAGMA library [45] provides a unified pro-
gramming environment for heterogeneous systems using both CPUs and accelerators, such
as GPUs or Intel Xeon Phi, for dense linear algebra algorithms, with complete different
implementations for each type of device that cannot be easily used together.

i
i

i
i

i
i

i
i

38 | STATE OF THE ART ON HETEROGENEOUS PROGRAMMING

2.3 Proposals targeting directly heterogeneous systems

In this section we discuss the different approaches that, besides of the unification of the
programming for different execution platforms, they also abstract to the programmer the
coordination of devices of different natures. Thus, they tackle the management of data
sharing or partitioning, computationmapping, load balancing, and communication across the
different computational units that compound the execution platform, including accelerators.

As we describe in the previous section, OpenCL [127] is a widespread programming
framework to deal with heterogeneous devices. However, the coordination of devices of
different natures, and the management of data sharing are tricky, and should be manually
solved and coded by the programmer. Many libraries of higher level of abstraction such
as [43, 57, 69, 79, 137], manage automatically the issues related to the coordination of devices
of different natures. However, as these libraries rely on OpenCL as execution layer, they
typically inherit the OpenCL problems, being difficult to reach the best possible performance
using their solutions (see e.g. [76]).

An interesting example of abstraction built on top of OpenCL is the Maat library [107].
It provides a unified context with an abstract view, regardless of the number and nature of
devices, for GPU and CPU platforms. However, it does not allow the exploitation of features
of the native programming models, or specialized third-party libraries optimized for the
device.

Some of these approaches [17, 107, 136] also automatize the division of the workload
inside a node, containing this node several different computational devices. They use an
adaptive and dynamic distribution of the iterations of a parallel loop. However, they only
support loops with no data dependences.

2.4 Summary

Reviewing the related work, we can affirm that it would be desirable the creation of a new
programming model, that, unlike previous approaches, allows the programming with generic
and portable kernels, and at the same time, the integration of higher levels of optimization
using the native or vendor provided programming models, tools, or libraries, for higher
efficiency and performance. In the Chapter 3, we propose a flexible library, and its extension
to support Xeon Phi coprocessors in Chapter 4, fulfilling the desired features.

Moreover, in the Chapter 5, we design a library built on native programming models,
able to manage in an abstract way to the programmer the issues related to the heterogeneous
platforms such as the coordination of the different devices, the data partitioning, or the
computation distribution and load balancing.

i
i

i
i

i
i

i
i

CHAPTER 3

Controllers: An abstraction
to ease the use of hardware

accelerators

T he purpose of this chapter is to tackle the first goal of the Thesis:

Design and develop a programming model to unify the parallel programming of
CPUs and GPUs.

In order to do that, we introduce the Controller programming model. It is based on an
abstract entity that allows the programmer to easily manage the communications and kernel
launching details on hardware accelerators in a transparent way. This model provides the
possibility of defining and launching CPU kernels in multi-core processors with the same
abstraction and methodology used for accelerators.

Additionally, the model also allows the programmer to simplify the proper selection of
values for several configuration parameters that should be selected when a kernel is launched.

- 39 -

i
i

i
i

i
i

i
i

40 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

3.1 Motivation

Nowadays the use of hardware accelerators, such as the Graphics Processing Units (GPUs)
or XeonPhi coprocessors, is key to solve costly computational problems, that require High
Performance Computing (HPC). However, programming solutions for an efficient deploy-
ment in this kind of devices is a very complex task that relies on the manual management of
memory transfers and configuration parameters. The programmer has to carry out a deep
study of the particular data needed to be computed at each moment in different computing
platforms, also considering architectural details.

When developing solutions to be deployed in heterogeneous systems, programmers
can: (1) Use a single programming model responsible of managing the architectural and
conceptual differences between the different computational devices, e.g. OpenACC [39,
139]; or (2) Use a combination of different programming models specific for each kind of
computational device, e.g. MPI together with CUDA, OpenCL, or OpenMP.

One of the main drawbacks of the first approach is the difficulty to represent in a generic
form non-completely regular programs, with non-trivial communications or synchroniz-
ations. Besides, the final generated code resulting from programming with this kind of
models is not usually as optimized as a manually developed and tuned code. For example,
the current OpenACC compiler implementations do not offer a complete solution to the
problem of automatically choose appropriate values for several kernel-launching parameters
without any programmer guidance, as required by the standard. These parameters include
the thread-block size and its multi-dimensional geometry, or the configuration of the size
of the L1 cache vs. the size of the shared-memory in modern GPUs. On the other hand,
implementing solutions following the second approach requires a deeper knowledge of
the different parallel programming models involved, using different synchronization and
memory access strategies for different devices. Additionally, the programmer is the final
responsible of properly managing the data transfer among the different memory spaces of
the computational devices, at the most appropriate times, together with the choice of proper
values for kernel-launching configuration parameters. However, this manual adjustment
gives to the programmer the possibility to optimize the use of the particular resources of
each specific device. Other approaches that try to create a conceptual bridge between these
two approaches are domain specific, or are based in sophisticated compiler technology for
the generation of kernel coordination codes.

In this chapter we present the Controller library. It unifies the programming for compu-
tational devices of very different natures in the context of a compiler library, using a new
approach based on simple abstractions. It hides the differences of execution models up to
the point of allowing the development of generic kernels portable across devices. But at
the same time, it allows the integration of native or vendor programming models, applying
specific optimization techniques, and avoiding efficiency losses associated with other generic
approaches, solving the limitations discussed in the related work (see Sect. 2.2).

i
i

i
i

i
i

i
i

3.2 CONTROLLER MODEL | 41

3.2 Controller Model

TheController model [99] introduces a simplified way to program applications that can exploit
heterogeneous computational platforms including accelerators or/and multi-core CPUs. The
model has several important features: (1) A mechanism to define common kernels reusable
across different types of devices, or specialized kernels for specific device kinds, including
the possibility to consider a subset of CPU cores as a single independent device; (2) An optim-
ization system to select proper values for kernel-launching configuration parameters (such as
the thread-block geometry), guided by simple qualitative code characterization provided by
the programmer; (3) A transparent mechanism of memory management, including optimized
communications of the data structures between the host and the corresponding images in the
accelerators; (4) An abstraction for indexed data structures that unifies the data management
in kernels for different kinds of devices (such as GPUs, or multi-threaded vector CPU cores).

The Controller model uses the most appropriate programming models (CUDA, OpenMP,
...) to exploit the computational resources of the accelerators and hosts machines. Its ar-
chitecture is represented in Fig. 3.1. The Controller coordinates the execution of series of
kernels. These kernels are declared as functions, that are managed by the Controller entities.
Controllers automatically manage the two main concepts used in a program that exploits
accelerators:

• Kernel management, including the kernel launching and configuration. The Controller
manages the deployment/execution of sequences of kernel functions in the compu-
tational device associated to the Controller. The Controllers can include policies to
exploit concurrent kernel execution techniques, interleave computations with commu-
nications, or reorder the sequence of kernels. The kernel configuration is the selection
of specific configuration parameters for the kernel launching, that can be associated to
a particular kernel and computational platform.

• Datamanagement, including the data transfers carried out across thememory hierarch-
ies of the host and the accelerators, and the abstraction used to access data elements
independently of the target device, the threads indexes space, or the data layout.

The Controller can be used as a layer to abstract the details of device management, thus
generalizing the porting of programs across different type of accelerator devices. Several
automatic code-generation compile-time tools [15, 42, 101] can derive from sequential code
with pragma annotations: (1) The data dependences among the kernel launches; (2) The
needed data transfers between the host and the target devices, and; (3) The domains on which
kernels should be executed. Such tools have been used typically to generate code for only one
kind of accelerator. For example, in [101], the OpenMP 4.0 #pragma offload feature is used to
generate codes to execute on the XeonPhi accelerator. Using the same information extracted
by this technologies, together with the abstractions and generic programming guidelines of
our proposal, it would be possible to generate a generic code valid for any kind of execution
device. This approach will be studied in a future work.

i
i

i
i

i
i

i
i

42 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

Device

Processor

Memory

Execution
policy

Queue

Host

Memory

Internal

execution

Kernel
launch

Kernel

B

C C

A

B

Controller

Code

variables
HitTile

Bound

Internal

Bound

Figure 3.1: Diagram of the Controller model architecture. The kernel-launching requests can
be enqueued. The Controller entity manages the execution of enqueued kernels, and the data
transfers betweenmemory spaces for bounded variables. In the figure, the host variable A is not
bound to the Controller. Variable B is a bound variable, with a duplicated image for the data in
the device memory. Variable C is an internal variable of the Controller, defined in the host, but
allocated only in the device.

3.2.1 Kernel management
Kernel launching is an operation that inserts in the Controller queue an order to execute a
kernel, with given real parameters, when the associated device (accelerator or set of CPU
cores) is available (see Fig. 3.1). This is done using a method of the Controller. The Controller
internals will ensure that the input data have been transferred to the device memory if needed,
and that previous kernels have ended, before doing the real launch. The Controller execution
policy could reorder the kernels in the queue to maximize the execution efficiency as far
as the input/output dependencies across kernels are not violated. The main features and
contributions of our model in the kernel management are described below:

Kernel definition and launching: Support of both generic and specialized codes

The model provides a generic mechanism to declare kernels.
We define a kernel implementation as a tuple: (< name >,< deviceType >,<

parameters_list >,< code >), where deviceType is a symbol, or list of symbols (e.g.
GPU, CPU), indicating the specific kind of device/s where the kernel can be deployed. Thus,
we propose to allow the declaration of several implementations of the same kernel name,
indicating the architecture/s for which this particular kernel is more suitable.

We also propose the possibility of defining kernel implementations for a generic device
type. These kernels will be portable across different types of devices and architectures, and
will be used by default when no specific kernel implementation is provided in the code for a
given target device. As they are simply considered another kernel implementation, with a
different device type symbol, they can be declared in the same program together with other
implementations of the same kernel name. This allows the creation of libraries of kernel

i
i

i
i

i
i

i
i

3.2 CONTROLLER MODEL | 43

implementations, developing first a generic and portable one that will work in any platform,
and introducing gradually more specific and optimized kernel implementations for specific
or new target devices.

The code of the generic kernels implementation, in order to be portable across different
device types, should comply in our model with a set of properties (see also Sect. 3.3.6 for
a discussion about an example of a generic kernel used on both multi-core CPU and GPU
devices). Properties of a generic kernel: (1) The code is pure data-parallel, in the sense
that it can be executed by many logical threads, and the programmer ensures that no data
dependencies or race conditions can arise across them; (2) The code operates on indexed
data structures using abstract 1, 2, or 3-dimensional thread indexes provided by the runtime
system (tx, ty, tz), that are internally adjusted for each device to access data in row-major
order keeping maximum coalescing and/or vectorization properties in the specific device; (3)
The code does not explicitly use resources, primitives, or synchronization mechanisms, that
are specific of the programming model of a given device; (4) All accesses to data structures are
done through an abstract interface provided by the runtime system, that is independent of
the target device chosen (see Sect. 3.2.2 for our proposal to choose such an abstract interface).

A unified kernel launching function, at run-time, matches the architecture of the device
to the best implementation provided at compile time for that architecture. It is possible
to transparently use either generic portable kernels, optimized kernels programmed in the
native models of a specific device, or even wrappers to call specialized libraries for specific
device types. The Controller runtime system can choose the most appropriate one.

Finally, we propose to require in the parameters list of a kernel implementation, that the
programmer reports the input/output role of each kernel parameter. This will be used by the
Controller to detect which data should be transferred among different memory spaces, at
each moment, depending on the sequence of kernels launched.

Characterisation of kernels for execution

Our model considers the characterization of the kernel code to automatically optimize
launching parameters, such as the thread-block geometry. We propose to integrate the
model of qualitative characteristics presented in [105, 131] in our Controller. To use this
model, the programmers should examine the kernel code, and they should conceptually
characterize it in classes according to three main criteria. We introduce an extension of
the kernel implementation tuple with a new element to provide this classification of the
kernel code. The Controller internally uses an associative table to implement the selection of
launching parameters according to the rules proposed on the previously cited papers. More
details about the criteria and examples are presented in Sect. 3.3.4.

3.2.2 Data management
Accelerators may have their own memory spaces, forcing to transfer the input data of the
kernels between the memory of the host platform and the memory of the device accelerator,

i
i

i
i

i
i

i
i

44 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

and the obtained results back. The manual management of these data movements can be
cumbersome and error-prone. Moreover, it is difficult to predict in advance when asyn-
chronous data transfers are possible, or when data should stay in the accelerator device
memory, as this depends on the exact sequence of kernels launching. Our model abstracts
from the programmer all these issues. The main features/contributions of our model on data
management are the following:

Data transfers between the host and the accelerators

In our model, a Controller is associated, in the moment of its creation, with a particular
accelerator or subset of CPU cores, and it transparently manages in the accelerator memory
space the images of the host memory data structures. The Controller can decide when
and how the transfers should be carried out, depending on the data structures used in the
corresponding kernels, and the sequence of kernels enqueued for launching. The programmer
can use the original names of the host variables in the kernel transparently. Depending on
the role of the variables (named data-structures) used as real parameters in kernel launches,
we can distinguish two types: Bounded variables and internal variables.

Bound variables

Bounded variables are host variables that have an image in the memory space of the accelerator
(see Fig. 3.1). The model defines an operation to bind a host variable to the Controller. Once
a variable is bounded, its data should not be modified by the program at the host side until
an unbinding operation is applied.

The first kernel requiring the use of a bounded variable as an input, will force the Con-
troller to transparently ensure that its data have been already transferred before its execution.
Applying an unbinding operation to a bounded variable will force the transfer of its data from
the accelerator to the host, if it has been used as output by any kernel. The main program
waits until the end of the kernels using that variable, and the end of the data transmission to
the host if needed.

Internal variables

Internal variables are variables whose scopes are delimited to the kernels executed in the
accelerator. They are only handled inside the memory space of the device, and they will not
have allocation in the host memory space. Thus, they never imply a data transfer (see Fig. 3.1).
In the particular case of a device representing a subset of CPU cores, the memory should be
transparently allocated and managed in the host device.

The model defines an operation to create an internal variable in the Controller. A data
structure is declared in the host without allocating memory to it. The name of this ghost data
structure is used in the creation operation to clone the type, size, and internal structure in
the Controller memory space and to keep track of the internal device pointer. Since that

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 45

moment, the name can be used as real parameter in kernel launching as a reference of the
internal variable. To destroy an internal variable it is needed to apply another operation
using the reference name of the host ghost variable.

Data accesses

One of the key features that a programming model for heterogeneous systems should provide
is the ability tomanage uniformly the data structures on a program. As previously commented
when discussing generic kernel definitions, the data accesses on the body of the kernel should
be independent of the target device chosen. We propose the use of abstract thread indexes
and data-accessing methods in the kernel codes. They are devised in order to design the
codes to work efficiently when accessing elements in row-major order, independently of
the device. We propose the use of the data-handler abstraction for arrays introduced by
Hitmap [55], a library for hierarchically distributed arrays. Efficient implementations have
been provided for different devices, such as CPUs, or GPUs. See more details about the
Hitmap functionalities used in the implementation of our model in Sect. 3.3.1.

3.3 The Controllers library

We have developed an implementation of the Controllers model. It is designed as a library
written in C99 code. Thus, it can be used to develop C/C++ programs, independently of the
chosen compiler. The library defines functions, but also relies on preprocessor macros for
code rewriting. Although this allows an efficient interface implementation in a compiler
agnostic way, the programmer should take care to use the interface in the expected way to
avoid problems derived from some common pitfalls of macro substitutions (unexpected type
checking issues, misnesting due to incorrect code injection in the macro parameters, etc.).

The current implementation supports NVIDIA's GPU devices using CUDA internally,
and subsets of CPU codes using OpenMP internally. In our implementation, a kernel is a
function coded for any, or for a specific computational device, with particular input/output
parameters. The Controllers library interface defines primitives to: Create Controllers;
Declare and characterize kernels; Manage host data structures that can be bounded or
created as internal variables in the Controllers and transparently accessed inside the kernels;
and Launch the kernels.

3.3.1 Data structures and Hitmap
Regarding the data structures that the model handles, we have decided to integrate our
implementation with Hitmap [55], an efficient library for hierarchical tiling and mapping of
arrays. It is based on an SPMD model, and on the message-passing paradigm. Hitmap has
three main functionality modules: (a) Domain and tile management; (b) Mapping modules;

i
i

i
i

i
i

i
i

46 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

and (c) Communication patterns. Hitmap defines objects to declare and manipulate index sets
as multidimensional parallelotopes with optional stride, or as sparse sets. Hitmap defines a
plug-in system to include newmapping modules: Virtual topology constructors and mapping
functions named HitLayouts. The modules generate objects that can be queried at runtime
to obtain information about the result of the mapping for the local, or any remote process.
Finally, it contains functionalities to build reusable communication patterns for tiles, or
subtiles, across virtual processes. These functions internally use the MPI standard, exploiting
efficient techniques like derived data types, and asynchronous communications.

Hitmap defines the HitTile structure, an abstract entity for n-dimensional arrays and tiles.
A HitTile structure is a handler to store array meta-data, along with the pointer to the actual
memory space of the data. The circles for the variables A, B, and C in Fig. 3.1 represent the
handlers. TheHitTile structure should be specialized for each array base type at the beginning
of the program.

There are only four functions of Hitmap needed to work with the Controllers implement-
ation. First, hit_tileDomain and hit_tileDomainAlloc are used to declare the index domains
of a tile array, also allocating the memory for the data in the second case. The function
hit_tileFree is used to free the data memory and clean the handler. The function hit_tileElem
is used in host or kernels code to access the elements of a tile. It receives a tile name, a
number of dimensions, and the indexes values of the desired element. This function provides
an homogeneous interface to manage data structures in both, host and accelerator device
kernels. The data are stored and accessed in row major order in all cases.

Hitmap library includes many other functionalities. They include management of hier-
archical subselections of parts of the tiles, and transparent management of distributed-arrays,
with abstract partition and communication functionalities that internally use a message-
passing paradigm (exploiting MPI). This will allow in the future the transparent integration
of the Controllers in distributed multi-node clusters.

Most of the meta-data in the HitTile structure are only needed for advanced function-
alities, such as distributed-array partitions and communications in the host code. In our
new implementation we define a new much smaller handler (HitKTile) with the minimum
information needed for data accesses to multidimensional arrays through a data pointer. The
kernel launching interface will transparently transform the handlers to this new type, substi-
tuting the data pointer with its equivalent in the device memory space. The data accesses
inside the kernels uses this internal pointer along with a minimum number of arithmetic
operations, exposing the expressions to the native compiler to open the possibility of further
optimizations. The result obtains as good performance as the classical array accesses.

In Hitmap, the implementation of different kinds of tiles hides to the programmer the
details of the data access for different internal data layouts. The Hitmap library already
integrates sparse domains and sparse data structures into the HitTile abstraction [49]. The
future transformation of these handler structures, to implement efficient and portable kernels,
should follow a similar approach as the one used for dense arrays.

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 47

3.3.2 Controllers and variables management

Initialization and destruction

A Controller is associated to a particular computational platform (accelerator or CPU-cores
set) at the moment of its creation. This is done through the CtrlCreate function (see line 13
of Fig. 3.3). This primitive has two main parameters: The name of the Controller variable,
and the identification of the associated computing device. The programmer can free the
resources with the CtrlDestroy function (see line 31 of Fig. 3.3).

The Controllers associated to CPU cores internally use OpenMP. To allow the launching
of CPU kernels asynchronously, as in the case of GPUs, our implementation uses OpenMP
tasks. A master thread executes the host code, and one OpenMP task is activated for each
core associated to a CPU Controller. The Controller initializes on its creation an internal
array of structures with one element per assigned core task, to control their activities and
their synchronization.

Binding variables

The function CtrlAttach binds a tile defined in the code of the host with a Controller. The
function CtrlDetach unbinds it (see lines 17 and 29 of Fig. 3.3 respectively). If the memory
space of the device is not the same as the host, the attach operation allocates memory for the
data in the device space. After the binding, the host should not manipulate the tile data until
it is unbounded. During the time the variable is bounded, operations to copy the data to and
from the associated device can happen at any time, as an internal decision of the Controller.
For the particular case of Controllers associated to CPU cores, there is no data duplication.
The kernels may be modifying the host variable data at any time directly.

In the current implementation we have integrated part of the variables management in
the Hitmap tile handlers. The handler stores the pointer to the device memory, a reference
to the Controller it is bounded to, and flags to indicate the clean/dirty state of the data. This
avoids the duplication of bindings, attempts to unbind variables from the wrong Controller,
etc. The flags help the Controller to choose the proper moments to synchronize the data
between the host and the device memory image.

Creating internal variables

The function CtrlInternalCreate creates an internal variable on the device memory
space. On the other hand, the function CtrlInternalDestroy is used to free the memory
space in the assigned computational device (see lines 18 and 30 of Fig. 3.3 respectively). For
the case of Controllers associated to accelerators, this kind of variables does not need to have
allocated memory in the host side. A tile initialized with a domain information is enough.
Even if it would have allocated memory, there is no synchronization of data between the
host and the device image created by this functionality.

i
i

i
i

i
i

i
i

48 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

1 /* HitTile specialization
2 * Creates new type HitTile_float */
3 hit_tileNewType(float);
4

5 /* Kernel characterizations */
6 KERNEL_CHAR(copyCell,1,def,def,def)
7 KERNEL_CHAR(updateCell,1,full,low,high)
8

9 /* Generic kernel codes for any device */
10 KERNEL(copyCell, 2, OUT, HitTile_float, dst, IN, HitTile_float, src){
11 int x = thread.x; int y = thread.y;
12 hit_tileElem(dst, 2, x, y) = hit_tileElem(src, 2, x, y);
13 }
14

15 KERNEL(updateCell, 2, OUT, HitTile_float, dst, IN, HitTile_float, src){
16 int row = thread.x + 1;
17 int col = thread.y + 1;
18 hit_tileElem(dst, 2, row, col) =
19 (hit_tileElem(src, 2, row+1, col) + hit_tileElem(src, 2, row-1, col)
20 + hit_tileElem(src, 2, row, col+1) + hit_tileElem(src, 2, row, col-1)
21) / 4;
22 }

Figure 3.2: Examples of the kernel characterization and definition for a stencil program imple-
menting an iterative Jacobi PDE solver for the Poisson's heat diffusion equation. The kernels
are usable for both CPU and GPU Controllers.

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 49

1 /* Tile declaration and allocation (host) */
2 HitTile_float M, Mcopy;
3 hit_tileDomainAlloc(&M, float, 2, rows, columns);
4 hit_tileDomain(&Mcopy, float, 2, rows, columns);
5

6 /* Tile initialization */
7 for (int i=0; i<rows; i++)
8 for (int j=0; j<rows; j++)
9 hit_tileElem(M, 2, i, j) = ...
10

11 /* Controller creation */
12 Controller ctrlGPU, ctrlCPU;
13 CtrlCreate(&ctrlGPU, COMM_GPU, 2);
14 CtrlCreate(&ctrlCPU, COMM_CPU, 4, 7);
15

16 /* Tile binding and creation (device) */
17 CtrlAttach(&ctrlGPU, &M);
18 CtrlInternalCreate(&ctrlGPU, &Mcopy);
19

20 /* Kernel launching */
21 CtrlThreads domain1 = CtrlThreads(2, rows, columns);
22 CtrlThreads domain2 = CtrlThreads(2, rows-2, columns-2);
23 for (iter=0; iter< num_iterations; iter++) {
24 CtrlLaunch(&ctrlGPU, copyCell, domain1, 2, Mcopy, M);
25 CtrlLaunch(&ctrlGPU, updateCell, domain2, 2, M, Mcopy);
26 }
27

28 /* Unbinding and freeing resources */
29 CtrlDetach(&ctrlGPU, &M);
30 CtrlInternalDestroy(&ctrlGPU,&Mcopy);
31 CtrlDestroy(&ctrlGPU); CtrlDestroy(&ctrlCPU);
32 hit_tileFree(&M); hit_tileFree(MCopy);

Figure 3.3: Example of the main code, for a stencil program implementing an iterative Jacobi
PDE solver for the Poisson's heat diffusion equation. The kernels are usable for both CPU and
GPU Controllers.

i
i

i
i

i
i

i
i

50 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

3.3.3 Declaration and configuration of kernels

A kernel is declared by using the primitive KERNEL_<type> (see line 10 of Fig. 3.2). Where
typemay be empty to indicate a generic kernel, usable on any kind of device, or a specific
value for a specialized code for a given type of device. This is useful when different optimiza-
tions on the kernel code are required for different devices. Currently, the library supports
the specific primitives KERNEL_GPU for CUDA code targeting NVIDIA's GPUs, KERNEL_CPU
for host machine code targeting sets of CPU cores, and KERNEL_GPU_WRAPPER for host
machine code which includes calls to specialized GPU libraries, like for example cuBLAS
routines. The Controller ensures that both kinds of GPU kernels are executed with exclusive
control of the associated device. This allows the automatic coordination of the launching of
sequences of classical kernels and calls to GPU libraries in the same device with our model.

The kernel-definition primitives declare in brackets the number of parameters of the
kernel, with a tuple of information for each parameter (see again line 10 of Fig. 3.2). The
parameter information includes its type, name, and input/output role:

• IN: for input HitTile parameters, whose elements are only read.

• OUT: for output HitTile parameters, whose elements are only written.

• IO: for input and output HitTile parameters, with elements can be both read and
written.

• INVAL: for input parameters of any type passed by value.

For the case of accelerator devices, with separated memory spaces, this configuration
allows the Controllers to determine if it is necessary to carry out data transfers with the main
memory of the host when kernels are launched. The primitive is followed by a structured
block with the kernel code. Thus, it resembles a C function header.

The Controller CPU implementation contains the loops to execute the kernel code for
each element of the threads index space, that is internally assigned to a specific OpenMP
thread. Both CPU and GPU kernels code use a predefined thread structure with three integer
elements x,y,z indicating the 3-dimensional indexes of the corresponding fine-grain thread.
In order to ease the kernel reuse across different device kinds, these indexes are adapted to
have the same row-major meaning in both types of kernels. Also, the space of valid indexes
that can be defined in the kernel launching is independent of the thread-block sizes in GPUs.
Actual threads with identifiers outside the chosen launching index space, that could be added
as padding to fill thread-blocks, will be clipped transparently by the Controller launching
system. For specialized GPU kernels, the kernel code may use CUDA primitives mixed with
the Hitmap data accesses that use the new portable index system.

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 51

3.3.4 Kernel characterization
The kernel characterization is a programmer hint to help the system to automatically de-
termine proper kernel launching parameters in terms of special code features and platform
architecture information. The CPU threads granularity in our prototype is determined by a
simple regular blocking policy, that does not require a specific kernel characterization.

For GPU kernels, our current prototype library integrates the model presented in [104,
105, 131]. This model allows to determine configuration parameters (grid, thread-block and
L1 cache memory sizes), for NVIDIA's GPUs. The primitive KERNEL_CHAR, taken from [106],
is used to provide to the Controller the characterization of the kernels (see line 6 or 7 of
Fig. 3.2). The primitive receives the kernel name, the number of dimensions of the thread
space (1, 2, or 3), and descriptive values for the characterization model. These values are a
qualitative description of characteristics of the kernel code provided by the programmer.
They are related to: (a) The coalescing property of the global memory access patterns (full,
medium, scatter); (b) The ratio of arithmetic/logic operations per global memory access
(high, medium, low); and (c) The ratio of data sharing accesses in a block per global memory
access (high, medium, low). For the default case, when the programmer cannot provide a
proper characterization for all the parameters, a def keyword can be used instead of one
of the given values, and the model provides typical thread-block values for each CUDA
architecture, that work well in a general case, maximizing occupancy if possible, etc. For a
more detailed description of this qualitative descriptors with tentative quantitative ranges,
see the works [105, 106, 131].

Our implementation extends this characterization with the possibility to specify a fixed
size for the thread-block. This is useful for kernels that rely on specific block sizes or
geometries to manipulate shared memory (for example the matrix multiplication code in the
CUDA Toolkit Samples).

3.3.5 Kernel launching
The function CtrlLaunch is used to launch a kernel, with given real parameters, to the
computational device associated to a Controller (see line 24 or 25 of Fig. 3.3). The launched
kernel will be enqueued, and eventually executed with the corresponding configuration
derived from the information provided by the characterization primitives. Currently, the
prototype only supports a First-Coming-First-Service policy for kernels execution. The
launching function has the following parameters: (a) The Controller; (b) The name of the
kernel; (c) The index space of the thread set; (d) The number of parameters required by the
kernel; and (e) The real parameters for the kernel execution.

The dimensions of the threads index space are specified using a CtrlThreads structure
that stores up to three integer values representing the cardinality on each dimension. It is
equivalent to the dim3 type in CUDA, but it is used for both, GPU or CPU kernels independ-
ently. The variable parameters should be tile variables associated to the Controller, internal
or bounded, or any value of the proper type for the INVAL parameters.

i
i

i
i

i
i

i
i

52 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

1 /* CUDA kernel launch */
2 /* Parameters:
3 name: Kernel name
4 threads: CtrlThreads, index space limits
5 arch: GPU architecture
6 params: real parameters of the launch
7 kchar: characterization of the kernel
8 */
9 dim3 block = CALBlockModel(name,kchar,arch);

10 dim3 grid = CALGridDivUp(threads,block);
11 wrapper_gpu_##name<<<grid, block>>> (threads, params);
12 ...
13 __global__ void wrapper_gpu_##name(...) {
14 CALThread threadId = { threads.dims,
15 threadIdx.y + blockDim.y * blockIdx.y,
16 threadIdx.x + blockDim.x * blockIdx.x,
17 threadIdx.z + blockDim.z * blockIdx.z };
18

19 if (threadId.x >= threads.x || threadId.y >= threads.y ||
20 threadId.z >= threads.z) return;
21

22 kernel_gpu_##name(threadId, params);
23 }

Figure 3.4: Excerpt of the Controller library code generated for kernel deployment/launching
on a CUDA capable GPU device. The block geometry is selected using the kernel characterization
provided by the programmer. We also show the part of the wrapper function launched, that
reverses the thread indexes before calling the actual kernel code.

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 53

1 /* OpenMP index space partition and kernel launch */
2 /* Parameters:
3 name: Kernel name
4 n_th: OpenMP thread identifier
5 numCores: number of CPU-cores associated to the current controller
6 threads: CtrlThreads structure with limits of the threads index space
7 params: real parameters of the kernel launch
8 */
9 int stripSize =(int) ceil(threads->x/(numCores));
10 int begin= n_th*(stripSize);
11 int end= MIN(first + (stripSize) - 1,(threads->x)-1);
12 for(i=begin; i<=end; i++)
13 for(j=0; j<threads->y; j++){
14 threadId.x = i;
15 threadId.y = j;
16 threadId.z = 0;
17 kernel_cpu_##name(threadId, params);
18 }

Figure 3.5: Excerpts of the Controller library code generated for kernel deployment/launch-
ing on a group of CPU-cores. Each OpenMP thread (assigned to a core) executes this code.
For simplicity, in this example, the 2-dimensional index space is divided into blocks by rows
without balancing the remaining. The code executes the loops that call the kernel code for each
index-element mapped to the thread. It simulates the many-thread approach used for GPU
programming using coarser-grain OpenMP tasks.

i
i

i
i

i
i

i
i

54 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

Internally, the execution of a GPU kernel implies: (1) The creation of the small HitKTile
handlers using the original tile handlers information; (2) The use of the characterization
model to select the grid and thread-block geometries; and (3) The execution of a wrapper
function. This wrapper reorders the thread indexes to be used as in the CPU kernels code to
access data elements in row-major order, and ensures that threads outside of the required
index space return immediately before executing the kernel code (see an excerpt of this code
on the Fig. 3.4). For CPUs, the kernel execution internally implies the partition of the index
space in coarse blocks. Figure 3.5 shows an example of a simplified code that performs this
partition. The kernel launching (line 17) calls to an inlined function that is generated when
this kernel implementation for CPU-cores is declared. A final global synchronization is
needed to preserve the launching semantic before proceeding to launch another kernel.

3.3.6 Programming example

In this section we present a practical application of the library concepts described in the
previous section by using an example. Figure 3.2 and 3.3 shows the implementation of a
Stencil 2-D application. On Fig. 3.2, first, we declare at the beginning of the program the
specialized Hitmap array types to be used in the program (see line 3 in Fig. 3.2).

Kernel characterization: Two kernels are characterized at lines 6 and 7 of Fig. 3.2.
The first kernel characterization uses the default configuration, while the second one looks
for a particular configuration for the updateCell kernel. This last characterization is based
on the code properties. According to the classifications presented in [105, 131], the global
accesses of the program suggest an almost fully coalesced memory access pattern. The ratio
of arithmetic operations per data element is low because less arithmetic operations are done
compared to read/write operations. The ratio of data shared between threads of the same
block is high, because most of the neighbor values are reused across their computations.

Kernel definition: The kernel definitions start in lines 10 and 15. The kernel definitions
include the name of the kernel, the number of parameters, a specification for each parameter
of its input/output mode and type, and the parameter name. Both are generic kernel codes
valid for any kind of device as the KERNEL primitive points out. The code in the kernel
bodies is executed in parallel on the device by as many threads as we choose in the main
program. Another kernel definition example can be seen on Fig. 3.6 (right). In this case, it is
a specific kernel code for GPUs that calls a function of a specialized library for NVIDIA's
GPUs.

Data management: All the accesses to the variables in the kernel bodies (either reads or
writes) must be done through the Hitmap functions. For example, line 12 of Fig. 3.2 shows
the copy of an element of the matrix src on the matrix dst. It uses the hit_tileElem function
to access the data element corresponding to the indexes assigned to the logical thread that
executes the kernel. We can see another example on lines 18 to 21 of Fig. 3.2. The dst matrix
element corresponding to the thread indexes is updated using the values of the neighbor cells
in the matrix src.

i
i

i
i

i
i

i
i

3.3 THE CONTROLLERS LIBRARY | 55

1 /* Recurrence equation kernel */
2 KERNEL_CHAR(kRecurrence, 2,
3 full, high, low)
4

5 /* Black Scholes kernel */
6 KERNEL_CHAR(kBlackScholes, 1,
7 full, medium, low)
8

9 /* Stencil Jacobi kernels */
10 KERNEL_CHAR(kCopy, 2,
11 full, low, low)
12 KERNEL_CHAR(kUpdate, 2,
13 medium, medium, medium)
14

15 /* GPU matrix mult. kernel */
16 KERNEL_CHAR(kMatrixMult, 2,
17 fixed-square-32)

1 /* Kernel wrapper for cuBLAS
2 * matrix mult. */
3 KERNEL_GPU_WRAPPER(HitTile_float A,
4 HitTile_float B,
5 HitTile_float C){
6 const float alpha = 1.0f;
7 const float beta = 0.0f;
8 cublasHandle_t handle;
9

10 cublasSgemm(handle,
11 CUBLAS_OP_N, CUBLAS_OP_N,
12 B.dimx, A.dimx, A.dimy, &alpha,
13 hit_ktileRawData(B), B.dimx,
14 hit_ktileRawData(A), A.dimx,
15 &beta, hit_ktileRawData(C),
16 B.dimx);
17 }

Figure 3.6: Characterization of the generic or GPU specialized kernels for the case studies (left).
Example of kernel wrapper to execute a specialized GPU library function (right).

We show on Fig. 3.3 the code of the main function that coordinates the application
execution.

Data structures: Data structures are created and initialized in the first part of the
main program (see lines 1 to 9 in Fig. 3.3). The matrix M is allocated on the host, where
it is initialized. Thus, we use the hit_tileDomainAlloc function to create the data structure.
However, the Mcopy matrix is an internal variable, and does not need to have allocation in
the host memory space. Only a virtual representation is created, without assigning actual
memory, by using the hit_tileDomain function.

Controller entity: Lines 13 and 14 of Fig. 3.3 show examples of the Controller creation.
One associated to the third GPU of the system, and another one associated to the subset
of CPU cores with indexes in the range 4 to 7. Once the Controller is created, host data
structures are binded to the target devices, and internal data structures are created in the
target devices through the Controller (see lines 17 and 18 of Fig. 3.3).

Kernel launching: With the data structures already associated to the target device, we
can launch the kernels. The kernel would be executed by as many threads as a CtrlThread
object specifies. We see in lines 21 and 22 how two CtrlThread objects are created. The first
one includes the domain of the whole data structure, and the second one the whole data
structure without the borders. After that, in lines 24 and 25 the two kernels are launched
using their different thread-index domains, by using the different CtrlThread objects. After
the desired number of iterations of the kernels, the control of the result data structure is

i
i

i
i

i
i

i
i

56 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

transferred again to the host by unbinding it, and the Controllers are destroyed (see lines 29
to 31). The CPU Controller is not used in this example code.

To summarize, we observe that the final program presents an organized sequence of
programming phases, that leads to a clear structure. Easy generic guidelines to program with
this library can be deduced from this simple example.

3.4 Experimental study

This section describes the experiments we have carried out to check the functionality, and
to evaluate the potential performance issues, introduced in the Controller prototype imple-
mentation. We also evaluate the development effort of using the Controllers prototype when
compared to directly using common native programming models (CUDA or OpenMP).

3.4.1 Case studies

As case studies we have selected the following programs. All of them work with floating point
numbers. From the CUDA Toolkit Samples, we have selected the Black-Scholes program, and
two Matrix Multiplication examples, one using GPU shared-memory, and another directly
calling the optimized CUBlas routine. We also use the stencil program that is shown in
Fig. 3.3. Finally, we have selected a code to independently apply a trivial recurrence equation
to elements in a matrix. A quick description and the motivation to choose these examples
follows. The characterizations of the kernels using the proposed model, are shown in the left
of Fig. 3.6. The parameters where chosen following the guidance presented in [105, 131].

Recurrence equation

This code uses two input matrices A,B, and writes a result matrix C that is originally
initialized with zeros. The kernel computes the first 500 terms of a trivial recurrence equation
that involves only two single addition operations: Cx(i, j) = Cx−1(i, j)+A(i, j)+B(i, j),
providing as a result the last term computed for each position. There is only one kernel
launching for the whole program. It is an embarrassing parallel code, where each element is
computed independently. The code involves a high number of independent and repetitive
coalesced reads and writes to global memory on each thread. This artificial code is specifically
designed to test the efficiency of the data accesses through the new small tile handlers and
the generic data-access interface inside the kernel codes. A common kernel is used for both
CPU and GPU Controllers.

i
i

i
i

i
i

i
i

3.4 EXPERIMENTAL STUDY | 57

Black-Scholes

The Black-Scholes formula is based on a mathematical model of a financial market. The
result estimates the price of European-style options. The program in the CUDA Toolkit
Sample independently applies the formula to a chosen number of input values stored in
an array, calculating and storing their results. Thus, it is also an embarrassing parallel
program with perfectly coalesced accesses on a GPU. Each thread does only one read and
one write operation to global memory. It applies several floating point operations calculating
intermediate result stored in registers or temporal variables. The kernel is called 512 times
consecutively. This program is adequate to measure the cost of multiple kernel calls of more
sophisticated arithmetic computation, with a very low number of global memory accesses
per thread. A common kernel is used for both CPU and GPU Controllers.

Stencil computation

This program computes the stability point of a Partial Differential Equation (PDE), in this case
the Poisson's equation for heat diffusion. It uses a Jacobi iterative method on a 2-dimensional
discretized space, represented as a matrix. The program implementation is shown in Fig. 3.3.
It is an 4-point stencil program that executes a fixed number of time iterations. On each itera-
tion it independently computes a new value for each cell in the matrix, using the information
of the four neighbor cells.

This kernel presents a similar number of arithmetic operations per thread as global
memory accesses. The read operations are not completely coalesced due to the neighbor
accesses, and the positions read by each thread are overlapped with the neighbor threads. A
neighbor synchronization is needed at the end of each iteration, before a new simulation step
starts. This kernel measures the effects of non-completely coalesced global memory accesses.

These stencil simulation programs are usually optimized to swap the two data structures
(the one read, and the one write) after each iteration. We have intentionally skipped this
optimization, implementing another kernel that simply copies the new generated data from
the written variable to the original one. It shows the ability of the characterization model
to provide different launching parameters for different kernels in the same program. The
program is based on a repetitive invocation of two kernels with very low load per thread.
Thus, it tests the efficiency of the implementation of the kernel launching procedures. Again,
the same kernel is defined for both CPU and GPU platforms.

Matrix multiplication

TheMatrix multiplication computes the product of two different square matrices, storing
the result in a third one: C = A ∗B. The computation of each cell of the resulting matrix is
not dependent on another computation. Nevertheless, different cells use elements of A or B
that are also read by other cell computations. Thus, data can be reused and shared across the
computation of each cell. Moreover the read patterns on A and B matrices should be studied

i
i

i
i

i
i

i
i

58 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

to exploit coalescence in GPUs, and properly exploit caches in CPUs. These lead to different
interesting optimizations in both GPU and CPU devices. Thus, we use different specialized
kernels for each kind of device.

A direct simple solution to this problem involves one generic kernel, using a bidimen-
sional grid of threads, for both CPU and GPU. Each thread ti,j is responsible of computing
the dot product operation (

∑n−1
k=0 A[i][k] ∗B[k][j]), storing the result in the (i, j) position

of the C matrix. Nevertheless, the GPU implementation in the CUDA Toolkit Samples
exploits the shared-memory for better performance. The threads on each thread-block can
use shared-memory to collectively load a square block of A and B matrices in a coalesced way.
Then, they can efficiently perform a block matrix multiplication using the elements on the
shared-memory. Several iterative stages should be applied to compute all the matrix block
multiplications needed at each block of threads. Threads need to use block synchronizations
on the global memory read operations, using specific CUDA code. This code, due to the
way it uses the shared memory and it aligns the read operations, forces the use of a specific
square thread-block size (32 × 32). It is an example of the utility of the extension to the
characterization model introduced in our implementation.

For the GPU Controllers we have a second implementation. It shows the functionality
of our kernel-wrapper facility, that allows to implement and launch as a kernel a call to the
optimized cuBLAS routine for matrix multiplication (see the right of Fig. 3.6). The wrapper
kernels do not need characterization, as they contain only host code, and the library routines
include the code that take the decisions about launching parameters.

The current CPU kernel version is the generic simple implementation of the dot product
of a row ofA and a column ofB to compute the result for a single output element. Further
optimizations based on loop reordering and tiling for better cache usage can be automatically
be applied by the native C compiler.

3.4.2 Development effort and code complexity

The first part of our experimental study evaluates how the use of our proposed model affects
the development effort when compared with using the native programming models for the
two types of devices considered in the current version of the prototype: CUDA for GPUs,
and OpenMP for multi-core CPUs.

We measure three classical development effort and code complexity metrics: COCOMO
lines of code, number of tokens, and McCabe's cyclomatic complexity. The first two ones
measure the volume of code that the programmer should develop. The third one measures the
rational effort needed to program it in terms of code divergences and potential casuistry that
should be considered to develop, test, and debug. The metrics are applied to the part of the
code that includes the kernel, the functions invoked by them, and the host coordination code.
We ignore input data initialization, error or results checking, performance instrumentation,
and writing messages to the standard output. Thus, the considered host code includes
the declaration, creation and initialization of Controller, data containers, and structures

i
i

i
i

i
i

i
i

3.4 EXPERIMENTAL STUDY | 59

Case study Version Lines of Code #Tokens Cyclomatic Complexity

CUDA 44 404 5
Recurrence Ctrl.GPU 33 315 3
equation OpenMP 27 243 4

Ctrl.CPU 36 339 3
CUDA 148 903 8

Black Ctrl.GPU 106 704 7
Scholes OpenMP 81 539 7

Ctrl.CPU 90 707 6
CUDA 43 445 8

Jacobi Ctrl.GPU 40 371 4
solver OpenMP 33 310 6

Ctrl.CPU 47 456 5
CUDA 71 614 5

Matrix Ctrl.GPU 47 429 4
mult. OpenMP 22 235 4

Ctrl.CPU 40 389 4

Table 3.1: Measurements of the development effort metrics for the codes of the case studies.

for parallelism coordination, the memory transfer between host and devices in the native
implementations, and the kernel launching operations in both cases.

Table 3.1 shows the measurements for these metrics in the baseline versions, using
OpenMP for the CPU variant and CUDA for the GPU variant, and the versions using our
Controllers library interface. The results indicate that programming with Controllers for
GPUs generates a significantly lower volume of code, and a reduced cyclomatic complexity,
indicating a clearly lower development effort than using CUDA. A closer look at the codes
indicates that most of the reduction is found in the host part of the codes, as expected. On the
other hand, for this kind of data parallel codes, the comparisons with OpenMP codes show
that using the Controllers interface reduces a little the cyclomatic complexity, but increases
the code volume.

Themain advantage of considering the CPU cores as an accelerator device in the Control-
ler model is found in the portability of code between GPUs and CPUs. Table 3.2 shows the
percentage of words that can be reused, should be deleted, or should be changed to port from
a CUDA program to the equivalent OpenMP version; and the same measurements when
porting from a Controller version for GPUs to the equivalent Controller version for CPUs.
The results clearly indicate that the portability of the Controller versions across different
device types is really high in the three first cases, and still significant for the matrix multi-
plication program, that includes different specialized kernels. In this case the coordination

i
i

i
i

i
i

i
i

60 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

Case study CUDA → OpenMP Ctrl.GPUs → Ctrl.CPUs

Common 14% Common 95%
Recurrence equation Delete 29% Delete 4%

Change 57% Change 1%
Common 56% Common 72%

Black-Scholes Delete 32% Delete 17%
Change 11% Change 11%
Common 13% Common 91%

Jacobi solver Delete 42% Delete 0%
Change 44% Change 9%
Common 8% Common 49%

Matrix multiplication Delete 4% Delete 3%
Change 88% Change 48%

Table 3.2: Comparison in terms of the percentage of words that are common and can be reused,
should be deleted, or should be changed, when porting codes between GPU and CPU versions
using the native models, or the Controllers model.

code using Controllers is still the same, deriving in a significantly lesser number of words to
change than when porting between CUDA and OpenMP.

3.4.3 Performance study

The second part of our experimental study measures the impact of using our Controllers
prototype in terms of performance. We have run the GPU implementations in an NVIDIA's
GeForce Titan Black X, with CUDA capability 5.2, installed on a host machine named Hydra,
with two CPUs Intel Xeon E5-2609 v3 @1.90GHz, and 64Gb DDR3 main memory. To test
the CPU implementation we have used a shared-memory machine with a higher number of
cores. It is namedHeracles, and it is a Dell PowerEdge R815 server, with 2 AMDOpteron 6376
processors at 2.3 GHz, with 16 cores per processor, and a total of 32 cores. The operating
system in both machines is a Linux Centos 7 OS. The programs have been compiled using
the CUDA Toolkit 7.5, and GCC 4.8.3. We have used the flags -arch=compute_52, -O3, and
the -mtune choice appropriate for each host machine.

We present comparisons of the execution times skipping input data initialization, results
checking, and controlmessages writing. The instrumented code includes Controllers creation
and variables binding/unbinding operations (which may imply data transfers). In the same
way, CUDA data copies between the host and the device memories are also included. In
the case of GPU programs we also measure the execution time accumulated by the kernels
launching alone, without memory transfer operations. Due to instabilities on the execution

i
i

i
i

i
i

i
i

3.4 EXPERIMENTAL STUDY | 61

Case study Recurrence Black-Scholes Jacobi Matrix Mult.

Number of iterations 500 512 200 -
CPU Data size 15 000 × 15 000 1 000 000 10 000 × 10 000 3 000 × 3 000
GPU Data Size S 10 000 × 10 000 1 000 000 1 000 × 1 000 3 008 × 3 008

M 15 000 × 15 000 10 000 000 5 000 × 5 000 5 024 × 5 024
L 20 000 × 20 000 50 000 000 10 000 × 10 000 10 016 × 10 016
XL 25 000 × 25 000 100 000 000 20 000 × 20 000 15 008 × 15 008

Table 3.3: Input data sizes and number of iterations selected for each case study in the perform-
ance experimental study.

Recurrence BlackScholes Jacobi Matrix Mult.

Size Measure CUDA Ctrl.GPU CUDA Ctrl.GPU CUDA Ctrl.GPU CUDA Ctrl.GPU
Host 0.2580 0.2559 0.0084 0.0047 0.0033 0.0023 0.0357 0.0274

S Kernels 0.5592 0.5723 0.0409 0.0454 0.0151 0.0167 0.0663 0.0666
Total 0.8172 0.8283 0.0493 0.0500 0.0184 0.0191 0.1020 0.0941
Host 0.5720 0.5721 0.0617 0.0654 0.0672 0.0676 0.0495 0.0416

M Kernels 1.2753 1.2752 0.3862 0.3951 0.3203 0.3285 0.2878 0.2983
Total 1.8473 1.8469 0.4479 0.4604 0.3875 0.3960 0.3373 0.3399
Host 1.0249 1.0236 0.2955 0.2899 0.1167 0.1168 0.4977 0.4944

L Kernels 2.2502 2.2502 1.9166 1.9221 1.2277 1.2306 2.1012 2.0925
Total 3.2750 3.2739 2.2121 2.2120 1.3444 1.3474 2.5989 2.5869
Host 1.5909 1.5864 0.5954 0.5695 1.1901 1.1915 0.4191 0.5748

XL Kernels 3.4668 3.4669 3.8311 3.8652 4.8493 4.8574 7.0198 7.0203
Total 5.0577 5.0529 4.4265 4.4346 6.0394 6.0490 7.4389 7.5441

Table 3.4: Execution time (seconds) for the case studies versions using CUDA, or Controllers for
GPUs, with different input sizes. Host timemeasures the data communications, coordination
code, and launching operations. Kernels timemeasures the actual kernel execution times. Total
times are the addition of both times for easy comparison.

times of the host codes and data transfers, the results always show the mean of the execution
time obtained on 5 repetitions of each test.

For the CPU versions we have selected input sizes with enough load to achieve scalability
in our test machine with up to 32 threads. The exact input size parameters chosen are
presented in the first row of Table 3.3. The total execution times of the baseline programs
and the versions based on Controllers are presented in Fig. 3.7, for different number of active
threads/cores. The results indicate that our implementation of the Controller abstraction for
CPUs does not implies significant overheads for the scalability ranges tested.

For a fair comparison, both GPU approaches (CUDA and Controller based) use the
same values for the configuration of launching parameters. In the case of the Black-Scholes
program, the thread-block size value predicted by the characterization model is the same

i
i

i
i

i
i

i
i

62 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

 1

 10

 100

 1000

 8 16 24 32

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads/cores

Recursion equation size=15,000x15,000

Base
Ctrl.CPU

 1

 10

 100

 1000

 8 16 24 32

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads/cores

Black-Scholes size=1*10^6

Base
Ctrl.CPU

 1

 10

 100

 1000

 8 16 24 32

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads/cores

Jacobi Solver 2D size=10,000x10,000 Iter=200

Base
Ctrl.CPU

 1

 10

 100

 1000

 8 16 24 32

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threads/cores

MatMul size=3,000x3,000

Base
Ctrl.CPU

Figure 3.7: Execution times (seconds) in Heracles machine of the baseline (Base) and the
Controller versions for CPU device (Ctrl.CPU) with a variable number of cores.

found in the original CUDA code. In the matrix multiplication case, it is fixed in both cases to
32× 32. For the other two case studies, the values predicted by the characterization model
are injected manually in the baseline versions. These values have shown to produce at least
96% of the best performance obtained with any other thread-block geometries. We compare
the performance obtained when launching the baseline and the Controllers versions with
different input data sizes, selected to produce from very low to significant execution times
(from tenths of a second, to more than four seconds). The exact input size parameters are
presented in Table 3.3, with a class name (S, M, L, XL) for easier reference in the following
discussion.

The results for GPU programs are presented in Table 3.4. We skip the presentation of
times for the matrix multiplication using the cuBLAS library. The memory transfers and
launching operations are enclosed into the library routine, that is called by both the CUDA
and the wrapper virtual kernel in the Controller version. Thus, the performance is the same
except for stochastic behaviors that affect both codes equally.

The execution times of the kernels show a little overhead when using the Controller
interface, due to an extra internal stage for thread index conversion and threads space clipping.
Nevertheless, the overhead is always less than 1% of the kernels mean execution time. The
recurrence equation kernel, specifically designed to test the efficiency of the data accesses
through the small kernel tile handlers, shows the minimum overhead of the four cases.

i
i

i
i

i
i

i
i

3.5 SUMMARY | 63

As expected, the execution times of the host codes, in both CUDA and Controller versions,
are smaller than the corresponding kernels execution, specially for large input sizes (L andXL),
that present significant kernel execution times. These times spent on host code coordination,
and memory transfers, are less stable than the kernels execution times. Sometimes, the
Controller versions show even better results than the equivalent host code in the CUDA
versions. Although, the same memory transfers in the CUDA codes are internally executed
in the Controller versions, memory transfers have the less predictable times, with a higher
variance. The rest of the Controller operations are in general light loaded. The critical one is
the kernel launching, that involves several checks and handler manipulations. Nevertheless,
the overhead of the launching operation has been measured to be less than 1× 10−5 seconds
for the GPU implementation, in the machine used for this study. Thus, the accumulated
overhead of many launching operations in the Black-Scholes, or the Jacobi programs, is not
significant even for the smaller input sizes tested (class S). This overhead could only be clearly
noticeable when executing long sequences of kernels with really low computational load,
which are not in general appropriate for parallelism exploitation, specially in an accelerator.

3.5 Summary

In this chapter we proposed the Controller model, a parallel programming model that sim-
plifies the coding of applications for systems compound by computational units of different
kinds. It is based on an abstract entity, the Controller, that abstracts to the programmer the
launching of kernel sequences on GPU accelerators, or sets of CPU cores.

It provides mechanisms to: (1) Associate Controllers to devices; (2) Define portable
kernels that can be reused across different types of devices; (3) Define specialized kernels
for the same program on different device types; (4) Automatically select proper values for
launching parameters on different devices through a characterization of the kernels provided
by the programmer, and; (5) Automatically deal with different memory spaces of the host
and the devices when needed. This model unifies the kernel programming and data struc-
tures management, bringing closer the accelerator and multi-threaded programming, and
taking into account the architectural differences of the accelerator platforms to obtain good
performance. Our experimental study shows the advantages of using this approach in terms
of development effort metrics, and the efficiency of our prototype implementation for sev-
eral case studies representing different computational costs, and global memory accesses
scenarios.

i
i

i
i

i
i

i
i

64 | CONTROLLERS: AN ABSTRACTION TO EASE THE USE OF HARDWARE ACCELERATORS

i
i

i
i

i
i

i
i

CHAPTER 4

Supporting the Xeon Phi
coprocessor in the Controller

Programming Model

D ifferent kinds and families of accelerators, such as GPUs, CPUs or Xeon Phis, are
used in modern high-performance platforms, as we observe in the configuration of the

TOP500 supercomputers [130]. This chapter addresses the second goal of the Thesis:

Support for new kind of accelerators such as the Xeon Phi Co-processor.

In this chapter, we extend the Controller heterogeneous programming model presented
in the previous chapter, in order to include support for Intel Xeon Phi coprocessors, also
known as Many Integrated Cores (MICs). The model is based on the mix of the communica-
tion model originally designed for GPUs in the Controller library with the execution model
originally designed for groups of CPU cores. We develop a complete runtime execution
system that includes methods for task launching, transparent data transfers between the MIC
accelerator and the host, and a queue system to manage the kernel executions with a custom-
ized grain choice. It perfectly fits with the previous Controller library, thus standardizing
and abstracting to the programmer the issues related to the programming of different kinds
of accelerators. It provides a MIC runtime support for a heterogeneous programming model,
that unifies the programming for heterogeneous systems composed by MIC coprocessors,
GPUS, or CPUs, also obtaining the same performance than using their native programming
models.

- 65 -

i
i

i
i

i
i

i
i

66 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

CPU

Exec.

MIC

Exec.

Comm.

GPU

Comm.

CPU

Exec.

GPU

Comm.

Old Controller
 object

MIC Controller
 object

Shared
memory

CUDA

Shared
memory

CUDA

Figure 4.1: Left: Previous Controller model, only supporting CPU and GPU. Right: The MIC
Controller proposedmodel, mixing features from the GPU-CPU submodels.

4.1 Approach to support MIC accelerators

For this proposal, we distinguish two internal parts in the previous version of the Controller,
which provide support for each kind of computational device: Execution and communication
management models (see left of Fig. 4.1). The abstract device formed by CPU-cores share the
memory space with the host. Thus, the controller object only has to provide an execution
model that manages a task queue and that adapts the fine-grain computations used in the
Controller model to a coarser granularity, more appropriate for CPU threads. On the other
hand, for GPUs, the CUDA programming model already provides an execution system to
enqueue and launch kernels with the same granularity level used in the Controller model.
However, the communication operations across different memory spaces on host and GPUs
require the implementation of a more sophisticated mechanism to integrate different policies
and techniques in the Controller model.

In this new proposal, we decouple both the execution and the communication man-
agement models for different kind of devices, that are independent parts in the Controller
abstraction. Thus, we propose their mixture to support a new type of accelerator such as the
MIC coprocessors. In order to do that, we use: (1) In terms of execution, the Controller model
for groups of CPU cores, that blends blocks of fine grained kernels into coarse CPU tasks,
is appropriated for MIC coprocessors. (2) In terms of memory management, the abstract
model for data communications needed for the MIC coprocessors is equivalent to the GPU
communication model in the old Controller approach.

The application of this idea leads to a homogeneous programming model for heterogen-
eous systems including MIC coprocessors, where the issues related to the programming of
different types of accelerators are transparent for the programmer. In this work we show the
implementation of this idea in the Controller library, to support computational devices such
as MIC coprocessors, GPUs, and groups of CPU-cores, without redesigning or changing the
high-level programming model and interface.

i
i

i
i

i
i

i
i

4.2 APPROACH TO SUPPORT MIC ACCELERATORS | 67

1 /* Matrix addition: Generic kernel code for any type of device */
2 KERNEL(MatAdd, 3, OUT, HitTile_float, C,
3 IN, HitTile_float, A, IN, HitTile_float, B){
4 int x = thread.x; int y = thread.y;
5 hit_tileElem(C, 2, x, y) = hit_tileElem(A, 2, x, y) +
6 hit_tileElem(B, 2, x, y);
7 }
8 /* Host program using the Controller library */
9 int main(){
10 int SIZE = 10000;
11 /* Stage 1: Controller creation */
12 Cntrl comm;
13 CntrlCreate(&comm, CNTRL_GPU, 0);
14 /* Stage 2: Data structures creation and initialization */
15 HitTile_float A; HitTile_float B; HitTile_float C;
16 hit_tileDomainAlloc(&A, float, 2, SIZE, SIZE);
17 hit_tileDomainAlloc(&B, float, 2, SIZE, SIZE);
18 hit_tileDomainAlloc(&C, float, 2, SIZE, SIZE);
19 initMatrices(&A, &B, &C);
20 /* Stage 3: Data structures attachment */
21 CntrlAttach(&comm, &A); CntrlAttach(&comm, &B);
22 CntrlAttach(&comm, &C);
23 /* Stage 4: Kernel launching */
24 CtrlThreads threadsSpace = CtrlThreads(2, SIZE, SIZE);
25 CntrlLaunch(comm, MatAdd, threadsSpace, 3, &A, &B, &C);
26 /* Stage 5: Data structures detachment */
27 CntrlDetach(&comm, &C);
28 }

Figure 4.2: Kernel definition and configuration, and host program of a matrix addition using
the Controller library.

i
i

i
i

i
i

i
i

68 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

1 /* Internal attach function */
2 void attachToXPHI(CntrlXPHI* ctrl,
3 HitTile *tile){
4 Lock(tile, ctrl);
5 int MIC= ctrl->MIC;
6 char *data = (char*)(*tile).data;
7 int numElems = hit_tileSize(tile);
8 #pragma offload target(mic:MIC) \
9 in(data:length(numElems) \

10 alloc_if(1) free_if(0))
11 }

1 /* Internal detach function */
2 void detachToXPHI(CntrlXPHI* ctrl,
3 HitTile *tile){
4 int MIC= ctrl->MIC;
5 char *data = (char *)(*tile).data;
6 int numElems = hit_tileSize(tile);
7 #pragma offload target(mic:MIC) \
8 in(data:length(0) \
9 alloc_if(0) free_if(0)) \

10 out(data:length(numElems) \
11 alloc_if(0) free_if(1))
12 Unlock(tile, ctrl);
13 }

Figure 4.3: Excerpts of the internal codes that perform data transfers of a HitTile object. Left:
From the host to a MIC coprocessor. Right: From a MIC coprocessor to the host.

4.2 Integrating MIC coprocessors in the Controller library

The original version of the Controller library supports the deployment of kernels on GPUs or
virtual computational devices formed by groups of CPU-cores. In this section, we describe a
method to integrate the support of MIC coprocessors in this model. We implement theMIC
controller object containing several functionalities, such as the identification, initialization
and management of MIC devices, an adapted internal queue to manage the asynchronous
kernel executionmechanism to transfer data from/to the co-processormemory, and amethod
to lock accesses to the HitTile data structures on the host while they are managed in the
device memory.

Figure 4.2 shows a matrix addition implementation that performs the computation on a
GPU using the Controller model. The proposal of this chapter allows the efficient execution
of this program on the Xeon Phi, only by changing the CNTRL_GPU parameter by a new
CNTRL_XPHI parameter on the line 13 of the code of Fig. 4.2.

4.2.1 Attaching and detaching data structures on the MIC
In computational devices such as GPUs or MIC coprocessors, whose memory spaces are
separated from the host memory space, the attachment/detachment operation also implies a
data transfer.

We have implemented two internal functions to perform the data transfers to/from the
MIC coprocessor, using the Intel Language Extensions for Offload (LEO). These functions
are executed internally when the program invokes an attachment or a detachment operation
respectively. Figure 4.3 shows a summarized version of the code of both functions.

i
i

i
i

i
i

i
i

4.2 INTEGRATING MIC COPROCESSORS IN THE CONTROLLER LIBRARY | 69

On the left, we see the code used to attach a tile to a MIC controller object (represented
in the figure by the CntrlXPHI type). In this function, first the attached tile is locked on
the host. Second, the code extracts: 1) The MIC identifier assigned to the controller object
(line 5); 2) The pointer to the actual data (line 6); and 3) The number of bytes to be transferred
(line 7); After that, the function performs the actual data transfer from the host to the MIC,
ensuring that there is allocated memory space in the target device (using alloc_if(1)), and
that after this offloading the actual data will be maintained (using free_if(0)).

On the right, we show the code used to detach a tile whose data has been modified from a
MIC controller object. As in the attachment, first the code extracts the information about the
data transfer (lines 4 to 6). Second, the actual data transfer from the coprocessor to the host
is specified using a pragma. For determining the pointer of the data previously transferred,
the program uses the inmodifier to make the data pointer available in the Xeon Phi, and
sets the length to 0 to prevent any data from being copied (lines 8 to 9). Once the pointer is
available on the MIC, the pragma also specifies the data transfer and the freeing of the MIC
space memory (lines 10 to 11). Finally, the data structure is unlocked on the host.

4.2.2 New kernel definitions

A kernel definition specifies the device that fits with the contained code by declaring it using
the primitive KERNEL_<type>. We extent the Controller framework to support also MIC
kernel definitions. A MIC kernel definition is rewritten as three functions using macro
functions. We show examples of the code of the three resulting functions in Fig. 4.4.

Fine-grain virtual thread function: The first function implements the kernel code
that the programmer defines to be executed for one index element of the fine-grain virtual
threads space. In most array operations, it is used to compute one data element. In Fig. 4.4,
lines 4 to 6 show the function declaration and lines 39 to 41 the function definition. The
function is named kernel_xphi_##name, where ##name is the kernel name, taken from
the first parameter of the kernel definition primitive. It is defined as a MIC function using
the attribute target(mic). The parameters are a multi-dimensional index, that represent
a point in the execution thread-index space, represented by a CtrlThread object, and the
actual kernel parameters.

Parallel coarse-grained function: The second one (wrapper_xphi_##name starting
in line 9 of Fig. 4.4) performs the offloaded coarse-grained parallel computation in the MIC
device. It receives a variable number of parameters. The first one is the controller object,
the second one the domain of fine-grain thread indexes to compute and the rest are the
data structures corresponding to the real parameters. Lines 11 to 13 of Fig. 4.4 show how
the information is extracted from the parameters (auxiliary macros for the transformations
were defined in Fig. 4.5). The rest of the body of the function defines the offload region.
The offload pragma transfers the data-structure handlers, the selected index space of logical
threads represented by a CtrlThreads object, and the pointer to the actual data for each
HitTile. As in the detachment operation, in order to determine the data pointers previously

i
i

i
i

i
i

i
i

70 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

1 /* Macro of the kernel definition */
2 #define KERNEL_XPHI(name, nparams, params...) \
3 /* Single-element function declaration */ \
4 static void __attribute__((target(mic))) \
5 kernel_xphi_##name(CtrlThreads threadId, \
6 XPHI_WRAPPER_PARAMS##nparams(params)); \
7 \
8 /* Parallel coarse-grained function */ \
9 static inline void wrapper_xphi_##name(void** args){ \

10 int MIC=cntrl->MIC; \
11 CntrlXPHI* cntrl = (CntrlXPHI*) args[0]; \
12 CtrlThreads* threads = (CtrlThreads*)args[1]; \
13 XPHI_WRAPPER_CAST##nparams(params); \
14 _Pragma(STRINGIFY(XPHI_OFFLOAD_PARAMS##nparams(MIC, params))) \
15 { \
16 XPHI_POINTERS##nparams(params); \
17 _Pragma("omp parallel"){ \
18 int i,j,k; \
19 CtrlThreads threadId; \
20 _Pragma("omp for private(i,j,k)") \
21 for(i=0; i<=threads->x; i++){ \
22 for(j=0; j<=threads->y; j++){ \
23 for(k=0; k<=threads->z; k++){ \
24 threadId.x = i; \
25 threadId.y = j; \
26 threadId.z = k; \
27 kernel_xphi_##name(threadId, \
28 XPHI_WRAPPER_VALUES##nparams(params)); \
29 } } } \
30 }} \
31 \
32 /* Task addition function */ \
33 void name##_xphi(CntrlXPHI* cntrl, CtrlThreads thread, \
34 XPHI_WRAPPER_PARAMS##nparams(params)){ \
35 CntrlXPHIAddTask(cntrl, wrapper_xphi_##name, thread, nparams, \
36 XPHI_WRAPPER_VALUES##nparams(params)); \
37 } \
38 /* Single-element function definition */ \
39 static void __attribute__((target(mic))) \
40 kernel_xphi_##name(CtrlThreads threadId, \
41 XPHI_WRAPPER_PARAMS##nparams(params)) \

Figure 4.4: Functions internally generated by the MIC kernel definition: 1) Function to
be executed by each fine-grain virtual thread: kernel_xphi_##name; 2) Function that ex-
ecutes a dequeued kernel, grouping virtual threads in coarse-grained OpenMP threads: wrap-
per_xphi_##name; 3) Function to enqueue a kernel-launching request: name##_xphi.

i
i

i
i

i
i

i
i

4.2 INTEGRATING MIC COPROCESSORS IN THE CONTROLLER LIBRARY | 71

1 /* Auxiliar macros for kernels with one parameter */
2 #define STRINGIFY(a) #a
3 #define XPHI_WRAPPER_PARAMS1(io1, type1, value1) \
4 type1 value1
5 #define XPHI_WRAPPER_VALUES1(io1, type1, value1) \
6 value1
7 #define XPHI_WRAPPER_CAST1(io1, type1, value1) \
8 type1 value1_p = (type1)args[2]; \
9 HitTile value1_t = *(HitTile*)value1_p; \
10 char *data_tile1= (char *) (value1_t).data;
11 #define XPHI_OFFLOAD_PARAMS1(MIC, io1, type1, value1) \
12 offload target(mic:MIC) in(threads:length(3)) in(value1_t) \
13 in(data_tile1:length(0) alloc_if(0) free_if(0))
14 #define XPHI_POINTERS1(io1, type1, value1) \
15 HitTile value1 = value1_t; \
16 value1.data = data_tile1;

Figure 4.5: Auxiliary macros defined for a one parameter kernel.

transferred, the offload pragma uses the inmodifier to make the data pointer available in
the Xeon Phi, and sets the length to 0 to prevent any data from being copied (see line 14 of
Fig. 4.5). Inside the offload region, the HitTile handlers update their data pointer to the actual
offloaded data (line 16). After that, the parallel computation is performed on the specified
domain (lines 17 to 30), grouping virtual thread indexes in actual coarse-grained threads, by
using an OpenMP parallel loop.

Kernel launch request: The third function is named name##_xphi. See lines 33 to 37
of Fig. 4.4. It is the internal Controller implementation of a kernel launch for a MIC. In its
body, the function implements the enqueuing of the kernel execution request in the Controller
object. The information needed is: The controller object, the pointer to the coarse-grained
parallel computation function, and its real parameters (the index space where the application
will be executed, the number of kernel parameters, and the actual kernel parameters).

4.2.3 Queuemanagement and Kernel launching

As opposite to theCUDAprogrammingmodel, the offloadingMIC coprocessor programming
model does not provide a queue system to manage asynchronous kernel launchings. We have
developed a queue system for the asynchronous execution of several kernel launches on the
MIC coprocessor, currently using a FIFO policy in our prototype. When a MIC controller
object is created, an asynchronousOpenMP task is launched. This task usesOpenMP locks to
block until there are kernel-launching requests in the queue. Then, it dequeues the request and
dispatches/executes it. The execution of a task on the MIC is carried out by simply executing

i
i

i
i

i
i

i
i

72 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

the already offloaded parallel wrapper_xphi_##name generated function, specified in the
request structure, that contains pointers to the function and parameters. The Controller
destructor enqueues a special request that notifies to the OpenMP queue-controlling task
that it should release the Controller resources and finish.

4.3 Experimental study

We perform an experimental study to evaluate the potential advantages and constraints of the
integration of the MIC coprocessor in the original Controller library. The section includes:
(1) A description of the considered study cases, (2) A performance study of our proposal,
and (3) A development effort comparison between programming using the new Controller
extension and using device vendor programming models.

4.3.1 Study cases
We select four benchmarks to test our approach and implementation.

Matrix addition. It implements a sum of two matrices, storing the result in a third one:
C = A+B. For the Controller version, we use the same generic kernel implementation
tested in previous works for CPU-cores and GPUs, without any modification.

Black-Scholes. As in the Sect 3.4.1 of Chap. 3, we choose the Black-Scholes program,
obtained from the CUDA Toolkit Samples. Again, the Controller version uses the same
generic kernel definition for both GPUs, and MICs accelerators.

Matrix multiplication. It computes the product of two matrices, storing the result in a
third one: C = A ∗B. The read patterns on A and B matrices should be adapted to exploit
coalescence and shared memory in GPUs, and to properly exploit caches and vectorization
on MICs. These features lead to different optimizations in both types of accelerators. Thus,
the Controller version declares different specialized and optimized kernels for each kind of
device.

Mandelbrot algorithmTheMandelbrot algorithm is used to compute fractal geometric
images. The escape time algorithm is the simplest algorithm for generating a representation
of fractal geometric images of the Mandelbrot set. Its implementations does not need any
data transfer to start the computation, only to return the results, presenting also an irregular
workload per thread. The Controller version uses a single generic kernel definition for both
GPUs and MICs accelerators.

4.3.2 Performance study
In this section we show how low is the performance overhead produced by the implementa-
tion of our proposed MIC library extension. Table 4.1 shows the total times spent (including
computation and data transfers) by the four benchmarks with two different problem sizes.

i
i

i
i

i
i

i
i

4.3 EXPERIMENTAL STUDY | 73

Code Mat. Add. Black-Scholes Mat. Mult. Mandelbrot

Size 50002 106 40962 40002

LEO Code 1.67 0.60 2.59 6.49
Ctrl. Code 1.43 0.74 2.88 6.86

Code Mat. Add. Black-Scholes Mat. Mult. Mandelbrot

Size 200002 5 ∗ 107 81922 200002

LEO Code 24.99 5.49 19.87 148.47
Ctrl. Code 24.65 5.01 19.27 147.36

Table 4.1: Performance results (seconds) comparing LEO reference codes with Controller codes
for different input sizes. Experiments executed on a Intel Xeon E5-2620 v2@2.1GHz, 32Gb DDR3
main memory, and with the Xeon Phi Knights Corner 3120A coprocessor. Compiler used: ICC
17.0.0 version with the flags -O3, and -openmp.

Codes have been implemented with our proposal, and directly with the Intel Language Ex-
tensions for Offload (LEO) and OpenMP. This study indicates only a small constant penalty
performance due to the management of the queue system, that is only noticeable in the results
for the smaller problem sizes presented on the left of Tab. 4.1. For bigger problem sizes,
some performance gain is obtained due to Hitmap optimizations in the internal management
of the data structures. In general terms, the performance obtained by using our approach is
similar to the native programming models.

4.3.3 Development effort measures
This section includes two development effort comparisons. First, between the proposed
Controller implementation and the reference codes (using LEO and OpenMP for MIC).
Secondly, comparing measures of the code changes needed to port a GPU implementation
to a MIC implementation, using the Controller or the native programming models.

The results of the first comparison are presented on Tab. 4.2. We measure three classical
development effort metrics: Number of lines of code; Number of tokens, and McCabe's
cyclomatic complexity [86]. The measured codes include kernel definitions, kernel character-
izations, the coordination host code, and data structures management. We observe that the
use of the Controller library implies less cyclomatic complexity, but more number of lines
and tokens.

However, the goal of the library is to provide an homogeneous interface to deal with any
kind of accelerator. For this reason, we also compare the effort needed for transforming GPU
codes in order to port them to aMIC device. See results onTab. 4.3. We analyze the percentage
of words of each implementation that are common and can be reused, should be deleted, or
should be changed. The largest changes are on the matrix multiplication benchmark, because

i
i

i
i

i
i

i
i

74 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

Case study Version Lines of Code #Tokens Cyclomatic Complexity

Matrix LEO 26 210 3
addition Ctrl.MIC 35 317 1
Black LEO 80 525 6
Scholes Ctrl.MIC 89 693 5
Matrix LEO 23 217 4
mult. Ctrl.MIC 37 337 3

Mandelbrot LEO 32 319 5
Ctrl.MIC 46 488 4

Table 4.2: Comparison of number of code lines, code tokens, and cyclomatic complexity
between the Controller version and the version using native programmingmodels.

Case study CUDA → LEO Ctrl.GPUs → Ctrl.MICs

Common 13% Common 92%
Matrix Delete 30% Delete 0%
Addition Change 57% Change 8%

Common 53% Common 69%
Black- Delete 25% Delete 21%
Scholes Change 22% Change 10%

Common 8% Common 49%
Matrix Delete 43% Delete 3%

multiplication Change 48% Change 47%
Common 32% Common 97%

Mandelbrot Delete 61% Delete 0%
Change 7% Change 3%

Table 4.3: Comparison in terms of the percentage of words that are common and can be reused,
should be deleted, or should be changed, when porting codes between GPU and MIC versions
using the native models, or the Controller library.

i
i

i
i

i
i

i
i

4.4 SUMMARY | 75

of the implementation of different optimized kernels for each device but with our proposal
they are still less than for the native versions. For the other benchmarks, we see that using
our proposal the programming effort needed to change the target computational device is
extremely low (it could be null in some cases parametrizing the controller type using an
execution argument). These measures show the level of abstraction and standardization
achieved by our proposal.

4.4 Summary

In this chapter we proposed an extension to the Controller programming model and to
its library implementation, in order to support the Intel Xeon Phi (MIC) coprocessors. To
provide support for MIC coprocessors, our approach reuses and mixes the internal execution
features for CPU-cores, and the internal memory and communication management features
of the original GPUmodel. We have completely integrated the support for aMIC coprocessor
in the Controller library, without adding any constraint to the programming model. The
experimental study shows the high flexibility of our approach, that implies a minimum pro-
gramming effort for changing the execution target devices, without significatively penalizing
the performance. Future work includes the integration of scientific libraries, such as MKL,
as kernels in the Controller implementation, and an evaluation with applications of other
domains.

i
i

i
i

i
i

i
i

76 | SUPPORTING THE XEON PHI COPROCESSOR IN THE CONTROLLER PROGRAMMING MODEL

i
i

i
i

i
i

i
i

CHAPTER 5

Multi-Device Controllers: A library
to simplify the parallel

programming of multiple
heterogeneous devices.

C urrent HPC clusters are composed by several machines with different computation
capabilities and different kinds and families of accelerators. Programming efficiently

for these heterogeneous systems has become an important challenge.
In this chapter we address the third goal:

Design and develop an adaptable, simple, and efficient programming model for
heterogeneous systems.

In order to do that, we introduce the Multi-Controler (MCtrl), an abstract entity that
coordinates the management of heterogeneous devices, including accelerators with different
capabilities and sets of CPU-cores.

- 77 -

i
i

i
i

i
i

i
i

78 | MULTI-DEVICE CONTROLLERS

5.1 Introduction

Different number and types of accelerators or CPU cores may be available in the same
machine. Exploiting all these devices together to solve the same problem has become an
important challenge, due to the different computational units (CPUs, GPUs, XeonPhi, ..),
that appear in a cluster machine, typically have different programming requirements and
constraints to achieve the best performance [121].

There are many proposals to simplify the programming and management of accelerator
devices, and the hybrid programming mixing accelerators and CPU cores, as we state in
Sect. 2.3. However, in many cases, portability compromises the efficiency on different devices.
Depending on the proposal, some details concerning the coordination of different types of
devices are still tackled by the programmer, such as computation partition and balance, data
mapping and locality, or data movement coordination across different memory hierarchies.

In this chapterwe introduce theMulti-Controler (MCtrl), an abstract entity implemented in
a library, that coordinates the management of heterogeneous devices, including accelerators
with different capabilities and sets of CPU-cores. It helps the programmer to handle the
computation partition, mapping, and transparent execution of complex tasks in such hybrid
and heterogeneous environment, independently of the target devices selected at run-time.
Our proposal allows the exploitation of simple generic kernels that can fit in any device; very
specialized kernels defined and optimized by the programmer for each architecture; and
even wrappers to call third-party predefined libraries (such as e.g. cuBLAS [103]). This allows
the exploitation of native or vendor specific programming models, in a highly efficient way.
The most appropriate kernels for each target device are automatically selected by the entity
during program execution. Our proposal improves state-of-the-art solutions, simplifying the
data partition, mapping, and transparent deployment of both, simple generic kernels portable
across different device types, and specialized implementations defined and optimized using
specific native or vendor programming models (such as CUDA for NVIDIA's GPUs, or
OpenMP for CPU-cores).

Our work is developed on the concept of Controller presented in the previous chapters.
While the Controller transparently manages the data movements and the launching of series
of kernels on a given target device, the proposed Multi-Controller coordinates several
Controllers associated to different devices or groups of CPU-cores. It can be implemented
as an extensible library, using the best programming models, tools, and compilers for each
potential device.

We present an experimental study with five case studies. We show that our approach
is highly flexible, with minimum programming effort for changing the target devices. The
results of a performance study, comparing our approach with optimized reference codes
show that our implementation does not introduce significant performance penalties.

i
i

i
i

i
i

i
i

5.2 MULTIPLE-DEVICE CONTROLLER (MCTRL) LIBRARY | 79

Execution
 policyQueue

Ctrl-0

Execution
 policyQueue

Ctrl-1

Execution
 policyQueue

Ctrl-2

Many-core

Memory

Dev-0

Dev-1

Dev-2

A[0]

Multi-core

Memory

A[1]

Many-core

Memory

A[2]

Kernel
division

 Data
 partition

MCtrl

Host

MAttach

MLaunch

MDetach

HitTile A, B
A

Code

Memory

Attached

MultiController Devices

CPU

CPU

CPU

CPU

A
B B

B[0]

B[1]

B[2]

Internal
X

Figure 5.1: Diagram of the Multiple-Device Controller library (MCtrl).

5.2 Multiple-Device Controller (MCtrl) library

TheMultiple-Device Controller (MCtrl) library provides a simplified way to program applic-
ations targeting heterogeneous systems with different kinds of computational units in the
same machine. We define computational unit/target device as an accelerators (GPU, Xeon
Phi, etc.) or a group of CPU-cores considered as a single independent device. The goal of
this library is: (1) to automatize the data partition and data transfer between the host and
multiple target devices, as well as (2) to transparently coordinate the division and execution
of the computation among different computational units, independently of the kind of target
device exploited (GPUs, group of CPU-cores, etc).

The library has an object-oriented design, despite the fact that it is mainly developed
in C language. The classes are implemented as C structures with associated functions. The
Multi-Controller model architecture is presented in Fig. 5.1.

The Multi-Controller object provides functions to manage:

• Multi-device coordination: TheMulti-Controller is associated with a set of different
devices at construction. It internally creates Controller objects to interact with each
device. The Multi-Controller provides an abstract interface that enables it to manage
it as a single computational device, independently of the internally associated devices.

• Data structures: TheMulti-Controller abstraction creates an unifiedmemory context
for all of the associated devices, where internal data structures can be created, or
data structures from the main host thread can be attached. Data structures can be
replicated, or partitioned and distributed across the devices, depending of the program
requirements. In the current prototype a simple static partitioning method has been
included. It divides the structures into as many irregular parts as number of devices
were selected in the Multi-Controller construction. The size of each part is calculated

i
i

i
i

i
i

i
i

80 | MULTI-DEVICE CONTROLLERS

proportionally from a list of weights. Data movements across different device memory
hierarchies are transparently managed by the internal Controller objects associated to
each device.

• Kernel definition and launching: The Multi-Controller model integrates the Con-
trollers idea of multi-version kernel definition. Thus, kernel launching in a Multi-
Controller simply uses a kernel name. The internal Controller selects, at run-time,
the most appropriated kernel version or implementation for the associated device,
form those provided by the programmer. The Multi-Controller internally divides
the computation associated to a kernel launching among the different devices. The
kernel execution on a device is performed asynchronously with respect to the kernels
execution in the rest of devices. Synchronizations are required only by data requests
on the main host thread.

5.2.1 Multi-Controller construction
A Multi-Controller object is constructed to manage a specific collection of devices. Its
construction functionality receives an ordered list of device specifications. Each device
specification is used to internally create a Controller object associated to the computational
resource. In the current prototype we support device specifications that include: (1) NVIDIA's
GPUs, specifying their CUDA device number, (2) Groups of main host CPU-cores, specifying
a range of core identifiers, according to their internal numbering in the CPU information
provided by the operating system, and (3) Xeon Phi co-processors, indicating its identifier
number.

The Multi-Controller internally creates a queue to temporarily store the requests for ker-
nel launchings, before dividing the computation and mapping it to the queues of the internal
device Controllers. The synchronization and coordination operations of each Controller are
executed on its own task, which makes the use of a host thread asynchronous, only when
activity is needed, for minimal interference with other host threads. In the current prototype,
the internal device Controllers are implemented using OpenMP tasks.

5.2.2 Data structures and domains
One of the objectives of theMulti-controller library is to provide an homogeneous interface to
work with data structures in different device types, preserving the coalescing or vectorization
properties of the code due to the data accesses order. The previous Controllers library uses
Hitmap to provide such an interface (recall Sect. 3.3.1).

ForMulti-Controllers, we propose to exploit and extentHitmap functionalities to provide
a transparent abstraction for the partition, subselection, and mapping of parts of the data
structures to the different devices associated to a Multi-Controller. The Multi-Controller
model proposes a single memory context for the whole set of associated heterogeneous
devices. Data structures from the main host thread can be attached to the Multi-Controller

i
i

i
i

i
i

i
i

5.2 MULTIPLE-DEVICE CONTROLLER (MCTRL) LIBRARY | 81

context, and they should not be manipulated on the main host thread until they are detached
from the Multi-Controller. The Multi-Controller can decide when the real data movements
should be done, synchronously or asynchronously, to the actual devices, depending on the
kernels enqueued for execution, and their data dependencies.

To avoid redundant data movements across memory hierarchies, the model provides the
programmer with a flexible attachment functionality. The current proposal is focused on
applications where: (1) No data transfers between devices are needed across several kernel
executions; and (2) any part of the computation needs, either a whole data structure, or a
subset of the data structure that does not overlap with other subparts. Thus, data structures
should be assigned as a whole to all the devices, or partitioned in non-overlapping parts, one
for each device.

To support this model, we have extended the HitTile objects in the Hitmap library with
the capability of dividing itself into several sub-selections, and store the information about
the partition inside the object. Internally, when a HitTile is attached to a Multi-Controller, it
performs the following steps:

1. First, it checks that the HitTile is not already attached to any Multi-Controller. If that
particular HitTile object is already attached, the program raises an error, as a second
attachment could lead to race conditions due to the concurrent execution of kernels
in different Multi-Controllers.

2. If it is an attachmentwithout the partition option, thewhole space of indexes of the data
structure are mapped to each device. If it is an attachment with the partition option
activated, the Multi-Controller divides the index space of the HitTile data structure in
a number of parts equal to the number of devices defined in the Multi-Controller. The
partition policies introduced in Hitmap are responsible for dividing the data structure
with no-overlapped domains. With the basic heterogeneous-oriented partition policy
module included in our prototype, the partition size corresponding to each device is
proportional to the weights provided in an array of floating point numbers, one for
each device. More sophisticated partition policies can be easily added in the future
thanks to the modular plug-ins system in the Hitmap library. The information about
the mapping is stored in the meta-data of the HitTile object for further reference.

3. Finally, the Multi-Controller creates a HitTile structure for the space or sub-space
of indexes mapped to each device, and proceeds to carry out the data transfers to the
assigned device when needed. Transfers are not needed for groups of CPU-cores of the
host, or accelerators that can shared the hostmemory space. The transfer policies inside
the Multi-Controller can take decisions about when and how to make the transfers.
For example, the current Multi-Controller prototype implement both, immediate and
lazy transfers. The implementation of asynchronous transfers is currently an on-going
work.

i
i

i
i

i
i

i
i

82 | MULTI-DEVICE CONTROLLERS

When the data structure is detached, the Multi-Controller object ensures the consistency
of the whole data structure in the main host thread. This may imply data transfers from some
or all of the associated devices. The information stored in the objects about the index space
mapped to each device is used for the transfers, and eliminated at the end of the detachment
procedure. The semantic of this operation makes it synchronous. The main host thread
should block until its state is consolidated.

Inherited from the Controllers library, the Multi-Controller model also allows the at-
tachment of HitTile structures that have a defined index space, but no memory allocated
in the main host thread. This creates partitioned internal memory buffers (replicated or
partitioned) inside the space of the devices, which are transparently treated inside the kernel
functions as any other data structure. The detachment of these structures simply frees the
corresponding subparts and internal resources in the devices.

In the case of partitioned data structures, the actual parameters used in the execution
invocations of theMulti-Controller are substituted by the the HitTiles created by subselecting
the mapped portion of the index spaces for each device. Inside the kernel functions they are
transparently used as normal whole HitTile data-structures. The kernel launching interface
will transparently transform the HitTile handlers for the real parameters handlers to an
internal HitKTile type, substituting the data pointer with its equivalent in the device memory
space when needed. The data access primitives used inside the kernels code are transparently
rewritten to use the pointer contained in these objects, along with a minimum number
of arithmetic operations, to access the data. The resulting code exposes the arithmetic
expressions to the native compiler to open the possibility of further optimizations. The result
obtains as good performance as direct array accesses in static codes.

5.2.3 Kernel launching

TheMulti-Controller model proposes a unified space of indexes for logical threads across the
whole set of associated heterogeneous devices. One instance of the kernel function is executed
by each logical thread. This model directly fits with the threads grid abstraction in current
GPUs programming models such as CUDA or OpenCL. In the case of groups of CPU-cores,
the internal Controller objects are responsible for executing the kernel invocations of a grid
of many logical threads inside a limited set of coarse threads (e.g. one OpenMP thread per
core) for efficiency (See Sect. 3.3.5).

The Multi-Controller kernel launching function receives as parameters, the name of
the kernel, the real parameters for the kernel (whole data structures attached to the Multi-
controller, or single typed values), and a definition of the indexes space for the logical threads.

Internally, the Multi-Controller performs, at runtime, the intersection between the
indexes subset defined by the grid, or domain of threads, specified by the programmer,
and the data structures domains or sub-selections performed by the attachment partition
procedure. The result points to the domains of logical threads where each device should
perform the computation. Figure 5.2 shows a graphical representation of an example of this

i
i

i
i

i
i

i
i

5.2 MULTIPLE-DEVICE CONTROLLER (MCTRL) LIBRARY | 83

Domain to compute Compute
by Dev-0

Compute
by Dev-1

Figure 5.2: Calculating the domains to compute for each device.

INITIALIZATION

DATA ATTACHMENT

Declare/Allocate Tiles

COMPUTATION

DATA DETACHMENT

ENDING

Attaching Tiles to MCtrl

Detaching Tiles from MCtrl

Sequences of kernels launching

Free resources
Destroy Multi-Controller

Create Multi-Controller

Define computation domains

Figure 5.3: Typical programming stages using the MCtrl library. The data-structures attach-
ment/detachment, and kernel launching stages can be repeated and interleaved as desired.

procedure. Stage 1 of the figure shows an example of the partition of a data-structure domain.
Stage 2 overlaps the domain (grid of threads) where computation is required. Stage 3 shows
the domains of logical threads that should be executed on each device. With this method,
the computation is transparently divided as a function of the data partitions previously
performed.

With the information about how the computation is divided, the Multi-Controller object
deploys the kernel launches on the internal Controller objects with a non-empty sub-space
of threads mapped. Thus, the global computation launching is subdivided into sub-kernels
that are enqueued for execution in their corresponding device queues.

The information provided by the programmer in the characterization primitives of the
kernel declarations is internally used to determine launching parameters for the appropriate
devices, such as thread-block geometries for GPUs.

i
i

i
i

i
i

i
i

84 | MULTI-DEVICE CONTROLLERS

5.2.4 Programmingmethodology and example
In this section we discuss, using an example, how a program is developed using our proposal.
The proposed methodology derives in clearly structured programs, using simple develop-
ment guidelines. Figure 5.3 shows the typical stages of an application programmed using
the Multi-Controller library. After the creation of the Multi-Controller object, the data
structures declared in the main host thread can be attached to the Multi-Controller object.
Computations are started defining the threads space and invocating kernel launchings in the
Multi-Controller object. The detachments consolidate the state of the whole data structures,
modified during the computation, in the main host thread.

Figure 5.4 presents two codes of a matrix addition programmed using our proposal. On
the left of Fig. 5.4, a group of ten CPU-cores and a GPU are exploited, assigning to them the
10% and the 90% of the computation to each, respectively. On the other hand, in the code on
the right, two GPUs are exploited for computation. In this case, each GPU performs 50% of
the computation. Both codes follow the basic structure of programming stages presented in
Fig. 5.3.

First, the programmer creates a Multi-Controller object. The creation of this controller
includes the definition of the different kinds of devices controlled by this object, as well
as a parameter specifying their computation features. The parameter, when the device is a
group of CPU-cores, corresponds to the range of CPU-cores used. For a GPU device, this
parameter indicates the GPU identifier (see lines 7 to 9).

The second step consists of the data structures creation and allocation. HitTile objects
are created and allocated using a HitShape object that represent a domain. To do that, we
have applied the function hit_tileDomainAlloc(...) (see lines 16 to 24). HitTiles are
attached to the Multi-Controller using the MCtrlAttach(..) function (see lines 29 to 34).
For the attachment, using the current partition policy in the prototype, it is needed an array
of floats indicating the weights used to divide the data structure among the different target
devices. The Multi-Controller is responsible for the actual data attachment on the final
devices where the computation will be performed.

After that, the computation domain (indexes domain for logical threads) is defined by
a CtrlThreads object (see lines 38 and 39). Typically, the kernel execution is performed for
each element of a matrix, as in all the cases studied in this chapter (see Sect. 5.3.1). In this
cases, the computation domain and the data structure domain are equal.

The kernel launching is performed in lines 41 to 47. The parameters of the MCtrlLaunch
function are: (a) The Multi-Controller object; (c) The domain that defines the computation
space index; (c) The name of the kernel; (d) The number of parameters required by the kernel;
and (e) The real parameters for the kernel execution. It deploys the kernel executions on all
the computational devices associated to the Multi-Controller. It internally enqueues, in each
device Controller, a copy of the kernel launching, adapting the thread index domain with the
goal of each target device will perform only its corresponding part of computation.

Finally, once the computation has finished, HitTiles are detached from the controller,
the Multi-controller is destroyed, and the data structures are freed (see lines 49 to 61).

i
i

i
i

i
i

i
i

5.3 MULTIPLE-DEVICE CONTROLLER (MCTRL) LIBRARY | 85

1 // MCtrl creation
2 CALMCtrl cntrlMult ;
3 // Two devices :
4 // a 10 CPU - core group ,
5 // and a GPU
6 CAL_MCtrlCreate2 (cntrlMult ,
7 CAL_CNTRL_CPU ,
8 RANGE (0 ,9) ,
9 CAL_CNTRL_GPU , 0);

10

11 // Specifying the weights
12 // corresponding to each device
13 float percents [2] = {10 , 90};
14

15 // Define whole data structures
16 HitTile_float A , B , C;
17 HitShape domain ;
18 domain = hit_shapeStd2 (SIZE , SIZE);
19 hit_tileDomainAlloc (A , 2, float ,
20 domain);
21 hit_tileDomainAlloc (B , 2, float ,
22 domain);
23 hit_tileDomainAlloc (C , 2, float ,
24 domain);
25

26 // Attach the data structures to
27 // a MDC , determining the weights
28 // for each device
29 CAL_MCtrlAttach (A , cntrlMult ,
30 percents);
31 CAL_MCtrlAttach (B , cntrlMult ,
32 percents);
33 CAL_MCtrlAttach (C , cntrlMult ,
34 percents);
35

36 // Determine the threads
37 // to launch .
38 CtrlThreads threads ;
39 threads = CtrlThreads (2 , SIZE , SIZE);
40

41 // Perform the commputation
42 CAL_MCtrlLaunch (cntrlMult ,
43 threads ,
44 MatAdd , 3,
45 hit_CM (& C) ,
46 hit_CM (& A) ,
47 hit_CM (& B));
48

49 // Copy result from MDC memory
50 // to host memory
51 CAL_MCtrlDetach (A , cntrlMult);
52 CAL_MCtrlDetach (B , cntrlMult);
53 CAL_MCtrlDetach (C , cntrlMult);
54

55 // Destroy MCtrl
56 CAL_MCtrlDestroy2 (cntrlMult);
57

58 // Free CHitTiles
59 hit_Free (A);
60 hit_Free (B);
61 hit_Free (C);

1 // MCtrl creation
2 CALMCtrl cntrlMult ;
3 // Two devices : two GPUs
4

5

6 CAL_MCtrlCreate2 (cntrlMult ,
7 CAL_CNTRL_GPU , 0,
8

9 CAL_CNTRL_GPU , 1);
10

11 // Specifying the weights
12 // corresponding to each device
13 float percents [2] = {50 , 50};
14

15 // Define whole data structures
16 HitTile_float A , B , C;
17 HitShape domain ;
18 domain = hit_shapeStd2 (SIZE , SIZE);
19 hit_tileDomainAlloc (A , 2, float ,
20 domain);
21 hit_tileDomainAlloc (B , 2, float ,
22 domain);
23 hit_tileDomainAlloc (C , 2, float ,
24 domain);
25

26 // Attach the data structures to
27 // a MDC , determining the weights
28 // for each device
29 CAL_MCtrlAttach (A , cntrlMult ,
30 percents);
31 CAL_MCtrlAttach (B , cntrlMult ,
32 percents);
33 CAL_MCtrlAttach (C , cntrlMult ,
34 percents);
35

36 // Determine the threads
37 // to launch .
38 CtrlThreads threads ;
39 threads = CtrlThreads (2 , SIZE , SIZE);
40

41 // Perform the commputation
42 CAL_MCtrlLaunch (cntrlMult ,
43 threads ,
44 MatAdd , 3,
45 hit_CM (& C) ,
46 hit_CM (& A) ,
47 hit_CM (& B));
48

49 // Copy result from MDC memory
50 // to host memory
51 CAL_MCtrlDetach (A , cntrlMult);
52 CAL_MCtrlDetach (B , cntrlMult);
53 CAL_MCtrlDetach (C , cntrlMult);
54

55 // Destroy MCtrl
56 CAL_MCtrlDestroy2 (cntrlMult);
57

58 // Free CHitTiles
59 hit_Free (A);
60 hit_Free (B);
61 hit_Free (C);

Figure 5.4: Matrix addition example programmed using our approach: Exploiting a group of 10
CPU-cores and a GPU for the computation (left); and exploiting two GPUs for the computation
(right).

i
i

i
i

i
i

i
i

86 | MULTI-DEVICE CONTROLLERS

5.3 Experimental study

This section presents an experimental study to show how this approach simplifies the pro-
grammer effort to adapt programs to different sets of heterogeneous devices, and the efficiency
obtained by our prototype implementation of the Multi-Controller library. First, we present
several benchmarks used in the study, discussing their features. Second, we present some
development effort measures. Finally, we provide a comparison of performance measures
obtained by programs using device vendor or native programming models, and programs
developed with the Multi-Controller library.

5.3.1 Study cases

We have used four common benchmarks as base-lines for five case studies to test our proposal.

Matrix addition

TheMatrix addition consists of the sum of two different matrices, storing the result in a third
one: C = A+B. The computation of each cell does not imply any kind of dependencies
with the computation of another one. The solution developed using our proposal involves
just one kernel with a bidimensional grid and bidimensional thread-blocks. Depending on
the size of the grid and the matrices, each block of threads computes the resulting values of
several blocks of the matrix iteratively, following the example implementation presented
to the CUDA programming guide [102]. The accesses to global memory are fully coalesced.
This benchmark requires a large quantity of data transfers to the accelerators used, while
the computation load is really low. Using our model, the CPU solution for this problem is
similar to the GPU version. Only one generic kernel should be defined by the programmer.

Mandelbrot algorithm

We use the same example used in Sect. 4.3.1. The irregular load of each thread in this example,
because of the input coordinates chosen, is evenly distributed across the image rows. Thus,
the computation space can be divided between two GPUs giving the same amount of work
to each GPU, producing good results. This example will clearly show the balancing effect
of partitioning the workload among several GPUs. The application does not need any data
transfer to start the computation, only to return the results. The parameters chosen for the
experiments are: An image size of 2048× 2048, and a limit of 60, 000 iterations per pixel.
A visual representation of the area chosen is shown in Fig. 5.5. The GPU thread-block size
used is 32 × 32 for all the experiments with this benchmark. In our implementation, the
same generic kernel definition is used for both GPUs and CPUs.

i
i

i
i

i
i

i
i

5.3 EXPERIMENTAL STUDY | 87

Figure 5.5: An image of the Mandelbrot set with the limits xmin: −1.4748333, xmax:
−0.9748333, ymin: −0.1791667, ymax: 0.1958333.

Matrix multiplication

TheMatrix multiplication implementation uses the same features exploited in the experi-
mental study of Sect. 3.4, using different optimized kernels for each device type.

Black-Sholes

The Black-Scholes case study is the one chosen also in Sect. 3.4. We have explored two
case studies using this benchmark: A simple execution of the kernel (BlackScholes), and a
program that iteratively launches a sequence of 2048 executions of this kernel for the same
array (BlackScholes_2028). As in the matrix addition benchmark, the data transfers are
not negligible compared with the computation time. In our model, the same generic kernel
definition is used for both CPU and GPU.

5.3.2 Development effort

In this section we compare, in terms of development effort, the use of our library with the
most common native programming models for NVIDIAS's GPUs and multi-core CPUs,
which are CUDA and OpenMP respectively. For this comparison, we introduce a new
development effort metric: Halstead development effort [63]. Thus, we present results for
COCOMO lines of code, McCabe's cyclomatic complexity [86], and Halstead development
effort. The metrics are applied to the parts of code that include: kernel definitions, kernel
characterizations, the coordination code in the main host thread with the Multi-controller
management, and data-structure management. We ignore code devoted to error or results
checking, performance instrumentation, and writing messages to the standard output.

i
i

i
i

i
i

i
i

88 | MULTI-DEVICE CONTROLLERS

Table 5.1: Development effort measures for the four benchmarks when they are programmed
using Cuda, OpenMP, and the proposed Multi-Controller library.

Benchmark Code Lines of Code Cyclomatic Complexity Halstead Measure

Matrix Cuda 72 7 202361
Addition OpenMP 49 11 99783

MCtrl 61 5 103528
Matrix Cuda 142 5 409862
Mult. OpenMP 45 9 81136

MCtrl 97 6 201242
Black- Cuda 211 7 742735
Scholes OpenMP 134 8 389556

MCtrl 163 6 486956
Mandel- Cuda 49 3 159481
brot OpenMP 36 5 66610

MCtrl 55 3 124212

Table 5.1 shows the different measures for the different codes evaluated. The results show
that our library implies less development effort for the programmer than using CUDA for
all the study cases. On the other hand, although the OpenMP programming model needs
a less volume of lines of code, deriving in lower Halstead development effort measure, the
cyclomatic complexity of our proposal is less because our abstraction hides some run-time
decisions and checkings.

Transforming a CUDA program into an OpenMP version, or the opposite, is not a
trivial task. Remember the Fig. 5.4, where we show two codes, using the Multi-Controller
abstraction, that perform a matrix addition using different target device combinations. When
we compare both codes, we observe that the effort required by the programmer to change
the program in order to exploit 1 GPU + 10 CPU-cores, or two GPU devices, only involves
4 lines of code. We can see these four lines highlighted on both codes in the code. In a
multi-device program written with CUDA and OpenMP, the complexities of both tools are
added, while the Multi-Controller abstraction makes transparent to the programmer all the
differences on data transfers, kernel launches, and data managements for different kind of
computational devices such as accelerators or groups of CPU-cores.

5.3.3 Performance results

In this section, we present performance results: (1) comparing our proposal with pure CUDA
reference programs, and (2) evaluating the impact of using in our model different compu-

i
i

i
i

i
i

i
i

5.3 EXPERIMENTAL STUDY | 89

tational units for the five case studies selected. The goal of this study is to determine the
potential performance penalty introduced by using our approach, as well as the perform-
ance gain obtained when exploiting a combination of heterogeneous devices with different
computational capabilities.

The experiments have been executed on a host machine named Hydra, with two CPUs
Intel Xeon E5-2609 v3 @1.90GHz, 64Gb DDR3 main memory, and two GPUs: an NVIDIA's
GeForce Titan Z (named GPU-0) and a Titan Black X (named GPU-1). We exploit the two
GPU devices, and multiple CPU-cores organized in a single virtual device in our model.
For this test, we have decided to avoid performance effects derived from oversuscription or
hyperthreading. As our Multi-Controller library uses one host thread for each device to be
controlled, the number of CPU-cores we use to compute and execute kernels is 10.

The programs have been compiled using the CUDA Toolkit 8.0, and GCC 4.8.3. We have
used the flags, -O3, and -fopenmp to exploit parallelism when using a group of CPU-cores
as a computational unit. We have executed all the experiments ten times, registering the
lowest total execution times. We have also measured separately the times spent in copying
data forth to and back from the target devices, and the computation time of the kernels. We
include the time spent by our queue system inside the kernel computation cost.

We have tested three kinds of codes:

• A native CUDA implementation of the different benchmarks tested. We present meas-
ures obtained in one or both GPUs in our target system depending on the study. See the
right-most and/or the left-most columns in the figures discussed bellow. Cuda_Ref0:
Measures in NVIDIA's GeForce Titan Black Z, andCuda_Ref1: Measures in NVIDIA's
GeForce Titan Black X.

• CPU+GPU:This code, programmed using theMCtrl library, executes the programmed
application on two devices, a group of 10 CPU-cores, and an NVIDIA's GeForce Titan
Black Z. Different mappings have been tested, determined by the percentage of data
and computation assigned to each device.

• GPU+GPU: This code, programmed using the MCtrl library, executes the application
on the two GPUs available in the target system. Again, different mappings have been
tested, determined by the percentage of data and computation assigned to each device.

Figure 5.6 shows the performance results obtained by our proposal when the data, and
thus the computation, is divided among the group of CPU-cores and the NVIDIA's GeForce
Titan Black Z. In the applications where data transfers dominate the total time (Matrix
Addition and Black-Scholes benchmarks), we can achieve a better performance by giving
part of the computation to the group of CPU-cores. Despite the computational power of
the GPU accelerator, the computation division improves performance by reducing the time
spent in data transfers to/from the GPU.

i
i

i
i

i
i

i
i

90 | MULTI-DEVICE CONTROLLERS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

80 85 90 92.5 95 97.5 100 Cuda

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU % data

Matrix Addition CPU+GPU, SIZE=20000x20000

Computation
Data transfers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

80 85 90 92.5 95 97.5 100 Cuda

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU % data

BlackScholes CPU+GPU, SIZE= 3*10^8

Computation
Data transfers

 0

 200

 400

 600

 800

 1000

 1200

 1400

80 85 90 92.5 95 97.5 100 Cuda

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU % data

Matrix Multiplication CPU+GPU, SIZE=12800x12800

Computation
Data transfers

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

80 85 90 92.5 95 97.5 100 Cuda

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU % data

BlackScholes_2048 CPU+GPU, SIZE= 1*10^6

Computation
Data transfers

 0

 0.5

 1

 1.5

 2

 2.5

80 85 90 92.5 95 97.5 100 Cuda

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU % data

Mandelbrot CPU+GPU, SIZE=2048 x 2048 ITERATIONS=60000

Computation
Data transfers

Figure 5.6: Performance results (in seconds) for experiments on Hydra using a group of 10
CPU-cores and a GPU. The right-most columns show the result of the reference CUDA programs
run on the same GPU.

i
i

i
i

i
i

i
i

5.3 EXPERIMENTAL STUDY | 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Cuda_Ref0100 70 65 60 55 50 0 Cuda_Ref1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

Matrix Addition GPU+GPU, SIZE=20000x20000

Computation
Data transfers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Cuda_Ref0100 70 65 60 55 50 0 Cuda_Ref1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

BlackScholes GPU+GPU, SIZE= 3*10^8

Computation
Data transfers

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Cuda_Ref0100 70 65 60 55 50 0 Cuda_Ref1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

Matrix Multiplication GPU+GPU, SIZE=12800x12800

Computation
Data transfers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Cuda_Ref0100 70 65 60 55 50 0 Cuda_Ref1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

BlackScholes_2048 GPU+GPU, SIZE= 1*10^6

Computation
Data transfers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Cuda_Ref 100 80 75 70 65 60 0 Cuda_Ref-1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

Mandelbrot GPU+GPU, SIZE=2048 x 2048 ITERATIONS=60000

Computation
Data transfers

Figure 5.7: Performance results (in seconds) for experiments on Hydra using two different GPUs.
The left- and right-most columns show the results of the reference CUDA programs run on each
of the two GPUs considered in the study.

i
i

i
i

i
i

i
i

92 | MULTI-DEVICE CONTROLLERS

When the computational load is high, such as in the matrix multiplication, and Black-
Scholes_2048, the best performance is obtained by doing the whole computation in the GPU.
This is typical for this kind of programs that really suit the GPU computational model. For the
Mandelbrot benchmark, we observe that the partition of the computation obtains marginally
better performance results than the CUDA reference codes. This particular behaviour is
because of the irregular workload of this benchmark. When the CPU workload increases
(case of 80%), some pixels with a high computational cost rely on CPU threads (remember
the irregular workload of this benchmark), delaying the execution time and reducing the
performance of the application.

Figure 5.7 shows the performance results obtained when we divide the computation
between the two GPUs. When the computation load is really low and there are multiple
kernel launchings, the time spent in the queue managements (remind that these times are
taken into account in the computation time) can be noticeable, such in the BlackScholes_2048
case (where it takes approximately 0.04 seconds).

In our first prototype of the library, data transfers for several GPUs are still sequentialized
and not fully optimized, deriving in higher transfer times than the reference implementations.
Thus, in those applications where data transfers lead the execution time, the best performance
is obtained when the application is executed only in the most powerful GPU. However, when
the computation time is much higher than the communication times, a division of the
computation among the GPUs, proportional to their relative computation power for this
problem, improves the performance. For example, in our study, without taking into account
the data transfers, the kernel execution times are reduced the 34%, 25%, and 41% compared
to the best CUDA reference codes which use a single device, for the matrix multiplication,
Black-Scholes_2048 and Mandelbrot benchmarks respectively. This behaviour is shown in
the experimentation results.

5.4 Summary

In this chapter, we presented the Multi-Controller (MCtrl), an abstract entity implemented
in a library, that coordinates the management of heterogeneous devices, including acceler-
ators with different capabilities and sets of CPU-cores. This entity offers a global view of
the computation, transparently managing the coordination, data partition, mapping, and
execution of whole computations on their associated devices. Our solution allows the use of
simple generic kernels (portable across different device types), or specialized implementa-
tions defined and optimized using specific native or vendor programming models (such as
CUDA for NVIDIA's GPUs, or OpenMP for CPU-cores). The run-time system automatically
selects and deploys the most appropriate implementation of each kernel for each device,
managing the data movements and hiding the launching details. Results of an experimental
study with five study cases indicate that our abstraction allows the development of flexible

i
i

i
i

i
i

i
i

5.4 SUMMARY | 93

and highly efficient programs, that adapt to the heterogeneous environment. On-going and
future work include studying the support for other kinds of accelerators, and the effect of
more sophisticated techniques for data movement that eliminate unnecessary overheads.

i
i

i
i

i
i

i
i

94 | MULTI-DEVICE CONTROLLERS

i
i

i
i

i
i

i
i

Part II

Automatizing the data
management for

distributed-memory spaces in
heterogeneous systems

W e presented in the first part of the thesis, a programming model that simplifies the
parallel programming on heterogeneous systems, defining a heterogeneous system as

a machine with a host and several different accelerators. The separated memory space of the
different devices that can compound a heterogeneous system makes necessary the execution
of data communications in applications with data dependences. Thus, the Multi-controller
approach presented in this first part is valid only for applications where there is no data
dependences.

In the next part of the thesis, we present the design, implementation, and evaluation of
new techniques in order to calculate automatically the data communications needed for the
execution of applications with data dependences in any kind of heterogeneous systems. The
extreme cases with separated memory space are the distributed-memory systems, where the
communication across devices needs to cross internal node buses, and potentially network
infrastructure across nodes. In this second part we present a set of generic and automatic tech-
niques that automatize several parallel programming issues related to distributed-memory

i
i

i
i

i
i

i
i

96 |

scenarios, making transparent to the programmer issues related to the data transfers, data
partition, and data allocation.

i
i

i
i

i
i

i
i

CHAPTER 6

State of the art on automatic
management of

distributed-memory spaces

I n this chapter we introduce the reader to the state-of-the art approaches proposed to
tackle the automatic management of data movements and synchronizations for processes

executed in environments with disjoint memory spaces, and when data-dependences are an
issues. This includes techniques that are used in both, compilers and runtime systems, for code
generation, automatic parallelization techniques, and for transparent task communication
and synchronization. We analyze the state-of-the art techniques and their implementations,
in order to identify their limitations. These limitations define the goals of the part II of this
Thesis.

- 97 -

i
i

i
i

i
i

i
i

98 | STATE OF THE ART ON AUTOMATIC MANAGEMENT OF DISTRIBUTED-MEMORY SPACES

6.1 Motivation and related Work

There are many proposals of abstractions and tools to simplify the management of distributed
data and computation for parallel programming. Taking into account the high latencies
of accessing remote data and minimizing the number and volume of communications is
key. For example, the PGAS (Partitioned Global Address Space) models [126] present an
abstraction to work with mixed distributed- and shared-memory environments. The pro-
grammer uses the same interface to access local and remote data transparently, but they
are aware of the locality of data and can take it into account. One of the most advanced
and known PGAS programming models is Chapel [31]. It proposes a separation of domain
and mapping modules to generate distributed arrays. However, the best communication
aggregation methods presented so far for Chapel abstractions are restricted to specific op-
erations, or domain mapping properties. For example, the work in [118] is restricted to
global array assignments with block or cyclic distributions. The work in [119] presents a
symbolic substitution of mapping attributes in affine access expressions. It only works for
cyclic or block-cyclic distributions. Moreover, the Chapel runtime cannot automatically
aggregate several expressions across different loops to generate the full task footprint. It
needs to rely on non-aggregate communications when the whole set of data accessed by an
expression is not fully allocated in the same remote processor, generating many unnecessary
communication overheads in the general case. The programmer can explicitly introduce
aggregated communications with an extra development effort. For example, the work [68]
presents an approach to manually build aggregated communications, with a low level of
abstraction, similar to the one used for UPC [53] or Hitmap [55].

Many task-oriented programming approaches (like StarSs, OmpSs [28, 108], or the works
presented in [14, 34, 35, 82]), that also simplify the parallel programming, are based on iter-
ators to generate pools of tasks with explicit input and output working sets. The working
sets analysis allows dependence graphs to be built. However, due to the task execution
model based on dynamic scheduling with task-queues, synchronizations, and dynamic map-
ping information, these models cannot derive aggregated communication calculations for
groups of tasks statically. Moreover, the use of these task-oriented approaches in distributed
memory leads to performance penalties, when comparing to similar static pre-generated and
tuned codes, in the general case, due to the task creation and destruction, the management
of distributed queues, the synchronization and load balancing mechanisms, and the data
communications due to dynamic task scheduling and/or migration. In data-flow approaches,
such as the distributed-memory extension for FastFlow [2], the task construction implies
a data partition and a dynamic control of task that leads to balanced load. However, this
dynamic scheduling prevents the exploitation of affinities and data locality across tasks.
Another example is STAPL, STAPL [5] provides, through the usage of the STL library [122], a
model of parallelism that supports recursive parallelism and recursive data decomposition,
generating a data dependence graph to distribute tasks among the processes ensuring the
right execution order.

i
i

i
i

i
i

i
i

6.1 MOTIVATION AND RELATEDWORK | 99

Many automatic techniques for code generation have the goal of relieving to the pro-
grammer to deal with many implementation issues. Classical examples include the works
developed in the context of HPF (High Performance Fortran). An example is the dHPF
compiler [88]. It applies techniques such as the one presented in [36], that can reduce both
communication frequency and redundant data transfer in compiler-generated code for regu-
lar, data parallel applications. However, this kind of techniques are applied at compile time
by the dHPF compiler in order to generate code. Thus, these solutions are not flexible to use
any kind of data distribution policy, specifically those that use non-parametrizable runtime
or data-dependent information.

The polyhedral model has been proved to be a useful tool to transform and generate
parallel programs from sequential codes with affine nested loops [16] (having a lack of support
of other kinds of non-affine applications). It can also be used to automatically generate code
for distributed-memory platforms [4]. The dependence analysis supported by the model
allows the generation of the code that: (1) identifies which values should be communicated
across processes, (2) performs the packing/unpacking of the data, and (3) executes the proper
communication operations. All the polyhedral techniques presented so far for distributed
memory need to parametrize the iteration space polyhedra and analyze dependences at
compile time. Griebl [38] presents a model to use the polyhedral model on distributed-
memory systems. However, his technique produces many redundant communication. For
distributed memory, the best communication calculation methods so far (see e.g. [18, 21, 42,
115, 143]) compute communications for sequences of arbitrary nested loops with regular
(affine) accesses, also known as affine loop nests. The loops are transformed, tiled and finally
parallelized. Communications cannot be calculated across different sections of affine loop
nests unless loop fusion can be done. These techniques analyze at compile time the footprint
of tile data used by other tiles. This implies that the tile size must be fixed at compile time
and must be the same for all the machines involved in the computation. Moreover, using
these methods, there are still cases for duplicated or unnecessary data communications [21].

There are tools which bring together the advantages of the polyhedral model and the task-
oriented programming proposals [80, 81]. These approaches reduce global barriers in shared-
and distributed-memory parallel codes by generating tasks with calculated dependences and
footprints. However, this approach also performs a data partition after the application of
tiling techniques with the tile sizes predefined at compile time [25]. The best tile size depends,
among other things, on the architecture details of the target machine where the program will
be executed [87]. Choosing tile sizes at compile time prevents automatic tuning for different
devices in heterogeneous environments. There are some proposals such as [66] that generate
loops that iterate over full rectangular tiles, with unknown parametric tile size. However, it
has not been proof that these techniques can be applied with the current communication
code generators for distributed-memory systems.

Other similar approaches based on compile-time intersections of parametric polyhedra
have been proposed to reduce data transfers in accelerators, such as FPGAS [109], where
communications are calculated and optimized only between the host and the accelerator.

i
i

i
i

i
i

i
i

100 | STATE OF THE ART ON AUTOMATIC MANAGEMENT OF DISTRIBUTED-MEMORY SPACES

Distributed-memory programs introduce the complexity of dealing with data partition
policies, and different communication patterns across a number of processes only known at
runtime.

The work in [83] presents a hybrid compiler-runtime translator scheme, that calculates
the communication pattern needed among SPMD (Single Program Multiple Data) blocks.
However, they only support regular and repetitive applications where the communication
pattern is the same in all the iterations of the outer serial loop that encloses the SPMD blocks.
This constraint is also found in other distributed-memory approaches that integrate classical
polyhedral techniques for regular codes, with inspector/executor techniques [113] in order
to support irregular or indirect data access expressions. This inspector/executor technique
exchanges control data before actual communications to avoid traversing the whole iteration
space of the parallelized loop on every process.

Fortran-D compiler techniques where presented two decades ago [70] for calculating
communication in SPMD programs. They use domain calculations to generate, at compile
time, different communication code depending on the data partition selected. This constrain
avoids to change data partition features at runtime. However, adapting the data partition
based on the details of the targetmachines is key to achieve a good performance and a balanced
workload, especially in distributed-memory systems that include machines with different
architectures. Adapting these compiler-based techniques to do part of the calculations at
runtime, to take into account details about the platform configuration, partition selection,
and input characteristics, introduces a new research perspective on our search for tools and
techniques to automatically manage distributed-memory spaces.

6.1.1 Parallel libraries

There are many works that provide external libraries to ease the parallel programming, using
distributed data structures with a global view. One of them is DASH [51, 52]. DASH is
a realization of the PGAS (partitioned global address space) model in the form of a C++
template library. However, once an array is mapped, it does not provide specific methods for
data redistributions.

The STL library has been one of themost parallelized and studied libraries in the literature.
For example, the work in [129] presents an implementation for multicore architectures of the
STL library using Cilk++. Works like [120, 123] developed parallel versions of this library
for shared- and distributed-memory systems using OpenMP and MPI respectively. These
approaches only parallelize some selected functions of this library, without providing any
programming abstraction out of the STL library scope.

i
i

i
i

i
i

i
i

6.2 SUMMARY | 101

6.2 Summary

In this chapter we analyzed the state-of-the-art approaches proposed to tackle automatic
management of distributed-memory spaces.

Some of the limitations that we have found are the following:

• Communication aggregation methods are not advanced enough in the PGAS mod-
els. The most sophisticated methods are restricted to specific operations, or domain
mapping properties.

• Task-oriented programming models cannot statically derive aggregated communic-
ation calculations for groups of tasks. Moreover, in the general case, they have per-
formance penalties due to the task creation and destruction, the management of
distributed queues, the synchronization and load balancing mechanisms, and the data
communications due to dynamic task scheduling and/or migration.

• In polyhedral model approaches:

– Communications cannot be calculated across different sections of affine loop
nests unless loop fusion can be done.

– Communication codes are generated based on tiles. Thus, the tile size must be
fixed at compile time and must be the same for all the machines involved in the
computation.

– There are still cases for duplicated or unnecessary data communications.

– Runtime cost in the communication management proportional to the problem
sizes.

In the following chapters of the Thesis, we present several techniques that solve some of
these limitations.

i
i

i
i

i
i

i
i

102 | STATE OF THE ART ON AUTOMATIC MANAGEMENT OF DISTRIBUTED-MEMORY SPACES

i
i

i
i

i
i

i
i

CHAPTER 7

Analyzing the current limitations of
communication code generators

I n order to better understand the reach and limitations of existing modern techniques to
automatically generate communication codes at compile time, we have carried out a deep

study of one of the most advanced and sophisticated method presented so far, in the context
of polyhedral model transformations.

In this chapter we study the codes generated by the FOP scheme [42]. Comparing
with others, this is the one that reduces more the communicated volume of data, being the
generated code also parametric in the number of processes and problem sizes. We present
a study of the extra cost introduced at run-time by the generated codes to manage the
communications. We do an asymptotic complexity analysis in terms of two main run-time
parameters: The problem sizeN , measured as the number of data elements to be processed,
and the number of processors P . Our complexity model highlights some potential scalability
limitations in terms of these two parameters (N and P) , in the current implementations of
these techniques (Pluto compiler framework [22]). In addition, in this chapter, we identify
and isolate one of this limitations, related to the application of the distribution policy used
to schedule the iterations of a parallelized loop. We present for deterministic distribution
policies, a simple implementation alternative, previously exploited in Hitmap [55], that
eliminates this specific scalability problem.

- 103 -

i
i

i
i

i
i

i
i

104 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

7.1 The FOP communication scheme

The FOP communication scheme [42] is a model for the automatic generation of commu-
nication code for distributed-memory parallel programs, in the context of polyhedral code
transformations. It is based in data-dependence analysis across tiles, for parallel programs
that distribute the iterations of tiled loops. It has been designed to reduce the volume of data
communicated across processors, compared with other state-of-the-art systems that also
generate automatically communication code for affine-loop nests. It has been also proved
that it provides good performance for small and medium sized data sets, and small number
of distributed-memory processes [42]. In that work, the authors describe the conceptual
approach and the solution design in detail. An implementation of this scheme is included
in the current version of the Pluto compiler [22]. In this section, we summarize the main
features of the FOP scheme, and some design and implementation decisions to generate the
code.

The code dedicated to calculate and execute communications is inserted at the end of
distributed loops. The analysis of RAW dependences is done separately for each different
data structure (array variable) involved in a distributed loop nest. For a given iteration of a
distributed loop (a given combination of loop index values), the FO (flow-out) set is defined
as the set of data generated/written during the iteration, that is required/read during the
execution of other iterations. At compile time, the FOP scheme determines a dependences-
partition. That means, a partition of the flow-out set in subsets of target iterations that are
located in different tiles. Each subset is treated independently, leading to a different piece
of communication code. This partition is application dependent. The generated code for
a given partition can have two different flavors. Multicast operations that send all the data
in a partition to every processor that requires data from it. And Unicast operations that
issue a different communication for each iteration that requires data from this partition. To
avoid sending more than one time the same data to the same processor, unicast operations
are only chosen when it is possible to determine, at compile or run-time, that the receiving
iterations are all scheduled at different processors. The authors of FOP propose some rules to
determine when it is safe to introduce unicast operations, being multicast the default choice.
In this work we will focus on the default and less complex multicast operations.

For multicast operations, FOP introduces one piece of code for each distributed loop,
part of the dependences-partition, and array variable. The code uses several auxiliary data
structures: (1) One data buffer per processor involved in the computation, to store the data to
be sent; (2) One single receive buffer to store all the data received from other processors; and
(3) two counters per processor, to store the amount of data to be sent or received to/from
each remote processor. Each piece of code contain three stages:

1. Pack: Pack data while identifying target processors. The iterations space of the distrib-
uted loop assigned to the local processor is traversed. For each iteration a function,
generated with application specific information (σ), is used to identify which other

i
i

i
i

i
i

i
i

7.2 COST MODEL | 105

iterations (and thus, processors) require data from this partition and iteration. The
data are packed (copied) into the corresponding output buffers, and the counters that
measure the data to be sent to each other processor are updated.

2. Coordination and communication: The interchange of communication sizes across
processors, and the issue of the required point-to-point communications. The coordin-
ation step is done with the standard all-to-all MPI collective operation. Each processor
sends the value of each output-buffer counter to the corresponding receiving process.
This interchange avoids the need for traversing the iteration space scheduled on any
other processor (doing the same analysis as for packing), in order to obtain the sizes
of data that local process expects to receive from each other remote processor. After
the coordination step, asynchronous send and receive operations, with a non-zero
value in the corresponding counter, are issued for each processor. With all the receive
counters available, it is possible to compute displacements to use one single buffer for
all the receive operations.

3. Unpack: Unpack received data. The whole iteration space of the distributed loops
is traversed identifying which iterations are scheduled on the remote processors for
which local process has received data. For each one of these iterations, it is tested if
the local processor is one of the receivers of the data for this partition and iteration
(again with a function specifically generated for this application). In that case, the data
is unpacked from the buffer to the actual array variable.

7.2 Cost model

In this section we present a cost model for the run-time computational effort of the com-
munication management code introduced by the FOP scheme [42]. We use as reference for
specific design decisions the codes introduced by the current implementation of Pluto. Our
model measures the asymptotic cost of the calculations needed to issue the communications
in terms of two run-time parameters: Number of processors (P), and Problem size (N), meas-
ured as the number of data elements to be processed. The model does not take into account
the actual cost of the communications, which is dependent on external factors related to
the platform and the communication topology. We model only the extra costs introduced
by the automatically generated code to prepare and launch the communication activities
(calculations to pack/unpack, and other local coordination activities). The objective is to find
scalability limitations introduced when applying the scheme, that could be eliminated by
new designs or implementation changes.

As commented in the previous section, in this work we will focus on the cost of the lower
complexity multicast operations.

i
i

i
i

i
i

i
i

106 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

1 for (t = 0; t < T; t++) {
2 for (i = 2; i < N - 1; i++) {
3 b[i] = 0.33333 * (a[i-1] + a[i] + a[i + 1]);
4 }
5 for (j = 2; j < N - 1; j++) {
6 a[j] = b[j];
7 }
8 }

Figure 7.1: Sequential code of the Jacobi-1D benchmark.

We use as example in the discussion of the cost model the Jacobi-1D benchmark from
the Polybench [110] (see sequential algorithm in Fig. 7.1). It is one of the simplest example
in the Polybench benchmark that needs communication in a distributed environment. An
excerpt of the distributed-memory code generated by Pluto is shown in Fig. 7.2.

7.2.1 General cost for a distributed loop
For simplicity of the discussion, let us consider a single distributed loop L, with an iteration
index t. LetD(t) ⊂ Z+ be the Domain of t, that is the subset of iterations that are traversed
by the loop index. Let L◦ be the run-time cost of calculating the communications needed for
all the iterations ofD(t) scheduled to a given processor. O(L◦) is the upper-bound of L◦.
Constant factors that are application dependent, and are not affected by run-time parameters
will be denoted with cname, where name will be a single lower-case letter.

Each combination of distributed loop, variable, and part of the dependences partition,
leads to one Instance of communication code. Figure. 7.2, lines 6 to 39 show the code
generated for one communication instance associated to the array variable b in the Jacobi
example.

Let cz be the number of combinations of different array variables, and parts in the depend-
ences partition introduced by the FOP scheme for the loop L, andO(y◦) the upper-bound
of the cost of one communication instance. Thus, the estimation of the total cost is:

O(L◦) = cz ×O(y◦)

The cost of one instance of communication y◦ is the sum of the costs of its three consec-
utive stages previously described: packing, coordination, and unpacking:

O(y◦) = O(pack◦ + coord◦ + unpack◦)

In the following sections, we model the execution of one instance of code for a generic
iteration of the outer loops. We will focus on the outer loops iterations that lead to maximum
potential parallelism of the distributed loops.

i
i

i
i

i
i

i
i

7.2 COST MODEL | 107

1 if ((N >= 1) && (T >= 1) && (N >= 4)) {
2 for (t2 = -1; t2 <= floord (3 * T + N - 4, 32); t2++) {
3 /* Sequential Code */
4
5 /* End sequential code */
6 /* Communications calculation of array b */
7 _lb_dist = max (ceild (2 * t2, 3), ceild (32 * t2 - T + 1, 32));
8 _ub_dist = min (min (floord (2 * T + N - 4, 32),
9 floord (64 * t2 + N + 60, 96)), t2);
10 polyrt_loop_dist (_lb_dist, _ub_dist, nprocs, my_rank, &lbp, &ubp);
11 for (t4 = lbp; t4 <= ubp; t4++) {
12 clear_sender_receiver_lists (nprocs);
13 sigma_b_1_0 (t2, t4, T, N, my_rank, nprocs);
14 for (__p = 0; __p < nprocs; __p++) {
15 if (receiver_list[__p] != 0) {
16 send_counts_b[__p] = pack_b_1_0 (t2, t4, send_buf_b[__p],
17 send_counts_b[__p]);
18 } } }
19 if (t2 <= floord (3 * T + N - 5, 32)) {
20 MPI_Alltoall (send_counts_b, ..., recv_counts_b, ...);
21 req_count = 0;
22 for (__p = 0; __p < nprocs; __p++)
23 if (send_counts_b[__p] >= 1)
24 MPI_Isend (send_buf_b[__p], send_counts_b[__p],...);
25 for (__p = 0; __p < nprocs; __p++)
26 if (recv_counts_b[__p] >= 1)
27 MPI_Irecv (recv_buf_b + displs_b[__p], ...);
28 MPI_Waitall (req_count, reqs, stats);
29 for (__p = 0; __p < nprocs; __p++) {
30 send_counts_b[__p] = 0;
31 curr_displs_b[__p] = displs_b[__p];
32 } }
33 for (t4 = _lb_dist; t4 <= _ub_dist; t4++) {
34 proc = pi_0 (t2, t4, T, N, nprocs);
35 if ((my_rank != proc) && (recv_counts_b[proc] > 0)) {
36 if (is_receiver_b_1_0 (t2, t4, T, N, my_rank, nprocs) !=0) {
37 curr_displs_b[proc] = unpack_b_1_0 (t2, t4, recv_buf_b,
38 curr_displs_b[proc]);
39 } } }
40 } }

Figure 7.2: Excerpt of the communication generated code by Pluto compiler for the array b for
the Jacobi-1D solver using the FOP scheme

i
i

i
i

i
i

i
i

108 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

7.2.2 Problem size and number of iterations
The loops parallelized by the polyhedral model tools represent a transformed space of the
original loops. The cardinality of the iterations set of a distributed loop is a function of the
problem size |D(t)| = f(N), that can be determined in terms of the transformations applied.
We are mainly interested in the loops where the cardinality grows asymptotically withN ,
allowing the exploitation of more parallelism on bigger problem sizes. Some constants are
introduced by the transformations that reduce the overall cost. For example, when tiling is
applied, the tile size ct appears as a divisor onN , |D(t)| = f(N/ct), with an asymptotic
upper-bound still in the order ofN : |D(t)| ∈ O(N).

7.2.3 Distribution policy
A Distribution Policy function Π : D(t),N→ P(D(t)) is used to determine the subset of a
domainD(t) that is scheduled on a processor rank p ∈ [0, P − 1]. The Inverse Distribution
Policy function, π : Z→ [0, P − 1], maps each index of the domain to the corresponding
processor rank. In general, distribution policies try to obtain a good load balance. Thus,
we assume that the number of iterations scheduled on each processor is similar: ∀p ∈
[0, P − 1], |Π(D(t), p)| ' f(N)/P . The run-time cost of applying these functions is
denoted with Π◦, and π◦ respectively.

The function Π is used to compute the iterations of the loop, scheduled to the local
process. In the example code of Fig. 7.2, lines 7, 8 and 9 calculate the lower and upper limits
of the iteration space to be distributed _lb_dist and _ub_dist. These are the inputs for the Π
function implemented in the polyrt_loop_dist function (line 10). The outputs, lbp and ubp, are
the lower and upper limits of the locally scheduled iterations. The cost of this function is
associated with the parallelization of the algorithm. Thus, we do not consider it as a specific
cost introduced by the communication calculations.

7.2.4 Packing stage
The packing stage traverses the subset of locally scheduled iterations. See the loop in lines 11
to 18 in Fig. 7.2, that traverses iterations from lbp to ubp. It has two main contributions to
the overall cost that are computed for each iteration considered.

First, each iteration applies a function σ(i), specifically generated for each application,
to obtain the list of receiving processors. The sigma function contains a constant number
of conditionals cc, dependent on the application source code. Each conditional potentially
applies π to obtain the rank of the processor that has a target iteration. Thus, obtaining the
target processors for all the iterations scheduled to a processor, is done in f(N)/P×cc×π◦.

Second, each iteration traverses the list of processors to detect the ones that should
receive data from the local process. This is done in O(P), with a very small constant cs,
as it executes a simple conditional. See line 15 in Fig. 7.2. The actual packing operation is
done only for the processors detected as receivers (condition evaluated to true). The code

i
i

i
i

i
i

i
i

7.2 COST MODEL | 109

for packing data in the output buffers is application dependent and only traverses the data
that is going to be sent. However, data are packed (copied) into a different buffer for each
receiving processor. Thus, there could be multiples copies of the same data. In the worst
case, all processors should receive the same data. This is dependent on the communication
structure of the application. For example, neighbor synchronization communications have
O(1) number of processors involved for each data subset, while some communications in LU
reductions result inO(P) processors involved. Let us model the cardinality of the number
of communications with an h-relation function h(P). Let cv be the mean volume of data
to be sent by one iteration for the array variable considered. This is typically a constant
determined by the application and transformations applied. Thus, the cost of this second
part of the packing stage can be estimated with: f(N)/P × (cs × P + cv × h(P)). The
overall cost of the whole packing stage is estimated as:

pack◦ = f(N)/P × (cc × π◦ + cs × P + cv × h(P))

7.2.5 Coordination and communication stage
The coordination stage includes several actions, see lines 19 to 32 in Fig. 7.2. It starts with
an MPI all-to-all collective communication operation to interchange counters. In general,
this type of all-to-all communications are assumed to be done in O(P). Then, the actual
point-to-point communications needed are launched traversing the processor ranks inO(P).
The actual cost of the communications is not modelled for this work, only the preparation
and launching activities. Finally, a last loop is executed that also traverses the processor
ranks inO(P) for simple bookkeeping operations. We model the overall cost of this stage
(without actual communication costs) by:

coord◦ = P

7.2.6 Unpacking stage
The data received from a processor have been packed following the iteration order. Thus,
they should be unpacked in the same order. See lines 33 to 39 in Fig. 7.2. This stage traverses
the whole iteration space of the distributed loop (from _lb_dist to _ub_dist in the example
code), using the π function to determine which iterations are scheduled in remote processors.
The cost of this operation is modelled with f(N)× π◦.

A second part of the cost appears only for iterations on remote processors from which
data have been received at the local process during the communication stage. In the worst
case, this condition check, for a given iteration, can be satisfied for all the rest ofP processors.
However, we can model again the number of iterations that are going to be detected as valid
across the whole space with the h-relation function h(P) of the application. Each locally
scheduled iteration produces a mean ofh(P) communications received from other iterations.
For these set of valid iterations, a second check is done using a tailored function that contains

i
i

i
i

i
i

i
i

110 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

one or more pieces of code (a constant number cd of them, dependent on the source code),
internally applying the π function. Finally, the actual unpack operation is done only once
for each data element, and the cost directly depends on the volume of data communicated v.
The overall cost of the whole unpacking stage is modelled by:

unpack◦ = f(N)× π◦ + f(N)/P × h(P)× (π◦ + cd + v)

7.2.7 Total cost
Our final cost model is dependent on two functions, and some constants, that should be
determined for each application: f(N), h(P), v, cc, cd. As we are mainly interested in the
asymptotic behaviour, it should not be difficult to determine the order of the functions in
terms ofN and P . The constants only give us a rough idea of the weight of each part of the
formula, but they cannot be considered alone for a really precise model, as the amount of
arithmetical operations generated by the loop transformations to access the data elements,
pack/unpack them, and similar operations, has not been considered.

The overall cost of calculating a generic communication instance y◦, can be estimated as
the accumulation of the three stages: y◦ = pack◦ + coord◦ + unpack◦.

y◦ = f(N)/P × (cc × π◦ + cs × P + cv × h(P))
+P

+f(N)× π◦ + f(N)/P × h(P)× (π◦ + cd + v)

After multiplicative constant factors elimination, and some simplification the asymptotic
upper-bound can be modelled as:

O(y◦) = O(f(N)× π◦ + f(N)/P × π◦ × h(P) + P)

7.3 Proposal: Implementation alternative

As it can be observed in the cost model formula, a key operation is the identification of the
processor that owns an iteration of the distributed loop. This operation is performed by
using the inverse distribution policy function π. It appears several times in the cost model,
as a multiplier factor.

Given an unknown distribution policy function Π, a simple way to build π is to execute
a loop that applies Π to each processor rank, checking if the iteration parameter is in the
resulting set. See pseudo-code in Fig. 7.3 (top left). For example, the run-time Polyrt library
version included in the current Pluto distribution, contains only one Π function: A classical
block distribution policy. See pseudocode in Fig. 7.3 (top right). With the current Pluto's
implementation, the cost of the functions is: O(Π◦) = O(1), andO(π◦) = O(P).

i
i

i
i

i
i

i
i

7.3 PROPOSAL: IMPLEMENTATION ALTERNATIVE | 111

1

2

3 function pi (Dom d , int i , int P)
4 do p = 0, P -1
5 d ' = PI (d ,p)
6 if i in d ' then return p
7 enddo
8

9

1 function PI (Dom d , int p , int P)
2 if (p < |d |% P)
3 r. lb = d. lb + (| d |/ P)* p + p
4 r. ub = r. lb + (| d |/ P)
5 else
6 r. lb = d. lb + (| d |/ P)* p + |d |% P
7 r. ub = r. lb + (| d |/ P) - 1
8 endif
9 return r

1 function pi_Alt (Dom d , int i , int P)
2 off = i - d. lb ;
3 lim = (| d |/ P + 1)*(| d |% P)
4 if (off < lim)
5 return off /(| d |/ P + 1)
6 else
7 return (off - lim)/(| d |/ P) + |d |% P
8 endif

Figure 7.3: Pseudo-codes of the original π (top left) and Π (top right) functions, and our altern-
ative implementation proposed for π (bottom). Dom < lb, ub > represents a tuple with the
lower and upper bound of a contiguous 1-dimensional iteration space. |d| = d.ub − d.lb + 1
represents the domain cardinality.

For more generic partition policies the cost may increase, because checking if an index is
inside a block range can be done inO(1), but for a generic set of n indexes the search cost is
at leastO(logn) if it is sorted, orO(n) if it is is not. In this last case the cost of π could go
up toO(π◦) = O(P ×N).

We propose to use a different approach previously used in Hitmap [55]. In Hitmap, the
programmer of the distribution policies is forced to develop plug-ins that include both the
direct and the inverse distribution-policy functions separately. In Hitmap, the classical parti-
tion policies (block, cyclic, etc.) have implementations where the cost of Π◦ and π◦ is quite
similar, and it is alwaysO(1). This solution can be exploited for any deterministic distribu-
tion policy based on an invertible function. For non-invertible functions the programmer
may chose to pay the extra run-time cost factor, or an extra cost in memory footprint. It is
always possible to store in an array the index of the assigned processor for all the elements in
the iteration space, keeping theO(1) run-time cost for the π function.

We have introduced in Polyrt (Pluto's runtime helper functions) a direct implementation
of the inverse distribution policy for block partitions, eliminating a multiplier factor of P in
several stages of the communication calculation. See pseudocode in Fig. 7.3 (bottom). The
asymptotic impact of this change can be seen in the cost model. After substituting the costs
of the π function derived from the current Pluto implementation (O(π◦) = O(P)), and

i
i

i
i

i
i

i
i

112 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

eliminating the constant multiplier factors, the result is:

O(y◦) = (f(N)× P + f(N)× h(P) + P)

With our alternative implementation, the multiplier P factors, coming from the π function
disappear:

O(y◦) = (f(N) + f(N)/P × h(P) + P)

It is specially remarkable that in the original implementation, the size problem is multiplied
by the number of processors during the unpacking stage. In the following sections, we present
empirical evidence of the impact of creating a specific π function for each distribution policy
Π, directly implementing the inverse function with a cost bounded byO(1).

7.4 Case study: 1-D Jacobi

To show how to apply the cost model, we have chosen the simplest case study, the Jacobi-1D
program [67]. This application is a good example to study because: (1) the code produced
by Pluto includes only one distributed loop with multicast operations; (2) it has a simple
neighbor synchronization communication structure; and (3) it is very easy to find proper
approximations for the application-dependent functions. Refer generated code on Fig. 7.2.

7.4.1 Cost model parametrization
The code has been generated using the default tile sizes in Pluto (ct = 32 iterations for any
tiled loop). The function that computes the number of iterations in the transformed parallel
loop, has two input parameters: f(N,T). WhereN is the array size, and T is the number
of iterations of the original sequential code before transformations. The formula used to
compute the limits of the distributed loop index (line 11 and 33) depends on the value of the
outer loop index t2 (see lines 7 to 9 in Fig. 7.2). These loops create a pipelined execution.
During the program progress, the amount of distributed iterations of the internal loops
(loops in lines 11 and 33) grows, it keeps stable for a while, and then decreases. The maximum
degree of parallelism obtained in the stable phase is related to the problem size parameters.
We have experimentally determined that it can be approximated with: if (3T ≥ N), then
f(N,T) ' 0.01N ; if (3T < N), then lim f(N,T)T →∞ = 3.125T . Thus, f(N,T) grows
linearly with the problem size parametersO(f(N,T)) = O(min(N, 3T)). For simplicity,
let us assume that T is always big enough to obtain the maximum degree of parallelism for a
given input array size. Thus,O(f(N)) = O(N).

There are two communications instances, one for array a, and one for array b. Thus, cz =
2. The h-relation function h(P) is typicallyO(1) in neighbor synchronization applications.
Indeed, experimental measures with the generated code for the Jacobi-1D program show
that the mean values of the h-relation across iterations and processors are: h̄(P) ' 1 for the

i
i

i
i

i
i

i
i

7.4 CASE STUDY: 1-D JACOBI | 113

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1000 5000 10000 50000 100000 500000 1000000

T
im

e
 (

s
e

c
.)

N (array size)

Simulation 1d-Jacobi (P = 5,000)

Packing Org

Packing Alt

Unpacking Org

Unpacking Alt

Computation

 1e-06

 0.0001

 0.01

 1

 100

 10000

100 500 1000 5000 10000

T
im

e
 (

s
e

c
.)

P (# processors)

Simulation 1d-Jacobi (N = 1,000,000)

Packing Org

Packing Alt

Unpacking Org

Unpacking Alt

Computation

Figure 7.4: Execution times with the original and alternative π function with different problem
sizes N and different number of processes P

code instance generated for the array a, and h̄(P) ' 0.25 for the code instance generated
for the array b. The data volume cv communicated on each distributed iteration has been
also measured: cv = 188 data elements for a array, and cv = 63 data elements for b array.
Inspecting the generated code, we observe that the other constant values are the following.
For the a array cc = 7, cd = 7, and for the b array cc = 1, cd = 1.

For an asymptotic behaviour study, we can nevertheless ignore the application constants,
and simplify the resulting model for the overall cost of the communications needed for one
iteration of the outer loop as:

O(L◦) = O(N × π◦ +N/P × π◦ + P)

After substituting the costs of the π function derived from the current Pluto implement-
ation, the result is:

O(L◦) = O(N × P +N + P)

With our alternative implementation, multiplier P factors coming from the π function
disappear:

O(L◦) = O(N +N/P + P)

7.4.2 Simulation study
Doing real experiments for big data sizes, and large number of processors, require a huge
amount of computation time in supercomputer infrastructures. Fortunately, we can modify
the codes generated to simulate a given amount of the outer loop iterations in a chosen
processor, with the desiredN and P parameters, using a reduced amount of memory. This
allow us to perform an empirical study in order to investigate the effects of scaling theN
and P parameters to sizes that resemble high-end supercomputers. Experimental results in
a smaller real case and machine are presented in Sect. 7.5.

i
i

i
i

i
i

i
i

114 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

Themodifications needed in the generated code of the Jacobi-1D example include: (1)
Add some code to read parameters for the chosen limits for the outer loop (t2 index); (2)
Change the declarations of the a and b arrays to have a small fixed size (4096 elements); (3)
Modify all array accesses to use the resulting index modulo 4096 to stay into the fixed arrays
boundaries; (4) Eliminate the MPI calls; (5) At the beginning of each t2 iteration, compute
locally the send counters for all the remote processors, in order to simulate the all-to-all MPI
communication eliminated, that coordinates the communication sizes across processors.
This is done out of the code sections that are measured with time counters.

We preserve the same time measuring mechanisms included in the Pluto original code,
for the computation section, and for each one of the three communication calculation stages.
The data results produced by this simulation are not correct. The communication codes
pack and unpack dummy values in the buffers, and in the constricted arrays. However, all
the communication preparation calculations, and packing/unpacking operations, are done
exactly as in the original code. Thus, the time measures are consistent with the real case,
except for the actual communication costs which are intentionally not included or considered
in the study.

We discuss results obtained using the simulation program in a PC machine with an
Intel-i3 M370 (2.4 GHz) CPU, running a Linux 3.2.29 kernel. The native compiler used
is GCC v4.7.1, with the optimization flag −O3. We have compiled two versions of the
simulation code: One using the original implementation of the π function (Org), and one
using the alternative implementation of the inverse function (Alt). The programs are executed
with a large range of problem sizes (N ∈ [103, 106], T = N/3), and number of processors
(P ∈ [102, 104]). The simulation starts at the first iteration of the outer loop t2, where
the maximum range of the distributed loop (loop with the t4 index) is achieved. Then, the
code runs 100 consecutive iterations of t2. Measures have been replicated with arbitrary
processor identifiers p = 4, 17, 29, ..., obtaining the same results.

Figure 7.4 shows the measured cost for 100 iterations of the communication code stages
of the original (Org) program and the alternative code (Alt), when fixing one of the run-time
parameters (N or P). The execution times of the sequential part of the code, that do the
actual computation, are also shown with a line. Notice the logarithmic scale on y-axis.

We can observe with the original π function implementation how fast the calculations
associated with communication code exceed by orders of magnitude the computation time
when the parameters grow. The product ofN and P in the unpacking code due to the cost
of the π function dominates the cost, growing to more than one minute of clock time for big
problem sizes, or a high number of processors.

With our proposed alternative implementation, the P multiplier introduced by the π
function disappears. It can be seen in the Fig. 7.4 how the unpacking part of the code is no
more affected by it. When the number of processors P grows, the amount of work to be
done by each local process is proportionally reduced. Nevertheless, the communication code
cost is still dependent on the overall problem size. In our experiments, it exceeds the cost of
the computation in one order of magnitude for enough number of processors. We can see

i
i

i
i

i
i

i
i

7.5 EXPERIMENTAL STUDY | 115

in the Fig. 7.4 how the cost of the unpacking function grows faster than the computation
effort for big problem sizes. This is one of the main limitations found in our analysis of the
state-of-the-art approaches, for the problem addressed in this part of the Thesis.

7.5 Experimental Study

In this section we discuss a real experimental study performed to verify that the asymptotic
behaviour of real codes, when they are executed in real machines, follows the same behaviour
than the simulation results, and can be predicted using the proposed cost model.

7.5.1 Experimental environment
We have chosen three study cases included with Pluto compiler as examples, and also included
in the Polybench benchmarks. The first one is the already discussed Jacobi-1D program.
The second one is a Jacobi-2D program, and the third one is a Floyd-Warshall's algorithm
implementation. These programs represent examples of the classes of programs that generate
communication code in Polybench. Linear algebra examples in Polybench do not derive in
actual communications because Pluto transformations assume that the whole data structures
are not distributed, but replicated on each processor, deriving in empty sets of flow-out
dependences across processors.

We have compiled two versions of each generated program. One using the original imple-
mentation of the π function (Org), and one using the proposed alternative implementation
of the inverse π function (Alt). The experiments were executed in a shared-memory machine
(Heracles), a Dell PowerEdge R815 server, with 4 AMD Opteron 6376 processors at 2.3
GHz, with 16 cores each, adding up to 64 cores in total. For this experimentation using a
real platform, we have limited the problem sizeN , and the number of processors P to the
maximum supported by the target machine.

7.5.2 Results
Figure 7.5 show the experimental performance measures obtained for the three study cases.
We can observe the same predicted results than in the simulation study of Sect. 7.4.2, but in a
smaller scale due to the smallerN and P parameter values.

The impact on the performance, achieved by changing the original π function by our
proposed alternative, is more noticeable in some problems than in others. It depends on the
ratio between sequential computation and communication times. For the three cases of study,
the most noticeable effect appears for the Floyd-warshall case, where the packing/unpacking
cost is almost 30% of the total execution time, as reported in [21]. This is due to: (1) A higher
h(P) factor of this algorithm, comparing with the neighbor synchronization structure of

i
i

i
i

i
i

i
i

116 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

 0.0001

 0.001

 0.01

 0.1

 1

10000 50000 100000 500000 1000000

T
im

e
 (

s
e

c
.)

N (array size)

Jacobi 1D (P = 64)

Packing Org

Packing Alt

Unpacking Org

Unpacking Alt

Coordination

Computation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

8000 10000 12000 14000 16000

T
im

e
 (

s
e

c
.)

√N (array size)

Jacobi 2D (P = 64)

Packing Org

Packing Alt

Unpacking Org

Unpacking Alt

Coordination

Computation

 1

 10

 100

 1000

 10000

5000 8000 10000 12000 14000

T
im

e
 (

s
e

c
.)

√N (array size)

Floyd Warshall (P = 64)

Packing Org

Packing Alt

Unpacking Org

Unpacking Alt

Coordination

Computation

Figure 7.5: Execution times of the codes generated using the FOP scheme, with the original and
the alternative π function implementation, for the three study cases: 1D Jacobi, 2D Jacobi, and
Floyd-Warshall's algorithm using 64 processors and different problem sizes.

i
i

i
i

i
i

i
i

7.6 SUMMARY | 117

the Jacobi programs; and (2) A higher number of communication instances in the loop. This
effect is also predicted by the proposed cost model.

We can also observe that, as predicted by the model, even after applying our proposed
alternative implementation of the π function, there is still a proportional increment of
the communication calculation run-time cost, with the problem sizeN . This behaviour is
because the FOP scheme relays on checking if communications are needed for the whole
space of distributed tiles, on each processor.

Our results show that the cost model is a useful tool to predict the asymptotic behaviour
of the code introduced to manage the communications. It can be used to locate scalability
limitations when taking design or implementation decisions. We also show how our proposed
alternative for the implementation of the π function leads to the elimination of one of these
scalability problems. The P andN factors still need a completely different approach to be
eliminated.

7.6 Summary

In this chapter we have carried out a deep study of one of the most sophisticated state-of-
the-art polyhedral-model mechanism to automatically generate communication codes from
sequential codes at compile time. We presented a model for the run-time cost of the FOP
scheme. The model allows the study of the asymptotic behaviour of the performance, in
terms of the problem sizeN , and the number of processors P . This cost model highlighted
potential limitations of these methods and gives clues to new research directions to solve
them, devising new alternatives that do part of the calculations at runtime, when more
information about the execution environment and state are available.

i
i

i
i

i
i

i
i

118 | ANALYZING THE CURRENT LIMITATIONS OF COMMUNICATION CODE GENERATORS

i
i

i
i

i
i

i
i

CHAPTER 8

Automatically calculating
communications for

distributed-memory systems from
uniform affine data-access

expressions

I n this chapter, we present a new communication calculation technique to be applied across
different SPMD (Single Program Multiple Data) code blocks, containing several uniform

data access expressions. This work tackles the fourth goal:

Design and develop a runtime technique to automatically calculate aggregated
communications for applications with uniform affine expressions.

The proposed technique computes at runtime exact coarse-grained communications for
distributed message-passing processes. Applying this technique at runtime has the advantage
of being independent of compile-time decisions, such as the tile size chosen for each process.
We have implemented this technique in Trasgo, a programming model and compilation
framework that transforms parallel programs from a high-level parallel specification that
deals with parallelism in a unified, abstract, and portable way. We present an experimental
study to evaluate the potential overhead introduced at runtime to do the communication
calculation, that shows the efficiency of the codes generated with the proposed technique.

- 119 -

i
i

i
i

i
i

i
i

120 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

8.1 Introduction

As we have seen in the previous chapters, the current state-of-the-art techniques for the
automatic generation of communication code for distributed-memory systems present
several limitations. In this chapter, we present a new communication calculation technique.
Our technique postpones to runtime part of the analysis and decisions needed to transform
program abstractions to actual processes. Thus, the programs can adapt their behavior at
runtime, dealing with different partitions, granularity, data-distribution, memory hierarchies,
tile sizes, or synchronization and communication structures. The technique can be applied
across different SPMD (Single Program Multiple Data) blocks of code, that contain several
different data accesses expressions to the same data structure, whose indexes are calculate
with uniform affine expressions in the indexes selectors. We consider as uniform affine
expressions, those expressions that derive in accesses to a multi-dimensional paralelotope
of the data structure domain. For two dimensions, this means rectangular shapes. The
technique supports codes with several data accesses to the same data structure. Thus, the
resulting domain accessed by a code block is a compound of paralelotope shapes, that can be
non-convex.

The communications calculated by using our technique outperform those obtained by
previous techniques because they are:

• Coarse-grained in the sense that communication calculation across two parallel SPMD
blocks is done once for the whole index space mapped to a process at runtime, inde-
pendently of the number or sizes of tiles generated inside the process. This enables
different tile sizes to be used in the same computation at the same hierarchical level,
an important feature in achieving a good performance on heterogeneous systems that
include machines with different architectures [87].

• Exact because they are optimal in terms of communication volume. Our runtime
calculation skips all the duplicated data elements in the communication. Thus, no data
is communicated twice, and no unneeded or control data is communicated across any
two distributed processes.

We have implemented this technique in Trasgo [54], a programming model and com-
pilation framework to generate parallel programs from a high-level parallel specification
that deals with parallelism in a unified, abstract, and portable way. The proposed technique
computes at runtime exact coarse-grained communications between two consecutive parallel
blocks for distributed message-passing processes.

We start our discussion with an illustrative example based on a stencil computation in
Sect. 2 of this chapter, showing the transformation techniques presented. Section 3 describes
the Trasgo model and its tools. Section 4 introduces the new techniques applied in Trasgo.
To show the applicability and efficiency of the approach, we include several experimental
studies in Sect. 5, comparing performance on distributed- and shared-memory platforms

i
i

i
i

i
i

i
i

8.2 ILLUSTRATIVE EXAMPLE AND OVERVIEW | 121

1 ** Illustrative example
2 Inputs :
3 a: 1 st stencil parameter
4 b: 2 nd stencil parameter
5 M[n][n]: Matrix with initial values
6 limit : Number of iterations
7 Output :
8 M[n][n] : Matrix with result values
9 Temporal variables :
10 M_temp [n][n]: Auxiliar matrix .
11

12 ** Time loop
13 Do iter = 1 to limit
14

15 ** First SPMD block : Update M_temp
16 Do i = a to n -b
17 Do j = a to n -b
18 M_temp [i][j] = M[i][j]
19

20 ** Second SPMD block : Compute stencil operation
21 Do i = a to n -b
22 Do j = a to n -b
23 M[i][j] = (M_temp [i -a][j] + M_temp [i+b][j] +
24 M_temp [i][j -a] + M_temp [i][j+b])/4;

Figure 8.1: Sequential algorithm for the illustrative example.

withMPI reference codes, and codes generated with auto-parallelizing compilers. The results
show that our approach can automatically produce efficient programs despite the overhead
of the calculation performed at runtime.

8.2 Illustrative example and Overview

This section presents an illustrative example that serves as a quick overview of the techniques
presented in this chapter. The example is a modification of a Jacobi PDE solver for Poisson's
equation to compute heat transfer in a discretized two-dimensional surface. This is a simple
data-parallel example, that aims to introduce the readers to the basis of the approach. This
example can be used to show basic concepts of MPI synchronization (see e.g. [60]). It contains
clear computation and communication stages with uniform data access expressions. The
sequential algorithm is shown in Fig. 8.1. In our example we also introduce two integer
parameters a, b that are used in the access expressions to select at runtime the distance to the
positions considered neighbors in terms of the stencil operation carried out for that particular
invocation of the computation.

i
i

i
i

i
i

i
i

122 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

(1) SPMD:
 Update

(2) SPMD:
 Computation

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M[i][j]= 0.25* (M2[i-a][j] + M2[i+b][j]
 M2[i][j-a] + M2[i][j+b])

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M2[i][j]= M[i][j]

Communication
stage

Distribute comp.
among processes

}

Communication
stage

for(t=0;t<limit;t++){

lower_x = map_lower(a, n-b, myRank, num_processes, 0)
upper_x = map_upper(a, n-b, myRank, num_processes, 0)
lower_y = map_lower(a, n-b, myRank, num_processes, 1)
upper_y = map_upper(a, n-b, myRank, num_processes, 1)

// Determine communication pattern 1
// Execute communication pattern 1

// Determine communication pattern 2
// Execute communication pattern 2

Figure 8.2: Block diagram of the parallel algorithm following an SPMDmodel for the illustrative
example (left), and code excerpts for the main blocks (right). The parameter a determines the
halo sizes on the top and left sides, and the b parameter determines the same on the bottom
and right sides.

8.2.1 Programming with an SPMDmodel

We first present an overview of the typical approach used to program the illustrative example
following an SPMD model. In the sequential algorithm (recall Fig. 8.1), we can distinguish
two different blocks of code inside the time loop that can be parallelized independently
without violating any data dependence (transforming them into SPMD blocks). Figure 8.2
(left) shows a distributed parallel programming block diagram of the illustrative example
following an SPMD model. To program this algorithm in parallel, the only data dependences
that must be taken into account are those produced between the SPMD blocks. For this
reason, a communication/synchronization stage is inserted between them.

When we execute this parallel example algorithm in shared-memory systems, a syn-
chronization stage is enough to avoid data dependences between the two parallel structures.
However, in distributed memory systems, the data written by a process in the first SPMD
block should be sent to other processes that need these data to execute the second SPMD
block. Notice that a synchronization between neighbor processes is implicit in this commu-
nication.

In our example (see Fig. 8.2, right), we have distributed the computation using themapping
functions map_lower() and map_upper(). These mapping functions receive the first and last
iteration of the loop to be distributed, the identifier of the current process, the total number
of processes, and the number of the dimension for which it should calculate the partition

i
i

i
i

i
i

i
i

8.2 ILLUSTRATIVE EXAMPLE AND OVERVIEW | 123

limits. These functions return the loop limits corresponding to the chunk of iterations that
should be executed by the current process, avoiding overlappings with other processes.

Each process is ready to perform the computation as soon as it has the corresponding
data in its local memory. These data include not only the data in the positions that match
the loop iterations, but also the data that correspond to their halo, which may be owned
by other processes. A communication stage before each SPMD block should retrieve the
corresponding halos, thus ensuring that each process has a local copy of all the needed data.
In our particular example, before the execution of the first SPMD block, a communication
stage is not necessary as each process already has all the data it needs. However, in the second
SPMD block, each process needs data that have been updated by other processes (data in
the halo). The communication phase in this case depends on execution parameters, such as
the matrix size, the tile size, the number of processes, the partition policy (the way in which
the data were partitioned among the processes), and the values of a and b parameters which
define the halo sizes.

The technique presented in this chapter determines automatically at runtime the commu-
nication patterns needed between two consecutive parallel structures, taking into account
these parameters, and regardless of their availability at compile or execution time, regardless
of the application of other sequential or tiling optimization techniques inside each process.

8.2.2 Overview of the communication determination technique
We present here an overview of the proposed technique to determine automatically the
communication patterns among different SPMD blocks. As we have seen in the previous
description, we usually need a communication stage between two consecutive SPMD blocks
to ensure a correct execution. In our example, we need to communicate some data written
in the first SPMD block by each process to other processes that read these data in the second
SPMD block. Our technique consists of two steps:

1. In order to determine the data read and written in each parallel structure, for each
SPMD block in the program, we generate at compile time a parametrized function that,
at runtime, returns the set of data being read or written for a given process identifier p.
For the illustrative example, we show an example of both sets of indexes returned by
these generated functions in Fig. 8.3. We name the sets of indexes of the matrixM
read and written by the k-th SPMD block in the code, at a given processor p as follows:
Input Working Set Indexes WM,k,p

I , and Output Working Set Indexes WM,k,p
O . These

functions are generated at compile time using the data-access expressions found in the
input code. In Fig. 8.3, we see how the setWM_temp,2,p

I is calculated by applying the
uniform access expressions found in the code to the calculated loop limits (lower_x,
lower_y, upper_x, upper_y). The set of indexes is normalized to be represented with a
set of non-overlapped rectangular shapes.

2. In the second step, we apply an algorithm at runtime to determine the communication
patterns and to store a compact description of them in an object. To calculate the

i
i

i
i

i
i

i
i

124 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

 WO
M_temp,1,p

WI
M_temp,2,p U

Read
expressions

upper_ylower_y

lower_x

upper_x

Expr: [i-a][j] Expr: [i+b][j] Expr: [i][j-a] Expr: [i][j+b]U UExpr: [i][j] =

lower_x-a

upper_x-a

lower_x+b

upper_x+b

upper_y-alower_y-a upper_y+blower_y+b
Write
expressions

NORM

Figure 8.3: Using the read and write data-access expressions inside the parallel structure of the
illustrative example to calculate the working input and output index sets (W 2

I ,W 1
O) for M_temp

at a generic process. This example assumes positive parameters a, b ≥ 0. The Norm operation
on the last stage reduces the number of boxes used to represent the union of domains. The
drawings consider the particular case of a = 2, b = 3, for a domain with 8 × 8 contiguous
indexes.

3

6 7

5

8

0 1 2

3

6 7

5

8

0 1 2

4 4

for (p=0; p<Number of processes; p++)
 if (p != 4) {
 Calculate intersection of WO

M_temp,1,p and WI
M_temp,2,4

 Store intersection in CR
 }

Data needed from P1:

Data needed from P3:

Data needed from P5:

Data needed from P7:

CR

Communication Receive (CR) pattern for process 4:

Figure 8.4: Calculation of Communication Receive (CR) pattern between the two parallel struc-
tures of the illustrative example. Example for a number of processes P = 9, a process identifier
4, the previously generated functions W M_temp,2,∗

I and W M_temp,1,∗
O , a mapping/partition

function that returns irregular rectangular blocks, and particular values for symbolic parameters
a = 2, b = 3.

i
i

i
i

i
i

i
i

8.3 THE TRASGOMODEL | 125

data that have to be received at a local process from a remote process p, the algorithm
intersects the set of indexes read by the local process in the second SPMD block (that is,
WM,k+1,local

I) with the set of indexes written by the process p in the first SPMD block
(WM,k,p

O). Figure 8.4 shows a visual representation of our runtime algorithm for the
illustrative example. The example shows the calculation of the Communication Receive
(CR) pattern for process 4. On the left, we can see the M_temp matrix distributed
among 9 processes with an arbitrary irregular partition policy, and the data set (dotted
lines) to be read by process 4 in the following SPMD block. On the right, we see
the data that should be received by process 4 from different remote processes. The
patterns are calculated using the proper intersections of the data space to be read with
the data space written or owned by different processes. To calculate the data to be sent
by the local process to a process p, the algorithm performs the opposite intersection,
between the set of indexes written by the local process in the first SPMD block (that is,
WM,k,local

O) and the set of indexes read by the p process in the second SPMD block
(WM,k+1,p

I). An empty intersection indicates that no send (or receive) operation is
needed for that particular process p.
After applying this technique for every process and every array we can apply the
determined send and receive patterns to perform the actual communications.

Our technique requires that any symbolic parameter must have the same value on every
process. Thus, the set of indexes accessed by a remote process p can be calculated by any
process, with no inter-process communication. A deeper discussion about the constraints, the
features used to reduce the complexity, and a formal definition of our technique is presented
in Sect. 8.4.

8.3 The Trasgo Model

The previous section briefly describes our proposed technique. In this section, we review
the Trasgo parallel programming and execution model, where our technique has been im-
plemented. The Trasgo model [54] proposes the use of an explicitly parallel, but high-level
and structured representation of parallel algorithms. It uses restricted synchronization at
the higher level, generating more efficient and less synchronized parallel structures at the
low level. The original model is based on the SP (Series-Parallel) process model [134] and
data-distribution algebras, providing clear and well-defined semantics [85]. The model is
free of race conditions, unexpected dead-locks, or stochastic behaviors. The high-level code
uses a global view approach in hierarchical decompositions. The semantics provide clear
synchronization points and hierarchical global states that simplify testing and debugging.

i
i

i
i

i
i

i
i

126 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

Front−end translator

Native compiler

High level source code
CMAPS

SPC−XML specification
XML

XML

SMP Code + HIT calls
C + runtime HITmap

Mapped program

Multilevel code
C + runtime HITmap + OpenMP

Binary executable

Program representations Transformations

Code transformations
Expression builder

Back−end

Shared memory
Polyhedral model: Pluto

HITmap library

Xslt

Xslt

Figure 8.5: Structure of the Trasgo transformation framework.

8.3.1 Overview of the code transformation framework

Figure 8.5 shows the structure of the Trasgo transformation framework. The left column
shows the program representations, and the right columns the transformation layers.

A front-end translates the input language (in our case CMAPS [93]) to an XML internal
representation. Themain part of the transformation layer transforms the global address space
into a partitioned address space, building the functions to compute communications across
virtual processes. The transformed code is rewritten by a back-end that generates C code
with calls to the Hitmap run-time library (remind Sect. 3.3.1). The resulting computation
code, generated for the local distributed process, can finally be optimized through polyhedral
tools to generate optimized parallel code for the shared memory level using OpenMP. As
a proof of concept, we use Pluto [25] on the codes obtained after applying the mapping
policy. Thus, we make it optimize the local computation inside each MPI process, in order
to efficiently exploit internally the multi-core processor of each node. The methodology
used to integrate Pluto with the Hitmap toolchain was described in [95]. The final code is
compiled with a native C compiler.

Figure 8.6 shows the illustrative example coded in CMAPS, the current Trasgo input
language. First, we define the sequential functions to apply to each element, specifying the
output or input role of the parameters (lines 2,8). The parallel function is defined using the
coordination modifier, and also specifying the role of the parameters (line 13). In its body, the
functionArrayMap() allocates the distributed arraysM_temp andM in terms of the results of
a mapping/partition policy named partition_policy, which is also a parameter (line 18-19).
After the distribution, the code updates and computes each element ofM_temp in parallel
using the sequential functions previously defined (lines 24, 28). The parallel structure in
CMAPS maps the computation indicated in the do: code to each indexes pair in the domain
specified in the clause inside the brackets of the parallel declaration.

i
i

i
i

i
i

i
i

8.3 THE TRASGOMODEL | 127

1 /* Second Sequential function */
2 void updateCell (in double up , in double down , in double left ,
3 in double right , out double result) {
4 * result = (up + down + left + right) / 4 ;
5 }
6

7 /* First Sequential function */
8 void updateData (in double Data , out double result) {
9 * result = Data ;
10 }
11

12 /* Parallel stencil code with parametric dependences */
13 coordination
14 void caseA (inout tile double M [][] , in int limit ,
15 in int a , in int b , in layout partition_policy) {
16 double M_temp [][];
17 /* Distribute arrays */
18 ArrayMap (M , partition_policy);
19 ArrayMap (M_temp , partition_policy);
20

21 /* Time loop */
22 loop (t in [1: limit]) {
23 /* First SPMD block : Update M_temp */
24 parallel (i ,j in M) {
25 do : updateData (M[i][j], M_temp [i][j]);
26 }
27 /* Second SPMD block : Compute stencil operation */
28 parallel (i ,j in M) {
29 do : updateCell (M_temp [i -a][j], M_temp [i+b][j],
30 M_temp [i][j -a], M_temp [i][j+b],
31 M[i][j]);
32 }
33 }
34 }

Figure 8.6: CMAPS code for the illustrative example.

8.3.2 Notations and definitions
In this section, we present definitions used in the rest of the chapter. In this work, we focus
on arrays with regular dense and strided domains.

Signature is a triplet of integer numbersS〈b, e, s〉 (meaning begin, end, and stride). The set of
indexes expressed by a signature is S〈b, e, s〉 = {b ≤ i ≤ e : (i− b) mod s = 0}.

Domain is a subspace of Zn. Rectangular n-dimensional parallelotope domains, dense or
strided, can be represented by a tuple ofn Signatures. Let us consider ann-dimensional
domainDn〈s0, s1, ..., sn−1〉 ∈ Zn, where s0 ∈ S∗, .., sn−1 ∈ S∗ are the signatures
whose Cartesian product defines the domain. This kind of structures only represent
rectangular shapes.

Working set is a generic set of indexes. We represent generic sets as unions of signature
domains,WM = ∪q

i=0di : q ∈ θ(N), di ∈ Dn.

i
i

i
i

i
i

i
i

128 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

Tile is an object that associates data elements of a given type to index elements of a domain.
The domain of a tile is denoted asD(T), T : D → type.

Logical process is a tuple P 〈f,WM
I ,WM

O 〉, where f is a function or subprogram,WM
I is

the working set thatP receives as input (the data indexes ofM that are read), andWM
O

is the set used as output (the data indexes ofM that are written). Logical processes may
be composed in sequence, or in parallel. A sequential composition P1 . P2 indicates
that f1 is executed before f2, and that data modifications introduced in the output tiles
of P1 are propagated in the corresponding input tiles of P2. Sequential composition is
associative but not commutative. A parallel composition P1 ◦P2 indicates that f1 and
f2 can be executed in parallel. Parallel composition is associative and commutative.

Wave-front composition (P1 • (Wf)P2), is a parallel composition with explicitly added
order dependences for arbitrary data structures, across processes. If there is overlap-
ping of the shapes ofWf with both the input working set ofP2 and the output working
set of P1, the function f2 cannot be started until f1 has finished. The data represented
by the overlapping shapes should be propagated. This does not allow generic data-flow
compositions to be expressed, with transitive cycles that could lead to dead-locks. This
composition operation allows parallel structures, such as wave-front computations
and macropipelines, to be expressed when used inside a loop.

Virtual Topology V (N,R) is a graph where the vertices N represent virtual processes,
associated with computational resources (groups of processors), and the edges R
represent neighbor relations.

Layout L : D → V is a function that maps domain subspaces (indexes of tiles or logical
processes) to the virtual processes in a virtual topology.

8.3.3 Extensions to the Hitmap library
Several new functionalities have been added to Hitmap to support the new techniques presen-
ted in Sect. 8.4. To represent generic domains and working-set indexes in Hitmap, we have
created a new data structure, called HitDomain. We have implemented functions for efficient
domain set operations (intersection ∩, union ∪, and subtraction \) on parallelotope shape
structures. A Norm function is implemented to transform any domain, represented as a set
of signature-based parallelotope shapes, in an union of a set of signature-based parallelotope
shapes with empty pair-to-pair intersections. The resulting normalized domain is a set
of parallelotope areas with optional stride inside, which can be directly translated to MPI
derived data-types for efficient marshalling/unmarshalling operations with no unnecessary
data replication. The runtime asymptotic complexity of this function is directly related to
the amount of shapes that compose the input set. Also, the actual bound of the q value for a
given application (remind that q is the number of signature domains used to compound the
domain of a workings set) is directly related with the runtime complexity of applying our

i
i

i
i

i
i

i
i

8.4 IMPLEMENTATION OF THE TECHNIQUE TO DETERMINE COMMUNICATION PATTERNS | 129

technique. See an example of the use of the Norm function in the final step of Fig. 8.3. More
advanced representations will be studied as future work.

8.4 Implementation of the technique to determine communic-
ation patterns

This section describes in depth the new technique we propose in the context of the Trasgo
framework. It allows to determine at runtime the exact aggregated communications across
distributed processes, for codeswith data-access expressionswhich are affine transformations
of the data indexes used in an SPMD block. Let ix : x = 0 . . . n− 1 be the logical thread
indexes in an SPMD block (parallel indexes). The parallel indexes in a CMAPS code are those
in the clause inside the brackets of a parallel structure. An affine access expression ρ(x) is
defined as:

ρ(x) = α0 × i0 + α1 × i1 + ...+ αn−1 × in−1 + β

where the coefficients αx, β can be general expressions using constants and parameters
whose values can be unknown at compile time, but are invariant in the body of the parallel
structure (SPMD block). In the current prototype we only support uniform affine expressions,
whose resulting index domain is a multidimensional parallelotope (hyperrectangular shapes).
A uniform expression is defined as:

%(x) = iy + β

The proposed technique also supports the composition of several blocks that come from
the application of several uniform expressions. The resulting domain can be a non-convex
domain that is represented by a set of non-overlapped hyperrectangular blocks, representing
the exact subspace of the domain that is accessed. See an example on Fig. 8.3.

This section describes in detail the proposed technique. As shown in the illustrative
example, we divide our technique into two steps.

8.4.1 Functions to calculate working set indexes

As previously discussed in section 8.2.2, we should generate functionsW k
I (. . .), andW k

O(. . .),
which calculate at runtime the input/output working set indexes of each data structure, at
each k-th parallel structure (SPMD block). These functions are generated from the expres-
sions found in the do: clauses of the CMAPS codes. For parallel structures with wave-front
expressions, we also generate functions to compute the Input-Flow Working Set Indexes
W k

F (. . .). The wave-front expressions are found in CMAPS in a specific clause that determine
the wave-front dependences. These functions (W k

F (. . .)) are generated like other working-set
index functions, but using the wave-front expressions as if they were read accesses to the data
structure.

i
i

i
i

i
i

i
i

130 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

The generated functions have the following parameters: A process index p, a mapping
function L(p) to obtain the subdomain of parallel indexes mapped to p, and the symbolic
parameters that appear in the data read/write accesses to the chosen data structure. The code
of the function applies, to the index subdomain L(p), all the uniform affine transformations
found in the read/write accesses for the data structure, inside the k-th parallel structure.
Figure 8.7 shows the functions generated for the working setsWM_temp,2,p

I andWM_temp,1,p
O

in the illustrative example (they are prefixed by calcWI, and calcWO in the code). The
HitLayout objects implement the L(p) methods applied at runtime. The resulting shape
domain is transformed according to the code expressions found in CMAPS codes, and the
union of domains is computed. -- The
example of Fig. 8.7, uses specialized Hitmap functions for the case of expressions with only
one parallel index on each dimension scope. Let [αx ∗ iy + βx] be an expression to access
the x-th dimension of the data structure. Notice that the parallel index y does not need to be
the same as the dimension that is accessed. The hit_shapeAffine2(…) function transforms a
2-dimensional shape to another 2-dimensional shape. For each dimension, the parameters
are the identifier of the parallel index y, and the subexpressions αx, βx, which are literally
copied from the data access expression.

In the current implementation of the Trasgo prototype, we have only taken into account
uniform access expressions (According to [143], approximately 84% of the benchmarks of
the Polybench [110] can be fully uniformized). The implementation of the transformation
functions (such as hit_shapeAffine2()) is based on signature (domain) algebras. These functions
simply apply the access expressions to the index-space limits at runtime to calculate the
resulting shapes. The transformations can be applied independently to each shape, and each
dimension. Let us consider a shape domain L(p) = 〈s0, s1, . . . , sn−1〉. Let sy〈b, e, s〉 be
its signature in the dimension y. For an access expression [αx ∗ iy + βx], the signature
representing the transformed working-set index domain in the x-th dimension can be
calculated as T1(L(p), y, αx, βx) = 〈b′, e′, s′〉, with:

b′ = min(αx × sy.b+ βx, αx × sy.e+ βx) (8.1)
e′ = max(αx × sy.b+ βx, αx × sy.e+ βx) (8.2)

s′ = αx × sy.s (8.3)

The transformation functions are applied one by one, according with the data accesses
expressions. Their resulting domains are compounded using the hit_shapeUnion function.
This composition can result in a non-convex domain, that is normalized to eliminate the
overlapped parts. The result is a set of non-overlapped rectangular shapes (see Fig. 8.3). These
functions are used to calculate the domains,WM

I andWM
O , independently on each process,

with no interprocess communication.
Future work includes the implementation of functions to support multi-domains, allow-

ing expressions that involve more than one parallel index. For example, a transformation for
expressions such as [i0 + i1][i0− i1]would lead to a non-rectangular, rhomboidal shape, that

i
i

i
i

i
i

i
i

8.4 IMPLEMENTATION OF THE TECHNIQUE TO DETERMINE COMMUNICATION PATTERNS | 131

1 /* * Calculate W_I for M_temp in SPMD 2 */
2 HitDomain calcWI_M_temp_2 (HitRank p , HitLayout lay , int a , int b){
3 HitShape _TT_mapIdx = hit_layOtherShape (lay , p); // L(p)
4

5 HitDomain _TT_inWS_matrix = hit_shapeUnion (
6 // 2D Affine transformations (domain , index_x , alpha_0 , beta_0 ,
7 // index_y , alpha_1 , beta_1)
8 hit_shapeAffine2 (_TT_mapIdx , 0, 1, -a , 1, 1, 0),
9 hit_shapeAffine2 (_TT_mapIdx , 0, 1, +b , 1, 1, 0),
10 hit_shapeAffine2 (_TT_mapIdx , 0, 1, 0, 1, 1, -a),
11 hit_shapeAffine2 (_TT_mapIdx , 0, 1, 0, 1, 1, +b));
12

13 return _TT_inWS_matrix
14 }
15

16 /* * Calculate W_O for M_temp in SPMD 1 */
17 HitDomain calcWO_M_temp_1 (HitRank p , HitLayout lay){
18 HitShape _TT_mapIdx = hit_layOtherShape (lay , p); // L(p)
19 HitDomain _TT_outWS_m ;
20 // No transformations
21 _TT_outWS_m = hit_shapeTodomain (_TT_mapIdx);
22 return _TT_outWS_m ;
23 }
24

25 /* * Calculate Communication Pattern : Between SPMD 1 and 2 */
26 HitPattern calcCommunications_M_temp_1_2 (HitTile _TT_Tile1 ,
27 HitLayout _TT_lay1 ,
28 int a , int b){
29 // myRank
30 HitRank local = hit_laySelfRanks (_TT_lay1);
31 // CR , CS = Empty
32 HitPattern _TT_patternComm = HIT_PATTERN_NULL ;
33 // W_O (myRank ,L)
34 HitDomain WO_L = calcWO_M_temp_1 (local , _TT_lay1);
35 // W_I (myRank ,L)
36 HitDomain WI_L = calcWI_M_temp_2 (local , _TT_lay1);
37 // For p = 0.. P
38 for (_TT_1 = 0; _TT_1 < hit_layNumActives (_TT_lay1) ; _TT_1 ++){
39 // If p != myRank
40 if (hit_layToActiveRanks (_TT_lay1 , _TT_1) != local){
41 // Send tuple
42 // W_I (p ,L ,a ,b)
43 HitDomain WI_P = calcWI_M_temp_2 (_TT_1 , _TT_lay1 , a , b);
44 // Intersection
45 HitDomain _TT_aux = hit_domainIntersect (WO_L , WI_P);
46 // Normalize
47 _TT_aux = hit_NormalizeDomain (_TT_aux);
48 // Add CS tuple
49 hit_patternAdd (& _TT_patternComm ,
50 hit_comSendSelect (_TT_lay1 , hit_layToActiveRanks (_TT_1),
51 & _TT_Tile1 , _TT_aux ,
52 HIT_COM_TILECOORDS , HIT_DOUBLE));
53 // Receive tuple
54 // W_O (p ,L)
55 HitDomain WO_P = calcWO_M_temp_1 (_TT_1 , _TT_lay1);
56 // Intersection
57 HitDomain _TT_aux = hit_domainIntersect (WI_L , WO_P);
58 // Normalize
59 _TT_aux = hit_NormalizeDomain (_TT_aux);
60 // Add CR tuple
61 hit_patternAdd (& _TT_patternComm ,
62 hit_comRecvSelect (_TT_lay1 , hit_layToActiveRanks (_TT_1),
63 & _TT_Tile1 , _TT_aux ,
64 HIT_COM_TILECOORDS , HIT_DOUBLE));
65 }
66 }
67 return _TT_patternComm ;
68 }

Figure 8.7: Generated code for illustrative example: Functions that build the communications
for the parallel structure inside the time loop. Hitmap library is used for tiling management and
message passing. Communication is encapsulated on HitPattern objects.

i
i

i
i

i
i

i
i

132 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

can be represented as a set of rectangular shape structures. More complex representations
based on octagons [132] can be considered for more general shape representations.

8.4.2 Determining communications patterns

As described in the overview on Sect. 8.2.2, communications should be executed between
parallel structures, or between a parallel structure and its next execution if it is inside a loop.

Communication patterns are formed by two subsets 〈CR, CS〉 of comm-tuples (commu-
nication tuples). CR tuples indicate receive operations. CS tuples indicate send operations.
A comm-tuple 〈p,WM 〉 contains the index of the remote process p, and the working-set
indexesWM of the structure whose data values will be communicated.

Our solution determines the communication patterns needed across SPMD blocks com-
bining two algorithms. Algorithms 1 and 2 are generic models that traverse at runtime
the remote active P − 1 processes intersecting output and input working-set indexes for
the same data structure in order to determine the communication tuples needed between
two SPMD blocks. Comm-tuples with empty sets, resulting from the intersections, are
discarded and not internally stored by the Hitmap objects. For clarity, the data-structure
name, the mapping functions L(p) of the indexes at each parallel structure, and the specific
parameters are omitted. These algorithms should be implemented on tailored functions for
each communication calculation stage, adding the extra parameters needed as inputs in the
calls to each specific working-set function.

We distinguish four different cases for using the working-set index functions in order to
build the communication constructor functions (See Fig. 8.8). The cases for parallel structures
without wave-front expressions (namely, (a) and (b)), are simpler. A function is built using
Alg. 1. It is tailored to useW k

O(. . .) for output working-set indexes. For input working-set
indexes, we useW k′

I (. . .) in case (a), orW k
I (. . .) in case (b), which only has a single SPMD

block inside a loop. An example of a tailored function to calculate the communication of
two consecutive parallel structures in the illustrative example, is shown in Fig. 8.7, with the
name calcCommunications_M_temp_1_2().

Our communication calculation and its execution are performed just before the computa-
tion of the SPMD block. Nevertheless, if the access-expressions is not dependent on an index
of an outer loop, the communication calculations can be inserted as soon as the parameters
andL functions are known (even in initialization time inmany cases), and the communication
execution is inserted before the parallel structure. For example, in the generated main code
for the illustrative example (see Fig. 8.9), the invocation to calculate the communications is at
line 4 on the main program, before the time loop iteration. Communications are calculated
only once, because the a and b parameters are not modified during the computation. The
execution of the communications is at line 13, before the second parallel block. It is executed
on each iteration.

When the parallel structure k has wave-front expressions, we should generate two differ-
ent communication patterns. The first one is to satisfy the dependences indicated by the

i
i

i
i

i
i

i
i

8.4 IMPLEMENTATION OF THE TECHNIQUE TO DETERMINE COMMUNICATION PATTERNS | 133

Algorithm 1:Model to calculate the
communication pattern across paral-
lel structures, for a given data struc-
ture, in terms of intersections of in-
put/output working-set indexes.
Input: P : Number of processes,
myRank : Local process id,
W k

O(p) : Function to compute
output working-set
W k+1

I (p) : Function to compute
input working-set
Output: 〈CS , CR〉 : Sets of

communication tuples

CS ← ∅, CR ← ∅
for p = 1 to P do

if p 6= myRank then
CS ←
CS ∪ 〈p,W k

O(myRank) ∩
W k+1

I (p)〉
CR ← CR ∪ 〈p,W k

O(p) ∩
W k+1

I (myRank)〉
end

end

Algorithm 2: Model to calculate
communication pattern from parallel
structure k to itself, after satisfying
wave-front flow dependences.
Input: P : Number of processes,
myRank : Local process id,
W k

I (p) : Function to compute input
working-set of k
W k

O(p) : Function to compute
output working-set of k
W k

F (p) : Function to compute
input-flow working-set of k
Output: 〈CS , CR〉 : Sets of

communication tuples

CS ← ∅, CR ← ∅
Wtmp1 ←
W k

I (myRank) \ W k
F (myRank)

for p = 1 to P do
if p 6= myRank then

Wtmp2 ←W k
I (p) \W k

F (p)
CS ←
CS ∪ 〈p,W k

O(myRank) ∩
Wtmp2〉
CR ←
CR ∪ 〈p,W k

O(p)∩Wtmp1〉
end

end

i
i

i
i

i
i

i
i

134 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

I
kW

OWk

1

OWk

Wk
F

OWk

Wk
FI

kW

1

2
OWk

Wk’
I

k’

k

1 OWk

Wk
F

OWk

Wk’
I1

1

(a)
k’

k

(c)

k

(b)
Loop

k

(d)
Loop

Figure 8.8: Working-set index functions used to tailor the communication constructor al-
gorithms for the four possible situations. Cases (a) and (c) calculate communications across
two parallel structures. Cases (b) and (d) calculate communications from one parallel structure
to itself, when it is inside a loop. In cases (a) and (b), the parallel structure k does not have
wave-front expressions. The encircled number represents the algorithm implemented by the
generated function.

wave-front expressions across processes during the first SPMD block. In cases (c) and (d), Alg. 1
is tailored to useW k

O(. . .) for output working-set indexes, and for input working-set indexes,
we useW k

F (. . .). The CR comm-tuples are executed before the parallel structure, blocking
the process until the dependences from other processes are satisfied. The CS comm-tuples
are executed after the parallel structure.

The second communication pattern aims to communicate with the following parallel
structure. If it is another different parallel structure, case (c), we use Alg. 1 in the standard
way. However, in the case of a parallel with wave-front expressions inside a loop (d), we
should skip the data already communicated due to the flow dependences. For this particular
case, we build a tailored function following Alg.2, using functionsW k

O(. . .),W k
I (. . .), and

W k
F (. . .).
In the same way than this communication calculation is performed, it would be possible

to calculate at runtime the part of the data domain where it is possible to overlap computation
with the communication of other parts. The calculation can be performed also at runtime, by
operating (intersecting, subtracting, etc.) with the HitShape objects that contain information
about the domains of: the data to be sent, the data to be received, and the data to be computed.
Future work includes the implementation of this feature in the framework.

8.4.3 Communication patterns for specific applications
In the general case, determining the communication structures involves the comparison of
the local working sets with the working sets of the rest of the active distributed processes.
Thus, the computation cost of the communication calculation at runtime grows linearly with
the number of virtual processes P in the topology. In many applications, the calculation of
the communication patterns can be moved out of the loops and computed at initialization
time. However, in applications where the communication expressions are parametrized with

i
i

i
i

i
i

i
i

8.4 IMPLEMENTATION OF THE TECHNIQUE TO DETERMINE COMMUNICATION PATTERNS | 135

1 /* 1. Building comm . pattern A (1 to 2) that is invariant in the
2 whole execution */
3 HitPattern comA ;
4 comA = calculateCommunications_M_temp_1_2 (M_temp , M_temp . Layout a , b);
5

6 /* 2. Time loop */
7 for (i =0; i < iterations ; i ++) {
8

9 /* 3. SPMD block : Loops to update M_temp */
10 ...
11

12 /* 4. Communication , execute pattern A */
13 hit_patternDo (comA);
14

15 /* 5. SPMD block : Loops to traverse the logical processes */
16 for (_TT_i0 =0; _TT_i0 < hit_tileDimCard (M ,0); _TT_i0 ++) {
17 for (_TT_i1 =0; _TT_i1 < hit_tileDimCard (M ,1); _TT_i1 ++) {
18 /* 5.1. Call functions with selections */
19 updateCell (
20 hit_tileElemAt (M_temp , 2, _TT_i0 -a , _TT_i1),
21 hit_tileElemAt (M_temp , 2, _TT_i0 +b , _TT_i1),
22 hit_tileElemAt (M_temp , 2, _TT_i0 , _TT_i1 -a),
23 hit_tileElemAt (M_temp , 2, _TT_i0 , _TT_i1 +b),
24 hit_tileElemAt (M , 2, _TT_i0 , _TT_i1)
25);
26 }
27 }
28 }

Figure 8.9: Excerpt of generated code for illustrative example: main program. Hitmap library
is used for tiling management, and message passing. Communication is encapsulated on
HitPattern objects. Reading a, b values from program arguments is skipped.

i
i

i
i

i
i

i
i

136 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

loop indexes or other parameters, the expressions are not invariant, and the communication
patterns should be computed at every loop iteration.

The new Trasgo prototype allows the addition of specialized transformation modules
that, by input code inspection, can detect parallelism patterns, and substitute the generic
communication calculation by specific optimized functions that do not traverse all the other
processes to compute working-set index intersections. The time to compute communications
in these cases does not grow with the number of processes. For example, by checking the
expressions used in the tile selections, it is possible to detect stencil computations, that derive
in neighbor synchronization structures. Similarly, a circular shift pattern is also detectable in
Cannon's algorithm for matrix multiplication [30]. Our Trasgo prototype includes modules
for some simple stencil and shift patterns, which substitute the generic communication
calculation by code that calculates the intersections only with the needed neighbors for both
input and output working sets.

These modules to detect specific patterns reduce the calculation communication times.
Nevertheless, they cannot be generalized to any dependences pattern or mapping policy
chosen. More well-known applications or design patterns can be analyzed and implemented.
It is an interesting research question if any well-defined pattern can be detected, and its
corresponding communication code can be generated for any mapping policy chosen at
runtime.

8.5 Experimental study

Wehave conducted an experimental study to validate our approach, and to verify the efficiency
of the resulting codes. We present four different performance studies:

• One of our main contributions is the ability of our technique to automatically calcu-
late communications on a distributed-memory programming model without a fixed
tile size at compile time. For this reason, the experimental study starts with a per-
formance study to show the performance improvement achieved when the tile size is
independently tuned at runtime for each machine involved in the computation in a
heterogeneous system.

• Second, we evaluate the potential overhead that our runtime technique can introduce
when adding more computing elements. The simulation study shows a comparison
of the runtime cost of the general communication determination using the described
algorithms with respect to using communication patterns for specific applications
already included in Trasgo.

• Third, we perform an end-to-end measure, including creation of data structures, data
initialization, and the rest of Trasgo potential overheads to compare the programs

i
i

i
i

i
i

i
i

8.5 EXPERIMENTAL STUDY | 137

generated by our Trasgo prototype with MPI programs manually developed and
optimized.

• The last study presents a comparison in terms of computation and communication
(determination plus execution) times with a state-of-the-art polyhedral code generator
for distributed-memory systems, the Pluto-MPI compiler [21], previously analyzed in
Chapter 7, using several benchmarks of the PolyBench [110].

8.5.1 Study cases
The examples and benchmarks discussed, and used in the experimental work are the fol-
lowing. Some of them are Trasgo parallel implementations of programs included in the
Polybench [110] benchmarks suite.

Jacobi 2D

This benchmark implements a classical Jacobi PDE solver for Poisson's equation to compute
heat transfer in a discretized two dimensional surface. It is implemented as a classical 4-point
star stencil code. On each iteration, each matrix position or cell is updated with the previous
values of the four neighbors.

We have changed the original 5-point star stencil of the jacobi-2d program of Polybench
for the 4-point star stencil to compute Poisson's equation. The dependences, and the com-
munication structure, are identical in both cases, but our 4-point stencil presents a slightly
lower computational load, making the effect of communications more noticeable, making it
more appropriate for our performance comparative studies.

Illustrative example

This benchmark is a modification of the Jacobi-2D program with a fixed number of itera-
tions and two parameters that modify the relative positions of the 4-neighbor points of the
stencil. The first parameter a determines the distance to the stencil points on the top and left
sides, and the second b parameter determines the same on the bottom and right sides. The
data-dependences are dependent on the exact values of the parameters.

Stencil-Opt: An optimized stencil application

This benchmark is another modification of the Jacobi-2D program. It implements a compu-
tation window that advances irregularly with the time iterations. The computation window
is defined between a back column and a front column. The back column advances when this
column arrives at the stable situation, determined by a convergence condition. The condition
is satisfied when the maximum difference of an updated value with respect to the original
value in the column cells, at one time step iteration, is lower than a threshold parameter.

i
i

i
i

i
i

i
i

138 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

Thus, the location of the back column at each iteration is data-dependent. The front column
advances one column on each iteration.

Our implementation features a row-based partition. The exact communication needed
across iterations depends on the current positions of the back and front columns.

Cannon's algorithm for matrix multiplication

This benchmark is an implementation of Cannon's algorithm for matrix multiplication [30].
It is a task-parallel algorithm for distributed-memory systems. It is designed to reduce the
memory footprint at each process. The three matrices are distributed, and no data element
is replicated in two processes at any time. Each process holds only a part of each matrix
at each iteration. It needs more communication than other approaches that use bigger
memory footprints. In order to calculate the communications, we detect the specific shift
communication pattern of this application.

Classical matrix multiplication: Matmul

This benchmark is a simple and direct implementation of the classical product of matrices
C = A×B, where the three inner loops are parallelized, and each logical process computes
and writes the value of one C element. It is an implementation of the Matmul Polybench
code.

Gauss-Seidel algorithm: Gauss

This benchmark is also a modified version of the Gauss Seidel example in Polybench. We also
modified the code to use a 4-point star stencil instead of the original 5-point star stencil. It is
a direct modification of our Jacobi-2D example, simply adding wave-front clauses to express
the dependences on the upper and left elements for each cell (matrix element) across the
computation of the parallel structure.

Blur-Roberts

The Blur-Roberts kernel performs edge detection for noisy images. It presents dependences
across two different nested-loops which are executed once. We use this example to com-
pare our technique applied on the typical approach used to program this application in
distributed-memory systems, with only a communication phase between the SPMD blocks,
with a different approach that performs a loop fusion to improve locality, but increases the
number of synchronizations.

i
i

i
i

i
i

i
i

8.5 EXPERIMENTAL STUDY | 139

Table 8.1: Input data sizes (N × N), time loop iterations (T), and threshold parameter, for the
different benchmarks in the experimental studies conducted in Heracles and CETA.

Machine Heracles CETA

Benchmarks Sizes, iterations, threshold Sizes, iterations, threshold
Illustrative example N = 7500, T = 200 N = 7500, T = 200
Stencil-Opt N = 5000, Threshold = 0.001 N = 5000, Threshold = 0.001
Cannon's algorithm N = 7680 N = 7680
Matmul N = 4000 N = 4000
Jacobi-2d N = 7000, T = 1000 N = 5000, T = 800
Gauss-Seidel N = 7000, T = 1000 N = 5000, T = 800
Blur-Roberts N = 13000 N = 13000
Gemver N = 8000 N = 600

Gemver

The Gemver algorithm is a linear algebra kernel that performs a vector multiplication and a
matrix addition. It is characterized by a sequence of several parallelizable loop sections with
a low computational load.

8.5.2 Experimental platforms and setup
Two clusters have been used in the different experimental studies. The first one is a homogen-
eous distributed-memory system called CETA. It is a hybrid cluster that belongs to CIEMAT
and the Spanish government. The cluster nodes are connected by Infiniband technology, and
they have two Intel Nehalem-based Xeon 5520 CPUs at 2.27 GHz, with 4 cores each. Using
8 nodes of the cluster, we exploit up to 64 computational units.

The other cluster, Atlas, is composed by two multicore machines (Heracles and Zeus), that
acts as a distributed-memory cluster. Heracles is a Dell PowerEdge R815 server, with 4 AMD
Opteron 6376 processors at 2.3 GHz, with 16 cores each, and 64 cores in total. Zeus is a
6-core Intel E5-2620 v3 at 2.40GHz (up to 12 threads with hyperthreading). Heracles is
used in all the experiments to test the scalability of the generated message-passing codes in
shared-memory platforms.

In the experimental studies, all the codes, including the MPI reference codes and the
programs generated by Trasgo or Pluto, are compiled with GCC v4.8.3 with -O3 flag. We
use mpich3 v3.1.3 as MPI implementation. For the first experimental study, we use the full
Atlas cluster with matrices of 1 500× 1 500 data elements. Table 8.1 shows the benchmarks,
input sizes of the matrices, threshold, and number of iterations for the rest of experimental
studies using Heracles alone and CETA. These problem sizes have been chosen to generate

i
i

i
i

i
i

i
i

140 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

Table 8.2: Computation times (seconds), of the matrix multiplication benchmark with a size
of 1500 × 1500 on the cluster Atlas with different tunning of the tile size. TS-Heracles, when
applying the best tile size for the Heracles machine in both machines. TS-Zeus, when applying
the best tile size for the Zeus machine in both machines. Best TS represents the program that
chooses different tile sizes for each machine, the best for each one.

Processes TS-Heracles TS-Zeus Best TS

1+1 11.32 6.23 6.23
2+2 5.69 3.17 3.17
4+4 2.87 2.24 1.78
6+6 2.00 2.11 1.75

12+12 1.16 1.28 0.99

enough computational load to obtain significant results for our experimental platforms. In
some cases, like Gemver in CETA, the size is the maximum supported in the chosen platform
by the distributed version of Pluto-MPI, that replicates the memory footprint of the whole
global data structures for each process.

As the focus of our work is the efficient automatic calculation and execution of commu-
nications among processes, we have launched, in all the experiments, a distributed process
for each computational unit, without exploiting the shared memory of the machines. All the
results presented are the minimum execution time on ten repetitions of each experiment, to
eliminate the outliers produced by stochastic delays in the communication systems.

8.5.3 Improvement achieved by tuning the tile size for each pro-
cess

We have developed an experimental study to show the positive impact on the performance
of tuning the tile size at runtime for each machine involves in the execution, based on their
details [87].

We use as benchmark the classical algorithm for matrix multiplication (in CMAPS). We
have executed the program with different tile sizes in the two different machines of the
Atlas cluster, to empirically determine which is the best tile size for each machine. Then, we
execute the program distributing the processes across both machines at the same time, using
each process the best tile size for its machine. Table 8.2 shows the runtime execution times
when the matrix multiplication is executed (1) using the best tile size found for Heracles in
both machines (TS-Heracles), (2) using the best tile size found for Zeus in both machines
(TS-Zeus), and (3) using, on each machine, its best tile size (Best TS),

We observe that the best performance is achieved when the tile size is tuned for each
machine independently. Unlike previous techniques, our solution does not analyze the

i
i

i
i

i
i

i
i

8.5 EXPERIMENTAL STUDY | 141

Table 8.3: Execution time for the communication determination for Jacobi-2D solver (seconds).

Processes General Model Specific Model Hierarchical mapping policy

256 2.27 ×10−3 3.08 ×10−5 7.60 ×10−4

1 024 3.92 ×10−3 3.12 ×10−5 1.48 ×10−3

16 384 0.12 2.97 ×10−5 1.54 ×10−3

262 144 2.41 3.27 ×10−5 2.38 ×10−1

1 048 576 53.22 3.21 ×10−5 9.53 ×10−1

index domain nor generates the full communication code at compile time. This allows the
adjustment of the tile size at runtime using different approaches. For example, fixing a
parametric tile size in an already tiled input code or using works, such as [111], that provide
different ways to choose the best tile size at runtime. Our method allows the application
of this kind of optimization techniques without changing the communication codes. This
feature is not found in other techniques of the related work, where the tiling is also used as a
main feature to generate the communication code, and thus the tile size cannot be changed
at runtime.

8.5.4 General communications model vs. patterns for specific ap-
plications

In this study, we evaluate the potential overhead that our runtime technique can introduce
when the number of processes is really high. Each process computes its communication
structure independently. Thus, we can isolate and run the code to compute the communica-
tion structures on a single process with the proper parameters to simulate the calculations
that would be done if the application were launched with any given number of processes.
This allows us to obtain accurate measures of the cost of the communication determination
alone for a huge number of processes, not actually available in the experimental platforms
we have accessed. This study has been carried out with one MPI process in Heracles.

Table 8.3 shows the execution times obtained to compute the communications structure
of the Jacobi-2D solver. It compares the actual time to calculate communications using the
general model, described in Sect. 8.4.2, with the optimized pattern described in Sect. 8.4.3.
Moreover, we also compare the time spent to calculate communications using the general
model when a QuadTree hierarchical mapping policy is used to distribute the data. This
kind of mapping policies define the distribution of data in several levels (see Fig. 8.10). Our
technique is performed at each hierarchical level recursively. The calculation operations (such
as intersections or subtractions among domains) are only performed in the next lower/finer
level for the parts of the current level whose intersection with the local accessed domain is not

i
i

i
i

i
i

i
i

142 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

Group: 0

Level: 0 Level: 1

GP: 0 GP: 1

GP: 4 GP: 5

GP: 8 GP: 9

GP: 12 GP: 13

GP: 2 GP: 3

GP: 6 GP: 7

Level: 2

27 27 27 2826

19

35

Group: 1

Group: 2 Group: 3

Figure 8.10: Application of the proposed communication calculation technique when using a
hierarchical QuadTree mapping policy to distribute a matrix on 64 processes. White rectangular
shapes represent the WI of the 28-th process (id=27) for the Jacobi-2D benchmark. Crosses
point out the processes or groups of processes whose mapped data do not intersect with the
locally accessed domain at a given level, detecting that no communication is needed. Thus,
they are not checked at lower levels.

empty. Thus, in the example shown in the figure, using 64 processes, instead of comparing
with all the processes, the comparison is only performed with 4 domains at level 0, 12 at
level 1 and 12 at the last level. Using this kind of hierarchical mapping techniques, we obtain
a calculation time bounded byO(log(P)) for patterns which imply communication with a
constant number of processes.

The time of the general model grows linearly with the number of processors as expected
(P). For the Jacobi-2D example, we can see on Tab. 8.3 that it is less than two seconds, even
for hundreds of thousands of processors. But it may be a hindrance for millions of processors,
or if the pattern needs to be recomputed at different iterations of a loop. In these cases, a
hierarchical decomposition and nested parallel structures can alleviate the problem, as we
can see in the third column of the table. This simulation verifies that the communication
calculation time when using the general model on a hierarchical mapping policy, is reduced
to be proportional to log(P) instead of P .

On the other hand, the specific pattern for the Jacobi-2D stencil always computes neighbor
synchronization pairs, independently of the data sizes or the number of processes. The time
in this case is bounded and negligible.

The use of hierarchical mapping policies is an interesting feature to scale the use of
the proposed technique to really huge amounts of processes, with the target of exascale
computing in mind. However, for the small sizes of the machines used in the rest of our
current experimental studies, we use the general model with a simple one level mapping

i
i

i
i

i
i

i
i

8.5 EXPERIMENTAL STUDY | 143

Table 8.4: Performance (in seconds) obtained for the three benchmarks chosen. For each case
we show results for the MPI reference version, and for the Trasgo generated code. Cannon's
algorithm by design requires a number of processes with a perfect square root.

Illust. case Stencil-Opt Cannon's

Machine MPI Trasgo MPI Trasgo MPI Trasgo
Heracles-4 14.48 18.04 163.47 196.86 174.31 186.01
Heracles-8 17.51 20.28 116.76 118.68 - -
Heracles-16 9.79 11.07 57.34 67.43 56.66 62.94
Heracles-32 4.42 5.43 35.83 43.61 - -
Heracles-64 4.00 5.08 31.62 35.89 16.10 17.95
CETA-4 25.22 27.69 147.79 166.72 173.46 173.71
CETA-8 22.68 23.20 108.94 114.01 - -
CETA-16 11.03 12.72 100.97 111.19 48.89 58.46
CETA-32 6.04 6.64 80.11 86.08 - -
CETA-64 3.37 3.63 57.54 60.20 18.54 21.37

policy, because determining the communication patterns for these cases has an unnoticeable
impact on the performance, for any model or application.

8.5.5 Comparison with MPI references

In this study, we compare the programs generated by our Trasgo prototype with MPI pro-
grams manually developed and optimized. We perform an end-to-end measure, including
creation of data structures, data initialization, and the rest of Trasgo overheads. For this
study we use: the Illustrative example; an implementation of Cannon's algorithm for matrix
multiplication [30], which is specially devised for distributed-memory systems in order to
minimize the memory footprint; and the optimized stencil computation (Stencil-Opt) whose
communication pattern is data-dependent and should be recalculated on each time iteration
of the stencil program.

Table 8.4 shows the performance obtained by the MPI reference versions, and the Trasgo
generated programs for the cases of study. We execute the applications on both, shared-
memory and distributed-memory machines. We see that Trasgo programs scale quite well,
but losing some performance in comparison with the manually optimized MPI codes (less
than 20% in the worst cases). This shows that the implementation of the proposed technique
in Trasgo produces efficient parallel programs at the communication level, with a small
overhead.

i
i

i
i

i
i

i
i

144 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

8.5.6 Comparison with a state-of-the-art tool
In this study, we have performed an in-depth comparison of the performance between the
codes generated by Trasgo, and those generated for distributed-memory by Pluto-MPI (dist-
mem), the polyhedral model compiler that includes state-of-the-art techniques for generating
communication code [42] and that was deeply studied in chapter 7. We choose Pluto-MPI
because: (1) According to the authors, it is the first work that reported an end-to-end fully
automatic distributed-memory parallelization and code generation for input programs and
transformation techniques; (2) It is a free available tool easy to install, which supports all
the benchmarks tested; (3) Many research works have appeared that use Pluto as baseline,
for both shared- and distributed-memory systems, such as [13, 80, 81]; (4) To the best of
our knowledge, the methods of Pluto for code generation in distributed-memory systems,
comparing with others, are the ones that reduce more the communicated volume of data,
being the generated code parametric in the number of processes and problem sizes.

We have selected five examples from Polybench [110], a collection of examples to be
used for testing and developing polyhedral model compilation techniques. The examples
are Jacobi-2D, Gauss-Seidel, Blur-Roberts, the classical Matrix Multiplication algorithm
and the Gemver algorithm. We have slightly modified the stencil in the Jacobi-2D and
the Gauss-Seidel examples. Instead of computing a 5-point star stencil, we compute the
4-point star stencil of Poisson's equation. It reduces the computation load per process,
leading to a slightly bigger impact of the communications, which is the focus of this study.
Gauss-Seidel has been selected because it presents wave-front dependences, deriving in a
macropipeline computation. Matrix Multiplication is a good case for simple linear algebra
problems with a nice computation/communication balance. On the other hand, Gemver
presents a communication/computation balance that is not adequate to distributed-memory
systems (communication time typically is higher than computation). The Blur-Roberts filter
is a kind of stencil with a single iteration. They were chosen to show the performance of this
kind of applications when the techniques discussed in this chapter are applied.

We compile the codes with the Makefiles provided by default with Pluto-MPI, which
include a distopt option enabling the use of the FOP communications model [21], and a set of
default flags and tile size values for each example. The Makefiles for the stencil examples do
not include the flag -l2tiles to enable multi-level tiling. The internal tools used in Pluto-MPI
do not handle it in an affordable compilation time.

For time measuring, in this study, we have taken into account only the main computation
and communication times, named Seq. and Comm. in the result tables. In Pluto-MPI, the
full matrices are allocated and initialized in all processes, although only the parts needed
for the local computation are used. At the end of a parallelized affine loop nest, Pluto needs
to create again a common global state communicating local results for each process. We
have skipped all these times in our Pluto-MPI measures. For fair comparison, we meas-
ure as communication times only: The cost of packing and unpacking the data, the cost of
communicating control information needed for the communications (only in Pluto-MPI,
our proposed technique avoids this information exchange), and network latencies and syn-

i
i

i
i

i
i

i
i

8.5 EXPERIMENTAL STUDY | 145

Table 8.5: Maximum variation in the execution times for each benchmark in Heracles and
CETA, when using Trasgo and Pluto. The variation ratio is defined using the following formula:
((max time − min time)/min time).

Machine Heracles

Benchmarks Trasgo Pluto

Matmul 0.0231 0.0575
Jacobi-2d 0.0490 0.0707
Gauss-Seidel 0.0079 0.0160
Blur-Roberts 0.2670 0.2591
Gemver 0.1192 0.1965

Machine CETA

Benchmarks Trasgo Pluto

Matmul 0.0262 0.0260
Jacobi-2d 0.0196 0.0177
Gauss-Seidel 0.0119 0.0056
Blur-Roberts 0.1695 1.1790
Gemver 0.5304 0.4878

Table8.6: Mainexecution times (in seconds) for the fivebenchmarks chosen fromthePolybench.

Jacobi-2d Gauss-Seidel matmul Gemver Blur-Roberts

Machine Trasgo Pluto Trasgo Pluto Trasgo Pluto Trasgo Pluto Trasgo Pluto
Heracles-4 142.65 101.67 428.36 274.04 41.34 28.46 0.65 0.75 0.38 1.36
Heracles-8 83.35 77.74 253.40 196.52 23.23 14.41 1.15 0.76 0.29 1.49
Heracles-16 46.61 58.26 142.41 156.02 13.24 8.26 1.60 0.78 0.24 1.75
Heracles-32 24.18 59.47 113.21 138.58 7.23 4.67 1.85 0.83 0.14 2.05
Heracles-64 18.51 61.32 64.91 128.11 4.05 2.39 2.52 0.86 0.11 2.77
CETA-4 53.44 38.20 122.13 72.08 26.19 30.31 0.0025 0.0049 0.48 1.61
CETA-8 37.03 28.73 71.08 59.87 13.33 14.36 0.0999 0.0046 0.38 5.67
CETA-16 24.28 33.20 62.86 44.93 7.84 12.73 0.1291 0.0787 0.41 20.88
CETA-32 14.62 21.13 40.25 46.65 7.05 6.84 0.4696 0.1673 0.35 47.05
CETA-64 14.56 24.36 35.09 70.30 7.56 4.13 0.4641 0.1310 0.20 59.78

chronization waits. In the computation parts, we have selected the same tile sizes on each
example for both, Trasgo and Pluto codes. In addition, in order to provide a measure of the
stochastic delays, we also show in Tab. 8.5 the maximum variation of the execution times,
for the different benchmarks, for each different execution platform, and for each different
tool tested, Trasgo and Pluto. The maximum variation is represented as a ratio of the time
difference between the minimum and the maximum execution times. We observe that in
the applications Blur-Roberts and Gemver, where the communication time is much higher
than the computation time, the variation of the execution times is really high because of the
stochastic delays of the network. In order not to take into account this stochastic effects
of the network infrastructure, in the rest of tables, we show the minimum execution time
achieved in the experiments.

In Table 8.6, we present the total execution times (Seq+Comm) considered for each bench-
mark. In Table 8.7, we present independently the accumulated time expended in the com-

i
i

i
i

i
i

i
i

146 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

putation stages, and the accumulated time expended in the communication calculation,
execution, and synchronization waits. Each result is the measure obtained for the process
that expended more time in the corresponding stages. Thus, we can observe in which cases
the communication cost is higher or lower, independently of the computation code.

The results for the Jacobi-2d, and the Gauss-Seidel examples indicate that the Pluto code
is more efficient for a low number of processes, although it does not scale as well as Trasgo.
The transformations performed by Pluto, including skewing the time loop, derive in a lot of
re-utilization and exploitation of memory hierarchies inside the processes. Trasgo codes
exploit only spatial parallelism at the distributed-level, as in classical manual message-passing
approaches. This derives in coarse-grained communications, but fewer opportunities to
exploit computation code optimizations inside the processes due to extra synchronizations.
It is specially noticeable for the macro-pipeline structure from which Gauss-Seidel derives.
However, as the number of processes grows, Pluto reveals its more clumsy communication
calculations, while the granularity of the Trasgo communications decreases, and its reduced
costs for communications become much more relevant. See the communication cost in
Table 8.7 for these examples.

In the case of Pluto codes, the full matrices are allocated and initialized in all the processes.
On the other hand, Trasgo use actually distributed arrays, with much lowermemory footprint.
However, Trasgo needs a communication stage before the execution of each SPMD block. In
the case of the matrix multiplication, there is only one execution of an SPMD block. Thus,
the communication times in Table 8.7 for Trasgo only include the time to redistribute the
data needed for each process to compute its local part. On the other hand, Pluto does not
need a communication stage beyond the global state consolidation, thus we do not consider
this time spent by Pluto in our study. The communication times for the matrix multiplication
in Pluto codes in Table 8.7 are due mainly to the synchronization times to exchange control
information in order to determine that no communication is necessary for any process.

As expected, the Gemver example shows poor scalability for both Trasgo and Pluto
distributed-memory programs. The computational load is really low, with several high-
volume communication stages. The cost of executing the communications is higher than the
computation. The sequential algorithm in the Gemver benchmark is not a good candidate for
distributed-memory programming in general. The performance in this case can be improved
in both approaches using a different mapping policy to distribute the computational load
among the processes. However, this study is beyond the scope of this work.

The Blur-Roberts filter is a kind of stencil program with a single iteration invoking two
SPMD blocks. The results show that the transformation of SPMD blocks into an affine
loop nest performed by Pluto sometimes implies poor performance, specially in distributed-
memory systems, due to the need formultiple communication stages in the generated pipeline
(although locality is improved). This effect is highly noticeable for CETA, the distributed-
memory cluster (see Comm. times in Table 8.7). Using solutions such as diamond-tiling [24]
can alleviate this problem in Pluto. On the other hand, Trasgo issues a single communication
stage for each SPMD block, with the expected scalability.

i
i

i
i

i
i

i
i

8.6 EXPERIMENTAL STUDY | 147

Ta
bl
e
8.
7:

Pe
rfo

rm
an

ce
(in

se
co
nd

s)
of

Po
ly
be

nc
h
co
de

s,
ge
ne

ra
te
d
fo
rd

is
tr
ib
ut
ed

-m
em

or
y
by

Tr
as
go

,a
nd

by
Pl
ut
o-
M
PI
,b

ro
ke
n
do

w
n

in
to

co
m
pu

ta
tio

n
an

d
co
m
m
un

ic
at
io
n
tim

es
(in

cl
ud

in
g
ca
lc
ul
at
io
n
an

d
ex
ec
ut
io
n)
.

Ja
co
bi
-2
d

Ga
us
s-
Se

id
el

M
at
m
ul

Tr
as
go

Pl
ut
o

Tr
as
go

Pl
ut
o

Tr
as
go

Pl
ut
o

M
ac

hi
ne

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

H
er
ac
le
s-
4

14
1.
94

2.
24

85
.3
5

49
.4
3

22
6.
32

28
3.
24

19
2.
41

11
6.
34

41
.2
4

0.
09

28
.4
6

2.
73

H
er
ac
le
s-
8

80
.5
6

16
.5
1

52
.5
2

54
.1
8

12
9.
52

18
2.
18

10
0.
02

12
3.
70

23
.0
5

0.
18

14
.4
1

2.
69

H
er
ac
le
s-
16

45
.9
3

15
.2
4

30
.0
4

48
.4
8

70
.6
1

10
8.
35

53
.8
0

12
2.
33

13
.0
5

0.
20

8.
26

3.
30

H
er
ac
le
s-
32

22
.4
6

7.
83

22
.2
3

54
.7
8

52
.8
8

95
.5
9

33
.2
5

12
3.
64

7.
05

0.
18

4.
67

3.
49

H
er
ac
le
s-
64

15
.5
7

7.
86

22
.9
6

63
.8
3

27
.7
3

55
.6
0

22
.1
1

12
3.
51

3.
79

0.
26

2.
39

2.
39

CE
TA

-4
53

.0
4

8.
09

36
.8
8

15
.9
8

62
.9
3

75
.7
5

55
.6
5

29
.3
7

26
.1
2

0.
07

30
.3
1

2.
62

CE
TA

-8
36

.1
7

13
.1
9

22
.1
5

17
.8
7

32
.8
9

52
.9
5

28
.6
0

36
.4
3

13
.2
2

0.
13

14
.3
6

2.
66

CE
TA

-1
6

20
.2
4

13
.1
4

16
.4
9

30
.6
6

22
.8
3

53
.4
3

14
.3
9

35
.7
8

6.
97

0.
89

12
.7
2

6.
16

CE
TA

-3
2

8.
63

9.
40

8.
54

22
.4
1

19
.6
2

36
.2
4

10
.7
9

43
.3
6

5.
32

1.
79

6.
81

5.
85

CE
TA

-6
4

5.
77

12
.2
9

8.
55

25
.3
9

8.
81

33
.0
9

9.
35

70
.4
7

5.
60

1.
69

4.
07

4.
13

Ge
m
ve
r

Bl
ur
-R
ob

er
ts

Tr
as
go

Pl
ut
o

Tr
as
go

Pl
ut
o

M
ac

hi
ne

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

Se
q.

Co
m
m
.

H
er
ac
le
s-
4

0.
18

16
0.
46

48
0.
75

14
0.
75

38
0.
35

0.
03

0.
70

0.
93

H
er
ac
le
s-
8

0.
16

07
0.
98

64
0.
75

53
0.
75

85
0.
21

0.
06

0.
47

1.
41

H
er
ac
le
s-
16

0.
14

17
1.
45

45
0.
77

90
0.
78

48
0.
19

0.
07

0.
41

1.
78

H
er
ac
le
s-
32

0.
05

04
1.
79

66
0.
81

58
0.
82

86
0.
08

0.
05

0.
39

2.
19

H
er
ac
le
s-
64

0.
03

83
2.
47

94
0.
84

42
0.
86

79
0.
09

0.
05

0.
39

3.
25

CE
TA

-4
0.
00

10
0.
00

19
0.
00

26
0.
00

33
0.
38

0.
10

0.
75

1.
01

CE
TA

-8
0.
00

05
0.
09

89
0.
00

31
0.
00

45
0.
38

0.
15

0.
74

4.
92

CE
TA

-1
6

0.
00

03
0.
12

03
0.
00

37
0.
04

62
0.
22

0.
33

0.
70

19
.4
8

CE
TA

-3
2

0.
00

03
0.
37

67
0.
00

36
0.
19

87
0.
11

0.
30

0.
37

45
.2
0

CE
TA

-6
4

0.
00

02
0.
46

33
0.
00

35
0.
19

67
0.
05

0.
16

0.
41

53
.9
3

i
i

i
i

i
i

i
i

148 | AUTOMATICALLY CALCULATING COMMUNICATIONS FOR DMS FROM DATA-ACCESS
EXPRESSIONS

We conclude that Trasgo codes scale very well due to their very efficient communication
structures, despite the fact that the computation code can still be optimized further.

8.6 Summary

This chapter presents a technique that, for parallel structures with uniform affine expressions
on data accesses, automatically determines at runtime ad-hoc communication patterns for
distributed-memory processes across two consecutive SPMDblocks. This new technique uses
the results of a partition policy to compute at runtime exact coarse-grained communication
patterns for distributed message-passing processes. It is based on intersections of remote
and local footprints in terms of the results of the mapping function chosen. Our approach
allows the automatic generation of pre-compiled multi-level parallel libraries or programs,
that can adapt their communication and synchronization structures to the target system.
Experimental results, for several representative cases of study, show that our technique
produces efficient codes, despite the overhead of our runtime communication calculation,
compared with a compile-time state-of-the-art tool that generates communication codes,
and with manually implemented and optimized pure-MPI references codes.

Future work includes the applicability of the transformation model in the context of
current polyhedral model frameworks, using more irregular domains, or extending it for
non-completely affine expressions.

i
i

i
i

i
i

i
i

CHAPTER 9

Automatically calculating
communications for

distributed-memory systems from
uniform affine expressions on

periodic domains

M any real-world applications feature data accesses on periodic domains. Manually
implementing the synchronizations and communications associated to the data de-

pendences on each case, is cumbersome and error-prone. It is increasingly interesting to
support these applications in high-level parallel programming languages or parallelizing
compilers. There is a lack of support for this kind of applications in most automatic parallel
code generators for distributed memory.

In this chapter we present a new technique based on the same ideas of the one presented
in the previous chapter, but devised to calculate the specific communication patterns derived
from data-parallel codes with or without periodic boundary conditions on the uniform affine
data-access expressions. It addresses the fifth goal of the Thesis:

Extend the technique to automatically calculate aggregated communications in
applications with periodic domains.

- 149 -

i
i

i
i

i
i

i
i

150 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

9.1 Introduction

Many real-world applications feature data accesses on periodic domains. For example,
physical phenomena can be modelled using spherical grids with periodic boundary condi-
tions [112], using a stencil program over a periodic domain. Manually implementing the
synchronizations and communications associated to the data dependences for each specific
application, is cumbersome and error-prone. Thus, it is increasingly interesting to support
these applications in high-level parallel programming languages or parallelizing compilers.

In this chapter we present a technique that, automatically calculates at runtime the coarse-
grained communication patterns that are needed for a correct and efficient execution of
SPMD (Single Program Multiple Data) programs derived from data-parallel codes with peri-
odic uniform affine expressions in data accesses. It inherits the nice features of the previous
technique, making transparent to the programmer the management of aggregated commu-
nications for the chosen data partition. It also moves to runtime part of the compile-time
analysis needed to generate the communication code. Thus, it also produces programs more
adaptable to different execution environments, allowing, for example, the use of different tile
sizes at the same hierarchical level, a good approach for clusters that include machines with
different architectures [87].

To show the applicability of our approach, we also develop the technique in the Trasgo
parallel programming system proposed in [54]. We test six benchmarks with periodic access
expressions: An illustrative example based on the rotate routine of the STL library [124], the
periodic versions of Heat 1-D, 2-D and 3-D applications [23], a matrix multiplication program
using Cannon's algorithm [30] and a multi-grid V-cycle 3D-stencil application, the NAS MG
benchmark [11]. Our experimental results, comparing pure MPI reference codes and the
programs automatically generated, in both distributed- and shared-memory environments,
show that the use of our approach can automatically obtain efficient codes while reducing
the development effort. For example, the use of our solution leads to a reduction of 44.42% in
the number of code lines and a reduction of 65.71% in the McCabe Cyclomatic Complexity
for the NAS MG Benchmark.

9.2 Related work targeting problems with periodic domains

Applying the tiling technique to a set of indexes enables a medium-grained parallelization.
Some approaches have been presented to solve the problem of tiling with periodic boundary
conditions. The closest method to our approach is a cutting-and-pasting technique. In this
technique, the dependencies which are affected by the periodic conditions are broken and
displaced. It is similar to a circular loop skewing. This approach needs a computation of
the transitive closure of dependencies to determine the set of iterations which another tile
depends on. Some libraries such as ISL [135] are capable, for some problems, of computing

i
i

i
i

i
i

i
i

9.3 ILLUSTRATIVE EXAMPLE | 151

1 ** Sequential rotate algorithm
2 Inputs: size: Vector size
3 <type> M[size]: Vector with initial values
4 f: function to compute each element
5 rot: Amount of positions to rotate the elements
6

7

8 Outputs: <type> M2[size]: Vector with result values
9

10 1. <type> M2[size];
11 2. For i = 0 to size-1
12 M2[i] = f(M[(i+rot) mod size])

Figure 9.1: Sequential algorithm for the illustrative example assuming a positive value of rot.

at compile time the transitive closure of dependencies efficiently. However, the transitive
closure computation istypically a very hard problem for solutions that work at compile time.
Another method to tile and optimize time-iterated computations over periodic domains
was presented in [23]. This technique first splits the iteration domain, cutting close to the
mid-point what their authors call long dependences. After this cut, they apply a separate affine
transformation on each half of the space. All these approaches target shared-memory systems.
Programming for distributed-memory systems is more challenging due to the management
of the distributed data structures. Moreover, communications among processes should be
devised in terms of, for example, message-passing operations, taking into account all the
potential combinations of proper data partitions or matrix sizes. Our technique makes
transparent all these issues.

9.3 Illustrative example

This section presents an illustrative application to show an example of how a parametrizable
algorithm can be tackled with our proposed solution. We selected an example based on the
rotate routine of the STL library [124]. Refer to the sequential algorithm in Fig. 9.1. The
routine applies a rotation to the vector elements while applying a function f() on each
one of them. The routine receives an integer parameter size, a vector of elements (with the
size indicated by the previous parameter), the function to apply yo the elements f(), and
another integer parameter rot. The parameter rot is used in the access expressions to select,
at runtime, the amount of positions that the elements in the vector should be shifted.

i
i

i
i

i
i

i
i

152 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

Inputs:

size: Vector size
rank: local process Id
L: mapping function

Outputs:

<type> M[]: Distributed vector
rot: Amount of positions to rotate

<type> M2[]: Distributed vector

2.
** Bring data from remote processes

** Declare local part of M2

1. <type> M2[L(rank).b : L(rank).e]

** Local computation

3. for (i=L(rank).b ; i<=L(rank).e; i++)

M2[i] = f(M[(i+rot) mod size])

Comm.
Stage

SPMD
Comp.

Figure9.2: Parallel algorithm for the illustrative example inaSPMDmodel assumingapreviously
distributed input array. Boxes indicate the logical steps in SPMD computations.

A distributed parallel version of this algorithm is shown in Fig. 9.2. For simplicity, we
assume that the function f() is fixed and not received as parameter. In this case, the input
parameters are: (1) The size of the original input vector, size; (2) the local process identifier,
myRank; (3) a mapping function L that receives a process identifier and returns the set
of indexes, in the range [0:size-1], assigned to that process (b and e will indicate the limits
of the set for this process) ; (4) An input vectorM that was previously distributed among
the different processes using the mapping function L; (5) The integer parameter rot that is
assumed to be positive in this example.

First, the local part of the distributed output vector M2 is declared, also using the
mapping function L. Thus, each process stores the same part of both arrays,M andM2.
After that, each process participates in the rotation of the whole vector elements, and applies
the function f() on its part (SPMD block). When a process applies the access expression (i+
rot)mod size to its assigned index domain, some element indexes access to data in remote
partitions and it is possible that part of the resulted indexes are out of the assigned domain.
Notice that the mod operator makes these indexes access to elements in non-neighbor
processes. Hence, we insert a communication phase before the SPMD block to ensure
that every process has the necessary data to compute f(). After the communication and
computation, processes will be able to update its part of theM2 output vector. Our technique
calculates automatically these necessary communications.

We illustrate the communication calculation for this example in Fig. 9.3. In the left of
the figure, we see in Stage 1 the set of indexes assigned by the mapping function L to each
process. In Stage 2, we see the set of indexes resulted by applying the expression (i+ rot)
to the indexes assigned to the processes 2 and 4. In our example, the domain accessed by
process 2 overlaps with the domain owned by process 3. Thus, in order to compute, process 2
needs to receive those data from process 3. For process 4 we obtain two sets of indexes:
(a) A set located into the original array domain (it will be named s◦), and (b) a set located
outside of the original array domain. This set is represented in yellow and it will be named
s+. Notice that s+ is a set of indexes higher than the end of the array domain, due to the

i
i

i
i

i
i

i
i

9.4 AGGREGATED-COMMUNICATION MODEL | 153

Proc: 1 Proc: 2 Proc: 3 Proc: 4

b1 e1 b2 e2 b3 e3 b4
e4

...

Stage 2) Applying Expr: [(i+rot)]:

Stage 1) Illustrative example:

...

Stage 3) Applying Expr: [mod size]:

size0

s
s
s

s
s

s

Stage 1)

s
s

s

s
s
s

Stage 2)

Stage 3)

s

s

ss

Figure 9.3: Communication structures calculation. Using the read data-access expression
inside the parallel computation of the illustrative example to build the functions that calculate
the working input indexes set (WI), for the data structure M , for the processes 2 and 4. This
example uses contiguous rectangular shapes, an irregular data partition policy, and depicts the
particular case of rot = 3, for a domain with |M0| = 25.

positive value of rot in the example. If the value of rot had been negative, we would have
had a set of indexes lower than the start of the array domain, that we name s−.

The application of the periodic boundary condition (mod size) over the set of indexes
resulted of applying i + rot in process 4, transform them to the set of indexes shown in
Stage 3. The yellow region on Stage 2 corresponds to the yellow stripped region that belongs
to process 1 at Stage 3. We will need an extra communication to receive the stripped region
from process 1 at process 4.

9.4 Aggregated-communication model

In this section, we present a generic model that calculates at runtime the necessary commu-
nication patterns to compute communications for SPMD blocks, that contain uniform affine
access expressions on the indexes of the parallel loops (SPMD blocks) with optional periodic
boundary conditions. In this work we assume an owner-computes paradigm, with the result
of a runtime mapping function indicating the ownership. We describe the model to calculate
communication patterns to move data from owner processes to the processes where these
data are accessed to execute computation. The same model can be applied to move computed
data to destination positions, in the case of write accesses which are also generic expressions
that transform the domain indexes.

In this section, first, we present the notation used. After that, a simplified one-dimensional
overview of the communication calculation is presented. Finally, the genericmulti-dimensional
model is described.

i
i

i
i

i
i

i
i

154 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

9.4.1 Definitions
In this section, we define the terms used during the model description. We use lower-case
characters (as s or s′) as generic elements of a given set. We use the dot operator to refer to
the fields of a tuple (for example, s.b represents the field b of the tuple s).

• Number of elements (N): number of elements in an arrayM .

• Number of dimensions (n): number of dimensions of an arrayM .

• Cardinality (|Mx|): number of indexes of the arrayM in the x-th dimension.

• Signature (S〈b, e, z〉): is a triplet of three integer numbers begin (b), end (e), and stride
(z). A signature defines a subset of integer one-dimensional indexes from the begin to
the end, using the stride as step. We will use the classical Fortran90 notation [b : e : z]
for simplicity in our discussion.

• Hyperrectangle domain (d ∈ Dn): An n-dimensional domain formed by theCartesian
product of n signatures (a hyperrectangle).

• Domain (d ∈ D∗
n): A set of n-dimensional indexes. Any set of n-dimensional indexes

can be represented as the union of hyperrectangle domains, which are a particular case
of domains (Dn ⊂ D∗

n). In a similar way as the Kleene star or closure operator [46]
denotes all the possible combinations of a set of strings using the concatenation
operator, we useD∗

n to denote the set of all possible domains of n-dimensional indexes,
built as the union of hyperrectangle domains.

• Computation indexes (
−→
i): The set of indexes where a parallel computation will be

performed.

• Affine expression (ρx(−→i)): In our technique we consider affine expressions on the
x-th dimension with the form:

ρx(−→i) = α0 × i0 + ...+ αn−1 × in−1 + β

where the coefficients α0..n−1, β are invariant in the body of the SPMD block. We
can also apply an affine expression to a whole set of indexes described by a signature
(ρx(s)).

• Periodic expression (cyc(ρx(−→i))): It denotes periodic boundary conditions on the
result of an affine expression.

• Mapping function (L(p)): It is a function that receives the index of a process and
returns the domain representing the set of indexes mapped to that process.

i
i

i
i

i
i

i
i

9.4 AGGREGATED-COMMUNICATION MODEL | 155

• Access expression (M [cyc(ρ0(−→i))]...[cyc(ρn−1(−→i))]): An expression in the code
that accesses the data in a data structureM . A periodic boundary condition is applied
on each dimension of the data structure.

• Set of affine expressions (φ(−→i)): The set of affine expressions (one for each dimen-
sion) of a single access expression.

9.4.2 Model for calculating communication patterns in 1-D applic-
ations

In this section we present an overview of the proposed technique to calculate the commu-
nication patterns for only one-dimensional index domains. Recall the parallel algorithm
presented in Fig. 9.1, that performs the rotation of the elements of a vector also applying a
function f(). A communication phase is needed before the SPMD block to reallocate some
data across processes, ensuring that each process has the necessary data to compute.

The following analysis is done independently for each data structure, and for each SPMD
block. The Input Working Set of Indexes (WA,k

I (p, L,
−→
δ)) is a function built based on the

access expressions on a SPMD block. It returns the set of indexes of the data structure A,
read by a given processor p, during the k-th SPMD block in the code (remember Stage 2
of Fig. 9.3). The parameters of the function are: The processor identifier p, a mapping
function L that returns the set of indexes mapped to any processor, and

−→
δ , the values of

the symbolic parameters that appear in the expressions. The function applies at runtime the
affine expressions (φ) found in read accesses toA inside the k-th SPMD block, one by one,
to the indexes set returned by the mapping function (L(p)). See a calculation example in
Stage 2 of Fig. 9.3.

For the one-dimensional case, we obtain a set of indexes that can be represented by a set
of signatures. These signatures can be classified as:

• Set of signatures whose indexes are lower than the begin of the original array domain
(S−

0).

• Set of signatures whose indexes are included in the original domain (S◦
0).

• Set of signatures whose indexes are higher than the end of the original array domain
(S+

0).

We generate the code of the functions that compute the set of indexes read per each
SPMD block, and each data structure (WA,k

I (p, L,
−→
δ)). These functions return a set of

signatures representing the set of indexes read. With these functions, a process can calculate
the input working set of the distributed data structure, mapped to any process, once the
parametric values are known. These functions simply apply at runtime the access expressions
to the index-space limits at runtime to calculate the working-sets (see the implementation of
these functions in Sect. 9.5).

i
i

i
i

i
i

i
i

156 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

Once we have the set of signatures that result of applying the affine expressions, we can
apply the periodic boundary conditions, where it is required. This relocates the indexes that
after the application of the affine expression are out of the original array domain, into the
domain. See Stage 3 in Fig. 9.3. We define two functions to apply the periodic conditions to
signatures. Remember that |M0| is the number of elements ofM in the first dimension.

• For signatures in S− we define ψ : S → S where

ψ(s) = s′ :

s′.b = −((−s.b)mod |M0|) + |M0|,
s′.e = −((−s.e)mod |M0|) + |M0|,
s′.z = s.z

(9.1)

• For signatures in S+ we define ϕ : S → S where

ϕ(s) = s′ :

s′.b = s.b mod |M0|,
s′.e = s.e mod |M0|,
s′.z = s.z

(9.2)

A functionT : D∗
n → D∗

n transforms the working input set by applying the two previous
functions to relocate all the indexes back into the original array domain, as it was showed in
Stage 3 of Fig. 9.3. We can express the transformation with the following function:

T (WA,k
I (p, L,

−→
δ)) =

if s ∈ S−; s′ = ψ(s),
if s ∈ S◦; s′ = s,

if s ∈ S+; s′ = ϕ(s)
(9.3)

An example of the application of T (WA,k
I (p, L,

−→
δ) for the illustrative example can be

seen also in Stage 3 on the right of Fig. 9.3.
Algorithm 3 uses a simplified one-dimensional model to calculate the data to be received

at any process. The output is a set of communication tuples (CR). A comm-tuple 〈p,D∗〉
associates the index of the remote process p, with the set of indexes D∗ of the structure
whose data values should be communicated. For each data structure, the local process,
named myRank, calculates the exact data to be received from a remote process p. In
order to do that, local process intersects L(p), which is the domain assigned to that remote
process by the mapping function, with the data positions needed in read accesses, which are
represented by the transformed input set at the local process, T (WA,k

I (myRank, L,
−→
δ)).

If the intersection is not empty, a receive communication should be performed. The data
have to be received in the positions accessed by the local process, so the applied boundary
conditions are reverted. The data to be sent to process p can be calculated by the opposite
intersection: The assigned domain to the local process (L(myRank)), with the transformed

i
i

i
i

i
i

i
i

9.4 AGGREGATED-COMMUNICATION MODEL | 157

Algorithm 3:Model to calculate the receive communication pattern for a SPMD block,
for a given data structureA.
Input:
P : Number of processes;
myRank: Local process id;
L(): Mapping function;
−→
δ : Symbolic parameters;
|A0|: Cardinality of the 1-D array;
WA,k

I (): Function to compute the working input set;
ψ(), ϕ(): Periodic transforming functions
Output: CR : Set of comm-tuples that indicates data to be received
CR ← ∅
for p: 1 to P do

lp← L(p)
for all s ∈ T (WA,k

I (myRank, L,
−→
δ)) do

s′ ← s ∩ lp.S0
if s′ 6= ∅ then

tmp0 ← ∅
if p 6= myRank and s ∈ S◦ then

tmp0 ← s′

end
if s ∈ ψ(S−) then

tmp0 ← s′ − |A0|
end
if s ∈ ϕ(S+) then

tmp0 ← s′ + |A0|
end
CR ← CR ∪ 〈p, 〈tmp0〉〉

end
end

end

i
i

i
i

i
i

i
i

158 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

Proc 0

Proc 2

Proc 1

Proc 3

<S0
o, S1

+>
<S0

o, S1
O>

<S0
+, S1

+>
<S0

+, S1
O>

M M

Figure 9.4: Stencil-2D application: Input matrix has been divided among four processes. Left:
Set of signatures accessed by process 3 and their classification. Right: Communications needed
to enable the computation at process 3, represented by arrows.

input sets at the remote process (T (WA,k
I (p, L,

−→
δ))). Empty intersections indicate that

no send or no receive operation is needed for that particular process p. In the illustrative
example of Sect. 9.3, the groups S− is empty for any process p, due to rot being positive,
and simply added to the parallel loop index in the expression. See the details in Fig. 9.3.

9.4.3 Multi-dimensional model
As we have seen in the previous section, for the one-dimensional case, we have three groups
of signatures, depending on the access expressions (S−, S◦, S+). However, in a general
case with n dimensions, the number of classes for the transformed domains, before ap-
plying boundary conditions, is 3n. For example, let A[cyc(ρ0(−→i))][cyc(ρ1(−→i))] be a
two-dimensional periodic access expression. The input working set is calculated similarly as
in the 1-dimensional case, simply applying the access expressions to the index-space limits
at runtime for every dimension. As we use hyperrectangular tiles, no over-approximation is
performed, so the calculated input working set only contains the index space obtained by
applying the access expressions on the different dimensions.

The domains that compose a 2-dimensional input working set can be classified in 32

possible groups of domains. The classification groups are defined as the combination of the
S−, S◦, and S+ sets of each dimension:

〈S◦
0 , S

◦
1 〉, 〈S◦

0 , S
−
1 〉, 〈S◦

0 , S
+
1 〉, 〈S

−
0 , S

◦
1 〉, 〈S−

0 , S
−
1 〉,

〈S−
0 , S

+
1 〉, 〈S

+
0 , S

◦
1 〉, 〈S+

0 , S
−
1 〉, 〈S

+
0 , S

+
1 〉

Figure 9.4 shows an example based on a Stencil-2D application with periodic boundary
conditions. For simplicity in this figure, the matrixM has been divided in four equal parts
that correspond to 4 processes. Thus, each process computes a part of the matrix. In this
example each process needs data of its neighbors for computing. On the left of the figure, we

i
i

i
i

i
i

i
i

9.5 IMPLEMENTATION ON A PARALLEL PROGRAMMING FRAMEWORK | 159

1 /* Function to rotate one element */
2 void rotateElem(in double m, out double m2) { m2=f(m); }
3

4 /* Rotate: Parallel function */
5 coordination void rotate(in tile double M[], in int rot,
6 in int size, in Map L, out tile double M2[]) {
7 ArrayMap(M2, L);
8 parallel(i in [0 :size-1]){
9 rotateElem(M[cyc(i+rot)], M2[i]);
10 }
11 }

Figure 9.5: Trasgo input code for the illustrative example.

show the domains accessed by process 3, classifying also the domains in their corresponding
groups (e.g 〈S◦

0 , S
◦
1 〉, 〈S◦

0 , S
+
1 〉). The groups of domains not represented in the figure are

empty. On the right of the figure, we represent using arrows the corresponding receive
communication operations that should be performed on each iteration by process 3, and
which are automatically calculated by our proposal.

Themultidimensional model uses an extension of the Alg. 3. In this case, the computation
of the transformed input working set (T (WA,k

I (p, L,
−→
δ))), and the reversion of the resulting

domains are done by applying the transforming functions (ψ and ϕ) independently on each
dimension.

9.5 Implementation on a parallel programming framework

We implement this proposal also in the Trasgo system. Figure 9.5 shows a simplified example
of how to program the illustrative example presented in Sect. 9.3 for Trasgo. First, we define
the sequential function to apply to each data element, specifying the output or input role of
the parameters (line 2). The parallel function is defined using the coordination modifier, and
also specifying the role of the parameters (lines 5 to 6). In its body, the function ArrayMap()
allocates the distributed arrayM2 in terms of the results of the mapping policyL, that is also
a parameter (line 7). After the distribution, the code updates each element ofM2 in parallel
invoking, inside the parallel statement, the sequential function previously defined (lines 8-9).

We implemented the proposed technique on top of the Hitmap library (remind Sect 8.3.3).
Mapping functions are represented in Hitmap as HitLayout objects; The signatures by HitSig
objects; The hyperrectangular domains by HitShape objects; And the sets of domains by

i
i

i
i

i
i

i
i

160 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

1 /** Calculate W_I for M in SPMD */
2 HitDomain calculateWI_1_M(HitRank p, HitLayout lay,
3 HitTile Tile1, int rot){
4 // L(p)
5 HitShape remote = hitLayOtherShape(lay, p);
6 // 1*begin+rot, 1*end+rot, 1*stride
7 HitDomain inWS = hitShapeAffine1(remote, 1,+rot);
8 //Apply boundary conditions
9 hitApplyBoundary(inWS, lay, Tile1);

10 return inWS;
11 }

Figure 9.6: Excerpt of the generated function that applies the input-code affine access expres-
sions and periodic conditions to compute T (W A,k

I (p, L, rot)) for the illustrative example.

HitDomain objects. The handlers containing pointers to the actual data structures are HitTile
objects.

We implemented the multidimensional model of the proposed technique on Trasgo,
using the Hitmap features, for efficient domain set operations on hyperrectangular shape
structures such as intersection ∩, union ∪, and subtraction \.

Figures 9.6 to 9.7 present an example of the functions automatically generated follow-
ing the proposed technique to calculate the receive communication pattern (CR) for the
illustrative example, and the lines to be inserted in the main code to invoke these functions.

The function named calculateWI_1_M (see Fig. 9.6) is generated at compile time by Trasgo.
It uses three Hitmap functions: (1) hitLayOtherShape returns the domain assigned to a given
remote process; (2) hitShapeAffine1 applies an uniform affine access expressions of the form
(α0 × i0β) to the index-space limits of the first dimension at runtime. (It performs the
computation of Stage 2 of Fig. 9.3); (3) hitApplyBoundary applies the boundary conditions,
and returns a set of signature domains bounded to the original array domain. It performs
the transformation shown at Stage 3 of Fig. 9.3.

We implement the algorithm presented in section 9.4 into theHitmap library as a function.
It receives as parameters the mapping function used to part the data structure (a HitLay-
out object), and the generated functions for the specific piece of code needed to calculate
the transformed input working set (T (WA,k

I (p, L,
−→
δ))). The result of the new function

calcComms, is a HitPattern object where the calculated comm-tuples have been inserted.
Figure 9.7 shows how both the communication calculation and the execution functions are
called in the target main program. A similar piece of code is automatically inserted before
the execution of each SPMD block.

i
i

i
i

i
i

i
i

9.7 DISCUSSION: ANALYZING THE TECHNIQUE | 161

1 /* Building comm. pattern */
2 HitPattern _TT_comA = calcComms(M, calculateWI_1_M, M.Layout, rot);
3 /* Communication, execute pattern */
4 hit_patternDo(_TT_comA);

Figure 9.7: Calling both the communication calculation and execution functions in the target
program of the illustrative example.

9.6 Discussion: Analyzing the technique

Communication optimality: For a given input working set, our technique calculates
the corresponding exact data communication. In the current prototype framework, the
construction of the exact input working sets is limited for some kind of programs.

In our implementation, the domains used to represent the indexes accessed in a given
piece of code should be represented as hyperrectangles (signature domains). The represent-
ation of any other shape should be done as a union of signature domains. The number of
signature domains needed is directly related with the runtime complexity of applying our
technique. We developed a function that, after a union of domains, eliminates the redundant
elements in the communication object. It is represented in the Alg. 3 by the ∪ symbol. This
function will be applied at runtime before the communication execution. The asymptotic
complexity of this function is dependent on the number of signature domains stored in the
communication object, whose data will be communicated. Using this function we avoid
redundant communication. This is one of the main advantages of our technique with respect
to the previous work. However, depending on the program, the complexity of this function
can penalize the performance of the application in some cases. A future work will determine
the best option between applying the function to eliminate the redundant communications,
or communicating extra data on each case.

Future work also includes the integration of polyhedral frameworks, which use more
sophisticated representations [132], to extend the application range of our implementation.

Scalability on computational units: Analyzing Alg. 3 we observe that the time spent
by the communication calculation grows linearly with the number of processes. This has been
verified in the experimental study in Sect. 9.7.4. This trend also appears in other previous
distributed-memory approaches used to derive communications code (remind Chap. 6). For
scalability in target platforms with high orders of magnitude of processing elements, these
techniques should be combined with other ones, such as hierarchical groups of processes, or
the detection and application of specific techniques for application patterns, as we shown in
the experimental study of Sect 8.5.4.

i
i

i
i

i
i

i
i

162 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

Table 9.1: Input data sizes (N) and time loop iterations (T), for benchmarks in the experimental
studies.

Study 1 Sizes (N)

Bench.

Rotate N =3 ∗ 107, rot=2
Cannon N=7680 x 7680
MG Class D

Study 2 Sizes (N),

Bench. iterations (T)

Heat-1d N = 2000000, T = 6000
Heat-2d N = 8000 x 8000, T = 500
Heat-3d N = 500x500x500, T = 100

9.7 Experimental study

We performed an experimental study to validate our approach, and to verify the efficiency of
the resulting codes, studying the potential overheads introduced by our runtime calculation.
The section is divided into: (1) the experiment design details, (2) a study of several study cases,
comparing our proposal with optimized MPI reference programs in terms of performance
and code complexity; and (3) a breakdown of the performance measures of our codes in
computation, communication calculation, and communication execution times.

9.7.1 Design and setup of the experimental study

The experiments were executed in two platforms. The first one (CETA) is a hybrid cluster that
belongs to CETA-CIEMAT1 and the Spanish government. The cluster nodes are connected
by Infiniband, and they have two Intel Xeon 5520 CPUs at 2.27 GHz, with 4 cores each.
Using 8 nodes of the cluster, we exploit up to 64 computational units. The second platform
is a pure shared-memory machine (Heracles), a Dell PowerEdge R815 server, improved with
4 AMD Opteron 6376 processors at 2.3 GHz, with 16 cores each, and 64 cores in total. We
compiled the codes with the GCC v6.2 compiler, using the optimization flag -O3. As MPI
implementation, we use mpich3 v3.1.3, with device ch4, that also improves communication
performance on shared memory.

We use static mapping, launching oneMPI process for each processing element. Themain
contribution of this work is the technique to calculate automatically the data communications
needed when an application with periodic array accesses is executed on a distributed-memory
system. Thus, in this chapter, for a fair comparison, we use only MPI processes without
exploiting threads programming. We focus on studying only the potential overheads intro-
duced by this calculation, and the benefits obtained due to the aggregated communications.
The foundation of how OpenMP threads can be efficiently composed inside MPI processes
when using Hitmap was presented in [95].

1 Extremadura Research Center for Advanced Technologies, Spain.

i
i

i
i

i
i

i
i

9.7 EXPERIMENTAL STUDY | 163

Table 9.2: Study 1: Performance (in seconds) for the illustrative example, Cannon's algorithm,
and the MG real-world application. Comparison of MPI references and Trasgo generated codes.
Notice that Cannon's algorithm requires a number of processes with a perfect square root.

Rotate Cannon MG

Machine MPI Trasgo MPI Trasgo MPI Trasgo
Heracles-4 1.00 1.26 148.42 146.13 512.05 519.05
Heracles-8 0.66 0.84 -- -- 364.47 367.80
Heracles-16 0.35 0.43 42.43 41.69 208.59 214.40
Heracles-32 0.24 0.32 -- -- 135.44 138.46
Heracles-64 0.09 0.11 11.95 10.66 105.28 100.16
CETA-4 0.94 1.07 101.16 106.20 -- --
CETA-8 0.50 0.57 -- -- -- --
CETA-16 0.27 0.31 29.89 28.60 210.92 231.83
CETA-32 0.14 0.16 -- -- 194.14 229.99
CETA-64 0.08 0.08 10.68 12.80 151.66 197.64

We executed the programs in CETA and Heracles with number of processes P = 1, 4,
8, 16, 32, and 64. We performed ten executions per each test, taking the average time. We
selected big enough input data sizes to produce a minimum computational load that remains
significant when the computation is distributed across 64 computational units. The input
data sizes (N) and time loop iterations (T), for the different benchmarks in the experimental
studies are presented in Tab. 9.1. All the codes use a data partition policy that splits the input
data structure in as many 1D, 2D, or 3D blocks as number of processes.

9.7.2 Study 1: Performance comparisonwithMPI reference codes

In this section we present a performance study using: (1) The simple illustrative example
presented in Sect. 9.3; (2) The well-known Cannon's distributed-memory parallel algorithm
for matrix multiplication [30], which is specially devised for distributed-memory systems in
order to minimize the memory footprint; and (3) The real-world application MG of the NAS
Benchamrks, implementing a multi-grid v-cycle method for a 3D-stencil computation [11].

In this study we perform an end-to-end time measure including all program stages
where Trasgo could introduce overheads. Table 9.2 shows the performance obtained when
we compare Trasgo generated codes with reference MPI versions. Our programs for the
illustrative example and Cannon's algorithm scale similarly to the optimized MPI codes.

The NAS MG benchmark requires further discussion. The distribution of the data struc-
tures is key to execute this computationally-intensive application. The MG data structures
for the D input class (defined by NAS benchmarks) need to be distributed at least among
16 processes in order to fit in the local memories of the nodes of our distributed-memory
machine, CETA. Thus, we only present the results for 16, 32 and 64 processes on Tab. 9.2.
The MPI reference code of the NAS MG benchmark contains a manual optimization to

i
i

i
i

i
i

i
i

164 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

Table 9.3: Comparison of development effort measures for three case studies.

KDSI McCabe's C.C. Halstead D.E.

Trasgo 24 6 74K
Rotate C+MPI 62 21 1 890K

Reduction 61.29% 71.43% 96.08%
Trasgo 57 4 19K

Cannon's MM C+MPI 175 4 122K
Reduction 67.43% 0.00% 84.43%
Trasgo 772 72 19 477K

NAS MG C+MPI 1389 210 29 568K
Reduction 44.42% 65.71% 34.13%

communicate data across different levels of the v-cycle. This optimization cannot be directly
derived from the access-expression analysis of the SPMD blocks that traverse the multi-grid
during the v-cycle. Our implementation issues an extra communication phase that this
optimization eliminates, incurring thus in a performance loss up to 30% in our measures.

In summary, our technique allows the automatic calculation of communication stages
for codes with uniform affine expressions with periodic boundary conditions at runtime
efficiently. As we stated above for MG, the drawback of this kind of approaches is that these
automatic calculations do not generate certain communication optimizations across SPMD
blocks that could positively impact performance. An open question iswhether these particular
optimizations could be automatically applied after the use of this kind of techniques.

9.7.3 Study 2: Ease of programming
Our technique avoids to the programmer the management of the communication and/or data
partition codes. This leads to a reduction on the parallel programming complexity. Table 9.3
shows, for our study cases, several complexity and development effort metrics, including
KDSI metric used in the COCOMO model [19] (number of lines), McCabe’s cyclomatic
complexity [86], and Halstead development effort [63]. These metrics are used to compare
the potential programming effort needed when using the different alternatives considered.
We observe that the development effort needed is highly reduced when using our approach.
As can be seen in Tab. 9.3, the reductions for the different metrics used range from 44% to
96% in all cases, except in the McCabe complexity for the Cannon's matrix multiplication,
where this measure is extremely low in both codes.

9.7.4 Study 3: Relative cost of calculating communications
Our technique to calculate the communication patterns is performed at runtime. In this
section we show an experimental study where we focus on the cost of our calculation and

i
i

i
i

i
i

i
i

9.8 EXPERIMENTAL STUDY | 165

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-1d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-2d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-3d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

Figure 9.8: Computation, communication calculation, and communication execution times
in seconds for the Heat examples on the distributed-memory machine (log scale), using the
problem sizes of Tab. 9.1.

synchronization times with respect to the main computation times. The experiment was
executed in two different architectures, the distributed- and the shared-memory machines,
CETA and Heracles.

Figure 9.8 and 9.9 show the measures of the computation and the communication times,
also separating in communication calculation and communication execution times. We show
results for the periodic versions of the Heat-1d, Heat-2d and, Heat-3d benchmarks [23], for
different number ofMPI processes launched (notice the logarithmic scale in the plots). We see
that the computation time decreases when the number of processes increases, except in one
situation (Heat-2D with 8 processes in the distributed-memory system). This phenomenon
is not related to the data communication that is the focus of this study. We also observe that
the time spent by our technique in the runtime calculation of the communication patterns
increases with the number of processes, as expected. However, these times can be consider
negligible, as they are several orders of magnitude smaller than the computation and the
communication execution times.

In summary, our technique automatically and efficiently calculates at runtime the com-
munication patterns needed in a distributed-memory parallel program with periodic access

i
i

i
i

i
i

i
i

166 | CALCULATING COMMUNICATIONS FOR APPLICATIONS ON PERIODIC DOMAINS

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-1d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-2d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 4 8 16 32 64

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processes

Heat-3d: Communication and computation times

Computation
Comm. Execution

Comm. Calculation

Figure 9.9: Computation, communication calculation, and communication execution times in
seconds for the Heat examples on the shared-memory machine (log scale), using the problem
sizes of Tab. 9.1.

expressions, allowing the selection at runtime of the partition policies, and the choice of the
proper tile sizes for the actual execution platforms.

9.8 Summary

This chapter describes a technique that calculates at runtime exact aggregated coarse-grained
distributed-memory communications, for algorithms with uniform affine expressions with
periodic boundary conditions. It is based on: (1) calculating at runtime different footprints
through cutting-and-pasting methods in terms of the mapping functions chosen and, (2)
intersecting at runtime the remote and local footprints. Performance results for six cases of
study, including a real-world benchmark, indicate that using our technique, we obtain similar
efficiency to MPI codes, while the development effort is reduced. Future work includes also
the applicability of the proposed technique in current polyhedral model frameworks.

i
i

i
i

i
i

i
i

CHAPTER 10

Operators for data redistribution

A s we have seen in previous chapters several tasks related to the data management in
distributed-memory spaces can be automatized. Nevertheless, there are still many cum-

bersome optimizations and techniques that should be manually tackled by the programmer
to obtain really efficient parallel programs for many application structures. One of the op-
timizations most difficult, error-prone, and useful at the same time, for distributed-memory
systems, is the data redistribution. Data redistributions allow the improvement of the per-
formance of algorithms which operate on changing or partial domains along the program
execution, by creating a balanced workload among the active processes on each stage.

In this chapter we address the last goal:

Propose an abstraction to simplify data redistributions.

In order to do that, we present four operators to redistribute selected data on distributed-
memory systems in an efficient and simple way, making the management of the data partition,
relocation, and data movement transparent to the programmer.

- 167 -

i
i

i
i

i
i

i
i

168 | OPERATORS FOR DATA REDISTRIBUTION

10.1 Introduction

The message-passing paradigm (implemented for example by MPI libraries) has been shown
to be a programming method for distributed-memory systems that leads to highly efficient
programs in terms of performance. However, the programmer still has to deal with many
decisions not related with the parallel algorithms, but with implementation issues, such as
decisions about partition and locality vs. synchronization/communication costs, scheduling
details, etc.

One of these optimizations, for static-scheduling approaches on distributed-memory
systems, most useful is the data redistribution. Data redistributions allow the improvement
of the performance, by creating a balanced workload among the active processes. However,
its programming is complicated and error-prone. The programmer has to take into account
many details such as the partition policy used initially to distribute the data among the
processes, the partition policy desired after the redistribution, and the number of active
processes on each stage. Moreover, recursive partitions and data dependent selections
complicate the decisions that should be taken at runtime.

In this chapter we present four operators to efficiently redistribute selected data, making
the data partition, relocation, and data movement transparent to the programmer. These
operators are applied on an array already divided across distributed processes, and the result
is another array containing all or part of the original array elements relocated across the
available processes. These operators can be freely combined, even in a recursive algorithm.
We implement the four operators as an extension of Hitmap [55].

10.2 Motivating example

This section presents a motivating example to show the advantages of using data redistri-
butions. We choose an example where redistributing data is needed to create load-balance
and improve efficiency. However, programming this data redistribution in a plain message-
passing model is difficult. A simplified parallel algorithm of the motivating example, using a
message-passing approach, is presented on the left of Fig. 10.1. It initializes a vector and then,
it updates in parallel a number of elements (a tenth of the original array size) centred around
an arbitrary chosen element. This algorithm is used in real applications, as simulations of
computational fluid dynamics. It recalculates only values in a significant neighborhood
surrounding a point of the input array that experiments a sudden abrupt change, without
recalculating the values of the whole array. The input parameters are: (1) An integer Size
that determines the size of the input array. (2) An integer pos that indicates the position of
the main element whose neighbors will be updated. (3) An integer id that represents the
identifier of the local process. (4) An integer P that contains the number of processes, and (5)
an arrayM of Size elements already distributed among the P processes. A〈type〉 denotes a

i
i

i
i

i
i

i
i

10.2 MOTIVATING EXAMPLE | 169

1 ** Distributed algorithm in
2 ** message - passing
3 Inputs :
4 int Size : Vector size
5 int pos : main position to update
6 int id : Local process identifier
7 int P: Number of processes
8 A < type > M []: Distributed Vector
9 Outputs :
10 A < type > M_out []: Distributed Vector
11

12 1. ** Each process initializes a
13 ** part of the input vector
14 myRange . begin = id * Size /P;
15 myRange . end = myRange . begin + Size /P -1;
16 for (i= myRange . begin ;
17 i <= myRange . end ; i ++)
18 M[i] = init ();
19

20 2. ** Calculate the range of
21 ** the neighbors
22 Nelemt = Size /10;
23 first = (pos - Nelemt /2);
24 last = (pos + Nelemt /2);
25

26 3. ** Calculate the redistribution
27 myRange2 . begin = id * Nelemt /P+ first ;
28 myRange2 . end = myRange2 . begin -1+
29 Nelemt /P;
30

31 for (id_p =0; id_p < P ; id_p ++){
32 range . begin = id_p * Size /P;
33 range . end = range . begin + Size /P -1;
34 range2 . begin = id_p * sel /P;
35 range2 . end = range2 . begin + sel /P -1;
36 Range send_p = intersect (
37 < myRange . begin , myRange . end >,
38 < range2 . begin , range2 . end >);
39

40 Send (M , send_p , id_p);
41 Range recv_p = intersect (
42 < myRange2 . begin , myRange2 . end >,
43 < range . begin , range . end >);
44 Recv (M_out , recv_p , id_p);
45 }
46

47 4. ** Update the elements
48 for (i= myRange2 . begin ;
49 i <= myRange2 . end ; i ++)
50 M_out [i]= Compute (...)

1 ** Distributed algorithm
2 ** using proposed operators
3 Inputs :
4 int Size : Vector size
5 int pos : main position to update
6 int id : Local process identifier
7 int P: Number of processes
8 Map L: Mapping function
9 A < type > M []: Distributed Vector
10

11 Outputs :
12 A < type > M_out []: Distributed
13 Output Vector
14

15 1. ** Each process initializes
16 ** a part of the input vector
17 for (i=L(id , Size ,P). begin ;
18 i <= L(id , Size ,P). end ; i ++)
19 M[i]= init ();
20

21 2. ** Calculate the range of
22 ** the neighbors
23 Nelemt = Size /10;
24 first = (pos - Nelemt /2);
25 last = (pos + Nelemt /2);
26

27 3. ** Redistribution
28 M_out = ArrayRemapRange
29 (M ,< first , last >,L)
30

31 4. ** Update " Nelemt " elements
32 for (i=L(id , Nelemt ,P). begin ;
33 i <= L(id , Nelemt ,P). end ;
34 i ++)
35 M_out [i]= Compute (...)

Figure 10.1: Motivating example algorithms using two different approaches: Reference al-
gorithm in message-passing style (left); and programmed using the proposed operators in a
single-program-multiple-data model (right).

i
i

i
i

i
i

i
i

170 | OPERATORS FOR DATA REDISTRIBUTION

distributed array. For simplicity, in this example, we assume that Size is divisible by P , and
the data were originally mapped assigning to each process Size/P elements with contiguous
indexes.

The output will be the distributed arrayM_out containing the updated elements.
In the first stage of the algorithm, each process initializes its local part of the input vec-

tor, that is defined by the index of the first element assigned to the local process named
myRange.begin, and the index of the last one named myRange.end. The type Range
represents a contiguous subdomain of indexes expressed as a pair of natural numbers
〈begin, end〉. Our example updates only the Size/10 neighbors of the main element in
the input array (see the Nelemt variable initialization on line 19). In the second stage, the
program calculates the range of elements to update (first, last). The third stage redistributes
the selected range of elements to be updated in a balanced output array, evenly distributed,
among the available processes (Step 3 in the left of Fig. 10.1). Finally in the stage 4, each
process updates its new local part.

The data redistribution (stage 3) could be skipped, but it is desirable to balance the
computational load. For example, if we execute the application with Size = 10 000, and
P = 4 without redistributing the data, as long as we apply a function only on a tenth of the
elements (1 000), the computation will be performed only by two processes (at most), and
we will not exploit all the nodes in the computation. To achieve a better load balance we
can perform a data redistribution. In the case of Size = 10 000, and P = 4, the elements
to be computed (1000) are redistributed and each process will compute 250 elements in a
balanced way.

On the right of Fig 10.1, we show the motivating algorithm using one of the operators
proposed in this work (that performs a transparent data redistribution operation), in terms
of a Mapping function, L(id, Size, P), that returns the range of indexes to be mapped to the
process id. As we observe in the figure, the programming effort is highly reduced avoiding the
need of dealing with all the necessary communications details to balance the computational
load.

Data redistributions are appropriated when the computation is performed in a unbal-
anced way according to the initial data distribution. They are convenient when the overhead
produced by the communications needed to perform the data redistribution is expected to
be less than the potential performance gain obtained by a better load balance. On the other
hand, there are algorithms based on recursive, divide & conquer, or similar paradigms, for
example QuickSort, which always implies dynamic modifications or subselections of array
structures. Thus, data redistributions are totally necessary for executing these algorithms on
distributed-memory systems.

i
i

i
i

i
i

i
i

10.3 PROPOSAL: REDISTRIBUTION OPERATORS | 171

1 3 4 1 2 8 5 6 5

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 1

0 4 8 15

0 8

M [2:10]

M_out

Figure 10.2: Data redistribution performed by the ArrayRemapRange operator. In this case the
call to the operator is M_out = ArrayRemapRange(M, 〈2, 10〉, L).

10.3 Proposal: Redistribution operators

In this section we describe four new high-level operators to perform array-data redistribu-
tions at runtime. They can be freely combined, even recursively, to transparently implement
the communication structures of a wide range of array applications. Our operators receive
an already-distributed array and different compulsory or optional parameters to select sub-
domains of the original array in different ways. The selected elements are redistributed
across the whole range of available processes using a mapping function that assigns indexes
to processes according to a given policy. Along the chapter, we nameAL to the set of arrays
distributed using the mapping function L. For simplicity, the Lmapping function used in all
the figures of the chapter is a function for homogeneous load balance, that assigns contiguous
blocks of indexes to each process. The current library implementation contains several
mapping functions that can be chosen using their names as parameters in the corresponding
functions.

10.3.1 ArrayRemapRange: Remap of an array range
The possibility of redistributing only a given selection or indexes range of the original array
is appropriated for the improvement of the load-balance (such as the case of our motivating
example). This first operator selects a range of an already distributed input array, and copy
the selected elements in a new distributed output array. The interface of this operator is the
following:

ArrayRemapRange : AL〈type〉, Range, L′ → AL′〈type〉

Both arrays (input and output) are distributed among the different processes not necessarily
using the same mapping function. Several data communications per process can be needed to
perform the data movement. Figure 10.2 shows a visual representation of how this operator
works when the range 〈2, 10〉, and a contiguous-blocks mapping policy are selected.

i
i

i
i

i
i

i
i

172 | OPERATORS FOR DATA REDISTRIBUTION

5 3 4 2 5 5 5 1 1

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 1

0 8

Input: M

Output: M_out

1 0 0 1 1 1 1 1 11 10 0 0 0 0Input: Mask

Figure 10.3: Data redistribution performed by the ArrayRemapMask operator. In this case the
call to the operator is M_out = ArrayRemapMask(M, Mask, L).

10.3.2 ArrayRemapMask: Remap of an irregular selection using a
mask

There are cases where the data that we want to select are not contiguous in memory. We
propose a method based on masks to select this kind of sparse subdomains. The goal of this
operator is similar to the ArrayRemapRange operator but using a mask to select the desired
elements to be remapped. The mask is a boolean array with the same size than the input
array. The input mask has to be also distributed using the same partition policy than the
input array. This ensures that the mask value, for any given index, is mapped in the same
process that its corresponding data element of the array. The output array can use the same
or a different mapping function. The interface of this operator is the following:

ArrayRemapMask : AL〈type〉, AL〈bool〉, L′ → AL′〈type〉

The operator will select the elements whose associated value on the mask is 1 (true), the
other ones are discarded. Figure 10.3 shows a visual representation of how this operator
works.

10.3.3 ArrayDivide: Dividing an array in several balanced parts us-
ing a multivaluedmask

This operator is designed to tackle recursive, divide & conquer, and similar applications
that need to split the data in several groups, redistributing each group across processes
independently. The operator receives an integer mask. The elements with the same natural
value in the mask will be stored and redistributed in an independent output array. Thus, the
output is a collection of arrays. The processes assigned to each output array are determined by
a new kind of function that assigns a subset of the processes indexes [0..P − 1] to a different
group, T : N → P ′ ⊂ {0, ..., P − 1}. T is received as parameter by the operator. L′ is
used to redistribute each group across its assigned subset of processes. This operator is an

i
i

i
i

i
i

i
i

10.3 PROPOSAL: REDISTRIBUTION OPERATORS | 173

9 1 1 8 6 4 2

Proc: 0 Proc: 1 Proc: 2 Proc: 3

9 1 3 4 1 2 8 6 5 5 1 4 2 1Input: M

M:0

1

0 4 8 15

0 0 2 1 2 1 1 22 10 0 0 0 0Input: Mask

5 4 5 5 1M:1

Output:

3 2 5 1M:2

5 5

Figure 10.4: Data redistribution performed by the ArrayDivide operator. In this case the call to
the operator is M∗ = ArrayDivide(M, Mask, L, T). The chosen T function for this example
assigns to every group all the processes.

extension of ArrayRemapMask with several output arrays (equivalent to several simultaneous
instances of ArrayRemapMask), and adding the T parameter that introduces the possibility
of mapping each group to a different subset of processes. The definition of this operator is
the following:

ArrayDivide : AL〈type〉, AL〈int〉, L′, T → 〈A0
L′〈type〉, ..., An

L′〈type〉〉

In Fig. 10.4 we show an example of how this operator works for a specific mask with
three group numbers (0, 1, 2), and a T function that assigns all the processes to every group.
Thus, every output array is distributed in a balanced way across all processes.

10.3.4 ArrayMerge: Merging array parts
This fourth operator is designed to merge several distributed arrays in one. This operator
receives a collection of arrays and concatenates them in one distributed output array. The
output array is distributed in terms of the results of a mapping function and a processes
assignment function T . The interface of this operator is the following:

ArrayMerge : 〈A0
L〈type〉, ..., An

L〈type〉〉, L′, T → AL′〈type〉

Figure 10.5 shows a visual representation of how this operator works.
As another example of the use of the ArrayDivide and ArrayMerge operators, theQuickSort

algorithm can be programmed in parallel using these operators (see Fig. 10.6). The algorithm
divides a large array into two smaller sub-arrays: the elements lower, and the elements higher,
than a pivot element. The program creates a mask that keeps the information about which
element is lower or higher than the pivot (0 if the value is lower, or 1 if it is higher, as we
see in the Divide stage). Using this mask, the program calls the ArrayDivide operator, which

i
i

i
i

i
i

i
i

174 | OPERATORS FOR DATA REDISTRIBUTION

Proc: 0 Proc: 1 Proc: 2 Proc: 3

9 1 1 8 6 4 2 5 3 4 2 5 5 5 1 1Output: M

9 1 1 8 6 4 2M:0

5 3 4 2 5 5 5 1 1M:1

Input:

Figure 10.5: Operation performed by the ArrayMerge operator. In this case the call to the
operator is M = ArrayMerge(M∗, L, T). The chosen T function for this example assigns all
the processes to the output array.

performs the data repartition. After that, the algorithm recursively calls again the QuickSort()
function for each group array (see Recursion stage). For proper load balance, in QuickSort
we use a T function that assigns to the group of each array a number of processes that is
proportional to the array size. In the figure, for the first group array, the function T returns
the processes 0, 1, and the processes 2, 3 for the second group array. After several recursive
stages, the array has been splitted in several independent subarrays, distributed across the
nodes, that have the sorted data. when exiting the recursion, the algorithm merges all the
sorted subarrays using the ArrayMerge operator.

10.4 Implementation of the operators

In this section we present the extensions developed in Hitmap in order to support the new
operators proposed.

10.4.1 Supporting data redistributions at Hitmap runtime level
We need to provide Hitmap with the necessary features, to develop the four operators. We
introduce in Hitmap a new function named localRange(Tile, Shape). It receives a distributed
tile structure, and a selection range in global coordinates. It returns a hit_shape object
representing the part of the input range that is allocated in the local process. For example, in
Fig. 10.2, the function localRange(M, [2:10]) returns for the process 0 the shape that selects its
last two local elements, and for process 2 the shape that contains its first three local elements.

We extent HitLayout objects to be used for representing the T functions used in the
ArrayDivide and ArrayMerge operators. We also develop in Hitmap a generic redistribution
communication pattern constructor (hit_patRedistribute()). It receives two already distributed
arrays (that in new versions of Hitmap contain a reference to their respective layout functions

i
i

i
i

i
i

i
i

10.4 IMPLEMENTATION OF THE OPERATORS | 175

Proc: 0 Proc: 1 Proc: 2 Proc: 3

5 9 1 3 4 1 2 8 5 6 5 5 1 4 2 6

0 4 8 15

Mask_1:

1 3 4 1 2 1 4 2

Mask_2:

1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1

0 1 1 0 1 0

QuickSort: Pivot = 5

ArrayDivide (data, Mask_1, L',T)

QuickSort(data, 5)

QuickSort(data:0, 2)

ArrayMerge (data,L',T)

1 1

1 4 41 21 32

1 4 41 21 532 6 855 965

First recursive level:

First recursive level:

...

QuickSort(data:1, 5)

D
iv

id
e

s
ta

g
e

M
e
rg

e
s
ta

g
e

R
e
c
u

rs
io

n

QuickSort: Pivot = 2

5 9 8 5 6 5 5 6

QuickSort: Pivot = 5

5 5 5 5 6 6 8 9

0 1 1 0 1 0 0 1

...
T(0) = 0, 1 T(1) = 2, 3

Figure 10.6: Sequence of operations performed in the QuickSort algorithm in a distributed-
memory system using the ArrayDivide and ArrayMerge operators. T function assigns to each
group array a number of processes that is proportional to the size of the group array.

L and L′, originally used to distribute their domains). The constructor simply traverses the
process-identifiers space with two loops. In the first loop, we compute the intersections of
the result of applying L at the local process, with the result of applying L′ at each remote
process, to calculate the indexes of data to be sent. In the same way, the second loop computes
the inverse intersections, applying L′ at the local process, and L at each remote process
to calculate the data to be received. The loops traverse the process identifiers in a cyclic
way, starting at the local identifier plus 1; (myRank + 1)mod P . This generates a skewed
communication scheme, that helps in reducing communication saturation bottlenecks on
specific processes.

10.4.2 Implementation of the new operators
We implement the new operators as C macro-functions in the Hitmap library. For the rest
of the section we represent ranges by HitShape objects, independently of the number of
dimensions, and data structures by HitTile objects.

• ArrayRemapRange: The function prototype of this operator is:

ArrayRemapRange(tileIn, tileOut, rangeIn, rangeOut, baseType);

The parameters represent: tileIn the data structure to be redistributed, tileOut the
output data structure with the selected data, rangeIn the range of data to be selected

i
i

i
i

i
i

i
i

176 | OPERATORS FOR DATA REDISTRIBUTION

1 /* AUXILIAR MACROS */
2 # define NORMALIZE (TOK) NORMALIZE_ ## TOK
3 # define NORMALIZE_int HIT_INT
4 # define NORMALIZE_float HIT_FLOAT
5 # define NORMALIZE_double HIT_DOUBLE
6

7 /* ArrayRemapRange OPERATOR */
8 # define ArrayRemapRange (tileIn , tileOut , \
9 rangeIn , rangeOut , baseType){ \
10 /* STEP 1: DECLARE AUXILIAR VARIABLES */ \
11 HitTile_ ## baseType _TT_In , _TT_Out ; \
12 HitShape _TT_shape_Out , _TT_shape_In ; \
13 /* STEP 2: EXTENT RANGES WITH NECESSARY HALOS */ \
14 int i; \
15 for (i =0; i < hit_shapeSigDims (rangeIn); i ++) { \
16 int diff = hit_tileDimCard (tileOut ,i) - \
17 hit_shapeSigCard (hit_layShape (tileOut . Layout),i);\
18 hit_shapeDimExpand (range1 , i , HIT_SHAPE_END , diff); \
19 hit_shapeDimExpand (range2 , i , HIT_SHAPE_END , diff); \
20 } \
21 /* STEP 3: SELECT THE DATA CORRESPONDING TO EACH PROCESS */ \
22 _TT_shape_In = localRange (tileIn , rangeIn); \
23 _TT_shape_Out = localRange (tileOut , rangeOut); \
24 hit_tileSelectArrayCoords (& _TT_In , & tileIn , _TT_shape_In); \
25 hit_tileSelectArrayCoords (& _TT_Out , & tileOut , _TT_shape_Out); \
26 /* STEP 4: PERFORM THE DATA REDISTRIBUTION */ \
27 HitPattern redis = hit_pattern (HIT_PAT_UNORDERED); \
28 redis = hit_patRedistribute ((tileIn). Layout , (tileOut). Layout ,\
29 & _TT_In , & _TT_Out , \
30 rangeIn , rangeOut , \
31 NORMALIZE (baseType)); \
32 }

Figure 10.7: Internal code of the ArrayRemapRange operator along with some auxiliary macro
functions.

i
i

i
i

i
i

i
i

10.4 IMPLEMENTATION OF THE OPERATORS | 177

in tileIn, rangeOut the range where data will be in tileOut after the redistribution, and
baseType is the name of the native or structured type.
This operator is used as baseline in the rest of operators development. Thus, we
describe also its internal code. Figure 10.7 shows it. It first declares the necessary
variables. In the cases that the input array has been modified by the programmer,
including in the local domain overlapped parts with other remote domains (like halos
in Stencil computations), the operator reproduces the same halos in the output array,
by comparing the allocated domain with the domain assigned by the mapping function
(step 2). The data moving to the halos is not included in the operator, as it depends on
the program stage in which the operator is invoked.
After that, the program calculates and selects from the input array, the part of the
selection range in the local process (step 3). The last step creates and executes the
pattern containing the needed communications. The mapping functions used in the
redistribution are those used to created the data structures. They are represented by
HitLayout objects, and are kept as meta-data in the own HitTile data structure.

• ArrayRemapMask: The function prototype of this operator is:

ArrayRemapMask(tileIn, tileOut, maskIn, baseType);

The parameters represent: tileIn the data structure to be redistributed, tileOut the
output data structure with the selected data, maskIn the mask with the indexes of the
data structure to be selected in tileIn, and baseType the base type of the data structure.
Internally, this function code selects for each process the data elements whose mask
value is 1 in the local process. In this case, to select the data, we generate a loop that
traverses the local domain analysing the mask to identify the selected elements. It
copies contiguously the selected data elements in an auxiliary array with contiguous
memory. After that, a collective reduction communication is performed for sharing
the information about the number of elements to copy for each process. Finally, the
redistribution is performed using ranges as in the first operator.

• ArrayDivide: The function prototype of this operator is:

ArrayDivide(grouping, tileIn, tileOut, maskIn, baseType);

The parameters represent: grouping a HitLayout object representing the T function
(remind the operator definition), and containing the information of the number of
natural values in the mask, tileIn the data structure to be redistributed, tileOut the
output data structure with the selected data, maskIn the mask with the indexes of the
data structure to be selected in tileIn, and baseType the base type of the data structure.
The internal code creates a collection of arrays, where each array stores the elements
that belong to the same array, using the same methodology that the ArrayRemapMask
operator. However, this operator also stores in the meta-data of the data structures
the global index domain of the original array. This last feature enables the use of the
ArrayMerge operator.

i
i

i
i

i
i

i
i

178 | OPERATORS FOR DATA REDISTRIBUTION

• ArrayMerge: The function prototype of this operator is:

ArrayMerge(grouping, tilesIn, tileOut, baseType);

The parameters represent: grouping the HitLayout object representing the T function,
and containing the information of how concatenate the collection of input arrays,
tilesIn the collection of arrays to be concatenated, tileOut the output array, and baseType
the base type of the data structure. The internal code of this operator calls the Hitmap
redistribution function for each input array, relocating the data in their corresponding
ranges of the single output array. The ranges are calculated using the meta-data
with the information about the index space on the original array, that was set by the
ArrayDivide operator.

10.5 Experimental studies

We conduct several experimental studies to verify the efficiency of the resulting codes that
use the proposed operators, in terms of runtime execution and development effort.

10.5.1 Experimental platform and setup
For the performance studies, we execute the experiments in CETA. It is a hybrid cluster
that belongs to CIEMAT and the Spanish government. The cluster nodes are connected by
Infiniband technology, and each one has two Intel Xeon 5520 CPUs at 2.27 GHz, with 4
cores each. Using 16 nodes of the cluster, we exploit up to 128 computational units. We have
compiled the codes with the GCC v4.8.3 compiler, using the optimization flag -O3. We use
mpich3 v3.1.3 as MPI implementation. We execute all the experiments ten times, registering
the average total execution times. We use a static mapping policy, associating oneMPI process
to each processing element. For all the routines and examples tested, we always use a mapping
policy of contiguous balanced blocks, because of the homogeneous execution platform.
For the development effort comparison, we use three classical development effort metrics:
COCOMO lines of code, McCabe's cyclomatic complexity [86], and Halstead development
effort [63].

10.5.2 Applying the operators: case studies
In order to validate our approach, we implement the following case studies using the proposed
operators:

• STLBenchmarks: The STLLibrary is awell-known supporting tool for developers [122],
that includes many useful algorithms. During the last years, many works have presen-
ted parallel versions of this library [50, 120, 123], as well as new parallel programming
models that support the development or the use of this library in parallel [129].

i
i

i
i

i
i

i
i

10.5 EXPERIMENTAL STUDIES | 179

Table 10.1: Summary of the implemented STL routines for one dimensional numeric arrays, for
distributed-memory systems, using the new four operators.

Algorithm Class

Function Call(s)

Embarrassingly
Parallel

all_of, any_of , none_of, copy, copy_if, copy_n, count, count_if,
fill, fill_n, for_each, generate, generate_n, replace_if, transform,
swap_ranges

Find find, find_if, find_end, find_first_of, adjacent_find, mismatch,
equal

Search search, search_n, lower_bound, upper_bound

Numerical
Algorithms

min_element, max_element, minmax_element, accumulate,
adjacent_difference, inner_product, rotate, rotate_copy

Partition is_partitioned, partition, partition_copy, partition_point

Merge merge, inplace_merge

Sort quickSort, is_sorted, is_sorted_until, partial_sort_copy,

Complex Set Op-
erations

remove_if, remove_copy_if, set_difference, set_sym-
metric_difference, set_intersection, set_union, unique,
unique_copy

i
i

i
i

i
i

i
i

180 | OPERATORS FOR DATA REDISTRIBUTION

Computation window

First movements Last movements

Computation window

Initial distribution Final distribution

Figure 10.8: Consecutive applications of the RayTracing algorithm on amoving sphere.

We have implemented using the operators, the routines summarized in Tab. 10.1.
However, in this work we only show the results of four specific routines. They cover
the different kinds of data redistributions that together can support all the other
implemented STL algorithms. The results are representative and can be extrapolated
to the other STL routines tested. The routines we choose are:

– for_each: This example updates a range of elements of an array. The program
performsN operations for each element on the selected range of the array, being
N the array size. We use the ArrayRemapRange operator. This kind of data
redistribution appears in most of the algorithms in the STL.

– find: This routine searches the first position in a range of an array, that fits
with a specified condition. It applies a function on each element before a global
reduction. This example also use a data redistribution that remap a selected range
of a distributed array. It is another example of the use of the ArrayRemapRange
operator but followed by a conditional and a reduction communication.

– unique_copy: This example copies the elements of a range of an array to a
second array, skipping the consecutive duplicates. The size of the second data
structure contains the elements copied from the first data structure. We use the
ArrayRemapMask operator to only select data elements that have to be copied.
Each process fills its assigned part of the mask previously to the operator invoc-
ation, comparing each element with its neighbor. In the experimental study we
initialize with the same value a 20% of contiguous data elements. Thus, all these
elements except the first one are eliminated from the output array.

– quickSort: This example sorts the elements of an array. To implement this al-
gorithm in a distributed-memory system, it is necessary to perform a sequence of
recursive data redistributions. We use the ArrayDivide and ArrayMerge operators
to part and merge the pivoted arrays at each recursion level.

i
i

i
i

i
i

i
i

10.5 EXPERIMENTAL STUDIES | 181

• RayTracing Algorithm: Raytracing is a technique for generating an image in a 3D
scene calculating trajectories of light rays through pixels in a view plane [74, 75]. This
technique produces a very high degree of photorealism. However, its high computa-
tional cost makes its use prohibitive in real-time applications for complex scenarios.
RayTracing is an embarrassing parallel application, where a scene-dependentworkload
partition could achieve huge improvements on performance.
We select an example program that applies the RayTracing algorithm on a sequence
on scenes with an object in movement. Figure 10.8 shows the behavior of the study
case. In the figure, the scene is a sphere, where the shadow of this sphere is enlarged
on each step. In the first stage (Initial distribution), the image is distributed among
the active processes (16 in the figure) using a 2D irregular partition policy using
block sizes based on the computational power of the execution machines. For this
first distribution, there is no knowledge about the scene, so the whole image is evenly
distributed according to the computational parameters of the machines. As we observe
in the example image, there are only four processes initially involved on computing
the raytracing on the interest zone surrounding the sphere. The computation window
is detected on each moment, and a data redistribution is performed in order to balance
the work load, as we see in the First and Last movements of Fig. 10.8. In order to avoid
a data redistribution on each movement, the computation window is bigger than the
real scenario. Thus, the data redistribution only is performed when the actual pixels
that need computation are close to the boundaries.
For this application, we develop a code based on the sequential code of [114]. Our case
study scene has a sphere with a size of one eighth of the image size, and we execute a
number of movements equal to a tenth of the image size in a diagonal direction as in the
image. As for data redistributions, in our implementation we use the ArrayRemapRange
operator, selecting a 2D domain. Using the current scene and parameters, the program
needs to perform 6 redistributions. In this experimental study, we use a mapping
policy of contiguous balanced blocks, because of the homogeneous execution platform.

10.5.3 Impact of redistributing workload on performance

Although the positive effect of the data redistributions on several applications have been
already studied [75, 140], in this section, we present a performance study on a distributed-
memory system to show these positive benefits. We test the for_each routine on an array
of 106 elements with different range selection cases. It is an example that easily allows the
exploration of the effects on performance related to the variation of the amount of load
redistributed, and its location on the original domain.

We test three kind of codes. The first kind of code is a Hitmap implementation that redis-
tributes the data in the selected range across all the processes to balance the computational
load using the operators (named Proposal in figures). The second is a Hitmap implementation
that does not include data redistributions (named Hitmap in figures), and each process works

i
i

i
i

i
i

i
i

182 | OPERATORS FOR DATA REDISTRIBUTION

with its originally mapped data that are in the selected range (if any). Both implementations
use the same sequential functions and semantic structure, so we only see the performance
penalty or gain that comes from using our data-redistribution operators, that is the focus of
our study. Moreover, we add a third kind of code. It is a manually developed and optimized
MPI reference, also containing manual data redistributions (named Ref MPI in figures), to
show the penalty performance produced by our abstractions and approach.

We design the experiments in order to study the impact of two parameters in the data-
redistribution operations:

1. The amount of data selected from the original array where applying the routine. We
perform the experimentation selecting 20%, 50% and 80% of the data in the whole
vector.

2. The place in the original array where the range of data is selected. Data redistributions
can obtain different performance in function of the number of processes actually
implied in the communications. Thus, we perform the experimentation selecting the
data in three ways: (1) Selecting a range of data chosen from the beginning of the array
(Left), (2) selecting the data at the end of the array (Right), and (3) selecting the data,
with the center of the selected range at the middle point of the whole array (Center).

Figure 10.9 shows the performance obtained for the different versions and parameters
of the for_each routine in CETA. First, we see that the penalty performance of our approach
using the operators compared with a MPI reference is negligible (both lines are overlapped
in all the plots). Second, we observe the impact of the load balance obtained with the data
redistributions. When the data selection is 80% of the whole array, redistributing the data
has not a big performance impact. However, when the amount of data selection is low (20%
or 50%), the performance obtained by the load-balanced codes is significantly better than in
the codes which do not use it, despite the extra communication cost of the data reallocation
forth and back. Our operators redistributes the data that need computation, avoiding idle
processors and creating load balance.

10.5.4 Using the STL library for analyzing the four operators
The previous section showed the importance of the data redistributions. The goal of the next
is to analyze the behavior of the different kinds of operators presented in this work. We
analyze and compare our proposal with MPI, in terms of execution time and development
effort for the chosen STL routines, that cover the different kinds of data redistributions.

In Tab. 10.2 we show several development effort measures, comparing the described STL
routines, coded in Hitmap with the new operators (Proposal), or coded directly in MPI (Ref
MPI). For the QuickSort we use as baseline the implementation presented in [117, 138]. We
see that using the operators, the measures for the chosen metrics are highly reduced. This
indicates a clear simplification of the programmability for the developer.

i
i

i
i

i
i

i
i

10.5 EXPERIMENTAL STUDIES | 183

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Left 20%

Ref MPI (20%)
Proposal (20%)

Hitmap (20%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Left 50%

Ref MPI (50%)
Proposal (50%)

Hitmap (50%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Left 80%

Ref MPI (80%)
Proposal (80%)

Hitmap (80%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Center 20%

Ref MPI (20%)
Proposal (20%)
Hitmap (20%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Center 50%

Ref MPI (50%)
Proposal (50%)

Hitmap (50%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Center 80%

Ref MPI (80%)
Proposal (80%)

Hitmap (80%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Right 20%

Ref MPI (20%)
Proposal (20%)

Hitmap (20%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Right 50%

Ref MPI (50%)
Proposal (50%)

Hitmap (50%)

 1

 10

 100

1 2 4 8 12 16 20 24 28 32 64 96128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

For_each Right 80%

Ref MPI (80%)
Proposal (80%)

Hitmap (80%)

Figure 10.9: Performance scalability results (in seconds) for the for_each algorithm in CETA, the
distributed-memory system (logarithmic scale). Size = 1000000.

i
i

i
i

i
i

i
i

184 | OPERATORS FOR DATA REDISTRIBUTION

Table 10.2: Measures of development effort for the STL study cases, comparing our proposal
with MPI.

Benchmark Unique copy QuickSort

Measure Ref MPI Proposal Ref MPI Proposal
N. Lines 266 117 237 156

Mccabe C. C. 42 4 47 25
Halstead D. E. 1,763,360 306,887 1,411,782 575,337

Benchmark For each Find

Measure Ref MPI Proposal Ref MPI Proposal
N. Lines 135 72 151 68

Mccabe C. C. 19 3 23 3
Halstead D. E. 517,153 110,692 786,800 105,709

On the other hand, table 10.3 shows the execution times obtained for the STL study cases
(the for_each routine was already studied in the previous section). We show the results when
the routines are executed with 128MPI processes in CETA. We observe that the performance
obtained by our approach is similar to the reference version. These examples have a very low
computational load. Thus, the main advantage of redistributing the data structures comes
from keeping them distributed among several nodes, instead of reducing the computation
time.

Table 10.3: Measures (in miliseconds) of performance for the STL study cases comparing our
proposal with MPI, using 128 MPI processes in CETA (the for_each routine results were presented
in Fig. 10.9).

Routine Size Ref MPI Proposal

Find 105 66.253 66.983
Unique copy 105 51.015 51.705
QuickSort 105 1.023 1.098

i
i

i
i

i
i

i
i

10.5 EXPERIMENTAL STUDIES | 185

Table 10.4: Measures of development effort for the RayTracing algorithm, comparing our pro-
posal with MPI.

Routine MPI Hitmap Proposal

N. Lines 322 255 302
Mccabe C. C. 32 14 15
Halstead D. E. 3,150,194 1,912,643 3,224,414

 0.1

 1

 10

 100

1 4 8 16 24 32 64 96 128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

RayTrace 2000x2000

MPI
Proposal

Hitmap

 1

 10

 100

 1000

1 4 8 16 24 32 64 96 128

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

RayTrace 5000x5000

MPI
Proposal

Hitmap

Figure 10.10: Performance scalability results (in seconds) for the RayTracing algorithm in CETA
with different image sizes (logarithmic scale).

10.5.5 Evaluating the use of the proposal on a real-world applica-
tion: Raytracing algorithm

In this study we analyze the use of the proposed operators in a 2D real-world application,
the Raytracing algorithm.

We compare three codes. The first one is a pure MPI reference code, with no data
redistributions (MPI). The second one is a Hitmap code, also with no data redistributions
(Hitmap). The third code is a Hitmap code, where data redistributions are applied using the
approach presented in this work (Proposal).

Table 10.4 shows the development effort measures of the studied codes. We observe that
using the operators the development effort needed to program a code is slightly increased
compared with a pure Hitmap code (with no data redistributions), but lower that the MPI
reference code (with no data redistributions).

However, the performance is highly improved, as we see in Fig. 10.10, where the code
with the operators achieves the best results. In this figure, we also observe that the codes with
no data redistributions, Hitmap code and the MPI reference, obtain the same performance
(lines overlapped in the figure).

i
i

i
i

i
i

i
i

186 | OPERATORS FOR DATA REDISTRIBUTION

Our operators abstract to the programmer all the data-redistribution implementation
issues, related to the data partition, data ownership, and data communication. Moreover,
despite the potential overhead derived from dealing with distributed data in an abstract way,
our approach produces a good scalability, and a negligible penalty performance compared
with the MPI implementations.

10.6 Summary

This chapter presents four array data-redistribution operators to efficiently implement
distributed-memory algorithms, making the data partition, relocation and data movement
transparent to the programmer. Our proposed operators provide programming abstrac-
tions to manage data redistributions. We also present the application of the operators in a
real-world application (RayTracing), and in many algorithms of the C++ STL library.

With our proposal, the programmer does not need to deal with data-redistribution
implementation issues that are not related with the algorithms but are key in terms of
performance. Experimental results show that our proposal achieves the same performance
than optimized MPI codes, meanwhile the programming effort is highly reduced. Future
work includes the exploitation of the proposed operators in automatic code generators.

i
i

i
i

i
i

i
i

CHAPTER 11

Conclusions

T his PhD. Thesis addresses several main problems related to the parallel programming
for highly heterogeneous and distributed systems. The contributions of the first part of

the Thesis enable the creation of abstract programming structures for coordination code.
They allow the programming of codes portable across different devices, accelerators, and
architectures. At the same time they maintain maximum efficiency thanks to the internal
use of lower-level or specific-vendor features and tools. In the second part, we dealt with
many issues concerning the distributed-memory systems. Our proposals, based on moving
compile techniques to runtime, show the way to support a wider range of applications in the
future compilers and frameworks.

The combination of these solutions will lead to a new approach for heterogeneous systems
with several distributed nodes . It will be achieved by the integration of the techniques
presented in the second part, into the programming model proposed in the first part.

- 187 -

i
i

i
i

i
i

i
i

188 | CONCLUSIONS

11.1 Summary of contributions

This section summarizes the contributions of this PhD. Thesis and the published articles
derived from this research work. We present the summary of the contributions divided
according to the two parts of the Thesis.

11.1.1 Simplifying the programmingonaccelerator-basedhetero-
geneous systems

Programming solutions for an efficient deployment on heterogeneous systems is a very
complex task that relies on the manual management of the different computing platforms,
also considering architectural details. During the first part of the Thesis, we have presented
some proposals in order to achieve the goals proposed for it in the introduction chapter. In
this section we summarize the contributions introduced to achieve each goal, including the
publications where each one has been presented to the community.

1. We have presented an abstract entity (Controller), introduced as a library of functions,
that allows the programming of portable coordination codes for groups of CPU cores
and GPUs. It also allows the programming of simple generic kernels that can be
executed in both devices, and does a transparent management of data movements
across different memory hierarchies.
This accomplishes Goal 1: Design and develop a programming model to unify the
parallel programming of CPUs and GPUs.
Publication:

Journal JCR Q2: [99] Ana Moreton–Fernandez, Hector Ortega–Arranz
and Arturo Gonzalez–Escribano. ‘Controllers: An abstraction to ease the
use of hardware accelerators’. In: The International Journal of High Perform-
ance Computing Applications, 2017. 2017. doi: 10.1177/1094342017702962.
eprint: http://dx.doi.org/10.1177/1094342017702962. url:
http://dx.doi.org/10.1177/1094342017702962

2. We have introduced in the Controller model the support for a new type of device, the
Intel Xeon Phi (MIC) accelerators. We have done it without modifying the semantics
or interface of the first Controller proposal. We mixed the internal execution model
used for CPU cores, with the internal communications model used for GPU devices of
the original Controller, translating the operations to the specific idioms to efficiently
use the Xeon Phi device.
This fulfils Goal 2: Support for new kind of accelerators such as the Xeon Phi Co-
processor.
Publication:

http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962

i
i

i
i

i
i

i
i

11.1 SUMMARY OF CONTRIBUTIONS | 189

ConferenceCOREA: [100] AnaMoreton-Fernandez, EduardoRodriguez-
Gutiez, Arturo Gonzalez-Escribano and Diego R Llanos. ‘Supporting
the Xeon Phi Coprocessor in a Heterogeneous Programming Model’. In:
European Conference on Parallel Processing. Springer, Cham. 2017, pp. 457–
469

3. We have introduced an abstract entity (the MultiController) that coordinates in a
transparent way the same operations proposed in the Controller model, over several
Controller entities. It is independent of the kind of device to which each internal
Controller entity is associated.
This solves the problem proposed in Goal 3: Design and develop an adaptable, simple,
and efficient programming model for multiple heterogeneous devices.
Publication:

Journal JCRQ3: [96] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
and Diego R. Llanos. ‘Multi-device Controllers: A library to Simplify Par-
allel Heterogeneous Programming’. In: International Journal of Parallel
Programming, 2017, pp. 1–20. Springer, 2017

11.1.2 Automatizing thedatamanagement fordistributed-memory
spaces in heterogeneous systems

The parallel programming of applications with data dependences has been a huge challenge
for programmers, specially in execution systems with separated memory spaces, where
this kind of applications imply data communications. In the second part of the Thesis, we
presented a set of techniques that abstract many data-communication implementation issues
to the programmer. They improve the approaches of the literature being independent of
compile-time decisions, generating exact coarse-grained communications, or producing
balance workload. The contributions presented in this part can be summarized as follows:

4. A study of the run-time cost of the codes generated for data communication in
distributed-systems by a state-of-the-art tool based in the Polyhedral model. This
study analyses the impact of code transformations introduced at compile time, and its
limitations. We also propose a simplification that removes one of them, eliminating
from the complexity bound of the execution time one factor that grows linearly with
the input data size.
Publication:

Conference CORE B: [97] Ana Moreton-Fernandez, Arturo Gonzalez-
Escribano and Diego R Llanos. ‘On the run-time cost of distributed-
memory communications generated using the polyhedral model’. In: High
Performance Computing & Simulation (HPCS), 2015 International Conference
on. IEEE. 2015, pp. 151–159

i
i

i
i

i
i

i
i

190 | CONCLUSIONS

5. As a basic tool to develop and test new transformation techniques, we proposed a
programming framework to simplify the expression of parallel codes of arbitrary
computation grain, in terms of SPMD blocks. This proposal is designed to simplify
the identification and extraction of data dependences, and the introduction of trans-
formation techniques.
Publications:

InternationalConference: [8] ArturoGonzalez-EscribanoAnaMoreton-
Fernandez and Diego R. Llanos. ‘Trasgo 2.0: Code generation for parallel
distributed- and shared-memory hierarchical systems’. In: Compilers for
Parallel Computing (CPC). London, 2015

InternationalConference: [93] AnaMoreton-Fernandez, ArturoGonzalez-
Escribano and Diego R Llanos. ‘A New High-Level Parallel Portable Lan-
guage for Hierarchical Systems in Trasgo’. In: Computational and Mathem-
atical Methods in Science and Engineering (CMMSE). 2015

6. We have presented a new technique that, using the data dependence information, is
able to calculate at run-time the communications that should be performed across
SPMD blocks to ensure the semantics of the parallel expressions. The technique works
for partitions with arbitrary grain, and potentially irregular sizes on each part.
This accomplishes Goal 4: Design and develop a runtime technique to automatically
calculate aggregated communications for applications with affine expressions.
Publications:

Poster International School: [7] ArturoGonzalez-EscribanoAnaMoreton-
Fernandez and Diego R. Llanos. ‘Simple and Efficiente parallel program-
ming for distributed-memory systems’. In: Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES).
Fiuggy, Italy, 2016

Journal JCRQ2: [94] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
and Diego R Llanos. ‘A Technique to Automatically Determine Ad-hoc
Communication Patterns at Runtime’. In: Parallel Computing, 2017. North-
Holland, 2017

7. We have also presented a complete new technique, based in the same concepts as the
previous one, that can take into account periodic conditions introduced in the data
spaces in which the parallel application is operating. This shows the applicability of
the same ideas to whole new type of application.
This targets the Goal 5: Extend the technique to automatically calculate aggregated
communications in applications with periodic domains.
Publications:

i
i

i
i

i
i

i
i

11.2 ANSWER TO THE RESEARCH QUESTION | 191

PosterConferenceCOREA: [90] AnaMoreton, ArturoGonzalez-Escribano
and Diego R. Llanos. ‘A Runtime Analysis for Communication Calcula-
tion’. In: Proceedings of the International Symposium on Code Generation and
Optimization (CGO). poster, 2017

ConferenceCOREC: [91] AnaMoreton-Fernandez andArturoGonzalez-
Escribano. ‘Automatic Runtime Calculation of Communications for Data-
Parallel Expressions with Periodic Conditions’. In: 10th International Sym-
posium on High-Level Parallel Programming and Applications (HLPP). Vallad-
olid, Spain, 2017

Journal JCR Q3: [92] Ana Moreton-Fernandez and Arturo Gonzalez-
Escribano. ‘Automatic Runtime Calculation of Communications for Data-
Parallel Expressions with Periodic Conditions’. In: Concurrency and Com-
putation: Practice and Experience, 2018. Wiley, 2018

8. Finally, we have tackled an important problem when facing applications that dynamic-
ally change the computational load associated with the different parts of the distributed
data domains. We have proposed four abstract data-redistribution operators that can
be used to rebalance the workload in multiple types of applications. To show its applic-
ability, we have programmed with them most of the routines of the C++ STL library,
and simple variable load programs, including a RayTracing application which focuses
the computational workload in a object which moves across a scene.
This fulfils the Goal 6: Propose an abstraction to simplify data redistributions.
Publications:

ConferenceCOREC: [6] ArturoGonzalez-EscribanoAnaMoreton-Fernandez
and Diego R. Llanos. ‘Four abstract array distribution operators’. In: 9th
International Symposium on High-Level Parallel Programming and Applications
(HLPP). Muster, Germany, 2016

Journal JCRQ2: [98] AnaMoreton-Fernandez, ArturoGonzalez-Escribano
and Diego R. Llanos. ‘Operators for Data Redistribution on the STL lib-
rary and RayTracing Algorithm (Submitted)’. In: Journal of Parallel and
Distributed Computing, 2018. Elsevier, 2018

11.2 Answer to the research question

This section answers the research question presented in Chapter 1:

It is possible to introduce: (1) Simple abstractions to make transparent and uniform
the program deployment and coordination on parallel computational units of different
types and architectures, and (2) new runtime techniques that take into account the

i
i

i
i

i
i

i
i

192 | CONCLUSIONS

data dependences in order to automatically coordinate the data communication across
disjoint or distributed memory spaces, in a transparent way for the programmer, once
the features of the execution machine are known?

During this dissertation we have presented different proposals with the final goal of
answering in an affirmative way this research question. We presented an adaptable and
simple programming model for heterogeneous systems composed by a node with several
accelerators, and we have proposed several automatic techniques to make data transfers
transparent in heterogeneous systems with several distributed nodes or computational units
with a separate space memory.

11.3 Future Directions

The approaches delivered in this dissertation lead clearly to a new proposal. Using as founda-
tion the programming model presented at the end of the first part, and integrating into it the
techniques presented in the second part, we propose as future work the design and develop-
ment of a simple and adaptable programming model for highly heterogeneous distributed-
memory systems. These execution platforms are composed by a distributed-memory system,
where each host has associated several computational units (GPUs, XeonPhi, or groups of
CPU-cores). The possibility of integrating all the developed methods and tools proposed in
this Thesis in a simple framework to program parallel heterogeneous distributed-memory
systems presents a new challenge that will simplify highly the development effort of the
HPC programmers. In this new research project the mapping techniques should be used
to automatically create distributed arrays across different computational units and cop-
rocessors in a distributed-memory system, taking into account the different computation
capabilities. The communication calculation techniques should be used to automatically
determine the data movements across devices, and new techniques should be introduced in
the Multi-Controllers model to integrate these data movement operations across remote
multi-controller entities in a transparent way.

More future directions can be considered:

• Study of the impact of changing the mapping policies on the overall performance. The
Multi-Controller library provides a simple method to change the data partition policy
applied for distributing the computation. It is interesting to perform an study and
to define an analytical runtime model, based on the computational features of the
execution machine and of the exploited application, that can be used to determine the
best partition policy and run-time configuration, in terms of performance.

• New techniques for overlapping computation with communication. Overlapping compu-
tation and communication impact nicely in the performance in many applications.
However, it is difficult to determine and to manage the computation parts where

i
i

i
i

i
i

i
i

11.3 FUTURE DIRECTIONS | 193

it is possible to do it. A relevant work for the community can be the development
of automatic techniques able to define at runtime the computation part where it is
possible to overlap communications and computation, and to effectively introduce the
overlapping.

i
i

i
i

i
i

i
i

194 | CONCLUSIONS

i
i

i
i

i
i

i
i

Bibliography

[1] W. Richards Adrion. ‘Research Methodology in Software Engineering’. In: ACM SIGSOFT
Software Engineering Notes. Summary of the Dagstuhl Workshop on Future Directions in Software
Engineering, vol. 18, no. 1, 1993, pp. 36–37. ACM, 1993. doi: 10.1145/157397.157399.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick and Massimo Torquati.
‘Targeting distributed systems in fastflow’. In:European Conference on Parallel Processing. Springer.
2012, pp. 47–56.

[3] Francisco Almeida, Domingo Giménez, José Miguel Mantas and Antonio M Vidal. Introducción
a la programación paralela. Thompson Paraninfo, 2008.

[4] Saman P Amarasinghe and Monica S Lam. ‘Communication optimization and code generation
for distributed memory machines’. In: ACM SIGPLAN Notices. Vol. 28. 6. ACM. 1993, pp. 126–
138.

[5] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan Thomas,
Nancy Amato and Lawrence Rauchwerger. ‘STAPL: An adaptive, generic parallel C++ library’.
In: Languages and Compilers for Parallel Computing. Springer, 2001, pp. 193–208.

[6] Arturo Gonzalez-Escribano Ana Moreton-Fernandez and Diego R. Llanos. ‘Four abstract array
distribution operators’. In: 9th International Symposium on High-Level Parallel Programming and
Applications (HLPP). Muster, Germany, 2016.

[7] Arturo Gonzalez-Escribano Ana Moreton-Fernandez and Diego R. Llanos. ‘Simple and Effi-
ciente parallel programming for distributed-memory systems’. In: Advanced Computer Archi-
tecture and Compilation for High-Performance and Embedded Systems (ACACES). Fiuggy, Italy,
2016.

[8] Arturo Gonzalez-Escribano Ana Moreton-Fernandez and Diego R. Llanos. ‘Trasgo 2.0: Code
generation for parallel distributed- and shared-memory hierarchical systems’. In: Compilers for
Parallel Computing (CPC). London, 2015.

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams
et al. The landscape of parallel computing research: A view from berkeley. Tech. rep. 2006.

[10] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Massaioli,
Xavier Teruel, Priya Unnikrishnan and Guansong Zhang. ‘The design of OpenMP tasks’. In:
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 3, 2009, pp. 404–418. IEEE,
2009.

- 195 -

http://dx.doi.org/10.1145/157397.157399

i
i

i
i

i
i

i
i

196 | BIBLIOGRAPHY

[11] David Bailey, Tim Harris, William Saphir, Rob van der Winjgaart, Alex Woo and Maurice
Yarrow. The NAS Parallel Benchmarks 2.0. Report RNR-95-020. 1995.

[12] Pavan Balaji. Programming models for parallel computing. MIT Press, 2015.

[13] Youcef Barigou and Edgar Gabriel. ‘Maximizing Communication--Computation Overlap
Through Automatic Parallelization and Run-time Tuning of Non-blocking Collective Opera-
tions’. In: International Journal of Parallel Programming, 2016, pp. 1–27. Springer, 2016.

[14] Rajkishore Barik, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Yi Guo, David Peixotto,
Raghavan Raman, Jun Shirako, Sağnak Taşırlar, Yonghong Yan et al. ‘The Habanero multicore
software research project’. In: Proceedings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications. ACM. 2009, pp. 735–736.

[15] MuthuManikandanBaskaran,Uday Bondhugula, SriramKrishnamoorthy, JagannathanRamanu-
jam, Atanas Rountev and Ponnuswamy Sadayappan. ‘Automatic data movement and compu-
tation mapping for multi-level parallel architectures with explicitly managed memories’. In:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming.
ACM. 2008, pp. 1–10.

[16] Cedric Bastoul. ‘Code generation in the polyhedralmodel is easier than you think’. In: Proceedings
of the 13th International Conference on Parallel Architectures and Compilation Techniques. IEEE
Computer Society. 2004, pp. 7–16.

[17] Mehmet E Belviranli, Laxmi N Bhuyan and Rajiv Gupta. ‘A dynamic self-scheduling scheme
for heterogeneous multiprocessor architectures’. In: ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, 2013, p. 57. ACM, 2013.

[18] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela, Maria J.
Garzaran, David Padua and Christoph von Praun. ‘Programming for parallelism and locality
with hierarchically tiled arrays’. In: Proc. of the ACM SIGPLAN PPoPP. New York, New York,
USA: ACM, 2006, pp. 48–57.

[19] Barry W Boehm et al. Software engineering economics. Vol. 197. Prentice-hall Englewood Cliffs
(NJ), 1981.

[20] Dan Bonachea. ‘GASNet Specification, v1. 1’. In: 2002. University of California at Berkeley,
2002.

[21] Uday Bondhugula. ‘Compiling affine loop nests for distributed-memory parallel architectures’.
In: Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis. ACM. 2013, p. 33.

[22] Uday Bondhugula. PLUTO-an automatic parallelizer and locality optimizer for multicores. on
http://pluto-compiler.sourceforge.net. 2009.

[23] Uday Bondhugula, Vinayaka Bandishti, Albert Cohen, Guillain Potron and Nicolas Vasilache.
‘Tiling and optimizing time-iterated computations on periodic domains’. In: Proceedings of the
23rd international conference on Parallel architectures and compilation. ACM. 2014, pp. 39–50.

[24] Uday Bondhugula, Vinayaka Bandishti and Irshad Pananilath. ‘Diamond tiling: Tiling tech-
niques to maximize parallelism for stencil computations’. In: IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 5, 2017, pp. 1285–1298. IEEE, 2017.

http://pluto-compiler.sourceforge.net

i
i

i
i

i
i

i
i

11.3 BIBLIOGRAPHY | 197

[25] Uday Bondhugula, Albert Hartono, J. Ramanujam and P. Sadayappan. ‘A Practical Automatic
Polyhedral Program Optimization System’. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). June 2008.

[26] Andre R Brodtkorb, Christopher Dyken, Trond RHagen, JonMHjelmervik andOlaf O Storaasli.
‘State-of-the-art in heterogeneous computing’. In: Scientific Programming, vol. 18, no. 1, 2010,
pp. 1–33. Hindawi Publishing Corporation, 2010.

[27] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston and
Pat Hanrahan. ‘Brook for GPUs: stream computing on graphics hardware’. In: ACM Transactions
on Graphics (TOG). Vol. 23. 3. ACM. 2004, pp. 777–786.

[28] Javier Bueno, Xavier Martorell, Rosa M Badia, Eduard Ayguadé and Jesús Labarta. ‘Imple-
menting ompss support for regions of data in architectures with multiple address spaces’. In:
Proceedings of the 27th international ACM conference on International conference on supercomputing.
ACM. 2013, pp. 359–368.

[29] David R Butenhof. Programming with POSIX threads. Addison-Wesley Professional, 1997.

[30] Lynn E Cannon. A CELLULAR COMPUTER TO IMPLEMENT THE KALMAN FILTER AL-
GORITHM. Tech. rep. 1969.

[31] B.L. Chamberlain, S.J. Deitz, D. Iten and S-E. Choi. ‘User-Defined Distributions and Layouts
in Chapel: Philosophy and Framework’. In: 2nd USENIX Workshop on Hot Topics in Parallelism.
June 2010.

[32] Robit Chandra, LeonardoDagum,Dave Kohr, DrorMaydan, JeffMcDonald and RameshMenon.
Parallel programming in OpenMP. 1st ed. Morgan Kaufmann, 2001. isbn: 1-55860-671-8.

[33] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.

[34] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph Von Praun and Vivek Sarkar. ‘X10: an object-oriented approach to
non-uniform cluster computing’. In: Acm Sigplan Notices, vol. 40, no. 10, 2005, pp. 519–538.
ACM, 2005.

[35] Sanjay Chatterjee, Sagnak Tasırlar, Zoran Budimlic, Vincent Cavé, Milind Chabbi, Max Gross-
man, Vivek Sarkar and Yonghong Yan. ‘Integrating asynchronous task parallelism with MPI’.
In: Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE.
2013, pp. 712–725.

[36] Daniel Chavarrı́a-Miranda and John Mellor-Crummey. ‘Effective communication coalescing
for data-parallel applications’. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming. ACM. 2005, pp. 14–25.

[37] Q. K. Chen and J. K. Zhang. ‘A Stream Processor Cluster Architecture Model with the Hybrid
Technology of MPI and CUDA’. In: ICISE'2009. Dec. 2009, pp. 86–89. doi: 10.1109/ICISE.
2009.171.

[38] Michael Claßen and Martin Griebl. ‘Automatic code generation for distributed memory archi-
tectures in the polytope model’. In: Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. IEEE. 2006, 7–pp.

[39] OpenACC Consortium. OpenACC: Directives for Accelerators. eng. WWW. on http://www.
openacc-standard.org/. 2011--2015.

http://dx.doi.org/10.1109/ICISE.2009.171
http://dx.doi.org/10.1109/ICISE.2009.171
http://www.openacc-standard.org/
http://www.openacc-standard.org/

i
i

i
i

i
i

i
i

198 | BIBLIOGRAPHY

[40] Leonardo Dagum and RameshMenon. ‘OpenMP: an industry standard API for shared-memory
programming’. In: IEEE computational science and engineering, vol. 5, no. 1, 1998, pp. 46–55.
IEEE, 1998.

[41] Usman Dastgeer, Johan Enmyren and Christoph W. Kessler. ‘Auto-tuning SkePU: A Multi-
backend Skeleton Programming Framework for multi-GPU Systems’. In: Proc. IWMSE'11.
Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 25–32. isbn: 978-1-4503-0577-8.

[42] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar and Uday Bondhugula. ‘Generating
efficient data movement code for heterogeneous architectures with distributed-memory’. In:
Proceedings of the 22nd international conference on Parallel architectures and compilation techniques.
IEEE. 2013, pp. 375–386.

[43] HV Deepika, NN Mangala and Sarat Chandra Babu. ‘Automatic program generation for het-
erogeneous architectures’. In: Advances in Computing, Communications and Informatics (ICACCI),
2016 International Conference on. IEEE. 2016, pp. 102–109.

[44] Javier Diaz, Camelia Munoz-Caro and Alfonso Nino. ‘A survey of parallel programming models
and tools in the multi and many-core era’. In: IEEE Transactions on parallel and distributed systems,
vol. 23, no. 8, 2012, pp. 1369–1386. IEEE, 2012.

[45] Jack Dongarra, Mark Gates, Azzam Haidar, Yulu Jia, Khairul Kabir, Piotr Luszczek and Stan-
imire Tomov. ‘HPC programming on Intel many-integrated-core hardware with Magma port
to Xeon Phi’. In: Scientific Programming, vol. 2015, no. 9, 2015, pp. 1–11. Hindawi Publishing
Corp., 2015.

[46] Heinz-Dieter Ebbinghaus, Jörg Flum and Wolfgang Thomas. Mathematical logic, 2nd edn. Under-
graduate Texts in Mathematics. 1994.

[47] Wu-chun Feng and Pavan Balaji. ‘Tools and environments for multicore and many-core archi-
tectures’. In: Computer, vol. 42, no. 12, 2009, pp. 26–27. IEEE, 2009.

[48] Javier Fresno Bausela. ‘Supporting general data structures and execution models in runtime
enviroments’. PhD thesis. Universidad de Valladolid, 2015. url: https://www.infor.uva.
es/~jfresno/papers/jfresno_thesis.pdf.

[49] Javier Fresno, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘Blending Extensibility and
Performance in Dense and Sparse Parallel Data Management’. In: IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 10, 2014, pp. 2509–2519. IEEE, 2014. doi: 10.1109/TPDS.
2013.248.

[50] Leonor Frias and Johannes Singler. ‘Parallelization of bulk operations for STL dictionaries’. In:
Euro-Par 2007 Workshops: Parallel Processing. Springer. 2007, pp. 49–58.

[51] Tobias Fuchs and Karl Fürlinger. ‘A Multi-Dimensional Distributed Array Abstraction for
PGAS’. In: High Performance Computing and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/Smart-
City/DSS), 2016 IEEE 18th International Conference on. IEEE. 2016, pp. 1061–1068.

[52] Karl Fürlinger, Colin Glass, Jose Gracia, Andreas Knüpfer, Jie Tao, Denis Hünich, Kamran Idrees,
Matthias Maiterth, Yousri Mhedheb and Huan Zhou. ‘DASH: Data structures and algorithms
with support for hierarchical locality’. In: European Conference on Parallel Processing. Springer.
2014, pp. 542–552.

https://www.infor.uva.es/~jfresno/papers/jfresno_thesis.pdf
https://www.infor.uva.es/~jfresno/papers/jfresno_thesis.pdf
http://dx.doi.org/10.1109/TPDS.2013.248
http://dx.doi.org/10.1109/TPDS.2013.248

i
i

i
i

i
i

i
i

11.3 BIBLIOGRAPHY | 199

[53] T. El-Ghazawi, W. Carlson, T. Sterling and K. Yelick. UPC : distributed shared-memory program-
ming. eng. Wiley-Interscience, 2003. isbn: 978-0471220480.

[54] Arturo González-Escribano and Diego R Llanos. ‘Trasgo: a nested-parallel programming
system’. In: The Journal of Supercomputing, vol. 58, no. 2, 2011, pp. 226–234. Springer, 2011.

[55] Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno and Diego R. Llanos. ‘An Extensible
System for Multilevel Automatic Data Partition and Mapping’. In: IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 5, May 2014, pp. 1145–1154. May 2014. issn: 1045-9219.
doi: 10.1109/TPDS.2013.83.

[56] Ananth Grama, Anshul Gupta, George Karypis and Vipin Kumar. Introduction to Parallel Com-
puting. 2º. Addison Wesley, 2003, p. 856. isbn: 0201648652.

[57] Ivan Grasso, Simone Pellegrini, Biagio Cosenza and Thomas Fahringer. ‘A uniform approach
for programming distributed heterogeneous computing systems’. In: Journal of parallel and
distributed computing, vol. 74, no. 12, 2014, pp. 3228–3239. Elsevier, 2014.

[58] William Gropp, Ken Kennedy, Linda Torczon, Andy White, Jack Dongarra, Ian Foster and
Geoffrey C Fox. The Sourcebook of Parallel Computing. 2002.

[59] William Gropp, Ewing Lusk and Anthony Skjellum. Using MPI : Portable Parallel Programming
With the Message-passing Interface. 2nd ed. MIT Press, 1999, p. 371. isbn: 0262571323.

[60] William Gropp, Ewing Lusk and Anthony Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, 2014. Chap. 4.

[61] Trasgo Research Group. Trasgo webpage. url: http://trasgo.infor.uva.es (visited on
19/05/2015).

[62] Michael Haidl and Sergei Gorlatch. ‘PACXX: Towards a Unified Programming Model for
Programming Accelerators using C++14’. In: Proc. LLVM-HPC'14. IEEE, 2014.

[63] Maurice H Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Inc., 1977.

[64] Khaled Hamidouche, Joel Falcou and Daniel Etiemble. ‘A Framework for an Automatic Hy-
brid MPI+OpenMP Code Generation’. In: Proc. HPC'11. Boston, Massachusetts: Society for
Computer Simulation International, 2011, pp. 48–55.

[65] Tianyi David Han and Tarek S. Abdelrahman. ‘hiCUDA: a high-level directive-based language
for GPU programming.’ In: GPGPU. Ed. by David R. Kaeli and Miriam Leeser. Vol. 383. ACM,
24th Mar. 2009, pp. 52–61. isbn: 978-1-60558-517-8.

[66] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen, Sriram Krish-
namoorthy, Boyana Norris, Jagannathan Ramanujam and Ponnuswamy Sadayappan. ‘Para-
metric multi-level tiling of imperfectly nested loops’. In: Proceedings of the 23rd international
conference on Supercomputing. ACM. 2009, pp. 147–157.

[67] Michael T Heath. ‘Scientific computing’. In: McGraw-Hill, 2001. Chap. 11.

[68] Jacob Hemstad, Ulf R Hanebutte, Ben Harshbarger and Bradford L Chamberlain. ‘A Study of
the Bucket-Exchange Pattern in the PGAS Model Using the ISx Integer Sort Mini-Application’.
In:

http://dx.doi.org/10.1109/TPDS.2013.83
http://trasgo.infor.uva.es

i
i

i
i

i
i

i
i

200 | BIBLIOGRAPHY

[69] Pieter Hijma, Ceriel JH Jacobs, Rob V van Nieuwpoort and Henri E Bal. ‘Cashmere: Heterogen-
eous Many-Core Computing’. In: Parallel and Distributed Processing Symposium (IPDPS), 2015
IEEE International. IEEE. 2015, pp. 135–145.

[70] Seema Hiranandani, Ken Kennedy and Chau-Wen Tseng. ‘Compiling Fortran D for MIMD
distributed-memory machines’. In: Communications of the ACM, vol. 35, no. 8, 1992, pp. 66–80.
ACM, 1992.

[71] M. Howison, E.W. Bethel and H. Childs. ‘Hybrid Parallelism for Volume Rendering on Large-,
Multi-, and Many-Core Systems’. In: IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 1, 2012, pp. 17–29. Washington, D.C., USA: IEEE, 2012. issn: 1077-2626.

[72] Andra-Ecaterina Hugo, Abdou Guermouche, Pierre-Andre Wacrenier and Raymond Namyst.
‘Composing Multiple StarPU Applications over Heterogeneous Machines: A Supervised Ap-
proach’. In: Proc. IPDPSW'13 PhD Forum. Washington, D.C., USA: IEEE, 2013, pp. 1050–1059.
isbn: 978-0-7695-4979-8.

[73] James Jeffers and James Reinders. Intel Xeon Phi coprocessor high-performance programming.
Newnes, 2013.

[74] SA Kadir and Tazrian Khan. ‘Parallel ray tracing using mpi and openmp’. In: Project Report,
Introduction to High Performance Computing, Royal Institute of Technology, Stockholm, Sweden,
2008. 2008.

[75] SM Ashraful Kadir and Tazrian Khan. ‘Parallel Ray Tracing using MPI: A Dynamic Load-
balancing Approach’. In:

[76] Kamran Karimi, Neil G Dickson and Firas Hamze. ‘A performance comparison of CUDA and
OpenCL’. In: arXiv preprint arXiv:1005.2581, 2010. 2010.

[77] N.P. Karunadasa andD.N. Ranasinghe. ‘Accelerating high performance applications with CUDA
and MPI’. In: ICIIS'2009. Dec. 2009, pp. 331–336. doi: 10.1109/ICIINFS.2009.5429842.

[78] Henry Kasim, VerdiMarch, Rita Zhang and Simon See. ‘Survey on parallel programmingmodel’.
In: IFIP International Conference on Network and Parallel Computing. Springer. 2008, pp. 266–275.

[79] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo and Jaejin Lee. ‘SnuCL: an
OpenCL framework for heterogeneous CPU/GPU clusters’. In: Proceedings of the 26th ACM
international conference on Supercomputing. ACM. 2012, pp. 341–352.

[80] Martin Kong, Antoniu Pop, Louis-Noël Pouchet, R Govindarajan, Albert Cohen and P Sadayap-
pan. ‘Compiler/runtime framework for dynamic dataflow parallelization of tiled programs’.
In: ACM Transactions on Architecture and Code Optimization (TACO), vol. 11, no. 4, 2015, p. 61.
ACM, 2015.

[81] Martin Kong, Louis-Noël Pouchet, P Sadayappan and Vivek Sarkar. ‘PIPES: a language and
compiler for task-based programming on distributed-memory clusters’. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE
Press. 2016, p. 39.

[82] Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimlić and Vivek Sarkar. ‘HabaneroUPC++:
A Compiler-free PGAS Library’. In: Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models. ACM. 2014, p. 5.

http://dx.doi.org/10.1109/ICIINFS.2009.5429842

i
i

i
i

i
i

i
i

11.3 BIBLIOGRAPHY | 201

[83] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann and Samuel Midkiff. ‘A hybrid approach of
OpenMP for clusters’. In: ACM SIGPLAN Notices. Vol. 47. 8. ACM. 2012, pp. 75–84.

[84] T. Liang, H. Li and J. Chiu. ‘EnablingMixed OpenMP/MPI Programming on Hybrid CPU/GPU
Computing Architecture’. In: Proc. IPDPSW'12, PhD Forum. Washington, D.C., USA: IEEE, 2012,
pp. 2369–2377. doi: 10.1109/IPDPSW.2012.294.

[85] Kamal Lodaya and Pascal Weil. ‘Series-parallel posets: algebra, automata and languages’. In:
STACS 98. Springer. 1998, pp. 555–565.

[86] Thomas J McCabe. ‘A complexity measure’. In: Software Engineering, IEEE Transactions on, vol. 4,
1976, pp. 308–320. IEEE, 1976.

[87] Sanyam Mehta, Gautham Beeraka and Pen-Chung Yew. ‘Tile size selection revisited’. In: ACM
Transactions on Architecture and Code Optimization (TACO), vol. 10, no. 4, 2013, p. 35. ACM,
2013.

[88] J Mellor-Crummey, V Adve, Bradley Broom, D Chavarrı́a-Miranda, R Fowler, Guohua Jin,
Ken Kennedy and Qing Yi. ‘Advanced optimization strategies in the Rice dHPF compiler’. In:
Concurrency and Computation: Practice and Experience, vol. 14, no. 8-9, 2002, pp. 741–767. Wiley
Online Library, 2002.

[89] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.0. Tech.
rep. 2012. doi: www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[90] Ana Moreton, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘A Runtime Analysis for
Communication Calculation’. In: Proceedings of the International Symposium on Code Generation
and Optimization (CGO). poster, 2017.

[91] Ana Moreton-Fernandez and Arturo Gonzalez-Escribano. ‘Automatic Runtime Calculation of
Communications for Data-Parallel Expressions with Periodic Conditions’. In: 10th International
Symposium on High-Level Parallel Programming and Applications (HLPP). Valladolid, Spain, 2017.

[92] Ana Moreton-Fernandez and Arturo Gonzalez-Escribano. ‘Automatic Runtime Calculation of
Communications for Data-Parallel Expressions with Periodic Conditions’. In: Concurrency and
Computation: Practice and Experience, 2018. Wiley, 2018.

[93] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R Llanos. ‘A New High-
Level Parallel Portable Language for Hierarchical Systems in Trasgo’. In: Computational and
Mathematical Methods in Science and Engineering (CMMSE). 2015.

[94] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R Llanos. ‘A Technique to
Automatically Determine Ad-hoc Communication Patterns at Runtime’. In: Parallel Computing,
2017. North-Holland, 2017.

[95] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R Llanos. ‘Exploiting distrib-
uted and sharedmemory hierarchies with Hitmap’. In:High Performance Computing & Simulation
(HPCS), 2014 International Conference on. IEEE. 2014, pp. 278–286.

[96] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘Multi-device
Controllers: A library to Simplify Parallel Heterogeneous Programming’. In: International
Journal of Parallel Programming, 2017, pp. 1–20. Springer, 2017.

http://dx.doi.org/10.1109/IPDPSW.2012.294
http://dx.doi.org/www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

i
i

i
i

i
i

i
i

202 | BIBLIOGRAPHY

[97] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R Llanos. ‘On the run-time
cost of distributed-memory communications generated using the polyhedral model’. In: High
Performance Computing & Simulation (HPCS), 2015 International Conference on. IEEE. 2015,
pp. 151–159.

[98] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘Operators for
Data Redistribution on the STL library and RayTracing Algorithm (Submitted)’. In: Journal of
Parallel and Distributed Computing, 2018. Elsevier, 2018.

[99] Ana Moreton–Fernandez, Hector Ortega–Arranz and Arturo Gonzalez–Escribano. ‘Control-
lers: An abstraction to ease the use of hardware accelerators’. In: The International Journal of
High Performance Computing Applications, 2017. 2017. doi: 10.1177/1094342017702962.
eprint: http://dx.doi.org/10.1177/1094342017702962. url: http://dx.doi.org/
10.1177/1094342017702962.

[100] AnaMoreton-Fernandez, Eduardo Rodriguez-Gutiez, Arturo Gonzalez-Escribano and Diego R
Llanos. ‘Supporting the Xeon Phi Coprocessor in a Heterogeneous Programming Model’. In:
European Conference on Parallel Processing. Springer, Cham. 2017, pp. 457–469.

[101] Chris J Newburn, Serguei Dmitriev, Ravi Narayanaswamy, JohnWiegert, RaviMurty, Francisco
Chinchilla, Rajiv Deodhar and Russ McGuire. ‘Offload Compiler Runtime for the Intel® Xeon
Phi Coprocessor’. In: Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International. IEEE. 2013, pp. 1213–1225.

[102] NVIDIA. NVIDIA CUDA C Programming Guide 7.5. Last visit: June 14th, 2017. 2015. url:
%7Bhttp://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf%7D.

[103] CUDA Nvidia. ‘Cublas library’. In: NVIDIA Corporation, Santa Clara, California, vol. 15, 2008,
p. 27. 2008.

[104] Héctor Ortega Arranz. ‘Parallel Approaches to Shortest-Path Problems for Multilevel Hetero-
geneous Computing’. PhD thesis. Universidad de Valladolid, 2015. url: https://www.infor.
uva.es/~hector/docs/phdthesis_ortega-arranz.pdf.

[105] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘Op-
timizing an APSP implementation for NVIDIA GPUs using kernel characterization criteria’.
In: The Journal of Supercomputing, vol. 70, no. 2, 2014, pp. 786–798. Springer US, 2014. issn:
0920-8542. doi: 10.1007/s11227-014-1212-z.

[106] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘TuC-
Compi: A Multi-layer Model for Distributed Heterogeneous Computing with Tuning Capabil-
ities’. English. In: International Journal of Parallel Programming, vol. 43, no. 5, 2015, pp. 939–960.
New York, NY, USA: Springer US, 2015. issn: 0885-7458. doi: 10.1007/s10766-015-0349-
6.

[107] Borja Pérez, José Luis Bosque andRamónBeivide. ‘Simplifying programming and load balancing
of data parallel applications on heterogeneous systems’. In: Proceedings of the 9th Annual Workshop
on General Purpose Processing using Graphics Processing Unit. ACM. 2016, pp. 42–51.

[108] Judit Planas, Rosa M Badia, Eduard Ayguadé and Jesus Labarta. ‘Hierarchical task-based pro-
gramming with StarSs’. In: The International Journal of High Performance Computing Applications,
vol. 23, no. 3, 2009, pp. 284–299. SAGE Publications Sage UK: London, England, 2009.

http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962
http://dx.doi.org/10.1177/1094342017702962
%7Bhttp://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf%7D
https://www.infor.uva.es/~hector/docs/phdthesis_ortega-arranz.pdf
https://www.infor.uva.es/~hector/docs/phdthesis_ortega-arranz.pdf
http://dx.doi.org/10.1007/s11227-014-1212-z
http://dx.doi.org/10.1007/s10766-015-0349-6
http://dx.doi.org/10.1007/s10766-015-0349-6

i
i

i
i

i
i

i
i

11.3 BIBLIOGRAPHY | 203

[109] L.-N. Pouchet, P. Zhang P. Sadayappan and J. Cong. ‘Polyhedral-Based Data Reuse Optimization
for Configurable Computing’. In: ACM/SIGDA FPGA'13. 2013, pp. 29–38.

[110] Louis-Noël Pouchet. ‘Polybench: The polyhedral benchmark suite’. In: URL: http://www. cs. ucla.
edu/˜ pouchet/software/polybench/[cited July,] 2012. 2012.

[111] Benoit Pradelle, Philippe Clauss and Vincent Loechner. ‘Adaptive runtime selection of parallel
schedules in the polytopemodel’. In: Proceedings of the 19th High Performance Computing Symposia.
Society for Computer Simulation International. 2011, pp. 81–88.

[112] David A Randall, Todd D Ringler, Ross P Heikes, Phil Jones and John Baumgardner. ‘Climate
modeling with spherical geodesic grids’. In: Computing in Science and Engineering, vol. 4, no. 5,
2002, pp. 32–41. 2002.

[113] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noël Pouchet, J Ramanujam,
Atanas Rountev and P Sadayappan. ‘Distributed memory code generation for mixed Irregu-
lar/Regular computations’. In: Proc. PPoPP'2015. ACM. 2015, pp. 65–75.

[114] RayTrace code. http : / / www . purplealienplanet . com / node / 20. [Online; accessed
22-August-2016]. 2011.

[115] Chandan Reddy and Uday Bondhugula. ‘Effective automatic computation placement and data
allocation for parallelization of regular programs’. In: Proceedings of the 28th ACM international
conference on Supercomputing. ACM. 2014, pp. 13–22.

[116] Ruymán Reyes and Francisco de Sande. ‘Optimization strategies in different CUDA architec-
tures using llCoMP’. In:Microprocess. Microsyst.Vol. 36, no. 2, Mar. 2012, pp. 78–87. Amsterdam,
The Netherlands: Elsevier Science Publishers B. V., Mar. 2012. issn: 0141-9331.

[117] Rochester Institute of Technology. MPI implementation of hyperquicksort. https://www.cs.
rit.edu/usr/local/pub/ncs/parallel/mpi/hqs.c. [Online; accessed 22-August-
2016]. 2003.

[118] Alberto Sanz, Rafael Asenjo, Juan Lopez, Rafael Larrosa, Angeles Navarro, Vassily Litvinov,
Sung-Eun Choi and Bradford L Chamberlain. ‘Global data re-allocation via communication
aggregation in Chapel’. In: Computer Architecture and High Performance Computing (SBAC-PAD),
2012 IEEE 24th International Symposium on. IEEE. 2012, pp. 235–242.

[119] Aroon Sharma, Darren Smith, Joshua Koehler, Rajeev Barua and Michael Ferguson. ‘Affine
loop optimization based on modulo unrolling in Chapel’. In: Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. ACM. 2014, p. 13.

[120] Thomas J Sheffler. A portable MPI-based parallel vector template library. Tech. rep. RIACS-TR-
95.04. 1995.

[121] Jie Shen, Ana Lucia Varbanescu, Yutong Lu, Peng Zou and Henk Sips. ‘Workload partitioning
for accelerating applications on heterogeneous platforms’. In: IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 9, 2016, pp. 2766–2780. IEEE, 2016.

[122] Johannes Singler and Benjamin Konsik. ‘The GNU libstdc++ parallel mode: software engin-
eering considerations’. In: Proceedings of the 1st international workshop on Multicore software
engineering. ACM. 2008, pp. 15–22.

[123] Johannes Singler, Peter Sanders and Felix Putze. ‘MCSTL: The multi-core standard template
library’. In: Euro-Par 2007 Parallel Processing. Springer, 2007, pp. 682–694.

http://www.purplealienplanet.com/node/20
https://www.cs.rit.edu/usr/local/pub/ncs/parallel/mpi/hqs.c
https://www.cs.rit.edu/usr/local/pub/ncs/parallel/mpi/hqs.c

i
i

i
i

i
i

i
i

204 | BIBLIOGRAPHY

[124] Alexander Stepanov and Meng Lee. The Standard Template Library. Tech. rep. 95-11(R.1). 1995.

[125] Michel Steuwer and Sergei Gorlatch. ‘SkelCL: Enhancing OpenCL for High-Level Program-
ming ofMulti-GPUSystems’. English. In: Parallel Computing Technologies. Ed. byVictorMalyshkin.
Vol. 7979. LNCS. Berlin, Germany: Springer Berlin Heidelberg, 2013, pp. 258–272. isbn:
978-3-642-39957-2. doi: 10.1007/978-3-642-39958-9_24.

[126] Tim Stitt. An introduction to the Partitioned Global Address Space (PGAS) programming model.
Connexions, Rice University, 2009.

[127] John E Stone, David Gohara and Guochun Shi. ‘OpenCL: A parallel programming standard for
heterogeneous computing systems’. In: Computing in science & engineering, vol. 12, no. 1-3, 2010,
pp. 66–73. Institute of Electrical and Electronics Engineers, Inc.,| y USA United States, 2010.

[128] John A. Stratton, Sam S. Stone and Wen-Mei W. Hwu. ‘MCUDA: An Efficient Implementation
of CUDA Kernels for Multi-core CPUs’. In: LCPC'2008. Ed. by José Nelson Amaral. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 16–30. isbn: 978-3-540-89739-2.

[129] Zalán Szugyi, Márk Török and Norbert Pataki. ‘Towards a Multicore C++ Standard Template
Library’. In: Proc. of Workshop on Generative Technologies (WGT 2011). 2011, pp. 38–48.

[130] TOP500.org. Top500 Supercomputing Sites. eng. WWW. on http://www.top500.org/. May
2017.

[131] Yuri Torres, Arturo Gonzalez-Escribano and Diego R. Llanos. ‘uBench: exposing the impact
of CUDA block geometry in terms of performance’. In: The Journal of Supercomputing, vol. 65,
no. 3, 2013, pp. 1150–1163. Springer US, 2013. issn: 0920-8542. doi: 10.1007/s11227-013-
0921-z.

[132] Ramakrishna Upadrasta and Albert Cohen. ‘Sub-polyhedral scheduling using (unit-) two-
variable-per-inequality polyhedra’. In: ACM SIGPLAN Notices. Vol. 48. 1. ACM. 2013, pp. 483–
496.

[133] András Vajda. ‘Multi-core and many-core processor architectures’. In: Programming Many-Core
Chips. Springer, 2011, pp. 9–43.

[134] Arjan JC Van Gemund. ‘The importance of synchronization structure in parallel program
optimization’. In: Proceedings of the 11th international conference on Supercomputing. ACM. 1997,
pp. 164–171.

[135] Sven Verdoolaege. ‘Isl: An integer set library for the polyhedral model’. In: Mathematical
Software--ICMS 2010. Springer, 2010, pp. 299–302.

[136] Antonio Vilches, Rafael Asenjo, Angeles Navarro, Francisco Corbera, Rubén Gran and Marı́a
Garzarán. ‘Adaptive Partitioning for Irregular Applications on Heterogeneous CPU-GPU
Chips’. In: Procedia Computer Science, vol. 51, 2015, pp. 140–149. Elsevier, 2015.

[137] Moisés Viñas, Zeki Bozkus and Basilio B Fraguela. ‘Exploiting heterogeneous parallelism with
the Heterogeneous Programming Library’. In: Journal of Parallel and Distributed Computing,
vol. 73, no. 12, 2013, pp. 1627–1638. Elsevier, 2013.

[138] Bruce Wagar. ‘Hyperquicksort: A fast sorting algorithm for hypercubes’. In: Hypercube Multipro-
cessors, vol. 1987, 1987, pp. 292–299. SIAM, 1987.

http://dx.doi.org/10.1007/978-3-642-39958-9_24
http://www.top500.org/
http://dx.doi.org/10.1007/s11227-013-0921-z
http://dx.doi.org/10.1007/s11227-013-0921-z

i
i

i
i

i
i

i
i

11.3 BIBLIOGRAPHY | 205

[139] Sandra Wienke, Paul Springer, Christian Terboven and Dieter an Mey. ‘OpenACC—first exper-
iences with real-world applications’. In: European Conference on Parallel Processing. Springer.
2012, pp. 859–870.

[140] Marc H Willebeek-LeMair and Anthony P. Reeves. ‘Strategies for dynamic load balancing on
highly parallel computers’. In: IEEE Transactions on parallel and distributed systems, vol. 4, no. 9,
1993, pp. 979–993. IEEE, 1993.

[141] Chao-Tung Yang, Chih-Lin Huang and Cheng-Fang Lin. ‘Hybrid CUDA, OpenMP, and MPI
parallel programming onmulticoreGPU clusters’. In:Computer Physics Communications, vol. 182,
no. 1, 2011, pp. 266–269. Elsevier, 2011.

[142] C.T. Yang, C.L. Huang and C.F. Lin. ‘Hybrid CUDA, OpenMP, and MPI parallel programming
on multicore GPU clusters’. In: Computer Physics Communications, vol. 182, no. 1, 2011, pp. 266–
269. Amsterdam, The Netherlands: Elsevier Science Publishers B. V., 2011. issn: 0010-4655.
doi: 10.1016/j.cpc.2010.06.035.

[143] Tomofumi Yuki and Sanjay Rajopadhye. Parametrically Tiled Distributed Memory Parallelization
of Polyhedral Programs. Tech. rep. CS13-105. June 2013.

http://dx.doi.org/10.1016/j.cpc.2010.06.035

	Title
	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Resumen de la Tesis Doctoral
	Motivación
	Computación paralela
	Sistemas para la computación paralela
	Modelos de programación paralelos

	Objetivos de la Tesis Doctoral
	Metodología de investigación
	Objetivos

	Resumen de contribuciones
	Respuesta a la pregunta de investigación y conclusiones
	Simplificando la programación sobre sistemas heterogéneos basados en aceleradores
	Automatizando el manejo de datos en sistemas heterogéneos con memoria distribuida.

	Conclusiones

	Introduction
	Motivation
	Parallel computing
	Machines for parallel computing
	Parallel programming models

	Objectives of this Thesis
	Research methodology
	Milestones

	Document structure

	I Simplifying the programming on accelerator-based heterogeneous systems
	State of the art on heterogeneous programming
	Motivation
	Proposals for standardizing parallel programming
	Proposals targeting directly heterogeneous systems
	Summary

	Controllers: An abstraction to ease the use of hardware accelerators
	Motivation
	Controller Model
	Kernel management
	Data management

	The Controllers library
	Data structures and Hitmap
	Controllers and variables management
	Declaration and configuration of kernels
	Kernel characterization
	Kernel launching
	Programming example

	Experimental study
	Case studies
	Development effort and code complexity
	Performance study

	Summary

	Supporting the Xeon Phi coprocessor in the Controller Programming Model
	Approach to support MIC accelerators
	Integrating MIC coprocessors in the Controller library
	Attaching and detaching data structures on the MIC
	New kernel definitions
	Queue management and Kernel launching

	Experimental study
	Study cases
	Performance study
	Development effort measures

	Summary

	Multi-Device Controllers
	Introduction
	Multiple-Device Controller (MCtrl) library
	Multi-Controller construction
	Data structures and domains
	Kernel launching
	Programming methodology and example

	Experimental study
	Study cases
	Development effort
	Performance results

	Summary

	II Automatizing the data management for distributed-memory spaces in heterogeneous systems
	State of the art on automatic management of distributed-memory spaces
	Motivation and related Work
	Parallel libraries

	Summary

	Analyzing the current limitations of communication code generators
	The FOP communication scheme
	Cost model
	General cost for a distributed loop
	Problem size and number of iterations
	Distribution policy
	Packing stage
	Coordination and communication stage
	Unpacking stage
	Total cost

	Proposal: Implementation alternative
	Case study: 1-D Jacobi
	Cost model parametrization
	Simulation study

	Experimental Study
	Experimental environment
	Results

	Summary

	Automatically calculating communications for DMS from data-access expressions
	Introduction
	Illustrative example and Overview
	Programming with an SPMD model
	Overview of the communication determination technique

	The Trasgo Model
	Overview of the code transformation framework
	Notations and definitions
	Extensions to the Hitmap library

	Implementation of the technique to determine communication patterns
	Functions to calculate working set indexes
	Determining communications patterns
	Communication patterns for specific applications

	Experimental study
	Study cases
	Experimental platforms and setup
	Improvement achieved by tuning the tile size for each process
	General communications model vs. patterns for specific applications
	Comparison with MPI references
	Comparison with a state-of-the-art tool

	Summary

	Calculating communications for applications on periodic domains
	Introduction
	Related work targeting problems with periodic domains
	Illustrative example
	Aggregated-communication model
	Definitions
	Model for calculating communication patterns in 1-D applications
	Multi-dimensional model

	Implementation on a parallel programming framework
	Discussion: Analyzing the technique
	Experimental study
	Design and setup of the experimental study
	Study 1: Performance comparison with MPI reference codes
	Study 2: Ease of programming
	Study 3: Relative cost of calculating communications

	Summary

	Operators for data redistribution
	Introduction
	Motivating example
	Proposal: Redistribution operators
	ArrayRemapRange: Remap of an array range
	ArrayRemapMask: Remap of an irregular selection using a mask
	ArrayDivide: Dividing an array in several balanced parts using a multivalued mask
	ArrayMerge: Merging array parts

	Implementation of the operators
	Supporting data redistributions at Hitmap runtime level
	Implementation of the new operators

	Experimental studies
	Experimental platform and setup
	Applying the operators: case studies
	Impact of redistributing workload on performance
	Using the STL library for analyzing the four operators
	Evaluating the use of the proposal on a real-world application: Raytracing algorithm

	Summary

	Conclusions
	Summary of contributions
	Simplifying the programming on accelerator-based heterogeneous systems
	Automatizing the data management for distributed-memory spaces in heterogeneous systems

	Answer to the research question
	Future Directions

	Bibliography

