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Abstract

Magnetic domain walls are the boundaries between magnetic domains. These
structures are efficiently manipulated by means of electric currents due to the spin-
orbit coupling phenomena. Thus, new proposals of nanodevices based on magnetic
domain wall manipulation are continuously appearing. It is the case of domain
wall nano-oscillators or domain wall based magnetic memories. Additionally to its
technological appealing, domain walls show a rich complexity which makes them of
interest from the fundamental point of view. At the scale considered in the present
work, interfacial phenomena play a major role being responsible for the main features
considered as the high perpendicular magnetic anisotropy or the presence, along with
the strong spin-orbit coupling, of the interfacial Dzyaloshinskii-Moriya interaction.
The spin-orbit coupling is the other key feature of the considered system leading to the
spin Hall effect. This spin Hall effect along with the interfacial Dzyaloshinskii-Moriya
interaction are the main reason for the high efficiency of domain wall motion.

The goal of this thesis is to study and highlight the key role of spin-orbit coupling
for the development of spintronic devices. Additionally, the suitability of tailoring
the perpendicular magnetic anisotropy to provide a pinning system for domain wall
based magnetic memories is shown. Thus, the text is structured in four parts, and
an additional conclusions chapter.

The first part deals with the general micromagnetic theory, the numerical solver
tools used for micromagnetic simulations, the “general” one dimensional model and a
few examples of the experimental techniques that can be used to study multilayered
systems, giving the necessary background to understand the work presented.

The second part is devoted to systems with moderate Dzyaloshinskii-Moriya
interaction where domain walls are neither Bloch nor Néel but acquire an intermediate
configuration. The DW magnetization orientation is a consequence of the equilibrium
of all torques. In the absence of external stimuli, all these torques depend on the
magnetization configuration. When an external stimulus is applied the previous
configuration is, in general, no longer an equilibrium configuration and so the
magnetization will evolve in time. It may happen that the magnetization reaches a
state characterizes by a constant DW velocity and orientation, which is known as a
stationary state. The existence of a stationary state will depend on the amplitude
and nature of the applied stimuli. Above a given field, known as Walker’s field HW ,
there is no longer a stationary state, and a drastic reduction of the DW mean velocity
occurs. In systems with moderate DMI three scenarios are possible when applying a
stimulus. The first one, when two possible stationary states can be reached. The
second one, when there is only one possible stationary state. Finally, the third
scenario is characterized by the lack of a stationary state.

Part III analyses the consequences of applying an electric current noncollinear
with the longitudinal axis of the ferromagnetic strip. An electric current produces its
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maximum torque when it is collinear with the magnetization. However, this torque
not only produces a domain wall displacement but also the rotation of the domain
wall magnetization, reducing its effect. Then, it is possible to apply a noncollinear
current which twists the magnetization to be collinear with it, maximizing the
torque, and thereby the DW velocity, at the stationary regime. For a region where
the magnetization is pointing along the opposite direction, the current will further
misalign the magnetization, reducing the torque and the domain wall velocity. Two
consecutive domain walls in a ferromagnetic layer where a rather high interfacial
Dzyaloshonskii-Moriya interaction is present have opposite directions due to the
quiral character of the Dzyaloshonskii-Moriya interaction. Thus, these two domain
walls have different velocities if a noncollinear current is applied, and the magnetic
domain between them is reduced or increased depending on which domain wall is
faster.

Finally, part IV examines the current-driven domain wall motion in a ratchet
ferromagnetic strip. This kind of memory is an enhancement of the racetrack memory
which allows for better control of the domain walls position. This control is achieved
by tailoring the perpendicular magnetic anisotropy energy profile so as to present a
saw-toothed profile. Thereby, in the absence of external stimuli, there is a well-defined
set of local energy minima where domain walls are pinned. Such pinning system
precisely determines the possible domain wall positions at equilibrium, and so bit
size and bit positions.
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Chapter 1

Introduction

1.1 Micromagnetics

Micromagnetics has stimulated the study of magnetism and magnetic materials. It
can be said to begin in 1935 with the study of Landau and Lifshitz about magnetic
domain walls [1]. However, it is not until 1957, when rigorous nucleation-field theory
appeared [2], that micromagnetics obtained the required attention [3]. This interest
in micromagnetics is not only based on its theoretical importance, but also on its
technological relevance. Micromagnetics has shown its utility in the design of novel
spintronic and magnetoelectronic devices [4–6] and has provided insightful answers
about its behavior.

This field examines ferromagnetic materials on a scale “small enough to reveal details
of the transition regions between domains, yet large enough to permit the use of
a continuous magnetization vector rather than of individual atomic spins” [3]. At
this scale, these transition regions, i.e., domain walls (DW), have a non-negligible
thickness and magnetization smoothly changes throughout it. However, this scale
must be still rather large so as magnetization can be characterized by a continuous
vector field rather than a discrete spin distribution. This theory is the appropriate
one to study mesoscopic systems, where Domain Theory cannot be applied but a
microscopic study is unapproachable.

The development of fabrication techniques for magnetic nanodevices and the measure-
ment tools to determine its properties has been accompanied by the development of
different algorithms to numerically solve the Landau-Lifshitz-Gilbert (LLG) equation.
These algorithms have allowed a deeper comprehension of the details of static and
dynamic behaviors of magnetization. As a consequence, more efficient and reliable
devices have been obtained.

1.2 Multilayered systems and characteristic phe-

nomena.

Multilayered systems, formed by several layers of different materials, have been the
focus of intense research in recent years [7–23]. These multilayered systems are
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used in several devices nowadays. Magnetic random access memory (MRAM), spin
valves, or some kinds of magnetic sensors are based on giant magnetoresistance
(GMR) effect [24–26]. Some multilayered systems where two ferromagnetic (FM)
layers can be parallel or antiparallel show a different electric resistance for this
two configurations. The dramatic dependence of the resistance on the magnetic
configuration of the system is known as GMR effect. Nowadays, intense research
is focused on the development of a DW-based magnetic memory as the racetrack
memory [27, 28] proposed by Parkin. The latest racetrack concepts are based on the
use of multilayers [28] since they may exhibit some effects that made them the most
promising proposals.

One of these effects is the presence, for rather thin layers of a few nanometers, of
high perpendicular magnetic anisotropy (PMA) due to interface phenomena [29–36].
DW based magnetic memory devices can take advantage of this PMA since DW
thickness between perpendicular domains are usually narrower than that for in-plane
domains [28, 36]. This is the reason why multilayered systems with PMA are said
to be a promising structure to obtain denser bit recording than those containing
in-plane domains. The systems studied in this thesis always consider FM strips with
high PMA and thus perpendicular domains.

Besides, other phenomena that have been demonstrated to have a key role in the
fast and efficient DW motion in multilayered systems must be considered. These
phenomena are the Dzyaloshinskii-Moriya interaction [14, 17, 21, 37–48] (DMI) and
the spin Hall effect [9, 10, 44, 49–56] (SHE). The origin of these effects is the strong
spin-orbit coupling (SOC) of a heavy metal (HM) layer. It is well-known [57] that
the orbital angular momentum of a charged particle interacts with its spin angular
momentum. This interaction causes a splitting of the energy levels as a function of the
spin. This effect is called SOC. Throughout this text, a strong SOC is considered to
be present in the HM layer of the multilayer, being responsible for an interfacial DMI
(iDMI) at the HM/FM layer interface. Moreover, this SOC promotes a perpendicular
spin current when an in-plane electric current is applied along the HM due to the SHE.

The DMI arises from a strong SOC along with the lack of inversion symmetry. This
lack of inversion symmetry is present in some bulk materials, such as the cubic B20
compound MnSi [58–60], but the interest is focused on iDMI of thin films where the
inversion symmetry along the perpendicular axis is broken [61]. In the latter case,
the inversion asymmetry is obtained by capping the FM by a layer that differs from
the beneath HM which is, as it has been already mention, the layer with strong SOC.
The difference may lie either in the thickness [20, 46] of the capping layer or in the
material used, commonly an oxide [21] (Ox). Therefore, throughout this thesis, a FM
layer sandwiched between a HM and an Ox is considered. One of the most important
features of this interaction is that it imposes a given chirality [20, 40, 42, 61], clockwise
or counterclockwise, on the magnetization structure. A significant consequence of
this chirality is that all DWs are moved coherently when an electric current is applied.

Finally, some comments about the SHE have to be made. The electrons are scattered
by the lattice when an electric current is applied. Nevertheless, an anisotropic
scattering due to the splitting of the energy levels is produced, caused by the strong
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Figure 1.1: Sketch of (a) Bloch domain walls and (b) Néel domain walls. Since Néel
domain walls are quiral due to the DMI, magnetization is directed along positive or negative
xs depending on the type of transition (up-down or down-up) and the sign of the DMI.

SOC [50, 51]. As a consequence, electrons with different spin are scattered in opposite
directions resulting in a net spin current, being the spin current perpendicular to
both, the electric current and the spin orientation. Thus, the spin orientation lays
along the transverse direction when a longitudinal electric current is applied, and so
a perpendicular spin current is obtained.

Hence, the SHE induces a perpendicular spin current in the FM layer. This angular
momentum exerts a torque over the magnetization of the FM strip due to the spin
transfer torque (STT) [9, 62–64]. This torque is usually referred as spin-orbit torque
(SOT) because the spin current induced by a strong SOC generates it. The SOT
exerted is maximal when the spin angular momentum1 and the magnetization are at
right angles and is null when both are parallel. Inside the domains, the anisotropy
and exchange energies impose a perpendicular direction for the magnetization and
only small variations can be promoted by this SOT. However, the effect of the SOT
becomes relevant at the transition region causing the DW to be displaced. This
movement can be either in the same direction of the electric current or in the opposite
one. It depends on the sign of the spin Hall angle, which determines the orientation
of the spin angular momentum of the spin current, and the chirality of the DW, and
therefore, the sign of the DMI.

Two basic domain wall configurations, sketched in figure 1.1, can be reported [65, 66]:
that which has no magnetization component along the normal direction of the
plane defined by the DW is called Bloch walls (BDWs), and that which has no

1It must be noticed that the spin angular momentum and the spin current are perpendicular to
each other.
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magnetization component along the direction addressed by the cross product of
the perpendicular direction of the slab and the normal to the DW is called Néel
walls (NDWs). The above ideas indicate that, if a longitudinal electric current is
applied, a spin current is induced in the perpendicular direction, being the spin
orientation within the plane defined by the slab and perpendicular to the longitudinal
direction. Thus, for a straight strip where a DW without tilting is present, the
transversal angular momentum introduced into the FM layer exerts a null torque
for a BDW, while this torque is maximum when the DW exhibits a Néel configuration.

The most important features to understand the system studied along this thesis has
been briefly discussed. A more detailed explanation of the theory can be found in
chapter 2 or in the references.

1.3 Methodology

Two main tools have been used in the present work, micromagnetic simulations
and an analytical model. It has been already mentioned that micromagnetics has
achieved a fast and deep advancement in recent years thanks to the development
and improvement of different numerical techniques [67–69]. These techniques are
used to numerically solve the LLG equation, which is the equation followed by a
magnetic dipole [1, 70]. A continuous theory of magnetization assumes that this
magnetization can be described by a vector field, and therefore, each point of such
a field is described by the LLG equation [3, 67]. The LLG equation is solved
by means of a finite difference method. A mesh must be defined to apply such
a method [67, 69]. Each point is represented by a computational cell of a finite
size. Some restrictions apply to the cell size. On the one hand, cell size must be
sufficiently large as to contain a number of atomic dipoles which ensures a rather
constant modulus of the magnetization. On the other, cell size must be adequately
small to avoid sharp changes of the magnetization from one cell to the contiguous one.

LLG equation describes for each cell the evolution in time of the magnetization
imposed by the applied torques. Each cell affects each other by a known set of
interactions which ought to be added to the external field resulting in an effective field
Heff . This field differs from one magnetic configuration to another, and so it must
be calculated for each state to solve the LLG differential equation each time step.
The differential equation is computed by means of one of the algorithms discussed in
chapter 3. The Dormand-Prince method is the one used in chapters 6-7. It is based
on a Runge-Kutta scheme and allows adapting the time step. On the contrary, a 4o

order Runge-Kutta method is applied in chapters 8-12. The reason is that, in or-
der to include a finite temperature in a simulation, a fixed time step must be adopted.

A full µMag simulation can be a time-consuming task, even though the above-
mentioned algorithms are optimized to compute the LLG equation and despite the
improvement of the graphics processor units (GPU) that solve it. Then, a simplified
model being able to analytically describe the main features of the magnetization
dynamics is an interesting tool which can reduce the time required to study those
systems. Moreover, such a model gives an insightful knowledge about the keys of such
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dynamics and some general rules can be extracted from it. However, it requires some
assumptions which makes it less detailed and less reliable than full µMag simulations
and so it must be tested against them.

The first analytical model for the DW motion was developed by Walker in 1956 for a
FM strip whose longitudinal direction is infinite [71]. It is assumed that magnetiza-
tion has two semi-infinite domains separated by a DW. As long as it is supposed that
magnetization only changes along the infinite longitudinal direction, this model is
called one dimensional model (1DM). The model also assumes that the magnetization
of the strip can be described by means of two dynamic parameters qptq, the DW
position, and Φptq, the magnetization angle with respect the longitudinal axis, along
with one static parameter, ∆, the DW width.

The two semi-infinite domains studied by Walker are in-plane systems so, two con-
figurations are possible, head-to-head and tail-to-tail. In any case, it is possible to
straightforwardly adapt the model from the in-plane case to the out-of-plane case
of systems with PMA. However, some modifications must be made to include new
phenomena, as the adiabatic and non-adiabatic STT, the SHE, the Rashba effect,
the DMI and so on. These new phenomena, or very strong torques, may induce
deformations of DWs. As an example, it is known that in systems with high DMI,
the current may induce a rotation of the DW plane [17, 19, 72–74]. Thus, an angle
between the normal vector of the DW and the longitudinal axis, which is called
tilting angle χ, appears. Another common deformation is the variation of DW width
after the application of a stimulus. These deformations can be taken into account by
introducing this new parameter of tilting χ or by considering a time-dependent DW
width, ∆.

Although a general 1DM can be derived, some simplified versions can be proposed
depending on the case. For example, an in-plane current noncollinear with the
longitudinal axis can be considered, as in chapters 8, 9, and 10, although a collinear
current is in general applied. In chapters 11 and 12 a tailored anisotropy profile is
considered, while in the other cases a homogenous anisotropy applies. In general, it
is possible to consider finite size regions (grains) where the anisotropy slightly differs
from one grain to another to mimic realistic conditions. The aim of chapter 4 is
to present a general model able to describe each of the systems considered in this
thesis. It must be pointed out that such a model has not been developed with the
goal of obtaining a general one, but summarizes the modifications that the author
had to adopt for each case. Indeed, the presented model is not the most general
one. There are multilayered structures with two FM layers that interact with an
interlayer exchange coupling (IEC) due to itinerant electrons via the Ruderman-
Kittel-Kasuya-Yosida (RKKY) field [74–76]. These systems are known as synthetic
ferro- or antiferromagnets, depending on the sign of the IEC. Despite the high DW
velocities that they show [77], they are out of the scope of this thesis, and the RKKY
field is not included in the model presented in chapter 4.
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1.4 This thesis

This thesis is intended to study and highlight the key role of SOC in the development
of spintronic devices; especially the DWs based magnetic memories. Additionally,
the suitability of tailoring the PMA to provide a pinning system for those kinds of
memories is shown. The presence of a pinning system of any nature is mandatory to
precisely control the DWs position, even for a current-driven DW motion scheme.
Thus, the text is structured in four parts, and an additional conclusions chapter.
The first part gives the necessary introduction to the topic while the other three
presents the novel results of this thesis.

Part I

The first part is integrated by chapters 2, 3, 4, and 5, which deal with the following
topics. First one, the general micromagnetic theory is treated in 2. The numerical
solver tools used for µMag simulations are explained in 3. The “general” one
dimensional model is developed in 4. Finally, the experimental techniques employed
during the research visit in the group “Integnano” in Paris, commonly used to study
multilayered systems, are illustrated in 5. These four chapters give the necessary
background to understand the present dissertation.

Part II

The second part, formed by chapters 6 and 7, is devoted to systems with moderate
DMI. In the studied systems, the geometry of the slabs imposes BDWs. However,
the presence of the DMI promotes a NDW type. By moderate DMI we are referring
a value of such an interaction sufficiently high to avoid the pure BDW, but too small
to set a pure NDW. The intermediate configuration is called Dzyaloshinkii domain
wall (DDW). It must be pointed out that, although the definition of NDW allows
for the existence of two configurations, the quiral nature of the DMI imposes one of
these two possibilities. The two possible configurations for the BDWs are due to the
so-called shape anisotropy, and are fully equivalents, giving rise to a degeneracy in
the ground state. DDWs inherit the quiral character of the NDWs, but still conserve
the degenerate nature of BDWs. These two degenerate states are symmetric with
respect to the perpendicular direction of the wall surface, which coincides with the
longitudinal axis of the slab.

The DW magnetization orientation is a consequence of the equilibrium of all torques.
In the absence of external stimuli, all these torques depend on the magnetization
configuration. When an external stimulus is applied the previous configuration is,
in general, no longer an equilibrium configuration and so the magnetization will
evolve in time. It may happen that the magnetization reaches a state characterized
by a constant DW velocity and orientation, which is known as stationary state.
The existence of a stationary state will depend on the amplitude and nature of
the applied stimuli. The torque due to an external magnetic field Hext does not
depend on the DW configuration. If the perpendicular external field Hz is rather
low, there is a configuration where this torque can be canceled out by the other
terms, which depend on the DW configuration. In this region, the DW velocity
increases linearly with Hz. However, if Hz is sufficiently large there is not such a
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situation, and no stationary state can be reached. This phenomenon is known as
Walker breakdown [71] and leads to a drastic reduction of the DW mean velocity.
The field for which the maximum velocity is reached is known as the Walker field HW .

Nevertheless, if a current Ja is applied, the torque derived from it depends on the
magnetization orientation, being null for BDWs. For this reason, when solely an
electric current is applied there is always a stationary state, and the DW velocity
increases to a saturation value. However, when both, external field Hz and applied
current Ja are taking into account, there exists a Walker field HW pJaq which depends
on the value and sign of the applied current Ja.

In systems with moderate DMI, and thus with two possible ground states, three
scenarios are possible when applying a stimulus. The first one occurs when the
magnetization is able to vary smoothly from the initial state to the stationary one.
It takes place for low values of the perpendicular field Hz and applied current Ja, for
which there is always a state close to the initial one, and the smooth evolution is
possible no matter which one is the actual initial state. However, the stationary DW
velocity will differ from one to the other stationary state. The second scenario happens
when there is only one stationary state, and the magnetization is unable to evolve
smoothly from the initial state to the final one. Therefore, the DW magnetization
suffers a reorientation which affects the dynamic of the DW. Moreover, once the
stimuli are switched off, the magnetization does not recover its initial configuration,
but it stabilizes at the other possible ground state. Finally, the third scenario is
characterized by a lack of a stationary state. In this case, a Walker breakdown takes
place. An external magnetic field is always involved in this situation.

Part III

This part, which corresponds to chapters 8, 9, and 10, analyses the consequences
of applying an electric current noncollinear with the longitudinal axis of the FM
strip. The goal of such a study is to explain the experimental results obtained by
Safeer et. al. [78] of the switching of FM layers of a given geometry. As it is already
stated, an electric current produces its maximum torque when it is collinear with
the magnetization. However, this torque not only causes a DW displacement but
also the rotation of the DW magnetization, reducing its effect. Then, it is possible
to apply a noncollinear current which twists the magnetization to be collinear with
it, maximizing the torque, and thereby the DW velocity, at the stationary regime.
For a region where the magnetization is pointing along the opposite direction, the
current will further misalign the magnetization, reducing the torque and the DW
velocity. Two consecutive DWs in a FM layer where a rather high iDMI is present
have opposite directions due to the quiral character of the DMI. Thus, these two
DWs have different velocities if a noncollinear current is applied, and the magnetic
domain between them is reduced or increased depending on which DW is faster.

The above-mentioned phenomenon plays a role in the magnetization reversal of the
geometries studied by Safeer et. al. [78]. A U-shaped FM layer and its mirror image
are studied, as well as a S-shaped FM layer and its mirror image. Those geometries
can be built up from a central straight part, and two spikes tilt from the longitudinal
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direction. The U-shaped and the S-shaped geometries differ from the relative angle
between the two spikes; 90o degrees for the U-shaped and 180o degrees for the
S-shaped. The switching process requires two steps to be fulfilled, the nucleation of
a reverse domain and the growth of this domain until the switching is completed.
Domain wall nucleations which finally collapse are called frustrated switching. The
nucleation and growth process fully treated in chapters 9 and 10 are summarized here.

Domain nucleation is produced in those geometries by the boundary conditions
imposed by the iDMI. A small in-plane magnetization is promoted by the iDMI
at the edges of the FM element. This small in-plane component points inwards or
outwards as a function of the sign of the iDMI and the type of domain (Up or Down).
Due to this small in-plane component, a torque is generated at the spikes when an
electric current is applied. This torque favors in each peak the nucleation of an Up
or Down domain, depending on the relative orientation of the magnetization and
current direction. Thereby, the domain nucleation is promoted or avoided for the
different spikes. However, it must be pointed out that this torque is rather small as to
promote such nucleation alone, so this process is indeed assisted by the thermal field.
Due to the presence of the thermal field is also possible to nucleate some spurious
domains with two DWs which, in general, do not provoke a magnetization reversal, as
both DWs will reach the edge of the spike. A DW nucleation which does not produce
a magnetization reversal is called frustrated switching. Nevertheless, a nucleated
domain with two DWs may induce a complete switching if another domain with a
single DW is nucleated and, due to the different DW velocities, this new wall reaches
the first domain. Thus, it is possible to obtain a magnetization switching control
by geometry as long as the geometry and applied current define which domains are
favored and which ones are avoided.

Part IV

Finally, chapters 11 and 12 analyze the current-driven DW motion in a ratchet [79, 80]
FM strip. This kind of memory is an enhancement of the racetrack memory [27, 28]
which allows for better control of the DWs position. This control is achieved by
tailoring the PMA energy profile so as to present a saw-toothed profile. Thereby, in
the absence of external stimuli, there is a well-defined set of local energy minima
where DWs are pinned. Such pinning system precisely determines the possible DW
positions at equilibrium, and so the bit size and its positions.

This proposal has a clear advantage for field-driven devices. As long as an external
magnetic field expands the parallel domains at the cost of reducing antiparallel
domains, two consecutive DWs are moved towards opposite directions. This even-
tually causes domain collapse, losing such an information. A system which ensures
unidirectional DW motion is then mandatory for a field-driven device. In a ratchet
FM strip, when a perpendicular magnetic field is applied, domains can only expand
in one direction, while its other DW is blocked. When the wall overcomes the next
tooth of the anisotropy profile, the application of a field in the opposite direction
fails to reduce the size of the domain from that edge. Then, the domain recovers its
initial size by the domain wall displacement on the other side.
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Chapters 11 and 12 analyze the current-driven DW motion in a FM layer where the
PMA has been modified in such a way. For the current-driven regime every DW is
moved in the same direction. Thus, the unidirectional character of the system is no
longer a constraint. However, the pinning system provided by this method is still
effective in the current-driven regime. Besides, other advantages are reported, as
compared with the field-driven regime. In the latter, two teeth per bit are needed to
prevent the domain collapse, while only one is needed for the former. The reduction
of the bit size and the higher DWs velocities for reasonable values of current, as
compared to those for reasonable values of the field, lead to lower bit shifting times.
Finally, a symmetric field pulse is needed for the proper working of a field-driven
ratchet memory, while a current-driven scheme allows for tuning the pulse and
relaxing times as well as to use currents of the opposite polarity to improve system
performances and a better control of motion variables.
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Chapter 2

Theoretical basis

The theoretical basis of micromagnetics is introduced in this chapter. The Euler-
Lagrange equation for a magnetic system is derived from variational principles,
and the conditions for equilibrium are established. The Landau-Lifshitz-Gilbert
equation is set as the dynamic equation for these systems. The idea of effective field
is presented as well as the different contributions of the free energy. The Landau-
Lifshitz-Gilbert equation is augmented by the field-like and Slonczweski-like torques
due to spin-polarized currents. A way to include temperature effects for constant
and low temperature is also addressed.
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2.1 Introduction

The magnetic order is a quantum phenomenon [81] at a macroscopic scale. Thus,
a description of a ferromagnetic material based on the spin lattice1 would be then
satisfactory. However, such description is unfeasible for a system larger than a few
nanometers due to the vast number of spins involved. Moreover, a macroscopic de-
scription as the Domain Theory for system smaller than a few microns is insufficient,
as long as these theories do not account for the DWs internal structure, which may
play a major role in their dynamics. As it has been previously stated, a suitable
theory for such systems must be mesoscopic.

The main assumption of the micromagnetic theory is that magnetization can be
expressed as a continuum vector field of constant modulus. The value of the modu-
lus is known as the saturation magnetization Ms of the sample. This assumption
lays over two hypotheses. One of them is that the material can be described as a
set of infinitesimal volumes dV that contain sufficient spins as to keep a constant
magnetization value without significant fluctuations. The size of these volumes must
be rather low to ensure that the magnetization changes smoothly with the position.
This hypothesis is feasible as long as the exchange, which tends to align all the spins
in the same direction, is the prevailing interaction at short ranges. Other free energy
terms induce small deviations from one point to the other.

The second hypothesis assumes that the saturation magnetization Ms is constant and
equal to its value at zero temperature. This assumption remains valid as long as the
sample is well below the Curie temperature [65]. If this hypothesis does not apply,
a dependence on the temperature of the material parameters must be taken into
account and so, the stochastic Landau-Lifshitz-Bloch equation [82–87] ought to be
applied. Although in some cases presented along this thesis a finite temperature has
been considered, it has been supposed that the sample is still well below the Curie
temperature, and the LLG equation, augmented with a stochastic term, has been used.

The Brown equations for the equilibrium are obtained from Hamilton’s variational
principle for continuous media in the next section. The LLG equation is also presented
as the dynamic equation of these systems. Finally, the different contributions of the
free energy are detailed, as well as the torques associated to spin-polarized currents
and the thermal field.

2.2 Variational principle. Static condition

The equilibrium equations are obtained but not following the Brown derivation [3],
but the one followed in [88] or [67] for the sake of simplicity, since it does not require
the use of the variations of an explicit energy functional. The equations of motion of
a mechanic system can be derived from Hamilton’s variational principles [89], which
states that, for conservatives systems, the motion of the system from time t1 to time

1This lattice would be, in general, different from the crystal lattice, with its own lattice parameter,
reciprocal lattice, and excitation spectrum.
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t2 is such that the action,

I “

ż t2

t1

Ldt , (2.1)

has a stationary value for the actual path of the motion, where L is the Lagrangian of
the system, which can be defined as the excess of kinetic energy over potential energy.
L can be written as the integral over the whole system of a Lagrangian density.

L “

ż

V

lV dV ´

ż

S

uS dS (2.2)

The first integral is a volume integral which accounts for kinetic and potential ad-
dends, while the second one, linked to the surface of the system, only contains terms
of potential origin.

Consider a continuous vector function ~m “ ~m p~r, tq in a three-dimensional space
for which the Lagrangian density per unit volume lV is a function of ~m and its
temporal 9~m and spatial derivatives2 as well as position ~r and time t. Nevertheless, it
is assumed that surface Lagrangian density is a function of ~m, ~r and t. Summarizing

lV “ lV

´

~m, 9~m, ~∇~m,~r, t
¯

uS “ uS p~m,~r, tq
(2.3)

Hamilton’s principle is equivalent to the condition that the variation of the action
for fixed t1 and t2 is zero. Then, it can be written

δI “ δ

ż t2

t1

Ldt “ δ

ż t2

t1

ˆ
ż

V

lV dV ´

ż

S

uS dS

˙

dt

“

ż t2

t1

ˆ
ż

V

δlV dV ´

ż

S

δuS dS

˙

dt “ 0

(2.4)

δ ~m p~r, t1q “ δ ~m p~r, t2q “ 0 (2.5)

where the restriction that the variation of the vector function is null for t1 and t2
has been added. Variations δlV and δuS can be written by taking into account (2.3)

δlV “
BlV
B~m

¨ δ ~m`
BlV

B pB~m{Btq
¨ δ pB~m{Btq `

BlV

B

´

~∇~m
¯ ¨ δ

´

~∇~m
¯

δuS “
BuS
B~m

¨ δ ~m

(2.6)

2Notation ~∇~m is used for the spatial derivatives being ~∇~m ” Bmi{Brj a second rank tensor.
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As long as δ operator commutes with both
d

dt
and ~∇, the following identities hold

d

dt

„

BlV
B pB~m{Btq

¨ δ ~m



“
d

dt

„

BlV
B pB~m{Btq



¨ δ ~m`
BlV

B pB~m{Btq
¨

„

d

dt
pδ ~mq



~∇ ¨

»

–

BlV

B

´

~∇~m
¯ ¨ δ ~m

fi

fl “

»

–
~∇ ¨ BlV

B

´

~∇~m
¯

fi

fl ¨ δ ~m`

¨

˝

BlV

B

´

~∇~m
¯

˛

‚¨ ~∇ pδ ~mq
(2.7)

which can be rearranged

BlV
B pB~m{Btq

¨ δ pB~m{Btq “
d

dt

„

BlV
B pB~m{Btq

¨ δ ~m



´
d

dt

„

BlV
B pB~m{Btq



¨ δ ~m

¨

˝

BlV

B

´

~∇~m
¯

˛

‚¨ δ
´

~∇~m
¯

“ ~∇ ¨

»

–

BlV

B

´

~∇~m
¯ ¨ δ ~m

fi

fl´

»

–
~∇ ¨ BlV

B

´

~∇~m
¯

fi

fl ¨ δ ~m

(2.8)

Using the divergence theorem and (2.5) another expression can be obtained for
Hamilton’s principle (2.4)

δI “

ż t2

t1

dt

ż

V

$

&

%

»

–

BlV
B~m

´
d

dt

ˆ

BlV
B pB~m{Btq

˙

´ ~∇ ¨

¨

˝

BlV

B

´

~∇~m
¯

˛

‚

fi

fl ¨ δ ~m

,

.

-

´

´

ż t2

t1

dt

ż

S

$

&

%

»

–

BuS
B~m

´
BlV

B

´

~∇~m
¯ ¨ ~n

fi

fl ¨ δ ~m

,

.

-

(2.9)

At this point, it should be pointed out that our system is attained to the constraint
that the modulus of the magnetization is constant. The above considered vector
field ~m p~r, tq plays in our theory the role of the normalized magnetization, so it must
verify |~m| “ 1. This constraint can be included by applying the Lagrange multiplier
method [3, 88]. However, it can also be included by using the fact that the most
general variation compatible with the constraint [65] is

δ ~m “ ~mˆ δ~θ (2.10)

where δ~θ is a vector which describes a small rotation around an arbitrary axis.

Substituting (2.10) in (2.9) and applying de vector identity ~a ¨
´

~bˆ ~c
¯

“

´

~aˆ~b
¯

¨~c

δI “

ż t2

t1

dt

ż

V

$

&

%

»

–

BlV
B~m

´
d

dt

ˆ

BlV
B pB~m{Btq

˙

´ ~∇ ¨

¨

˝

BlV

B

´

~∇~m
¯

˛

‚

fi

flˆ ~m

,

.

-

¨ δ~θ´

´

ż t2

t1

dt

ż

S

$

&

%

»

–

BuS
B~m

´
BlV

B

´

~∇~m
¯ ¨ ~n

fi

flˆ ~m

,

.

-

¨ δ~θ

(2.11)
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Since the variation of the action must be zero for any arbitrary δ~θ the term inside
the braces in each integral must be identically null. This condition leads to the
Euler-Lagrange equations of the system

»

–

BlV
B~m

´
d

dt

ˆ

BlV
B pB~m{Btq

˙

´ ~∇ ¨

¨

˝

BlV

B

´

~∇~m
¯

˛

‚

fi

flˆ ~m “ 0 @~r P V

´

»

–

BuS
B~m

´
BlV

B

´

~∇~m
¯ ¨ ~n

fi

flˆ ~m “ 0 @~r P S

(2.12)

The functional derivative is defined as

δ

δ ~m
”

B

B~m
´ ~∇ ¨ B

B

´

~∇~m
¯ (2.13)

which let us simplify the Euler-Lagrange equation

~mˆ

„

δlV
δ ~m

´
d

dt

ˆ

BlV
B pB~m{Btq

˙

“ 0 @~r P V (2.14a)

~mˆ

»

–´
BuS
B~m

`
BlV

B

´

~∇~m
¯ ¨ ~n

fi

fl “ 0 @~r P S (2.14b)

At static equilibrium, there is no kinetic energy contribution, so the Lagrangian
volume density is simplified to the potential term lV “ ´uV . Moreover, no temporal
evolution occurs for any quantity. Thus, the second term inside square brackets
in (2.14a) vanishes. Equations (2.14) are reduced to

~mˆ

ˆ

´
δuV
δ ~m

˙

“ 0 @~r P V

~mˆ

»

–´
BuS
B~m

´
BuV

B

´

~∇~m
¯ ¨ ~n

fi

fl “ 0 @~r P S

(2.15)

Using the IS of units, a new vector quantity having dimensions of a magnetic field
can be defined from the functional derivative definition

~Heff “ ´
1

µ0Ms

δuV
δ ~m

(2.16)

where µ0 and Ms corresponds respectively to the magnetic permeability of vacuum
and the magnetization modulus or saturation magnetization. This new quantity is
called effective field and allows the simplification of the previous expression

~mˆ ~Heff “ 0 @~r P V (2.17a)
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~mˆ

»

–´
BuS
B~m

´
BuV

B

´

~∇~m
¯ ¨ ~n

fi

fl “ 0 @~r P S (2.17b)

These are Brown’s equations. When the torque ~τ “ µ0
~M ˆ ~Heff vanishes for

each point of the system static equilibrium is reached, as (2.17a) highlights. Equa-
tion (2.17b) holds only for points at the surface of the sample. However, this condition
may play an important role as in the cases studied in chapters 9 and 10. It is also
possible to define a surface “effective field” which further simplifies those equations

~Heff,S “ ´
1

µ0Ms

»

–

Bus
B~m

`
BuV

B

´

~∇~m
¯ ¨ ~n

fi

fl (2.18)

Although some expressions have been obtained, the solutions of those equations
depend on the actual free energy contributions expressions, as shown below.

2.3 LLG equation

Equilibrium states of a system provide insightful information for its understanding
and manipulation. Nevertheless, knowing the dynamical processes of that system
allows an enhancement of its manipulation. A dynamical equation which describing
the temporal evolution of the system is to be called at this point. The torqued
induced in a magnetic moment ~µ by an external field ~H is, at each point, [90]

~τ “ µ0~µˆ ~H (2.19)

and this torque equals the change of angular momentum ~J associated with the
magnetic moment ~µ at this point

d ~J

dt
“ ~τ “ µ0~µˆ ~H (2.20)

There is a relation between the electron magnetic moment ~µ and its total angular
momentum ~J “ ~L` ~S

~µ “
e

2me

g ~J (2.21)

where e ă 0 is the electron charge, me its mass, and g “ 1 ` jpj`1q`sps`1q´lpl`1q
2jpj`1q

the Landé factor. Nevertheless, most ferromagnetic materials have a small orbital
contribution to the total angular momentum, so ~J “ ~L ` ~S « ~S and g « 2 are
rather good approximations. A new constant accounting for the previously mention
constants can be defined

γ “
|e|g

2me

(2.22)

so the equation of motion reads

d~µ

dt
“ ´γµ0~µˆ ~H (2.23)
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γ being the gyromagnetic ratio. Besides, the magnetization is defined as the volume
density of magnetic dipoles ~M “

d~µ
dV

. Additionally, it is assumed that the external

field ~H must be replaced by the effective field ~Heff above to take into account not
only the external field but the field due to other possible interactions

d ~M

dt
“ ´γ0

~M ˆ ~Heff (2.24)

here γ0 “ γµ0 “ 2.21 ˆ 105 mpAsq´1. Equation (2.24) implies that temporal
evolution of the magnetization is perpendicular to both, magnetization and field.
Then, for a constant field, magnetization precesses around the field without reaching
an equilibrium state as long as no energy is lost. This is due to the fact that no
dissipative mechanisms have been taken into account. It is not the scope of this
thesis to describe the different dissipation mechanism in a FM material and so, the
dissipation term is included in a strictly phenomenological way. As long as the
constraint |~m| “ 1 holds any change in ~m must be orthogonal to ~m

B~m2

Bt
“ 2mx

Bmx

Bt
` 2my

Bmy

Bt
` 2mz

Bmz

Bt
“ 2

ˆ

~m ¨
B~m

Bt

˙

“ 0 (2.25)

The easiest way to introduce a dissipative contribution compatible with this require-
ment is adding to the effective field an expression such as:

´
α

γ0

B~m

Bt
(2.26)

where the damping term α is a dimensionless constant. Equation (2.24) reads

B ~M

Bt
“ ´γ0

~M ˆ

ˆ

~Heff ´
α

γ0

B~m

Bt

˙

“ ´γ0
~M ˆ ~Heff `

α

Ms

˜

~M ˆ
B ~M

Bt

¸

(2.27)

This is the so-called Gilbert equation. Another way to include a dissipative term is
the one due to Landau and Lifshitz [1]. In this case, the contribution to be added is

perpendicular to both, ~M and the precessing term ~M ˆ ~Heff .

B ~M

Bt
“ ´γLL ~M ˆ ~Heff ´

αLL
Ms

~M ˆ

´

~M ˆ ~Heff

¯

(2.28)

Although equations (2.27) and (2.28) describe the same physical phenomena, they
are not completely equivalents. In (2.29) precession and alignment addends are
decoupled, while in (2.27) they are not.

The Gilbert equation (2.27) implies that magnetization time derivative is perpen-
dicular to magnetization itself, ensuring the modulus conservation. Moreover, the
first addend is also perpendicular to the field, promoting only a precession around
~Heff , with angular velocity ω given by the gyromagnetic ratio γ, vacuum magnetic

permeability µ0 and effective magnetic field amplitude ~Heff . The second addend is
perpendicular to the magnetization and its time derivative. Because of that, this

19



Theoretical basis

addend has a component that makes magnetization align to the field but also a
component that slows down the precession of the gyroscope.

The first addend in the Landau-Lifshitz (2.28) equation is orthogonal to both, the

effective field Heff and the magnetization ~M , being responsible for the precessional
motion. In this case, the angular velocity ω depends on γLL instead of γ. The second
addend is orthogonal to the magnetization and the first addend. This fact avoids
the second addend to affect precessional motion, being solely responsible for the
alignment with the field. This alignment depends on the constant αLL. In the Gilbert
equation (2.27), the alignment motion depends not only on α but also on γ, due to
the contribution of its second addend. Moreover, this leads to a dependence on α
for the precession speed ω. As long as both equations describe the same physical
phenomenon, ω must be the same in both cases, and so there must be a relation
between γ0, α, γLL and, αLL.

It is possible to obtain such a relation by uncoupling the precession and alignment
terms in Gilbert equation (2.27). It can be done by multiplying both sides by ~Mˆ

and using the vector relation ~M ˆ

´

~M ˆ B ~M
Bt

¯

“ ´M2
s
B ~M
Bt

. The expression obtained

is known as the Landau-Lifshitz-Gilbert (LLG) equation

B~m

Bt
“ ´

γ0

1` α2
~mˆ ~Heff ´

γ0α

1` α2
~mˆ

´

~mˆ ~Heff

¯

(2.29)

where both side have been divided by Ms. From (2.27) and (2.28) it can be estab-
lished γLL “

γ0

1`α2 and αLL “
γ0

1`α2α. Angular velocity ω “ γLLH slows down a

factor 1
1`α2 due to energy dissipation. Additionally, the alignment is not a linear

term with α but a more complex expression.

It should be pointed out that ~M , ~Mˆ ~Heff , and ~Mˆ

´

~M ˆ ~Heff

¯

are three mutually

orthogonal vectors which constitute a basis in the three-dimensional space. However,
components along ~M are forbidden due to the constraint |~m| “ 1. It is shown
then that this equation can be obtained from purely mathematical considerations,
even though without the information about the constants. It is convenient to write
equation (2.29) using dimensionless quantities by dividing by γ0Ms.

`

1` α2
˘ B~m

Bτ
“ ´~mˆ ~heff ´ α~mˆ

´

~mˆ ~heff

¯

(2.30)

where τ “ γ0Mst and ~heff “ ~Heff{Ms

2.4 Free energy contributions

The effective field ~Heff is computed from its definition (2.13). Then, the expression
of the density energy is required. However, due to the additive character of the
energy, it is possible to compute the functional derivative of the energy due to each
interaction and then, summing up all of them obtaining the effective field ~Heff . In
the absence of STT, the deterministic motion of the magnetization is determined by
this field.
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2.4.1 Exchange

The -direct- exchange energy is the shift energy due to electrostatic energy differences
between the symmetric and antisymmetric spin parts for the wave function of a spin
ensemble. The joint function of a spin ensemble must be antisymmetric [81, 91, 92].
Thus, if the spin part is symmetric (antisymmetric), the orbital part must be
antisymmetric (symmetric). Nevertheless, the character of the orbital part leads to
electrostatic energy differences in these states, favoring one or the other character,
which determines the character of the spin part. This effect favors a parallel or
antiparallel alignment of the spins. Although it has a purely electrostatic origin, this
effect is commonly referred to as a magnetic interaction as it is the main source of
magnetic ordering. The expression added to the Hamiltonian accounting for this
effect is usually referred to as Heisenberg Hamiltonian

Hexch “ ´
ÿ

i,j

Jij pSi pSj (2.31)

Jij is the exchange integral accounting for the electrostatic energy difference between
parallel and antiparallel states. The sum is usually limited to first neighbors approx-
imation which is a good approximation for exchange integrals which decay rapidly
with distance. A ferromagnetic material is characterized by a positive exchange
integral Jij ą 0, favoring a parallel alignment, while antiferromagnetic materials are

characterized by a negative exchange integral Jij ă 0. pSk represents a spin operator.
This description is suitable for a microscopic approach but ought to be adapted for a
continuum model. Spin operators pSk are then substituted by classic vectors ~Sk “ S~sk.
It is also assumed that the exchange integral is the same for every first neighbor
Jij “ J . The equivalent continuum expression of the Heisenberg Hamiltonian reads

Uexch “ ´JS
2
ÿ

i,j,i‰j

cosφij (2.32)

where φij is the angle between ~si and ~sj . It is recalled the above mention assumption
for the continuum model that this is the most important interaction at short distances.
Then, the angle φij is rather small and a Taylor expansion is justified. Neglecting
third and higher orders terms and redefining the energy origin

Uexch « JS2
ÿ

i,j,i‰j

φ2
ij (2.33)

The unit vectors ~si associated with the magnetic dipoles ~µi are here substituted by
the unit vector along magnetization direction ~mi. In the assumed approximation,
the angle φij can be expressed as the difference between magnetization vectors of

two neighbor points φij « |~mi ´ ~mj| « |

´

~rij ¨ ~∇
¯

~m| where ~rij is the vector position

linked to i and j points. Finally, the summation becomes an integral. For a cubic
lattice [3]

Uexch “

ż

V

A
´

~∇~m
¯2

dV (2.34)
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or, for the energy density

uexch “ A
´

~∇~m
¯2

(2.35)

where
´

~∇~m
¯2

”

´

~∇mx

¯2

`

´

~∇my

¯2

`

´

~∇mz

¯2

for Cartesian coordinates. A pJ{mq

is a material parameter called exchange constant given for a cubic crystal by the
expression

A “
JS2c

a
(2.36)

where a is the length of the edge of the unit cell and where c “ 1, 2 and 4 for a simple,
body-centered, and face-centered cubic lattice, respectively. A similar expression can
be obtained for hexagonal lattices. However, (2.36) holds for most of the cases of
interest.

The effective field associated with this interaction is computed from its defini-
tion (2.16) when applied to the previous expression (2.35)

~Hexch “
2A

µ0Ms

~∇ ¨
´

~∇~m
¯

(2.37)

It is possible to quantify the above mentioned assumption that exchange is the
predominant interaction at short distances by defining the exchange distance lexch

lexch “

d

A
1
2
µ0M2

s

(2.38)

This magnitude has units of length and measures the distance for which exchange is
stronger than magnetostatic interaction, determining the length over which magneti-
zation changes. The typical length is of a few nanometers.

2.4.2 Magnetic anisotropy

The Heisenberg Hamiltonian is a function of the relative orientation of the spins, so
it conserves rotational symmetry. Nevertheless, real samples show easy and hard
magnetization axis for which such magnetization direction is energetically favorable
or unfavorable respectively. There must be an anisotropic energy contribution to
produce such an effect. The main origin of the magnetocrystalline anisotropy is the
spin-orbit coupling [35, 65]. The electron’s orbital angular momentum is affected by
the crystallographic structure, favoring some crystallographic directions. Spin-orbit
coupling promotes the alignment of the spin angular momentum with the orbital
angular momentum along such directions, determining the easy and hard magnetiza-
tion axis.

It would be possible to evaluate the anisotropy energy contribution from a microscopic
model by applying the perturbation quantum theory [93]. However, valid expressions
can be obtained from a Taylor expansion accounting for the symmetries of the system.
The constants in such expansions are parameters that ought to be determined from
experimental data [65]. The anisotropy energy contribution can only be a function
of even powers of the magnetization in the case of uniaxial magnetic anisotropy
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materials, as those considered along this thesis, since it is required to preserve
temporal invariance. One expression fulfilling this condition is

uani “ K0 ´K1 p~m ¨ ~ukq
2
´K2 p~m ¨ ~ukq

4
´K3 p~m ¨ ~ukq

6
` ¨ ¨ ¨ (2.39)

Neglecting fourth and higher orders

uani “ K0 ´K1 p~m ¨ ~ukq
2 (2.40)

where K0 and K1 pJ{m
3q are coefficients to be determined from experiments and

~uk is the unit vector along anisotropy axis. In the case that magnetic anisotropy
arises from surface effects, a similar formula can be posed, where ~uk is, in that case,
the normal vector to the surface. Positive values of K1 ” Ku corresponds to an
easy magnetization axis while negative ones imply an energetically unfavorable axis,
promoting the magnetization to lay in the plane perpendicular to ~uk. No matter the
origin of the anisotropy is, applying the functional derivative definition (2.13) to the
anisotropy energy density (2.40), the anisotropy field is given by

~Heff “
2K1

µ0Ms

p~m ¨ ~ukq ~uk (2.41)

It is possible to define a characteristic length lK as it has been done before

lK “

c

A

Ku

(2.42)

This magnitude has units of length and measures the length for which magnetic
anisotropy dominates, determining the maximum size of monodomain particles.

2.4.3 Magnetostatic terms

Macroscopic Maxwell’s equations are relations between the electromagnetic field and
its sources, for each time and point

~∇ ¨ ~D p~r, tq “ ρ p~r, tq ~∇ˆ ~E p~r, tq “ ´
B ~B p~r, tq

Bt

~∇ ¨ ~B p~r, tq “ 0 ~∇ˆ ~H p~r, tq “ ~j p~r, tq `
B ~D p~r, tq

Bt

(2.43)

ρ p~r, tq being the electric charge density, ~j p~r, tq the electric current density ~D p~r, tq,
~D p~r, tq the electric displacement field, ~B p~r, tq the magnetic induction, ~E p~r, tq the

electric field, and ~H p~r, tq the magnetic field. These equations, coupled with the
dynamic equation (2.29), are a complex system of equations and its solution is, in
general, a tough problem. Some cases would require solving the complete problem.
However, for small systems, like those studied in this text, the assumption of a
homogenous electric and magnetic field is valid. It is also supposed that the external
field is constant, or at least has a frequency rather low so is always at quasi-equilibrium
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throughout its temporal evolution [65]. Under these circumstances, it is valid to
consider only the static contributions to the field. Moreover, only the external field
contribution -Zeeman energy- and the magnetostatic field due to magnetization
distribution are to be considered.

Zeeman energy

As stated above, the size of the sample is small enough so as to suppose that the
external field is uniform and homogenous in the whole strip. It should be pointed out
that this field is an external parameter that it is known and can be controlled. The
energy density due to an external field, usually referred as Zeeman energy, is [3, 65]

uext “ ´µ0
~Hext ¨ ~M (2.44)

Demagnetizing field

In the absence of electric field ~E, electric current ~j, and external field ~Hext, Maxwell’s
equations (2.43) are reduced to

~∇ ¨ ~B “ 0

~∇ˆ ~H “ 0
(2.45)

Taking into account that ~B “ µ0

´

~M ` ~H
¯

~∇ ¨ ~H “ ´~∇ ¨ ~M
~∇ˆ ~H “ 0

(2.46)

A magnetic field ~Hdmg arises due to changes in magnetization, i.e., ~∇ ¨ ~M ‰ 0 is a
source of magnetic field. This change of the magnetization occurs even in uniformly
magnetized samples. Since magnetization must follow determined boundary condi-
tions at their edge, a non-zero divergence is promoted. Moreover, the discontinuity at
the edge implies also a non-zero divergence. Thus, a magnetostatic field exists inside
the sample and around it, known as stray field and demagnetizing field respectively.
For a uniform magnetized ellipsoid along one of its axes, the field inside the sample is
opposite to magnetization, which justifies the term demagnetizing field in that case.
A general magnetization distribution generates a more complex magnetic field which
is not, in general, uniform or collinear with the magnetization. Nonetheless, the name
“demagnetizing field” is kept because of historical reasons. These considerations along
with the latter equations allow for the definition of a magnetic charge density per
unit volume ρM , and per unit surface σM .

ρM p~rq “ ´~∇ ¨ ~M p~rq σM p~rq “ ~M p~rq ¨ ~n (2.47)

where ~n is the normal vector to the surface. These magnetic charge densities let
rewrite the expression of the demagnetizing field

~Hdmg “
1

4π

ż

V

ρM

´

~r1
¯´

~r ´ ~r1
¯

|~r ´ ~r1|3
dV 1 `

1

4π

ż

S

σM

´

~r1
¯´

~r ´ ~r1
¯

|~r ´ ~r1|3
dS 1 (2.48)
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And again, magnetostatic energy density is [65, 70]

udmg “ ´
1

2
µ0
~Hdmg ¨ ~M (2.49)

Two comments are worth to be done. Firstly, the condition ~∇ ¨ ~B “ 0 implies that the
addition of magnetic charges must be zero. Demagnetizing energy is always positive,
so this interaction promotes closed loops for the magnetization, trying to avoid
magnetic charges. Secondly, these closed loops are energetically unfavorable from the
exchange point of view. Therefore, magnetization configuration is a balance between
exchange and magnetostatic energy where anisotropy establishes the privileged
directions. In thin film approximation, this term behaves as another source of
anisotropy. Thus, the anisotropy and the demagnetizing terms can be combined in a
new effective anisotropy, Keff “ Ku ´ 1{2µ0M

2
s .

2.4.4 Dzyaloshinskii-Moriya interaction

Dzyaloshinskii-Moriya interaction (DMI) is a chiral energy term due to the lack of
inversion symmetry along with the spin-orbit coupling [38–40, 42, 44, 48, 72, 77].
The systems studied along this thesis show a lack of inversion symmetry due to the
presence of two non-equivalents interfaces, one between a layer with strong spin-orbit
coupling and the ferromagnetic layer, and the other between the ferromagnetic layer
and a different layer. The lattice symmetry is connected with the spin symmetry
due to the spin-orbit coupling giving rise to the antisymmetric counterpart of the
exchange interaction [40, 42]

UDMI “
ÿ

i,j

~dij ¨
´

~Si ˆ ~Sj

¯

(2.50)

~dij being the DMI vector for the ith and jth atom, and ~Si the atomic angular

momentum vector. The expression for ~dij depends on the system considered. For

ultrathin isotropic films ~dij “ d~uij ˆ ~un where ~uij is the unit vector linking i and
j sites, and ~un is a unit vector perpendicular to the interface between the strong
spin-orbit coupling layer and the ferromagnetic layer, oriented from the former to the
latter. The continuum expression of the DMI assumes that the ferromagnetic layer
thickness is small enough to consider a constant Dzyaloshinskii-Moriya parameter d
along the surface normal. Then, it is read [42] 3

uDMI “ D
”

p~m ¨ ~unq ~∇ ¨ ~m´ ~m ¨ ~∇ p~m ¨ ~unq
ı

(2.51)

D pJ{m2q is a material parameter whose relation with d depends on the type of the
lattice. The expression of the DMI field is derived from the variation of the DMI
energy

δuDMI “ D
”

pδ ~m ¨ ~unq ~∇ ¨ ~m´ δ ~m ¨ ~∇ p~m ¨ ~unq`

`~m ¨ ~un~∇ ¨ pδ ~mq ´ ~m ¨ ~∇ pδ ~m ¨ ~unq
ı (2.52)

3It should be pointed out that there is a sign difference. This sign is absorbed by D constant.
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FigureDMI.pdf

Figure 2.1: Sketch of the Dzyaloshinskii-Moriya interaction at the interface between a
ferromagnetic metal (blue) and a heavy metal (grey). The DMI vector ~dij related to the
ith and jth atoms is perpendicular to the plane formed by the ith and jth ferromagnetic
atoms and a heavy metal atom with strong spin-orbit coupling.

After doing some algebra it can be rewritten

δuDMI “ D
”

pδ ~m ¨ ~unq ~∇ ¨ ~m´ δ ~m ¨ ~∇ p~m ¨ ~unq ´ δ ~m ¨ ~∇ p~m ¨ ~unq`

` pδ ~m ¨ ~unq ~∇ ¨ ~m` ~∇ ¨
“

pp~m ¨ ~unq δ ~mq ´ p~m pδ ~m ¨ ~unqq
‰

ı (2.53)

The first four terms are the ones appearing in the volume integral of (2.9), while the
last one goes to the surface integral due to the divergence theorem. The field caused
by the DMI is the one linked to the volume integral

~HDMI “
2D

µ0Ms

”

~∇ p~m ¨ ~unq ´
´

~∇ ¨ ~m
¯

~un

ı

(2.54)

while the surface integral gives a surface “effective field”

~HDMI,S “
D

µ0Ms

r~mˆ p~nˆ ~unqs (2.55)

where the vector identity ~a ˆ
´

~bˆ ~c
¯

“ ~b p~a ¨ ~cq ´ ~c
´

~a ¨~b
¯

has been used. As it

has been already mentioned, this term ought to be added at the surface boundary
conditions. As long as no specific surface density energy has been considered, only
the volume density energy which depends on ~∇~m appears in the boundary condition
equation. These terms are the exchange and the DMI

~mˆ
1

µ0Ms

”

2A
´

~∇~m
¯

¨ ~n`D~mˆ p~nˆ ~unq
ı

“ 0 (2.56)
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Note that
´

~∇~m
¯

¨ ~n “ B~m{Bn which is the notation commonly used in the bibliogra-

phy [88, 94]. This equation must be fulfilled at any time, not only at equilibrium.

2.5 Additional terms in the LLG equation

Hitherto, different terms taking into account the different interactions that may be
present in our sample have been added to the energy density expression. These
terms modify the effective field that ought to be considered but keeping the LLG
equation unchanged. However, an electric current is proven to have a role beyond
the Joule heating and the Ampère field. Additional torques must be added to the
LLG equation to describe these effects, such as the STT [16, 62, 63, 95–104] and the
SOT [9, 10, 14, 16, 19, 44, 49–56, 105–110], like the SHE and the Rashba effect.

Moreover, the theory previously introduced considers a deterministic evolution of
the samples, i.e., it is assumed that they are at zero temperature. To properly
describe the analyzed devices, it is mandatory to evaluate the effect of thermal
agitation. One of the most important consequences of a finite temperature is the loss
of magnetic stability or superparamagnetic effect [111, 112]. Thermal agitation can
be described by means of an additional stochastic field Hth which must be added
to the deterministic effective field [70, 111, 113–119]. This section is devoted to the
description of how the LLG equation (2.29) is modified by these terms.

2.5.1 Spin-transfer torques

There are several mechanisms for which an electric current may produce a torque on
the magnetization. The charge carriers, the electrons, also carry angular momentum.
In most cases, the up and down states of the electrons are degenerated and the
probability for an electron to be in an up state is the same than that of the down
state. In such a case, an electric current is said to be spin unpolarized, as long as
there are as many up electrons as down electrons. Nevertheless, there are various
mechanisms for breaking the degeneracy. When an electric current flows along a
ferromagnetic domain, it becomes spin polarized. In that case, there is a spin current
in addition to the electric current. When the electric current goes into another
domain, electrons become aligned along the new magnetization direction. Because
angular momentum ought to be conserved, there must be a spin (angular momentum)
transfer between conduction electrons and magnetic lattice. This mechanism is the
origin of the STT.

A continuity equation can be cast to describe angular momentum conservation when
a spin current flows along the x-direction [103]

~τST “ ´
B ~Js
Bx

(2.57)

i.e., in the absence of spin relaxation mechanisms, the change on the spin current is
compensated by a torque exerted over the magnetization. It is worth to point out
that ~Js direction is along the spin direction, not the current. For a straight strip,
the electric current density is assumed to be homogenous in its cross section. DW
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width is supposed to be sufficiently wide to ensure electrons are realigned when they
emerged from the DW so the spin polarization is aligned along local magnetization
direction (adiabatic limit). This assumption implies that ~Js “ ´Js ~m. Besides, it
is well known that each electron spin equals s “ ~

2
being ~ the reduced Planck’s

constant. Then, spin and electric current are linked by the formula Js “
~P
2e
J where

J is the electric current, P is the spin polarization, and e ă 0 is the electron charge.
Finally, it is possible to transform the torque into the magnetization time derivative
by multiplying both sides by ´ γ

Ms
“ ´

gµB
~Ms

, where g is the Landé factor, and µB is
the Bohr’s magneton. Then, the continuity equation (2.57) for a current flowing
along ~u direction is read

B~m

Bt
“ ´

gµBPJ

2eMs

´

~u ¨ ~∇
¯

~m “ ´bj

´

~u ¨ ~∇
¯

~m (2.58)

bj has units of velocity, and it is the maximum speed a DW can reach in the adiabatic
limit [103]. However, experimental results are not fully reproduced by this expression,
and it is needed to consider nonadiabatic contributions. Those contributions can be
expressed as [100, 101, 103]

B~m

Bt
“ bjβ ~mˆ

“

´

~u ¨ ~∇
¯

~m
‰

(2.59)

The new addend ~τST , which takes into account these contributions, is included in
the Gilbert equation (2.27)

~τST “ ´bj

´

~u ¨ ~∇
¯

~m` bjβ ~mˆ
“

´

~u ¨ ~∇
¯

~m
‰

(2.60)

2.5.2 Spin-orbit torque

Additional torques due to the presence of an electric current may appear in systems
with SOC and lack of inversion symmetry. These additional torques must be included
in the Gilbert equation (2.27). The Rashba effect is an example of such kind of torques.
It is present in multilayered systems due to the asymmetric electric -crystalline-
potential caused by the lack of inversion symmetry of the heterostructure [108–110].
In the electron frame of reference, the electric field becomes partially a magnetic field
which depends on the direction of the electric current. A Hamiltonian accounting for
such an effect is written

HR “ αR p~pˆ ~nq~σ (2.61)

where αR is the Rashba parameter, ~p the linear momentum operator of the electron, ~n
the normal vector of the layer and ~σ “ ppσx, pσy, pσzq a vector of the Pauli matrices. This

Hamiltonian leads to a field-like torque ~τ “ µ0
~M ˆ ~HR with ~HR “

αRP
µ0µBMs

´

~nˆ ~J
¯

~τR “ ´γ0
~M ˆ

´ αRP

µ0µBMs

´

~nˆ ~J
¯¯

(2.62)

This torque behaves like an additional field which is oriented along the transversal
strip direction for applied currents along the longitudinal direction.
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FigureSHE.pdf

Figure 2.2: Sketch of the spin Hall effect. Spin-orbit interaction promotes an asymmetric
scattering as a function of the electron spin. As a consequence, opposite spins are deflected
in opposite directions leading to a spin-current ~Js perpendicular to the charge current ~J
and the spin direction ~θSH .

However, the most appealing source of torque induced by an electric current is the
SHE, since this torque is higher for equal electric current density. In that case, the
electric current flows along a HM with strong SOC4 over which the FM layer is grown
as it is sketched in figure 2.2. The strong SOC of the HM promotes an asymmetric
scattering as a function of the electron spin. This causes a perpendicular spin current
to appear along the perpendicular direction of the layer

~Js “
~
2e

´

~J ˆ ~θSH

¯

(2.63)

where ~θSH is a vector oriented along the spin direction of the induce spin current, its
modulus accounting for the strength of the SHE [14, 19, 56]. The magnetic moment
going across the surface dS per unit of time normalized to Ms can be obtained by
multiplying by gµB

~Ms
dS. The magnetization, being the volume density of magnetic

moment, going across the interface between the HM and the FM layer is written

B~m

Bt
“

gµBJ

2etMs

~θSH (2.64)

It can be noticed that this expression does not preserve the magnetization modulus.
It is needed to subtract its component along the magnetization direction, i.e.,
´

~θSH ¨ ~m
¯

~m

B~m

Bt
“

gµBJ

2etMs

´

~θSH ´
´

~θSH ¨ ~m
¯

~m
¯

“ ´
gµBJ

2etMs

~mˆ
´

~mˆ ~θSH

¯

(2.65)

where the vector identity ~aˆ
´

~bˆ ~c
¯

“ p~a ¨ ~cq~b´
´

~a ¨~b
¯

~c and the constraint ~m¨ ~m “ 1

have been applied.

4The HM conductivity is usually higher than that of the FM layer allowing higher electric
current densities.
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2.5.3 Thermal field

A ferromagnetic material has a really intricate free energy landscape, plenty of local
minima. At zero temperature, and in the absence of external stimuli such as an
applied field or current, the magnetization will keep its configuration indefinitely.
Although such behavior would be really interesting for the development of magnetic
recording devices, a real sample interacts with a thermal bath from which it can get
enough energy to pass over the energy barrier and evolve to another local minimum.
The probability per unit time of a jump over the energy barrier is given by the ratio
between the height of the barrier and the energy available from the thermal bath kBT .
Moreover, since the free energy depends on the size of the sample, smaller samples are
less stable than bigger ones for the same temperature. At a given temperature, the
samples are no longer stable, and the ensemble behaves as a paramagnetic material.
This effect is known as “superparamagnetic effect” [111, 112]. The bit size determines
the stability of the saved information for magnetic recording devices.

Smaller bit size allows higher bit densities in magnetic recording devices, but this size
must be sufficiently large to ensure the stability of the information for a given time.
The knowledge about equilibrium states draw no information about the time required
for travelling along these states, but the above presented LLG equation (2.29) is a
deterministic theory which is neither able to describe a thermal process as the one
described. The use of the theory of stochastic processes [70, 111, 113–119] becomes
mandatory to describe samples at a finite temperature. The LLG equation (2.29)

transforms into a Langevin equation by adding a fluctuating field ~Hth

B~m

Bt
“ ´

γ0

1` α2
~mˆ

´

~Heff ` ~Hth

¯

´
αγ0

1` α2
~mˆ

´

~mˆ ~Heff

¯

(2.66)

verifying Gaussian distribution conditions

xHth,i p~r, tqy “ 0
A

Hth,i p~r, tqHth,j

´

~r1, t1
¯E

“ 2DµMδijδ
´

~r ´ ~r1
¯

δ pt´ t1q
(2.67)

x¨ ¨ ¨ y defines the average over different stochastic realizations. DµM is a constant
accounting for the strength of the thermal field whose value is given by imposing
certain conditions to the equilibrium distribution. Gaussian distribution conditions
arise because this field has its origin in the interaction of ~m with a large number
of microscopic degrees of freedom, such as phonons, magnons, etc. (Central limit
theorem). These interactions are also responsible for the relaxation mechanisms of
the system given in a phenomenological way by α (Fluctuation-Dissipation theorem).
δij means that the three components of the field are uncorrelated. In the same

way, δ
´

~r ´ ~r1
¯

and δ pt´ t1q mean that the field in two different points and at two

different times are also uncorrelated. The condition that the correlation time is zero
for any arbitrarily small time is known as white noise condition. The stochastic field
appears only in the precession term of equation (2.66). It is possible to develop the
theory adding the thermal field also to the alignment term

B~m

Bt
“ ´

γ0

1` α2
~mˆ

´

~Heff ` ~Hth

¯

´
αγ0

1` α2
~mˆ

”

~mˆ
´

~Heff ` ~Hth

¯ı

(2.68)
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Although the stochastic trajectories depicted by (2.66) and (2.68) are in general
different, the average dynamic properties are the same when the equilibrium condition
properties are imposed [113]. The difference between both approaches lays on the
relation between DµM and the dynamic parameters γ0 and α in each case.

The general Langevin equation reads

dyi
dt
“ Ai p~y, tq `

ÿ

k

Bik p~y, tqLk (2.69)

where ~y “ py1 ¨ ¨ ¨ ynq are the variables of the system, k a given set of indices and Lk
a stochastic variable verifying the gaussian conditions (2.67). The noise is said to be
multiplicative when Bik p~y, tq depends on ~y and additive if not. According to this
definition, equation (2.66) has multiplicative noise. Equation (2.69) can be rewritten
as an integral equation

yi pt` dtq “ yi ptq `

ż t`dt

t

Ai p~y, tq dt`

ż t`dt

t

ÿ

k

Bik p~y, tqLk dt (2.70)

Nonetheless, the above equation is not defined. Although the first integral is a
common Riemann integral, the second one is the integral of a random number which
it is out of the scope of the Riemann integral definition. In order to handle wiht
such an expression, the Wiener process is introduced as dWk ptq “ Lk ptq dt. This
process must verify the following conditions

xdWk ptqy “ 0
xdWk ptq dWl pt

1qy “ 2DµMδkldt
(2.71)

It is possible to write (2.70) in terms of a Wiener process as

yi pt` dtq “ yi ptq `

ż t`dt

t

Ai p~y, tq dt`

ż t`dt

t

ÿ

k

Bik p~y, tq dWk (2.72)

The second integral can be defined in different ways. The two most common ones
are the Itô (2.73a) and the Stratonovich (2.73b) interpretations.

ż t`dt

t

X ptq dWk ”
Ito

lim
nÑ8

n´1
ÿ

r“0

X ptrq rWk ptr ` 1q ´Wk ptrqs (2.73a)

ż t`dt

t

X ptq dWk ”
Strat

lim
nÑ8

n´1
ÿ

r“0

X ptr ` 1q ´X ptrq

2
rWk ptr ` 1q ´Wk ptrqs (2.73b)

Although the two interpretations are equivalent for systems with additive noise [113],
they provide different solutions for multiplicative ones. However, it is possible to link
both solutions using the stochastic theory. Physicists usually adopt the Stratonovich
interpretation since it is the limit when the autocorrelation time approaches zero
from a non-zero correlation time noise.
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The Fokker-Planck equation gives the time evolution of the probability distribution
of the variables of a stochastic process like (2.69). In the case of multiplicative noise,
the Fokker-Planck equation reads [113, 116]

BP

Bt
“´

ÿ

i

B

Byi

#«

Ai p~y, tq `D
ÿ

jk

Bjk p~y, tq
BBik p~y, tq

Byj

ff

P

+

`D
ÿ

ij

B2

ByiByj

#«

ÿ

k

Bik p~y, tqBjk p~y, tq

ff

P

+ (2.74)

By inspection of equations (2.66) and (2.69) it is possible to identify

Ai p~m, tq “ ´
γ0

1` α2

˜

ÿ

jk

εijkmjHeff,k ` α
ÿ

k

pmimk ´ δijqHeff,k

¸

Bik p~m, tq “ ´
γ0

1` α2

ÿ

j

εijkmj

(2.75)

To solve equation (2.74) the derivative of Bik is needed

BBik

Bmj

“ ´
γ0

1` α2

ÿ

j

εijk (2.76)

Multiplying by Bjk it can be wirtten

ÿ

jk

Bjk
BBik

Byj
“
ÿ

l

ˆ

γ0

1` α2

˙2
˜

ÿ

jk

εijkεilk

¸

ml

“
ÿ

l

´2δilml “ ´

ˆ

γ0

1` α2

˙2

2mi

(2.77)

The term of the second line of (2.74) can be computed as

ÿ

k

BikBjk “

ˆ

γ0

1` α2

˙2
ÿ

k

˜

ÿ

r

εirkmr

¸˜

ÿ

s

εiskms

¸

“

ˆ

γ0

1` α2

˙2
ÿ

r,s

mrms

ÿ

k

εirkεisk “

ˆ

γ0

1` α2

˙2

pδij ´mimjq

(2.78)

Using (2.77) and (2.78) equation (2.74) reads

BP

Bt
“

γ0

1` α2

ÿ

i

B

Bmi

#«

ÿ

jk

εijkmjHeff,k ` α
ÿ

k

pmimk ´ δijqHeff,k `
2γ0DµM

1` α2
mi

ff

P

+

`DµM

ˆ

γ0

1` α2

˙2
ÿ

ij

B2

BmiBmj

rpδij ´mimjqP s

(2.79)
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The mj derivative of the last term equals

ÿ

j

B

Bmj

pδij ´mimjq “
ÿ

j

p2mjδij ´ δijmj ´miδjjq “ ´2mi (2.80)

Equation (2.74) becomes

BP

Bt
“

γ0

1` α2

ÿ

i

B

Bmi

#«

ÿ

jk

εijkmjHeff,k ` α
ÿ

k

pmimk ´ δijqHeff,k `
2γ0DµM

1` α2
mi

ff

P

+

`DµM

ˆ

γ0

1` α2

˙2
ÿ

i

B

Bmi

#

´2miP `
ÿ

j

rpδij ´mimjqs
B

Bmj

P

+

(2.81)
Finally, simplifying and recovering vectorial notation

BP

Bt
“

γ0

1` α2

B

B~m

"„

~mˆ ~Heff ` ~mˆ

ˆ

~mˆ

ˆ

α ~Heff ´
γ0DµM

1` α2

B

B~m

˙˙

P

*

(2.82)

Magnetization must have at equilibrium the Maxwell-Boltzman distribution [67, 113],
i.e., P09exp p´H{kBT q and must also be stationary BP0{Bt “ 0. From the first

condition it follows that BP0{B~m9 ´ µ0MsV ~Heff{ pkBT qP0, and so the rotational
vanishes ~mˆ BP0{B~m “ 0. The second condition implies

BP0

Bt
“

γ0

1` α2

ˆ

α `
γ0DµMµ0MsV

p1` α2q kBT

˙

B

B~m

”

~mˆ
´

~mˆ ~Heff

¯

P0

ı

“ 0 (2.83)

from which the value of DµM is

DµM “ ´
α p1` α2q kBT

γ0µ0MsV
(2.84)

Given that d ~W “ ~Hthdt, the above relation (2.84) and the Wiener process condi-
tions (2.71) determine that

~Hth “ ~η

d

2α p1` α2q kBT

γ0µ0MsV dt
(2.85)

~η being a vector whose cartesian components are random numbers following a
gaussian distribution

xηk ptqy “ 0
xηk ptq ηl pt

1qy “ δkiδ p~r ´ ~r
1q δ pt´ t1q

(2.86)

The volume V appearing in the above expressions stands for the total volume of
the sample in the uniform magnetization model, since this model assumes that
magnetization is uniform along the whole sample. For the µMag model, this volume
represents the volume of the computational cell, while in the 1DM it accounts for the
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total volume of the wall (see Chapters 3 and 4). The additional Kronecker δ p~r ´ ~r1q
guarantees that the thermal field in the µMag model is uncorrelated between two
different computational cells.
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Chapter 3

Numerical approach

The main necessary ideas to implement a numerical solver for the Landau-Lifshitz-
Gilbert and the stochastic Landau-Lifshitz-Gilbert equations are given. The dis-
cretized counterparts of the energy and torque contribution presented in chapter 2 are
presented along with some comments about the size of the computational cell. The
main algorithms for the numerical integration of ordinary differential equation are
sketched. The stochastic counterpart for those algorithms is commented. Although
the writer does not implement any numerical solver, using already developed ones
(GpMagnet and MuMax3), this chapter should serve as a summary of the methods
to implement a solver.
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3.1 Introduction

The LLG equation (2.29) describes the dynamic of a magnetic dipole. In the case of an
extended sample, each point acts as a magnetic dipole under an effective field including
the effect of the remaining dipoles. However, the µMag LLG equation (2.29) is not
only a non-linear but also a non-local ordinary differential equation (ODE). Hence,
analytical solutions are restricted to cases that are too simple. Nonetheless, numerical
solvers can provide a solution in most cases. Therefore, numerical micromagnetism
has become an extended tool since it is in many cases the only way to test theory
against experiments.

3.2 Discretized equation. Discretized energy con-

tributions

Most solvers are based on a finite difference approach [69, 120–122]. Hence, the first
issue is to discretize the sample with a finite set of same shape1 cells, each of them
representing a different spatial position. Magnetization is sampled at those positions
and, therefore, cell size ought to be small enough to assure a uniform magnetization
in each cell. Thus, it must be smaller than any of the characteristic lengths defined
in chapter 2.

Summarizing, the system is represented by a set of Nx ˆNy ˆNz identical computa-
tional cells where Ni must be an integer number Ni “ Li{∆i, i.e., the size of the cell
∆xˆ∆y ˆ∆z ought to be a sub-multiple of the sample size Lx ˆ Ly ˆ Lz, and also
must be smaller than any characteristic length. Magnetization is sampled in each
computational cell. Therefore, its derivative can be computed as

dmi

dxj
p~x0q «

mi pxj,0 `∆xjq ´mi pxj,0q

∆xj
(3.1)

Higher order derivatives can be straightforwardly computed from the above expres-
sion.

The main problem of the finite difference methods is that is not so accurate when deal-
ing with curved surfaces and some staircase artifacts may appear. Nevertheless, these
methods present an easy implementation and, in the case of micromagnetics, allow for
an efficient evaluation of the demagnetizing field, which is the most computationally
demanding calculus. Section 3.3 is focused on the integration of equation (2.29).
However, the effective field has to be previously evaluated. Here it is presented
the discrete expressions of the energy densities and the discrete and adimensional2

expressions of the fields for the different contributions above considered.

1Finite element approach is another possible approach. In that case, the system is discretized
with elements of different shapes.

2In order to obtain the adimensional fields, those are normalized to saturation magnetization
~heff “ ~Heff {Ms. Energy densities are normalized to the value µ0M

2
s .
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3.2.1 Exchange

The discrete expression of the exchange energy density (2.35) requires the discretiza-
tion of the following expression

´

~∇~m
¯2

”

´

~∇mx

¯2

`

´

~∇my

¯2

`

´

~∇mz

¯2

(3.2)

Therefore, the spatial derivatives are substituted by the finite increment of the
function at the considered points. For each c Cartesian component it can be written

´

~∇mc

¯2

«

ˆ

∆xmc

∆x

˙2

`

ˆ

∆ymc

∆y

˙2

`

ˆ

∆zmc

∆z

˙2

(3.3)

where ∆c is the cell size, and therefore the spatial increment for a given spatial
direction. ∆cmc1 is the increment of the magnetization c1 component along c direction.
Considering only one first neighbour

ˆ

∆xmx

∆x

˙2

“
m2
x pi` 1, j, kq `m2

x pi, j, kq ´ 2mx pi` 1, j, kqmx pi, j, kq

p∆xq2
(3.4)

Taking into account every direction, component and neighbour, and recalling the
constraint ~m2 “ 1 and assuming cubic cells ∆x “ ∆y “ ∆z, the discrete exchange
energy density at point pi, j, kq is read as

uexch pi, j, kq “
2A

p∆xq2

NN
ÿ

i1,j1,k1

r1´ ~m pi, j, kq ¨ ~m pi1, j1, k1qs “

“ NN
2A

p∆xq2
´

2A

p∆xq2
~m pi, j, kq ¨

NN
ÿ

i1,j1,k1

~m pi1, j1, k1q

(3.5)

where only nearest neighbours (NN) are considered for the summation.

On the discrete representation of the functional derivative (2.13), the gradient only
has second-order terms which can be neglected for smooth magnetization changes as
those here considered. Therefore, the functional derivative δ{δ ~m becomes a partial
derivative B{B~m [67]. Taking this fact into account, it is possible to derive from (3.5)
the discrete and adimensional counterpart of exchange effective field

~hexch pi, j, kq “
2A

µ0M2
s

„

~m pi` 1, j, kq ` ~m pi´ 1, j, kq

p∆xq2
`

`
~m pi, j ` 1, kq ` ~m pi, j ´ 1, kq

p∆yq2
`

`
~m pi, j, k ` 1q ` ~m pi, j, k ´ 1q

p∆zq2



(3.6)
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3.2.2 Magnetic anisotropy

Anisotropy energy arises from a local interaction [67] and does not depend on
magnetization derivatives, so the anisotropy energy density (2.40) has a trivial
discrete expression

uanis pi, j, kq “ K
“

1´ p~m pi, j, kq ¨ ~uKq
2
‰

(3.7)

~uK being a unit vector along the uniaxial anisotropy direction. Therefore, the
adimensional effective field due to magnetic anisotropy reads

~hanis pi, j, kq “
2K

µ0M2
s

p~m pi, j, kq ¨ ~uK pi, j, kqq ~uK pi, j, kq (3.8)

3.2.3 Magnetostatic terms

Zeeman energy has also a local character [67], so its discrete expression is obtained
in a trivial way

uext pi, j, kq “ ´µ0M
2
s ~m pi, j, kq ¨

~hext pi, j, kq (3.9)

where the field ~hext pi, j, kq is normalized to the saturation magnetization value Ms.

Nonetheless, the magnetostatic interaction responsible for the demagnetizing field
is non-local, and it depends on the magnetization of the whole sample. Some
assumptions about magnetization of the points not included on the mesh ought
to be done. Both GPMagnet [121] and MuMax3 [122] assume that magnetization
is constant along the whole computational cell. Then, the c component of the
demagnetizing field hcdmg can be computed as

hcdmg pi, j, kq “

px,y,zq
ÿ

c1

Nt
ÿ

pi1,j1,k1q

Ncc1 pi´ i
1, j ´ j1, k ´ k1qmc1 pi

1, j1, k1q (3.10)

Nt being the total number of computational cells Nt “ Nx ˆNy ˆNz and Ncc1 the
magnetostatic tensor components. These components depend only on the distance
between the source and the considered point and the geometry, and thus they can
be computed at the beginning of the simulation and used at each time step. The
convolution of the magnetostatic tensor with the magnetization can be recognized in
the previous equation (3.10) for each component. As long as this field in each point
depends on the magnetization in each of the other points, its evaluation requires
O pN2

t q operations, being the most demanding calculation of a µMag simulation.
However, it can be speeded up by using the Fast Fourier Transform [120] method and
exploiting the fact that a convolution in real space becomes a product in reciprocal
space. The demagnetizing field can then be computed as

hcdmg pi, j, kq “ F´1
”

px,y,zq
ÿ

c1

F rNcc1 pi, j, kqsF rmc1 pi, j, kqs
ı

(3.11)
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where F and F´1 are the Fourier transform and the inverse Fourier transform
respectively. The number of operations required to compute the demagnetizing
field asymptotically tends to NtlogNt when computed as (3.11), which means a
substantial gain when larges Nt are under consideration. Nevertheless, a finite
sample inside an infinite space is usually considered, so errors due to the lack of
periodicity may arise. Adding external computational cells with null magnetization
along every direction in space so as to at least double the number of cells needed to
represent the sample (zero-padding [69] method) is a way to avoid such kind of errors.

Demagnetizing energy density (2.49) reads in its discrete version

udmg “ ´
1

2
µ0M

2
s

px,y,zq
ÿ

c

hcdmg pi, j, kqmc pi, j, kq (3.12)

the 1{2 comes from the fact that magnetization is the source of the demagnetizing

field ~hdmg.

3.2.4 Dzyaloshinskii-Moriya interaction

The discrete version of the iDMI requires the discrete form for ~m~∇ p~m~unq, where ~un
is the normal vector to the interface. From now, it is considered that ~un “ ~uz

p~m ¨ ~unq ~∇ ¨ ~m « mz
∆xmx

∆x
`mz

∆ymy

∆y
`mz

∆zmz

∆z
(3.13)

It is also needed to discretize the following expression

~m ¨ ~∇ p~m ¨ ~unq « mx
∆xmz

∆x
`my

∆ymz

∆y
`mz

∆zmz

∆z
(3.14)

Using (2.51), (3.13) and (3.14) the discrete counterpart of the DMI energy density
can be written as

uDMI “ D

„

mz
∆xmx

∆x
`mz

∆ymy

∆y
´mx

∆xmz

∆x
´my

∆ymz

∆y



(3.15)

The field is derived by taking into account that, in this case, the functional derivative
δ{δ ~m includes first-order terms, which cannot be disregarded. Then, the following
expression is obtained

~hDMI “
2D

µ0M2
s

”∆xmz

∆x
~ux `

∆ymz

∆y
~uy `

∆zmz

∆z
~uz´

´ ~un

ˆ

∆xmx

∆x
`

∆ymy

∆y
`

∆zmz

∆z

˙

ı

(3.16)

It may be notice that we do not assumed that ~un “ ~uz for the field, so this expression
is more general.

39



Numerical approach

3.3 Algorithms for numerical integration

Once a proper way to compute the effective field is known, it is possible to numerically
solve the -adimensional- LLG equation (2.30). From an initial magnetic configuration,
there are several algorithms to evaluate the magnetization after each time step ∆τ .
However, the initial magnetic configuration is not, in general, an equilibrium one.
Thus, it is usually convenient to minimize the energy before starting a simulation.
There are various methods which minimize the magnetization, like the conjugate
gradient methods [120] or simply let the system evolve in the absence of external
stimuli.

3.3.1 Euler Algorithm.

The easiest algorithm to be implemented is the Euler algorithm. It requires only
one evaluation of the effective field for each time step and has an error of the order
of ∆τ 2. Once the magnetization ~m and the effective field ~heff are known in every
computational cell @ pi, j, kq, magnetization after a time step ∆τ is evaluated as

~m pτ `∆τq “ ~m pτq ´
∆τ

p1` α2q

“

~m pτq ˆ ~heff pτq`

` α~m pτq ˆ
´

~m pτq ˆ ~heff pτq
¯

‰

(3.17)

Nevertheless, it presents some issues. The magnetization modulus is not preserved, so
it must be renormalized after each time step. Besides, small time steps are required
to be stable, making the simulation longer. More complex algorithms can be used,
allowing longer and adaptative time steps, which makes the solver faster at smooth
regions without losing accuracy at changeable ones.

3.3.2 Heun Algorithm.

This algorithm requires calculating previously the value

~̃m pτ `∆τq “ ~m pτq ´
∆τ

p1` α2q

“

~m pτq ˆ ~heff pτq`

` α~m pτq ˆ
´

~m pτq ˆ ~heff pτq
¯

‰

(3.18)

and evaluating the effective field ~̃heff for the magnetization ~̃m. The magnetization
after each time step can be computed as

~m pτ `∆τq “ ~m pτq ´
∆τ

2 p1` α2q

”

~m pτq ˆ ~heff pτq`

` α~m pτq ˆ
´

~m pτq ˆ ~heff pτq
¯

`

` ~̃m pτ `∆τq ˆ ~̃heff pτ `∆τq`

` α~̃m pτ `∆τq ˆ
´

~̃m pτ `∆τq ˆ ~̃heff pτ `∆τq
¯ ı

(3.19)
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This method adopts longer time steps than Runge-Kutta methods, is less accurate
(its error is of the order of ∆τ 3), and does not conserve the magnetization modulus
either, so it has to be renormalized after each time step. However, when dealing
with stochastic processes, it has the advantage to lead to the Stratonovich solution,
which is the interesting one for physics.

3.3.3 Runge-Kutta Methods.

Runge-Kutta methods are widely used in µMag solvers. They evaluate the derivative
at different points along the whole step size pτ, τ `∆τq by means of an Euler-type
algorithm seeking the minimization of truncation error. The second order Runge-
Kutta method [120] has four steps: 1q the derivative is computed from the initial
information, 2q the derivative is used to evaluate the function at an intermediate
point, renormalizing the magnetization and calculating the effective field, 3q compute
the derivative at the new point, and 4q use the new derivative to evaluate the function
at the end of the interval. This means

~m pτ `∆τ{2q “ ~m pτq ´
∆τ

2 p1` α2q

“

~m pτq ˆ ~heff pτq`

`α~m pτq ˆ
´

~m pτq ˆ ~heff pτq
¯

‰

~m pτ `∆τq “ ~m pτq ´
∆τ

p1` α2q

“

~m pτ `∆τ{2q ˆ ~heff pτ `∆τ{2q`

`α~m pτ `∆τ{2q ˆ
´

~m pτ `∆τ{2q ˆ ~heff pτ `∆τ{2q
¯

‰

(3.20)

This second order method has an error of the order of ∆τ 3. The truncation error
can be minimized by a proper combination of first derivatives. It is possible to write
a general formula for Runge-Kutta methods [90, 123]. Once given

d~m

dt
ptq “ f pt, ~m ptqq (3.21)

and the initial magnetization ~m pτ0q “ ~m0 it is possible to compute the magnetization
at a forward time τ `∆τ from the magnetization at the previous time τ as

~m pτ `∆τq “ ~m pτq `
o
ÿ

i

bi~ki (3.22)

where
~k1 “ ∆τf pτ, ~m pτqq

~ki “ ∆τf

˜

τ ` ci∆τ, ~m pτq `
i´1
ř

j

aij~kj

¸

(3.23)

and o is an integer which depends on the employed method and aij, bi, and ci are
coefficients which also depend on the employed method. The most common Runge-
Kutta method is the 4o order Runge-Kutta whose coefficients are shown in 3.1. The
error is of the order of ∆τ 5 in this case, and does not conserve the magnetization mod-
ulus either. Nevertheless, Runge-Kutta methods can converge to the Stratonovich
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i aij bi ci
1 1{6 0
2 1{2 1{3 1{2
3 0 1{2 1{3 1{2
4 0 0 1 1{6 1
j “ 1 2 3 4

a)

i aij bi b˚i ci

1 11
108

35
432

0

2 1
5

0 0 1
5

3 3
40

9
40

6250
14553

8500
14553

3
10

4 264
2197

´ 90
2197

840
2197

´ 2197
21168

´28561
84672

6
13

5 ´ 932
3645

´14
27

3256
5103

7436
25515

81
176

405
704

2
3

6 ´367
513

30
19

9940
5643

´29575
8208

6615
3344

19
196

1
4

1

7 35
432

0 8500
14553

´28561
84672

405
704

19
196

1
40

0 1

j “ 1 2 3 4 5 6
b)

Table 3.1: Butcher tableau for a) Runge-Kutta 4o order algorithm and b) Dormand-
Prince method.

solutions when dealing with LLG equation (2.29) [94, 113] for systems with weak
noise.

However, most ODE integrators include an adaptative control of the step size [120,
123]. This adaptative control allows for saving time in smooth regions of the function
while preserving the accuracy in the sharp ones. The algorithm requires a feedback
method to estimate the local error and to act accordingly. Although there are a few
other methods, we only deal here with embedded Runge-Kutta formulas [120], as the
Dormand-Prince algorithm which is the default solver used in MuMax3 [122]. Those
methods are based on the evaluation of two different approximation of the solution
at the same points of the interval. The two approximations are characterized by the
vectors ~b and ~b˚, and their difference is taken as the error estimation.

e “ ~m pτ `∆τq ´ ~m˚
pτ `∆τq “

o
ÿ

i“0

pbi ´ b
˚
i q
~ki (3.24)

If this difference is small, the step size is enlarged, but if it is large, the solution is
computed with a smaller step size equal to

∆τ0 “ ∆τ1|
e0

e1

|
1{5 (3.25)

where e0 is the desired error, e1 the given error, ∆τ0 the needed step size to obtain the
required error and ∆τ1 the employed step size. This algorithm requires computing
the effective field seven times. Nevertheless, is usually implemented with the First
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Same as Last (FSAL) property meaning that the last point of a time step is the same
as the first one of the subsequent step, reducing the effective field evaluation down
to six. Moreover, the last coefficient k7 of a time step is also the same as the first
one k1 of the subsequent step. Thus, two solutions, of 5o and 4o order, are computed,
which result in a 4o order method with adaptative step size.

3.4 Numerical integration of Langevin equation

As it has already been mentioned in section 3.3, numerical ODE solvers can converge
to either an Itô, Stratonovich or any other solution. As an example, the deterministic
Euler algorithm leads to a stochastic algorithm with an Itô solution. The Wiener
process dWk is substituted by its finite increment ∆Wk when discretizing a stochastic
equation, so Langevin equation (2.69) becomes

yi pt`∆tq “ yi ptq ` Ai p~y, tq∆t`
ÿ

k

Bik p~y, tq∆Wk (3.26)

∆Wk has analogous properties to those of the Wiener process (2.71)

x∆Wk ptqy “ 0
x∆Wk ptq∆Wl pt

1qy “ 2Dδkl∆t
(3.27)

where D is given by (2.84). Although (3.26) provides the Itô solution, it is possible
to introduce additional terms to get the Stratonovich one. These terms are given by
the relation between both solutions derived from stochastic process theory [67].

However, the most common solver for stochastic ODE is the Heun solver as a
Stratonovich solution directly arises from it [113]. Like in the deterministic case, an
auxiliary value must be calculated

m̃i pt`∆tq “ mi ptq ` Ai p~m, tq∆t`
ÿ

k

Bik p~m, tq∆Wk (3.28)

which is used to compute the magnetization after each time step

mi pt`∆tq “ mi ptq `
1

2

”

Ai

´

~̃m, t`∆t
¯

` Ai p~m, tq
ı

∆t`

`
1

2

«

ÿ

k

Bik

´

~̃m, t`∆t
¯

`
ÿ

k

Bik p~m, tq

ff

∆Wk

(3.29)

Nevertheless, magnetization must be renormalized at this time.
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Chapter 4

One dimensional model

A general one dimensional model is derived from the Landau-Lifshitz-Gilbert equation
and a set of simplifications. The main ideas of Walker’s original one dimensional
model are discussed and Walker’s ansatz is presented. This ansatz is adapted to
cover more general systems. The energy density terms presented in chapter 2 are
integrated and related to the dynamic variables. Finally, four general equations
describing the magnetic domain wall dynamic along with some comments about
them are addressed.
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4.1 Introduction

Chapter 3 is devoted to the numerical tools generally used to solve the LLG equa-
tion (2.29). These tools are of great importance since, as we have already seen,
the analytic solution is not achievable. In spite of this fact, it is possible to seek
an analytic solution by making some assumptions. This simplified solution would
allow us to make predictions without running -sometimes really time demanding-
µMag simulations and favoring a deeper comprehension of the physical system under
consideration. Results of such a one dimensional model (1DM) were first obtained
by Walker in 1956 [71, 124], who derived an analytic solution for the DW dynamic
under the application of an applied magnetic field. This solution also predicts the
existence of an upper limit for the applied field, above which the DW is no longer
stable and its configuration evolves in time. This upper limit is known as the Walker
field HW . Due to the unstable DW configuration, DW shows a periodic velocity,
with a mean velocity which drops from the values of the velocity close to, but below,
the Walker field HW .

Spherical coordinates are much more convenient than Cartesian ones for these types
of problems.

~M “Ms psin θ cosϕ~ux ` sin θ sinϕ~uy ` cos θ~uzq “Ms~ur (4.1)

being θ and ϕ the polar and azimuthal angle respectively commonly used for spherical
coordinates, as it can be seen from figure 4.1. It is worthy to note that since
magnetization modulus is fixed | ~M | “ Ms, only two degrees of freedom remain, θ
and ϕ. Its differential reads

d ~M “Ms pdθ~uθ ` sin θdϕ~uϕq (4.2)

Moreover, Gilbert’s equation (2.27) augmented by the current induced torques and
the thermal field, and normalized to saturation magnetization value is

B~m

Bt
“ ´γ0 ~mˆ

´

~Heff ` ~Hth

¯

` α~mˆ
B~m

Bt
´ bj

´

~u ¨ ~∇
¯

~m` bjβ ~mˆ
“

´

~u ¨ ~∇
¯

~m
‰

´

´
gµBJ

2etMs

~mˆ
´

~mˆ ~θSH

¯

´ γ0 ~mˆ
´ αRP

µ0µBMs

´

~nˆ ~J
¯¯

(4.3)
which in spherical coordinates transforms to

9θ “ ´
γ0

µ0Ms sin θ

δuV
δϕ

` γ0 p´Hx,th sinϕ`Hy,th cosϕq ´ α sin θ 9ϕ´

´bj

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

´ bjξ sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

`

`γ0HSH cos θ pjx sinϕ´ jy cosϕq ` γ0HRa pjx cosϕ` jy sinϕq

(4.4a)
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Figure 4.1: Generic considered system. Infinite strip of width w and thickness t for which
w ąą t, grown over a HM and beneath another layer, commonly an oxide. It is assumed
that there are two domains, UP (red) and DOWN (blue), separated by a DW of thickness
∆. It is also shown the coordinate system employed: x is the axis for which the strip is
infinite, while y and z are the transversal ones. The strip width along y-axis is w, and its
thickness along z equals t. It can be checked that the azimuthal ϕ and polar θ angles keep
the convention (see equation (4.1)).

sin θ 9ϕ “
γ0

µ0Ms

δuV
δθ

` α 9θ ´ γ0 rpHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θs ´

´bj sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

` bjξ

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

`

`γ0HSH pjx cosϕ` jy sinϕq ´ γ0HRa cos θ pjx sinϕ´ jy cosϕq
(4.4b)

where HSH “
~θSH

2etµ0Ms

and HRa “
αRP

µ0µBMs

and jx and jy are the x and y component

of a general in-plane applied current ~J . There are two equations which relate the
temporal derivatives of the angles defining the magnetization in each point with the
variational derivatives of the energy, i.e., the effective field. We are going to work on
these equations to obtain a simplified expression accounting for the time evolution
of a DW in a ferromagnetic strip, considering the system as a whole.

4.2 Walker’s ansatz and Landau-Lifshitz-Gilbert

Walker assumed for his work an infinite strip for which the symmetry axis is an easy
axis, having two domains in this direction [71]. He also assumed that magnetization
only depends on the axis given by the DW normal. Finally, it is assumed that ϕ is
constant all along the strip and equals ϕ “ ˘π{2 in the absence of external stimuli.
In our case, we considered a quasi-infinite strip along the x-direction, and much
larger along y-direction than in the z-direction, i.e., L ąą w ąą t being w and t as
defined on figure 4.1 and being L the length of the strip. It is assumed that our FM
layer is grown over a HM with a SOC and beneath another different layer, commonly
an oxide. Strip geometry promotes a shape anisotropy along the x-axis as it would
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minimize the demagnetizing energy. Nevertheless, the small thickness t of the strip
along with surface effects causes that this kind of strips exhibits a high PMA which
makes the z-axis the easy one in spite of the demagnetizing energy. It is considered
that two perpendicular domains are present. As long as ϕ is considered constant
along the whole strip, each domain is characterized by a constant value of θ, θ “ 0
for UP domains and θ “ π for DOWN ones. In our case, magnetization is allowed to
change not only along x but also along the y-direction.

So the system under consideration has already been defined, and the first assumption
has been made. Our description characterizes magnetization with two angles θ and
ϕ, both constants inside each domain. However, even though ϕ is constant along
the whole strip, θ is not, and since we are using a continuous description, this angle
should evolve smoothly from the value in one domain to the value in the other
domain. The region where this smooth change takes part is known as the magnetic
domain wall, or simply DW. It is possible to get the values of θ across this region
from µMag simulations but, in order to obtain purely analytical results, a given
transition of θ is assumed for this region. The original profile assumed by Walker [71]

θ “ 2 arctan
”

exp
´x´ q

∆

¯ı

ϕ “ cte
(4.5)

is modified to include some other dependencies, resulting in the following expres-
sion [19, 41]

θ “ 2 arctan

„

exp

ˆ

Q
px´ qq cosχ` y sinχ

∆

˙

ϕ “ cte “ Φ

(4.6)

(4.6) defines the magnetization along the entire strip as a function of the DW position
q, its orientation Φ, its width ∆ and its tilting angle χ defined as the angle between
the DW normal and the longitudinal strip axis. Constant Q defines the DW type.
Q “ 1 is an UP-DOWN transition while Q “ ´1 defines a DOWN-UP one. It
is assumed that transition occurs from lower xs to higher xs. It is supposed that
this structure remains while a stimulus is applied and so these four parameters are
time-dependent. Equations (4.4a) and (4.4b) can be then simplified by computing
an energy density. In that way, four equations accounting for the global behavior
of the strip and depending only on q and Φ and, if needed, on ∆ and/or χ are
obtained. Note the difference with the previous equation which is local even though
only depends on θ and ϕ.

4.3 Surface and linear energy density

As it has already been stated, the assumption that properties are constant along at
least one of the axis allows the simplification of the volume energy density uV by
integrating along the other axes. The result is a surface energy density σ if there are
two axes along which variables are constant, or a linear energy density λ if there is
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only one. In our case changes along y-axis may be possible so now we focus on the
linear energy density λ. Nevertheless, chapters 6-12 use the surface energy density σ
since it is supposed that changes along y are not significant. Then, it can be written

λ “

ż w{2

´w{2

σdy “

ż w{2

´w{2

ż 8

´8

uV dydx (4.7)

from which it is possible to derive an expression for the variation of λ [125]

δλ “

ż w{2

´w{2

ż 8

´8

ˆ

δuV
δθ

δθ `
δuV
δϕ

δϕ

˙

dydx (4.8)

Taking into account that δθ can be expressed as

δθ “
Bθ

Bq
δq `

Bθ

B∆
δ∆`

Bθ

Bχ
δχ (4.9)

δλ is read

δλ “

ż w{2

´w{2

ż 8

´8

„

δu

δθ

ˆ

Bθ

Bq
δq `

Bθ

B∆
δ∆`

Bθ

Bχ
δχ

˙

`
δu

δϕ
δϕ



dydx (4.10)

It may be notice that only partial with respect q, ∆ and χ are considered, but no
with respect its gradients ∇q, ∇∆ and ∇χ. The reason is that we are not considering
a pure bidimensional system, i.e., DW can tilt with an angle χ, but it cannot bend.
This means that those gradients, and also ∇ϕ, are zero [66]. Each term can be now
identified with a derivative of λ with respect to each variable [125]

Bλ

Bq
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

Bq
dxdy (4.11)

Bλ

Bϕ
“

ż w{2

´w{2

ż 8

´8

δuV
δϕ

dxdy (4.12)

Bλ

B∆
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

B∆
dxdy (4.13)

Bλ

Bχ
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

Bχ
dxdy (4.14)

Each equation must be integrated by using equation (4.4) giving four partial deriva-
tives (details are given in the Appendix 12.6)

Bλ

Bq
“ ´

µ0Msw

γ0

”

α
2 9q

∆
cosχ`Q2 9Φ´

2bjξ

∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙

´

´γ0Q2Hz,th ´ γ0QπHSH pjx cos Φ` jy sin Φq
ı

(4.15)
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Bλ

Bϕ
“

2µ0Msw

γ0

”

Q 9q ´
α∆ 9Φ

cosχ
´Qbj

ˆ

jx
J
`
jy
J

tanχ

˙

`

`γ0
∆

cosχ

π

2
p´Hx,th sin Φ`Hy,th cos Φq`

`γ0HRa
∆

cosχ

π

2
pjx cos Φ` jy sin Φq

ı

(4.16)

Bλ

B∆
“ ´

µ0Ms

γ0

α
w

cosχ

π2

6

´

tanχ 9χ`
9∆

∆

¯

(4.17)

Bλ

Bχ
“ ´

µ0Ms

γ0

α

„

π2

6

w∆

cosχ
tan2 χ 9χ`

2

∆ cos3 χ

w3

12
9χ`

π2

6

tanχ

cosχ
w 9∆



(4.18)

Four equations relating the partial derivatives of the linear energy density and the
dynamic variables have been derived. However, a useful expression of such linear
energy density is still needed. Density energies given in chapter 2 are integrated in
order to calculate such an expression. The additive character of the energy allows us
to calculate each contribution separately and then, summing all contribution up to
get the total linear energy density. In that way, the exchange energy contribution
has a linear energy density equal to

λexch “
2Aw

∆ cosχ
(4.19)

The term accounting for the applied field is

λext “ ´µ0Ms
∆w

cosχ

´

πHx cos Φ` πHy sin Φ` 2QHzq
cosχ

∆

¯

(4.20)

while the accountant for the demagnetizing energy reads

λdmg “
∆µ0M

2
sw

cosχ

`

Nx cos2
pΦ´ χq `Ny sin2

pΦ´ χq ´Nz

˘

(4.21)

Nx, Ny and Nz are the diagonal components of the demagnetizing field (see ap-
pendix 12.6). Finally, the term accounting for the DMI can be written as

λDMI “
QπDw

cosχ
cos pΦ´ χq (4.22)

Especial attention requires the term accounting for the linear magnetic anisotropy
energy density. In the case of a uniform and homogeneous strip, it is simply

λanis “
2K1∆w

cosχ
(4.23)

Nevertheless, systems with a variable magnetic anisotropy are also considered along
this manuscript. Although there are studies where a linear variation of the anisotropy
in a region has been considered [79], the study of periodic variations of the anisotropy
is a novel contribution of this thesis. It is assumed that anisotropy might increase or
decrease but always in a linear manner and only along the x-direction. In fact, it
is assumed a periodic change of the anisotropy. So it is considered that anisotropy
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grows linearly from a minimum value K´
u to a maximum value K`

u in a distance d1.
Then, anisotropy decreases linearly from this maximum value K`

u to the minimum
one K´

u in a distance d2. It is also assumed that the minimum value K´
u is still

high enough to preserve the perpendicular anisotropy1. This profile is repeated
periodically. The addition of d1 and d2 is called dt “ d1 ` d2

Ku “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

K´
u `

K`
u ´K

´
u

d1

ˆ

x´ dt

ˆZ

q

dt

^

´ n

˙˙

if dt

ˆZ

q

dt

^

´ n

˙

ă x ă dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙

K`
u ´

K`
u ´K

´
u

d2

ˆ

x´ dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙˙

if dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙

ă x ă dt

ˆZ

q

dt

^

´ pn´ 1q

˙

(4.24)

where tu stands for the floor function. So the linear magnetic anisotropy energy
density reads

λanis “

ĳ

K sin2 θdxdy “

ż

˜

m1
ÿ

n“´m

In ` I
1
n

¸

dy (4.25)

As long as K only change along x, it is possible to focus on this integral. Nevertheless,
comments about integral along y will be made along this subsection. So In and
I 1n are the integrals along x of the rise and fall intervals of the anisotropy function
respectively. Since there are m1 ` m of such integrals, the summation is needed,
which tends to infinity for and infinite strip. In that case, this limit is well defined
and addends due to slopes far from the DW vanish. It is worthy to highlight that
even though q appears in (4.24), the anisotropy does not depend on the DW -or
even on the existence of such a wall-. Any integer replacing the floor function leads
to the same profile. However, the above expression makes the following calculations
easier by choosing a proper coordinate origin, depending on the DW position.

First, In is considered, accounting for the linear anisotropy rising

In “

ż dt
´Y

q
dt

]

´

´

n´
d1
dt

¯¯

dt
´Y

q
dt

]

´n
¯

K´
u `

K`
u ´K

´
u

d1

ˆ

x´ dt

ˆZ

q

dt

^

´ n

˙˙

sin2 θdx “

“

ż ζmax

ζmin

K´
u `

K`
u ´K

´
u

d1

ˆ

Q∆ζ ` y sinχ

cosχ
` dt

ˆ"

q

dt

*

` n

˙˙

sin2 θ
Q∆

cosχ
dζ

(4.26)

1It should be pointed out that, from the magnetostatic point of view, this axis is the least
favorable.
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with

ζmax “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´ y sinχ



ζmin “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´ n

˙

cosχ´ y sinχ



where x has been replaced by the auxiliary variable ζ as defined in the appendix 12.6,

and the fact that q
dt
´

Y

q
dt

]

“

!

q
dt

)

is used, being tu the fractional part function. In

is computed term by term

I1
n “

ż ζmax

ζmin

K´
u sin2 θ

Q∆

cosχ
dζ “

“
∆K´

u

cosχ

„

tanh

„

dt
∆

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ

´

"

q

dt

*

´ n

˙

cosχ´
y

∆
sinχ



(4.27)

I2
n “

ż ζmax

ζmin

K`
u ´K

´
u

d1

dt

ˆ"

q

dt

*

` n

˙

sin2 θ
Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d1

dt∆

cosχ

ˆ"

q

dt

*

` n

˙„

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



(4.28)

I3
n “

ż ζmax

ζmin

K`
u ´K

´
u

d1

Q∆ζ ` y sinχ

cosχ
sin2 θ

Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d1

ˆ

∆

cosχ

˙2
«

ζmax tanh ζmax ´ ζmin tanh ζmin`

` log

ˆ

cosh ζmin
cosh ζmax

˙

ff

(4.29)

where the term with y of I3
n has been discarded because it vanishes when integration

along y is made. In the case of the fall of the anisotropy, a similar expression can be
cast

I 1n “

ż dt
´Y

q
dt

]

´pn´1q
¯

dt
´Y

q
dt

]

´

´

n´
d1
dt

¯¯

K`
u ´

K`
u ´K

´
u

d2

ˆ

x´ dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙˙

sin2 θdx “

“

ż ζ1max

ζ1min

K`
u ´

K`
u ´K

´
u

d2

ˆ

Q∆ζ ` y sinχ

cosχ
` dt

ˆ"

q

dt

*

` n´
d1

dt

˙˙

sin2 θ
Q∆

cosχ
dζ

(4.30)
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with

ζ 1max “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´ pn´ 1q

˙

cosχ´ y sinχ



ζ 1min “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´ y sinχ



So in this case

I
11
n “

ż ζ1max

ζ1min

K`
u sin2 θ

Q∆

cosχ
dζ “

“
∆K`

u

cosχ

„

tanh

„

dt
∆

ˆ

´

"

q

dt

*

´ pn´ 1q

˙

cosχ´
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´
y

∆
sinχ



(4.31)

I
12
n “

ż ζ1max

ζ1min

´
K`
u ´K

´
u

d2

dt

ˆ"

q

dt

*

` n´
d1

dt

˙

sin2 θ
Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d2

dt∆

cosχ

ˆ"

q

dt

*

` n´
d1

dt

˙

«

tanh

„

dt
∆

ˆ"

q

dt

*

` pn´ 1q

˙

cosχ`
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



ff

(4.32)

I
13
n “

ż ζ1max

ζ1min

´
K`
u ´K

´
u

d2

ˆ

Q∆ζ ` y sinχ

cosχ

˙

sin2 θ
Q∆

cosχ
dζ “

“ ´
K`
u ´K

´
u

d2

ˆ

∆

cosχ

˙2
«

ζ 1max tanh ζ 1max ´ ζ
1
min tanh ζ 1min`

` log

ˆ

cosh ζ 1min
cosh ζ 1max

˙

ff

(4.33)

At this point it can be assumed that DW width is much smaller than the anisotropy
period dt. This means that I1

n and I
11
n vanish for n ą 1 and n ă ´1. Then it can be

written

m1
ÿ

´m

I1
n “

∆K´
u

cosχ

«

1´
1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



`

`

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



ff (4.34)

m1
ÿ

´m

I
11
n “

∆K`
u

cosχ

«

1`
1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



´

´

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



ff (4.35)
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Summing up both contributions one gets

A “
m1
ÿ

´m

I1
n ` I

11
n “

∆

cosχ

`

K`
u `K

´
u

˘

`

`
∆

cosχ

`

K`
u ´K

´
u

˘

«

´

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



`

`

1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



ff

(4.36)

Again I2
n and I

12
n vanish for n ą 1 and n ă ´1. It can be defined an “

!

q
dt

)

` n so

in this case

m1
ÿ

´m

I2
n “

K`
u ´K

´
u

d1

dt∆

cosχ

«

1
ÿ

´1

an

„

tanh

ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

´

´ tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

(4.37)

m1
ÿ

´m

I
12
n “

K`
u ´K

´
u

d2

dt∆

cosχ

«

1
ÿ

´1

ˆ

an ´
d1

dt

˙

«

tanh

ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´ tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ffff

(4.38)

and its addition is

B “
m1
ÿ

´m

I2
n ` I

12
n “

`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

an
d1

tanh

ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

`

`
1

d2

ˆ

an ´
d1

dt

˙

tanh

ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´

ˆ

an

ˆ

1

d1

`
1

d2

˙

´
d1

d2dt

˙

tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ff

(4.39)
It is convenient to work on tanh addends and log addends separately when taking
into account I3

n and I
13
n . In the case of tanh terms it can be written

cn “
`

K`
u ´K

´
u

˘ Q∆

cosχ

«

dt
d1

”

an tanh ζmin ´

ˆ

an ´
d1

dt

˙

tanh ζmax

ı

`

`
dt
d2

”

pan ´ 1q tanh ζ 1max ´

ˆ

an ´
d1

dt

˙

tanh ζ 1min

ı

ff (4.40)

where terms with y has been discarded as they vanish when making the integral
along y. It can be checked that for n ą 1 and n ă ´1 the integral vanishes again.
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Then, taking into account that ζmax “ ζ 1min it is possible to write the addition

C “ ´
`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

an
d1

tanh

„ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

´

´

ˆ

1

d1

`
1

d2

˙ˆ

an ´
d1

dt

˙
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„ˆ

dt
∆

ˆ
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dt

˙
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y

∆
sinχ

˙

`

`
1

d2

pan ´ 1q tanh

„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

ff

(4.41)

It can be checked that the addition of B (4.39) and C (4.41) cancels out most of
their addends

B ` C “
`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

1

d2

ˆ

1´
d1

dt

˙
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„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

`

`

ˆ
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d2dt
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dt
d1d2
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dt

˙
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„ˆ
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∆

ˆ
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dt

˙
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y

∆
sinχ

˙

ff

“

“
`
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´
u

˘ ∆
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1
ÿ

´1

«
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„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´ tanh

„ˆ

dt
∆

ˆ
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d1

dt

˙

cosχ`
y

∆
sinχ

˙

ff

(4.42)
and finally summing A (4.36) up it is obtained

A`B ` C “
2∆

cosχ
K´
u (4.43)

where the assumption that ∆ ăă dt has been used. Finally, the log terms from I3
n

and I
13
n must be considered. It can be checked that for |n| ą 1

∆

d1

log

ˆ

cosh ζmin
cosh ζmax

˙

«
n

|n|

∆

d2

log

ˆ

cosh ζ 1max
cosh ζ 1min

˙

« ´
n

|n|

So the addition of log terms is

C 1 “
pK`

u ´K
´
u q∆

cos2 χ

m1
ÿ

´m

∆

d1

log

ˆ

cosh ζmin
cosh ζmax

˙

`
∆

d2

log

ˆ

cosh ζ 1max
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˙

“

“
pK`
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´
u q∆
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”
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`
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´
u q

cos2 χ

1
ÿ

´1

«

∆2

d1

log

¨

˝

cosh
`

dt
∆
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˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚`
∆2

d2

log

¨

˝

cosh
`

dt
∆
pan ´ 1q

˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚

ff

(4.44)
Taking into account both, (4.43) and (4.44), the final expression for the linear
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magnetic anisotropy energy density can be written as

λanis “
w∆

cosχ

«

2K´
u `

pK`
u ´K

´
u q

cosχ

1
ÿ

´1

∆

d1

log

¨

˝

cosh
`

dt
∆
an
˘

cosh
´

dt
∆

´
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d1

dt

¯¯

˛

‚`

`
∆
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log

¨

˝

cosh
`

dt
∆
pan ´ 1q

˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚

ff

(4.45)

Expression (4.45) is still valid even though ∆ ăă dt is not true if just the summation
is extended to take into account more slopes. In order to derive the expression used
in chapters 11 and 12 it must be noticed that the limit when d2 Ñ 0 is

lim
d2Ñ0

1

d2

log
cosh dtan

∆

cosh
dt
´

an´
d1
dt

¯

∆

“
1

∆
tanh

ˆ

d1

∆
p1´ anq

˙

4.4 Final expressions and comments

Adding all energy contributions up leads to an expression for the linear energy density

λ “
w

cosχ

«

2A

∆
´ µ0Ms∆

´

πHx cos Φ` πHy sin Φ` 2QHzq
cosχ

∆

¯

`

`∆µ0M
2
s

`

Nx cos2
pΦ´ χq `Ny sin2

pΦ´ χq ´Nz

˘

`

`QπD cos pΦ´ χq ` 2∆K´
u `

pK`
u ´K

´
u q∆2

cosχ
S pq,∆q

ff

(4.46)

where S is

S pq,∆q “
1
ÿ

´1

1

d1

log

¨

˝
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`

dt
∆
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˘
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´

dt
∆

´
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1
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¨

˝
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`

dt
∆
pan ´ 1q

˘
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´

dt
∆

´
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dt

¯¯

˛

‚

Taking into account (4.46), (4.11), (4.12), (4.13) and (4.14) and the following defini-
tions

HD “ ´
πD

2µ0Ms∆
Hk “Ms pNx ´Nyq

Hr “
pK`

u ´K
´
u q

2µ0Ms

Hexch “
A

µ0Ms∆2

r pq,∆q “
1
ÿ

´1

∆

d1

ˆ

tanh
dt
∆
an ´ tanh

dt
∆

ˆ
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dt

˙˙

`

`
∆

d2

ˆ
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dt
∆
pan ´ 1q ´ tanh

dt
∆

ˆ

an ´
d1

dt

˙˙
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it is possible to derive four equations describing the system dynamics

9q “ Q
v0

cosχ

”

α

ˆ

Hz `Hz,th ´
QHr

cos2 χ
r pq,∆q

˙

`

`
π

2
pjx cos Φ` jy sin Φq pαHSH ´HRaq`

`
π

2
pHx `Hx,thq sin Φ´

π

2
pHy `Hy,thq cos Φ`

` pQHD ´Hk cos pΦ´ χqq sin pΦ´ χq`

`Q
bj
γ0∆

ˆ

jx
J
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jy
J

sinχ

˙

p1` αξq
ı

(4.47)

where v0 “
∆γ0

1` α2
,

9Φ “
v0

∆

”

Hz `Hz,th `Q
bj
γ0∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙

pξ ´ αq`

`
π

2
pjx cos Φ` jy sin Φq pHSH ` αHRaq ´

QHr

cos2 χ
r pq,∆q´

´α
π

2
pHx `Hx,thq sin Φ` α

π

2
pHy `Hy,thq cos Φ`

`α pHk cos pΦ´ χq ´QHDq sin pΦ´ χq
ı

(4.48)

9χ “
12γ0

α

ˆ

∆

w

˙2
«

QHD sin Φ cosχ´Hexch sin 2χ´

´
dt
∆
Hrr pq,∆q sinχ´Hk

sin 2 pΦ´ χq

4
cos2 χ

ff (4.49)
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∆
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«
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˜
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`
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2
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`
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pΦ´ χq `Ny sin2
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˘

´
K´
u
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´

´
2∆
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HrS pq,∆q `
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∆ cosχ

Hrr pq,∆q

˜

1`

ˆ

π∆

w

˙2

sin2 χ

¸

´

´

ˆ

π∆

w

˙2 ˆ

QHD ´
Hk

2
sin pΦ´ χq cosχ

˙

sin Φ sinχ

ff

(4.50)

Equations (4.47), (4.48), (4.49) and (4.50) describe in a simplified manner the dy-
namic behaviour of the sample. They have been computed in a rather general
way, so some of their terms do not appear in the next chapters. It is the case of
the terms accounting for the STT, which has been considered only for the sake of
completeness and because they must play a role in real devices [126]. However, these
terms have not been considered in the following chapters since their effect is low in
the cases considered. In the same way, the addend accounting for the Rashba effect
has been only considered in chapter 7, for the same reason. The term describing an
inhomogeneous anisotropy profile only appears in part IV. It should be highlighted
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that results from µMag simulations and 1DM have always been in good agreement, so
there was no necessity to consider neither tilting angle χ neither a time dependence
of the DW width ∆.

Finally, it must be pointed out that it has been assumed that the thermal field
only plays a role due to its z-component as it has already been assumed in other
works [114]. The main reason for such assumption is because it allows for avoiding the
presence of multiplicative noise in the equations, so no considerations about the use
of Itô or Stratonovich calculus are made. Other works introduce those components,
but without their multiplicative noise character [115]. The validity of this assumption
is certified by the good agreement between 1DM and µMag simulations, which take
into account all the three components.
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Chapter 5

Experimental tools

The experimental techniques employed during my research visit at the research group
“Integnano” from Université Paris Sud in Paris are commented in this chapter. The
synthesis of multilayer systems is addressed by the sputtering technique. Hall voltage
measurements are used to obtain hysteresis loops. Those loops are used to determine
the in-plane or out-of-plane effective anisotropy. Some procedures to modify the
magnetic anisotropy are considered. These procedures are alternatives to induce
anisotropy gradients.
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5.1 Introduction

Hitherto, a detailed explanation of the theoretical background for the study of
magnetic properties of multilayered systems has been stated. However, this theoretical
background would be meaningless if it could not be verified by experiments. This
chapter is devoted to some of those techniques which permit such verification,
particularly, those learned during my research visit at the group “Integnano” in Paris.
First of all, a multilayered synthesis technique is explained. Even though it is not
the only possibility, this technique is able to produce multilayers where the thickness
of each layer is controlled. On the other hand, one of the most important parameters
of these systems is the effective anisotropy and the PMA. This characteristic can
be determined from the hysteresis loops of the system. These hysteresis loops can
be depicted from both, Hall voltage measurements and Magneto-optic Kerr effect
data. Finally, part IV deals with systems with variable PMA. In order to check these
studies with an experimental setup, it is needed to produce an anisotropy gradient.
Although it is possible to use a wedge during the synthesis process to get a space
dependent thickness, and so a space dependent anisotropy, a finer tuning is provided
by other techniques as it is shown here.

5.2 Multilayers synthesis. Sputtering

Sputtering was discovered in 1852 by Grove [127] and has become one of the most
important techniques to synthesize thin films and multilayered systems [128–130].
The process consists of bombing with ions a target of the material that it is desired
to be deposited. Ions impacts are able to pulverize some atoms from the target. The
atoms detached from the target are finally deposited at a substrate. Some samples
of Pt/Co/Pt, Pt/CoFeB/MgO, and Pt/CoFeB/Pt have been synthesized using the
sputtering setup shared by the groups of the University of Paris-Sud.

The source of positive ions is a plasma of a specified gas. The system shared by the
groups of the University of Paris-Sud uses Ar because no chemical reaction is desired
and so a non-reactive gas is required, Ar being the cheapest non-reactive gas and so
the most commonly used [131]. The vacuum chamber where the process takes place
is prepared to a pressure of „ 10´8mbar before pumping the Ar in. This vacuum
allows for the synthesis of samples with high purity and low imperfection densities.
The plasma is generated by a discharge between two electrodes. Once ignited, the
plasma requires a minimum flow of gas to be maintained. During the process, the
sputtering chamber reaches a pressure of „ 10´3mbar. The positive Ar` ions are then
accelerated to the cathode, where the target is placed. A DC voltage is applied for
metallic targets, while an AC voltage of radio frequency (RF) is employed in the case
of insulating targets. Thus, the target atoms are detached with a given kinetic energy
due to this bombing process and finally are deposited at the substrate placed in the
anode. Nevertheless, it is required that the atoms have a long free path to achieve
the substrate, so a high Ar pressure is undesirable. But a low Ar pressure means
a low density of ions to be accelerated to the target and then low deposition rates.
Deposition rate cannot be improved by using higher voltage since this procedure
heats the substrate up, limiting material choices [131]. In order to increase this rate
the following strategy, known as magnetron sputtering, is employed. It consists on
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Figure 5.1: Sputtering setup. Some of the guns can be seen in the bottom of the
chamber along with the refrigerating system and also the prechamber in the right
figure. The motor of the rotating system can be found at the top of both images.

the application of a magnetic field to take advantages of the secondary electrons
produced by the process. These electrons follow helicoidal trajectories which increase
the probability of collision against gas atoms. These collisions induce the ionization
of Ar leading to a denser plasma. Summarizing, due to this bombing system a certain
flux of the material to be deposited is promoted depending on the gas used to produce
the plasma and the target material. Once these parameters are fixed, the layer thick-
ness is determined by the sputtering time. In multilayers, this process is repeated
sequentially for each layer, changing in each case the material to deposit. Since
the bombing of the target heats the system, a refrigerating mechanism is also required.

It must be pointed out that the setup is prepared with nine guns, so nine different
targets can be prepared. This makes it possible to change the material for each layer.
Nevertheless, this configuration has its drawbacks. As long as none of the guns is
perpendicular to the plane formed by the substrate, some inhomogeneities in the
samples must be expected. This is caused by the different material flux at the edge
facing the gun and the opposite edge. In order to produce homogeneous samples, the
following technique is applied: the substrate holder rotates along the process with a
certain angular velocity. The used angular velocity has been proved to be the most
suitable to produce homogeneous samples. On the other hand, the fact that the flux
of material is not uniform can be exploited to produce gradients of thickness, and so
gradients of magnetic anisotropy since the HM/FM and FM/Ox interfaces change.
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Moreover, a wedge can be used to enlarge this effect by obstructing the flux in some
regions more than in others. Even though most of the samples have been synthesized
rotating the sample holder, some of them have been made without rotation in one or
more layers to obtain a thickness gradient and so an anisotropy gradient. Finally, it
must be highlighted that the setup also has a prechamber. This prechamber allows
the sample to be extracted and introduced without losing the ultrahigh vacuum of
the main chamber. However, it is required to wait until this prechamber acquires
similar pressure to that of the main chamber („ 10´6mbar) during sample insertion
or an atmospheric pressure during sample extraction.

5.3 Hysteresis loops measurements

The effective anisotropy Keff “ Ku´
1
2
µ0Ms of a sample with PMA can be determined

from its hysteresis loops when the field is applied along its hard axis [131]. The
assumption that the thin film behaves as a magnetic monodomain is made. In that
case, the terms accounting for the DMI and the exchange vanish, and the energy of
the sample under an applied in-plane magnetic field reads

u “ ´Ku cos2 θ `
1

2
µ0M

2
s cos2 θ ´ µ0HMs cos pπ{2´ θq (5.1)

where θ is the angle between the z- (easy) axis and the magnetization (see figure 4.1)
and π{2 is the angle between the hard in-plane axis and the z-axis. Equations (2.40),
(2.44) and (2.49) have been used. From the Keff definition and neglecting some
constants it is possible to rearrange the above expression

u “ Keff sin2 θ ´ µ0HMs sin θ (5.2)

Equilibrium conditions

ˆ

Bu

Bθ

˙

“ 0 and

ˆ

B2u

Bθ2

˙

ą 0 (5.3)

are in this case

pKeff sin θ ´ µ0HMsq cos θ “ 0 (5.4)

so there are two possible solutions, θ “ π{2 and 2Keff sin θ “ µ0HMs. The stability

condition stablishes that θ “ π{2 stands for H ą
2Keff
µ0Ms

while the other solution
applies otherwise. In that way,

H “
2Keff

µ0Ms

(5.5)

is the lowest value needed to set θ “ π{2 and thus cancel Mz out. This field is usually
known as anisotropy field and, along with the saturation magnetization and remanent
magnetization, defines a hysteresis loop. There are several methods to obtain these
loops as those based on the anomalous Hall effect (AHE) or by using magneto-optic
Kerr effect (MOKE) microscopy. Since MOKE microscopy is explained in other
section, here the AHE method is treated.
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Figure 5.2: Anomalous Hall voltage measurements device. The sample holder is
placed over a platform which can be moved. Position (a) allow manipulating the
sample holder which can be turned to perform in-plane or out-of-plane measurements.
Position (b) allow for placing the sample holder between the two magnets.

The ordinary Hall effect gives rise to a voltage in the transverse direction when a
longitudinal current flows through a conductor immersed in a perpendicular magnetic
field [81, 132]. A similar effect called anomalous Hall effect [133] (AHE) appears when
no magnetic field is applied, but the conductor is magnetized. In that way, when an in-
plane current is applied, a transverse voltage is induced in the direction perpendicular
to the current and the magnetization. The Hall voltage is then sensitive to the
magnetization perpendicular to the plane formed by the applied current contacts
and the Hall voltage pick up contacts. If this plane coincides with the film plane, as
it is the case, the Hall voltage stands for the perpendicular magnetization.

Figure 5.3 depicts the Hall voltage signal of a sample in such a configuration when
an out-of-plane (figure 5.3.(a)) or in-plane (figure 5.3.(b)) field is applied. Since the
initial discussion assumed a field applied along a hard axis, it is only valid for the
case depicted in figure 5.3.(b). Nevertheless, the maximum field that can be applied
is 1T which can be checked to be not sufficiently high to reorient the magnetization
along the in-plane direction. The continuous rotation of the magnetization is avoided
here by a small misalignment inducing a small out-of-plane component. This small
component is responsible for the jumps around ˘200mT, but they are not related
to the effective anisotropy Keff . From those results, it can be concluded that the
anisotropy field is in that case greater than 1T, but higher fields are required to
determine the precise value.
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Figure 5.3: Hysteresis loops from a sample with high PMA for (a) perpendicular
applied field and (b) in-plane applied field obtained from AHE measurements. The
effective anisotropy Keff can only be deduced from (b) since it is the case when the
applied field is perpendicular to the anisotropy axis. However, the maximum applied
field H is lower than the effective field

2Keff
µ0Ms

.

5.4 Methods to modify the magnetic anisotropy

It has been already mentioned that the magnetic anisotropy can be tuned by adjusting
the layer thickness during the sputtering process. However, there are other procedures
to modify, permanently or temporarily, the PMA. Here, two of them, both available
for the group “Integnano”, are briefly commented.

5.4.1 Application of a voltage

Samples of Co{Pt{HfO2, in general, do not exhibit PMA. However, it is possible to
modify this property by applying a voltage changing its effective anisotropy Keff

permanently. In order to do that an ionic liquid is deposited over the top oxide
layer. When a voltage is applied between the surface formed by the ionic liquid and
the bottom, the sample loses its in-plane behavior and becomes out-of-plane. This
is probably caused by the ion displacement at the interfaces and the consequent
changes on the surface properties. It is possible to measure the in-plane/out-of-plane
evolution as a function of the applied voltage and the time. Since the ionic liquid does
not cover, in general, the whole sample, only the part of it beneath the ionic liquid
becomes out-of-plane, while the rest of the sample remains in-plane. Nevertheless,
there is a transition between both behaviors, and so an anisotropy gradient. It is
worthy to mention that the part of the sample that becomes out-of-plane changes
its color. Thus, it is possible to determine approximately where the transition takes
place. This can be used to place there a mask with which is possible to make a
nanodevice. This nanodevice allows for more precise experiments, particularly, to
determine precisely where the transition occurs and its size.

Nevertheless, the electric field also modifies the anisotropy in a non-permanent way,
as it does in other samples. Those characteristics are very promising in order to
tailor high efficiency devices, since a very low current and thus very low dissipation,
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is expected in those cases.

5.4.2 Ion irradiation

Another procedure to modulate the PMA is the irradiation with an ion beam [36,
79, 80, 134, 135]. It should be noticed that this procedure also affects the DMI [48].
A vacuum chamber is needed to irradiate a sample with an ion beam. The ions
source is a gas excited due to the collision between the atoms and the electrons
accelerated by a RF signal. These ions are accelerated with a definite voltage which
allows for controlling the energy of the irradiation beam. After that, it is necessary
to deviate the ion beam towards the target using a set of magnets. Finally, the beam
is focalized by means of an einzel lens. In this case, the induced modification of the
PMA is permanent. It can be used to irradiate a large area, but it is also possible
to focus on a small area of few nanometers. This feature is one of their advantages
since it allows a fine tuning of the PMA. The change on the anisotropy depends
mainly on the irradiation dose while the modification on the DMI depends mainly
on the energy of the ions [48]. The “Integnano” group has an irradiation device of
He` allowing for the investigation of anisotropy variation on thin films.

5.5 Magneto-optic Kerr effect

The magneto-optic Kerr effect (MOKE) is the rotation of the polarization plane
of a light beam when it is reflected by a magnetic surface [66, 81, 136, 137]. This
rotation is of a different sign for Up and Down domains. The effect can be used to
measure the magnetization along one axis, so three different configurations are used:
Polar MOKE is sensitive to out-of-plane magnetization, and so it is the one in which
we are interested. Longitudinal and transverse MOKE are sensitive to the in-plane
directions: the longitudinal case to the in-plane direction along the reflection plane

FigureMain6.pdf

Figure 5.4: Experimental setup for polar MOKE measurements. The main compo-
nents are indicated: the light source, the sample, the detector and the two polarizers.
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ImagenMain7.pdf

Figure 5.5: (a) and (b) MOKE images obtained after normalizing the images to a
reference one. (c) difference between (a) and (b).

and the transverse one the in-plane direction perpendicular to it. Since this effect is
proportional to the polarization perpendicular to the magnetization direction, the two
in-plane configurations require high incident angles and have usually lower intensities.

Figure 5.4 shows the polar MOKE set up of the group “Photons - Magnons et
Technologies Quantiques” of the “Institut des Nanosciences de Paris”. A red LED
lighting a diaphragm up is used as a light source. The first lens focuses the light
beam on the focal plane of the objective. Then, the light is polarized and lights
the beam splitter up. One of the secondary beams reaches the objective and the
sample. At this time, the polarization plane varies depending on the magnetization
state of the sample. Afterward, the light beam goes through the beam splitter
and reaches the second polarizer. This polarizer is not set in the perpendicular
direction with respect to the first one, but with a small angle from it in order to
circumvent some issues derived from the total extinction geometry [138]. Finally,
the last lens forms the image on the CCD camera which picks up the signal. The
CCD camera counts photons reaching each pixel to form an image. Figures 5.5.(a)
and 5.5.(b) are examples of the images produced by a polar MOKE experiment when
a reference image is used to more clearly show the magnetic behavior. Figure 5.5.(a)
corresponds to a sample where a DW can be seen between the darker and brighter
area, while 5.5.(b) corresponds to the same sample after the application of a magnetic
field pulse. As it can be checked, DW has been displaced. This displacement can
be measured in pixels by subtracting both images. In that case, figure 5.5.(c) is
got. In that way, this technique can be employed to obtain DWs velocities since the
conversion from pixels to µm is known provided the focal length of the employed
lenses and the velocity is derived from the length of the magnetic field pulse. As it
has been already indicated, these measurements are also used to obtained hysteresis
loops.
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Chapter 6

Asymmetric driven dynamics of
Dzyaloshinskii domain walls in
ultrathin ferromagnetic strips with
perpendicular magnetic
anisotropy∗

The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular
magnetic anisotropy is studied from both numerical and analytical micromagnetics.
The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated
to a bi-layer strip arrangement has been considered, giving rise to the formation
of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions
an inner magnetization structure defined by a certain orientation angle that make
them to be considered as intermediate configurations between Bloch and Néel walls.
Two different dynamics are considered, a field-driven and a current-driven dynamics,
in particular, the one promoted by the spin torque due to the Spin-Hall effect.
Results show an inherent asymmetry associated with the rotation of the domain wall
magnetization orientation before reaching the stationary regime, characterized by
a constant terminal speed. For a certain initial DW magnetization orientation at
rest, the rotation determines whether the reorientation of the DW magnetization
prior to reach stationary motion is smooth or abrupt. This asymmetry affects the
DW motion, which can even reverse for a short period of time. Additionally, it
is found that the terminal speed in the case of the current-driven dynamics may
depend on either the initial DW magnetization orientation at rest or the sign of the
longitudinally injected current.

∗Adapted from L. Sánchez-Tejerina, Ó. Alejos, E. Mart́ınez, and J.M. Muñoz. Asymmetric
driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular
magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 409(Supplement C):155 – 162,
2016. doi:10.1016/j.jmmm.2016.02.067.
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6.1 Introduction

Domain walls (DWs) in ferromagnetic materials are boundaries separating regions
(domains) that are magnetized differently. The efficient displacement of DWs along
thin ferromagnetic strips is a prerequisite condition for the application of the DW-
based spintronic devices. [27, 140] DWs in soft ferromagnetic strips, with Permalloy
being the most commonly used material, have been extensively analyzed during the
last decades, both from theoretical and experimental points of view (see [103] for
an extended review). Nowadays most of the interest is focused on ultrathin strips
sandwiched between a nonmagnetic heavy metal and an insulator, which depict high
perpendicular magnetocristalline anisotropy (PMA) and where the current-induced
DW motion is anomalously efficient. [141] Due to the narrow DW widths and lower
threshold current densities for motion of DWs, these asymmetric PMA systems are
promising platforms for solid-state magnetic devices based on electrically manipulated
DWs.

Apart from their potential for technological applications, and due to the rich physics
involved, the analysis of the static properties of DWs in asymmetric stacks with strong
PMA, and their field- and current-driven DW dynamics, are both also interesting
from a pure fundamental point of view. The high efficiency of the current-induced
DW dynamics was initially attributed to a Rashba effective field that stabilizes
Bloch DWs against deformation, permitting high-speed motion through conventional
non-adiabatic spin-transfer torque (STT). [141] However, a number of recent findings
suggest that STT contributes negligibly to DW dynamics in these ultrathin structures
and interfacial phenomena are instead responsible. [10–12, 21] Spin-orbit coupling
(SOC) is at the basis of several effects in these systems. Firstly, SOC between
the ferromagnetic strip and the insulating oxide overlayer induces the strong PMA
in the ferromagnetic strip. Besides, SOC at the interface between the ferromag-
netic layer and the heavy metal underlayer may result in different key phenomena
explaining the experimental observations.[10–12, 21] Indeed, the spin Hall effect
(SHE) in the adjacent heavy metal has emerged as a possible alternative mecha-
nism to the STT. The SHE produces a spin current from charge scattering in the
heavy metal, and the resulting spin accumulation at the heavy-metal/ferromagnet
interface generates a Slonczeswski-like torque [9, 142, 143] sufficiently strong to
drive the DW motion.[10–12, 21] However, the SHE-induced torque alone cannot
directly drive the magnetostatically preferred Bloch DWs in these materials.[105]
The Dzyaloshinskii-Moriya interaction (DMI), arising from the SOC and asymmetric
interfaces, determines the magnetization texture of the DWs [38, 40, 41, 144]. The
DMI is a form of magnetic exchange interaction in which adjacent magnetic moments
prefer to align orthogonal to each other with a certain handedness, in contrast with
the ferromagnetic exchange interaction in which the magnetic moments prefer to align
parallel. The DMI provides the missing ingredient to explain the current-induced
DW motion stabilizing Néel DWs with a built-in longitudinal chirality, such that
the SHE alone drives them uniformly and with high efficiency. [12, 17, 19, 41, 72, 145]

Although significant advances have been achieved during the last three years in the
analysis of these systems, there exist still some interesting effects which have not stud-
ied so far. In particular, in asymmetric PMA heterostructures with moderate DMI
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interaction, the internal magnetization of the DWs do not depict neither pure Bloch
(perfectly aligned along the transverse in-plane axis) nor pure Néel configurations
(perfectly aligned along the longitudinal in-plane axis), but it adopts an intermediate
state between them. [41] Here we report an analytical and micromagnetic study
which indicates that the internal magnetization moment is indeed degenerate, i.e.,
under moderate DMI, two DW configurations are energetically possible. While
the longitudinal magnetization component is governed by the chirality of DMI, the
transverse component is independent of this chirality, so that it can take either a
positive or a negative value. This degeneracy of equilibrium states results in asym-
metric field-driven and current-driven DW dynamics, which are both analytically
and numerically analyzed here in detail.

This work is structured as follows. Section 6.2 describes the one-dimensional model,
which is used in section 6.3 to explore the equilibrium DW configurations at rest, with
emphasis on describing in details the introduced DW degeneracy. The field-driven and
the current-driven DW dynamics is evaluated in section 6.4, where one-dimensional
predictions are compared to full micromagnetic simulations. The main conclusions
of our study are discussed in section 6.5.

6.2 One-dimensional model

The one dimensional model (1DM), as it was originally meant,[71, 146] considers the
existence of magnetic domains within the medium, separated by domain walls (DWs),
transitional areas which establish an interface between two neighbor domains. These
DWs can be schematically represented by a certain surface defined implicitly by an
analytical function ψ px, y, z, tq “ 0.[147] In fact, the expression ψ px, y, z, tq “ ψ0

defines a collection of surfaces that propagates at every point in a direction given by

the unit vector ∇ψ
|∇ψ|

ˇ

ˇ

ˇ

ψ“ψ0

at a speed that can be calculated as Btψ
|∇ψ|

ˇ

ˇ

ˇ

ψ“ψ0

.

Since the orientation of the magnetization at every point is expressed by means
of a couple of angles which are, in general, dependent on the space coordinates
and time, there must exist a couple of extremal values for both angles defining
each magnetic domain. In the simplest case, the orientation of the magnetization
propagates coherently, and the interface is determined by a constant value of a
certain component of the magnetization, which is given by any intermediate value of
either one or both orientation angles. The instantaneous position of the interface can
be then connected with a certain variable defined all over the interface trajectory.

In the case of large strips, a 1DM can be derived from the Landau-Lifchitz-Gilbert
equation of the magnetization along with the commonly named Walker trial’s func-
tions, after the application of variational principles.[124] Walker trial’s functions
introduce the concepts of DW position, DW magnetization orientation and DW
width ∆, the latter obtained in terms of exchange and anisotropy free energies. In
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the absence of any external torque, one pair of coupled equations can be derived:

9q

∆
´ α 9Φ “

γ0

2µ0Ms∆

Bσ

BΦ
, (6.1)

α
9q

∆
` 9Φ “ ´

γ0

2µ0Ms

Bσ

Bq
, (6.2)

where γ0 and α correspond respectively to the gyromagnetic ratio and the Gilbert
damping constant, µ0 is the vacuum permeability, and Ms is the saturation mag-
netization of the medium. The variable q represents the instantaneous position
of the DW along the strip, and Φ determines in the case of strips with PMA the
homogeneous orientation of the in-plane component of the magnetization with respect
to the longitudinal direction, as it will be further revised. Finally, σ represents the
free energy density per unit surface associated to the presence of the DW, which
is obtained by integrating the volume free energy density along the longitudinal
direction. This free energy density per unit surface originally included exchange,
anisotropy and magnetostatic interactions. However, previous equations can be
straightforwardly used in order to add Zeeman interactions by considering them
as part of such energy density. Some upgrades can also be made to include other
external torques,[16, 125] pinning,[148] or thermal effects.[117] Besides, the suitability
of the use of the abovementioned trial’s functions for strips with moderate interfacial
DMI has been adequately stated by other authors,[41] that introduced the concept
of Dzyaloshinskii domain walls (DDWs). In this way, DDWs are intermediate cases
when the orientation of the in-plane component of the magnetization with respect to
the longitudinal direction differs from the extreme situations known as Néel DWs or
Bloch DWs, as it will be further detailed.

In this work, previous equations have been tailored to study the deterministic
dynamic of DDWs in perfect strips with PMA driven by both external perpendicular
field and SHE, being then written as follows for an up to down transition of the
magnetization:[12]

9Φ
`

1` α2
˘

“ γ0

´

Hz `
π

2
HSH cos Φ

¯

`

` αγ0 sin Φ pHK cos Φ´HDq , (6.3)

9q

∆

`

1` α2
˘

“ αγ0

´

Hz `
π

2
HSH cos Φ

¯

´

´ γ0 sin Φ pHK cos Φ´HDq . (6.4)

The different H-values stand for both the effective fields equivalent to the in-
ner interactions within the ferromagnet, and the external stimuli. In this way,
HK “Ms pNx ´Nyq, where Ms is the saturation magnetization and Nx and Ny are
respectively the so-called demagnetizing terms along the longitudinal and trans-
verse axes, whose difference is approximately proportional to the film thickness
t.[149] Additionally, HD is proportional to the Dzyaloshinskii-Moriya parameter D
as HD “ ´

πD
2µ0Ms∆

.† Finally, Hz is the applied out-of-plane field and HSH defines the

†The definition of HD has been made according to the expression of the volume density free
energy associated to DMI given by εDMI “

D
M2

s
rpM ¨ uq∇ ¨M´M ¨∇ pM ¨ uqs, u being a unit
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spin-orbit torque (SOT) associated to SHE, depending on the Spin-Hall angle in the
heavy metal θSH [105] and being proportional to the longitudinally injected current
jx as HSH “

~θSH
2µ0eMst

jx, with e representing the electron charge, and ~ the reduced
Planck constant.

6.3 Equilibrium condition

Previously to the dynamic characterization, a brief review of the equilibrium condition
for DDWs is needed. In the absence of external stimuli the DW magnetization is
oriented along a certain angle Φ|eq “ ϕ0. The equilibrium condition is then derived
from the minimization of the free energy density per unit surface as calculated in
[41] with regard to the orientation angle. This leads to the equations:

sinϕ0 pHK cosϕ0 ´HDq “ 0, (6.5)

HK

`

cos2 ϕ0 ´ sin2 ϕ0

˘

´HD cosϕ0 ď 0, (6.6)

that admit a solution in the form:

cosϕ0 “ sign

ˆ

HD

HK

˙

min

ˆ

1,

ˇ

ˇ

ˇ

ˇ

HD

HK

ˇ

ˇ

ˇ

ˇ

˙

, (6.7)

which includes the extreme cases of absence of DMI, that is, HD “ 0 and ϕ0 “ ˘
π
2
,

as for Bloch DWs, or strong DMI, so that
ˇ

ˇ

ˇ

HD
HK

ˇ

ˇ

ˇ
ě 1, and ϕ0 “ 0 or ϕ0 “ π, as for

Néel DWs. Any other values of the DMI lead to DDWs, so that two orientations
of the magnetization within the wall are possible for every single value of the DMI
parameter, being these two orientations symmetric with respect to the longitudinal
axis. This is schematically depicted in figure 6.1, where some axes have been proposed
in order to clarify the geometry and the magnitudes here defined. A strip with
three micromagnetically calculated domains (up-down-up) is presented, with mz

corresponding to the out-of-plane component of the magnetization, and mx and my

being respectively the longitudinal and transverse in-plane components. Details on
how micromagnetic calculations have been carried out are further given along the
paper. The stacked color maps in each subfigure show the strength of any of these
components at the domains and at the DWs. Since the out-of-plane component
of the magnetization goes through zero within the DW, the in-plane component
take at such point a maximum of magnitude mDW oriented along the Φ angle. As
it has been stated, under equilibrium conditions this angle is fixed to one of the
two possible values of ϕ0 which are a solution of eq. 6.7. In this way, while the
longitudinal component of the magnetization within the DW is governed by the
chirality due to DMI, the transverse component can take two symmetric values. In
the case of figure 6.1.a) both DWs have a positive transverse component, while in
figure 6.1.c) both DWs have a negative transverse component. Different signs of the
transverse component for neighbor DWs are also possible, as it is shown in figure 6.1.b)

vector perpendicular to the interface between the ferromagnet and the heavy metal. This definition
is coherent with the numerical expressions used by software packages such as MuMax3[122] or
GPMagnet[150]
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Figure 6.1: Definition of the geometry and some of the magnitudes involved in this
study, in particular, the applied stimuli in the form of out-of-plane magnetic fields Hz

and longitudinal currents jx. Some DDW static configurations are also depicted. In
particular, subfigures (a), (b) and (c) show how the chiral character of the DMI forces the
longitudinal component of the magnetization mx within a DW to rotate either clock- or
counterclockwise, but not both. However, the transversal component of the magnetization
my is achiral, so that, this component is free to rotate within the DW. In this way, this
rotation can take either the same direction within two consecutive DWs, as in subfigure
(b), or different directions, as in subfigures (a) and (c).

Next section shows that these two degenerate equilibrium states of DDWs for a given
value of the DMI parameter present dynamic behaviors under the same external
stimulus, such as out-of plane applied fields or SHE associated to longitudinally
injected currents, which are intrinsically different. These differences can be also
revealed by applying the external stimulus in opposite directions to a certain DDW,
as it is further demonstrated.

6.4 Dynamics of Dzyaloshinskii DWs

As the above referenced experimental results evidence, the dynamic of a DW admits
a stationary motion under the application of certain stimuli, which is characterized by
a constant DW speed. The range of the applied stimuli that allows such a stationary
behavior depends on the type of torque or interaction. For example, field-driven
dynamics is characterized by two different regimes, the abovementioned stationary
one for low applied fields, and a lower-velocity regime with a region of negative
mobility just above the critical field called Walker field. Nevertheless, current-driven
dynamics as this induced by the SHE is characterized by a single and stationary
regime. This can be straightforwardly deduced from eq. (6.3), which states that 9Φ
is a continuous and bounded function of Φ. If the DW starts from an equilibrium
condition, the immediate application of either external stimulus gives to 9Φ a certain
finite value, whose sign defines if the DW magnetization orientation initially rotates
clock- or counterclockwise. Two behaviors may occur from this point on. On the one
hand, 9Φ may vary without a change of sign as Φ varies in time. This situation occurs
when both the upper and lower bounds of 9Φ have the same sign, then limiting the
rotation speed of the DW magnetization orientation, but preventing the stationary
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regime from being reached. That is the case of large applied out-of-plane fields, that
may mask the other terms in the RHS of eq. (6.3), and Walker breakdown occurs.
On the other hand, the rotation of the DW magnetization orientation may reach a
certain angle so that 9Φ goes through zero. From this instant on, rotation stops and
the stationary motion is reached.

According to the previous discussion, it can be stated that the stationary motion is
characterized through the conditions 9Φ “ 0, and then 9q “ const, the former leading
to the relationship:

Hz `
π

2
HSH cosϕs “ α sinϕs pHD ´HK cosϕsq , (6.8)

ϕs representing the DW magnetization orientation when the stationary regime is
reached. From the comparison between eqs. (6.7) and (6.8), and the characteristics
and dependences of 9Φ given by eq.(6.3), it can be immediately inferred that the tran-
sition from the DW equilibrium state to its stationary motion involves a monotonous
rotation of the DW magnetization orientation from ϕ0 to ϕs.

6.4.1 Field-driven dynamics

As abovementioned, the DDW dynamics driven by the application of an out-of-plane
external field admits two different regimes. For the sake of a lighter notation, let us
rewrite eq.(6.8) in the absence of SHE as:

h “ sinϕs pδ ´ cosϕsq , (6.9)

where h “ Hz
αHK

is a normalized value of the applied field, and δ “ HD
HK

defines
the normalized strength of DMI. Since the RHS of previous equation is bounded,
there are h-values so that the equation has no solution. These h-values are then
above Walker breakdown, and the frontier can be delimited by considering the global
maxima of eq.(6.9). At the frontier, the DW magnetization orientation ϕW is such

so that Bh
Bϕs

ˇ

ˇ

ˇ

ϕs“ϕW
“ 0. This is a necessary, but not sufficient condition. In any case,

this condition leads to the relationship:

cosϕW “
δ ˘

?
δ2 ` 8

4
. (6.10)

For strong DMI, characterized by absolute values of δ greater than one, only one
sign in the equation above leads to a valid result, i.e., the minus sign for positive
δ, then defining the positive and negative Walker fields. It must be noted that the
equilibrium condition for such δ-values establishes pure Néel walls, that present a
perfectly symmetric behavior under the proposed stimuli, as it is further discussed.
However, in the case of moderate DMI, when DDWs are present, both signs in
eq.(6.10) are possible, one of them corresponds to global extrema while the other
correspond to local extrema. As in the case of large δ, global extrema define the
limit of the stationary motion under an external applied field, i.e., Walker breakdown.

In order to analyze the importance of local extrema, let us consider a DDW ini-
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Figure 6.2: DDW dynamics under the influence of an out-of-plane external field. In
these graphs, h represents a normalized value as it has been defined along the text.
Positive h-values stand for fields applied along the direction of the magnetization in the
up-domain, while negative values stand for fields applied in the opposite direction, i.e., the
magnetization in the down-domain. q represents the instantaneous DDW position, and v
is the instantaneous speed. Φ corresponds to the DW magnetization orientation. Plots
correspond to the numerical calculation of eqs.(6.3) and (6.4). Figure a) is obtained for
applied fields of h “ ˘0.23, and figure b) is obtained for applied fields of h “ ˘0.88. The
sign of the applied field may promote completely different DDW dynamics.

tially in equilibrium with a DW magnetization orientation fulfilling the condition
cosϕ0 “ δ, according to eq.(6.7) and the definition of δ. The application of the
external field h gives rise to a counterclockwise rotation for positive h, that is, applied
field along the direction of the magnetization in the up-domain, and a clockwise
rotation for negative h, as it can be inferred from eq.(6.3). For a certain sign of h,
and provided h is sufficiently strong, the DW magnetization orientation can reach
this local extremum. However, if this h-value is fixed, but its sign is changed, no
local extrema are reached. This is clearly shown in Figure 6.2. Plots represent the
DDW dynamics under the influence of an out-of-plane external field, calculated
by numerically solving eqs.(6.3) and (6.4) by means of the classical Runge-Kutta
method. In order to depict realistic values of time, DW position q and DW speed
v, a value of ∆ of about 6nm has been considered in the graphs. An initial DW
magnetization orientation ϕ0 “ 60o, corresponding to a δ-value of 0.5, has been taken.
Figure 6.2.a) is obtained for applied fields of h “ ˘0.23, slightly higher in absolute
terms than the value need to reach a local minimum. A clear asymmetry with the
sign of h is shown. While the positive h-value promotes a soft transition from the
equilibrium condition to the stationary motion, the negative h-value gives rise to an
abrupt transition of the DW magnetization orientation prior to reach the stationary
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motion. During this transition, the DDW motion even reverses for a short period of
time, as shown in the evolution of the DW position q. Similar results can be obtained
if the applied field is increased close to the Walker breakdown (Figure 6.2.b). How-
ever, the shown asymmetry do not affect the terminal speed which is given by γ0Hz∆.

Micromagnetic simulations have been carried out with the help of the GPMagnet
software package[150] in order to support these analytical results. Along these
simulations, a ferromagnetic strip of 1nm thickness and 160nm width with PMA
grown on a heavy metal layer has been considered. Since this software performs 21

2
D

simulations in finite differences, computational cells of 4nmˆ4nmˆ1nm have been
considered. The geometry has then been mimicked by means of an array of 40ˆ1024
cells with appropriate boundary conditions. Values of the material parameters that
are usually found in the literature have been taken: saturation magnetization of
Ms “ 7 ¨ 105 A

m
, exchange constant of A “ 10´11 J

m
, uniaxial anisotropy constant

ku “ 4.8 ¨ 105 J
m3 . A DMI parameter D of the order of 10´5 J

m2 has been used.

As an example, Figure 6.3 presents the micromagnetic results obtained in the case
of a sample with δ “ ´0.5. In this case, equilibrium conditions determine that one
of the two possible orientations at rest of the DW magnetization is ϕ0 “ 120o, as it
can be checked in the graph for h “ 0. The figure shows the dependence of the DW
magnetization orientation at stationary motion as a function of the external field h.
Dots are calculated by means of micromagnetic simulations, while the continuous plot
corresponds to the results provided by eq.(6.9) obtained after the 1DM analytical
treatment. Some small discrepancies are found, mainly where discontinuities are
present. These discrepancies can be considered as inherent to the approximations
made by the 1DM model, in particular to the calculation of the wall width by means
of ∆ and the computation of the energy densities depending on this parameter.
However, the degree of self-consistency of the results shown allows to draw some
conclusions. In this particular example, the stationary motion is smoothly reached

Figure 6.3: Comparison between micromagnetic simulations and the predictions of the
1DM analytical model. Different signs of the applied fields lead to different behaviors of
the DDW.
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Figure 6.4: Dependence of the DW magnetization orientation at stationary motion on the
applied out-of-plane field with HD

HK
as a parameter. While both Bloch and Néel walls present

symmetric behavior, DDWs present a clear asymmetry with the applied field governed by
the strength of the DMI.

from the equilibrium orientation for negative fields, up to the corresponding negative
Walker field. However, an abrupt transition occurs for positive h-values, before
the Walker field is reached. The inset shows the normalized in-plane components
of the magnetization at the center of the DDW. mx is the component along the
longitudinal axis, while my is the transverse component. Starting from equilibrium
conditions (filled dot), negative fields give rise to a smooth clockwise rotation of the
DW magnetization orientation for all applied fields up to the Walker field. On the
contrary, positive fields leads to a counterclockwise rotation that pass through an
abrupt reorientation of the DW magnetization prior to reach Walker breakdown.

In order to complete the 1DM analytical study, Figure 6.4 shows the dependence
of the DW magnetization orientation at stationary motion on the normalized out-
of-plane field h with δ, i.e., HD

HK
, as a parameter. On the one hand, large HD

HK
ratios

promote Néel walls, their chirality depending on the sign of the DMI parameter
D, whose behavior is completely symmetric with regard to the sign of h. As it is
well-known, the larger the ratio is, the farther the two endpoints of the corresponding
curve are from each other, meaning that Walker breakdown requires larger applied
fields. On the other hand, no DMI allows the existence of Bloch walls. In this
case, the dependence of the DW magnetization orientation at stationary motion is
depicted for a Bloch DW with ϕ0 “ 90o. The behavior is also symmetric with regard
to the sign of h. However, DDWs present a clear asymmetry under the application
of an external out-of plane field. This behavior can be considered as hysteretic in
the following sense. Under equilibrium conditions, a DDW may take two possible
orientations, symmetric with respect to the longitudinal axis. The application of an
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Figure 6.5: Current-driven DDW dynamics under the influence of SHE for positive and
negative longitudinal currents as calculated analytically with the help of the 1DM. As
in the case of the field-driven dynamics, asymmetry with the sign of the stimulus is also
noticeable.

out-of-plane field promotes the rotation of the initial DW magnetization orientation
before a state of stationary motion is reached. Depending on the sign and the
strength of the applied field, the DW magnetization orientation may undergo an
abrupt reorientation prior to the stationary state. If this reorientation occurs, the
DDW do not recover its original orientation at rest, but the symmetric one with
respect to the longitudinal axis, after field removal. The existence or absence of these
DW magnetization reorientation noticeably defines DDW dynamics, as the dynamic
plots in Figure 6.2 showed.

6.4.2 Current-driven dynamics

As it has been already stated, field-driven dynamics and current-driven dynamics
governed by SHE present a noticeable difference, that is, the absence for the latter of
Walker breakdown. This can be straightforwardly proved from eq.(6.8). Analogous
to the precedent study, a lighter version of this equation can be proposed in the
following way:

h “ tanϕs pδ ´ cosϕsq , (6.11)

where now h “
π
2
HSH
αHK

. Since the RHS of previous equation is not bounded, a station-
ary motion is always possible under the SHE torque. However, the function defined
in eq. (6.11) may possess local extrema for absolute δ-values ranging from 0 to 1,
that is, for DDWs. This local extrema are reached when the DW magnetization
orientation fulfills the condition cosϕL “

3
?
δ. As in the precedent case, when the

DW magnetization orientation reaches either of the two local extrema, an abrupt
reorientation occurs prior to the establishment of the stationary motion.

As a first example, Figure 6.5 shows the DDW dynamics under SHE for a certain
current flowing longitudinally in both one and the opposite direction calculated by
means of the 1DM analytical description. In order to give a much clearer idea about
orders of magnitude, one set of concrete values has been chosen, which are current
density jx “ ˘4 ¨ 1010 A

m2 , Spin-Hall angle θSH “ 0.11, with a damping constant
α “ 0.013 and a DW width ∆ of about 6nm, values that can be also found in the
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Figure 6.6: Dependence of the DDW terminal speed at stationary motion on the applied
longitudinal current due to SHE. The h-value in the graph is defined as proportional to
the current density (see text). The graph compares micromagnetic simulations and the
results obtained from the 1DM model. A noticeable asymmetry is found if the stimulus is
reversed, leading to a sharp transition of the terminal speed in a certain range of applied
currents.

referenced literature. In a similar fashion to the field-driven dynamics, a smooth
rotation of the DW magnetization is promoted if the current flows in one direction,
while an abrupt transition occurs when the current flows in the opposite direction.

Differently from the field-driven dynamics, the 1DM also predicts the asymmetry
of the terminal speed at stationary motion, which undergoes a sharp transition for
currents that lead the DW magnetization orientation to values close to the local
extrema. Figure 6.6 shows the dependence of this terminal speed on the h-value
defined after eq.(6.11). Dots correspond to numerical simulations carried out with
GPMagnet using the abovementioned parameters, while the continuous plot has been
analytically calculated from the 1DM. A rather good agreement between numerical
and analytical calculations is obtained. Both show the sharp transition predicted by
the 1DM, in this case, for an h-value around -20. It can be noticed that the terminal

speed at the peak of this sharp variation, calculated from the 1DM as γ0∆ 3?δ
α

π
2
HSH ,

may surpass the terminal speed for infinite current given by γ0HD∆.

As a summary, the analytically calculated dependence of the DW magnetization
orientation at stationary motion on the applied current with HD

HK
as a parameter is

depicted in Figure 6.7. The case of Bloch DWs is not considered, since SHE do not
promote their motion in the system under study. For HD

HK
ratios greater or equal

to one, the plots show that Néel walls behave symmetrically under the influence
of the torque due to SHE. However, DDWs have a hysteretic-like behavior, rather
analogous to the one found for the field-driven dynamics. It must be noticed that,
according to this hysteretic-like behavior, the terminal speed depends on the initial
DW magnetization orientation under equilibrium conditions, i.e., for the same applied
longitudinal current, the dynamics depends on whether the initial DW magnetization
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Figure 6.7: Dependence of the DW magnetization orientation at stationary motion on
current through the normalized h-value (see text) with HD

HK
as a parameter. It is shown

that Néel walls present symmetric behavior, while DDWs present a hysteretic-like behavior.
As a consequence, a DDW may reach different terminal speeds depending on either the
sign of the current or its initial orientation at rest.

orientation at rest is pointing in one of the two possible directions, symmetric with
respect to the longitudinal axis, that this orientation can take.

6.5 Conclusions

The dynamics of Dzyaloshinskii DWs in ferromagnetic strips with PMA has been
analytically studied with the help of the 1DM, and the results compared with mi-
cromagnetic simulations. Two different stimuli have been considered: out-of-plane
applied magnetic fields and torques induced by longitudinal currents due to SHE.
The application of such stimuli may lead to a stationary regime characterized by a
constant terminal DW speed. However, the behavior of the DDW dynamics has been
found to be asymmetric with respect to either the sign of the applied stimulus, or the
initial DW magnetization orientation. This asymmetry arises from the fact that the
DW magnetization orientation may rotate clock- or counterclockwise, depending on
this sign. The stationary regime is then reached when this rotation stops. However,
the transition from the DW magnetization orientation at rest to the orientation at
stationary motion can be either smooth or abrupt depending on the rotation. The
initial DW magnetization orientation under equilibrium conditions then determines
which sign of the stimulus promotes its abrupt reorientation prior to reach the
stationary regime. This process can be characterized in the presented results by a
reverse of the DDW motion for a short period of time.
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Additionally, some differences between field-driven and current-driven dynamics have
been reported. Some of them have been already highlighted by other authors, such
as the absence of Walker breakdown in the case of current-driven dynamics governed
by SHE. Besides, the asymmetry here reported do not affect the DW terminal speed
in the case of field-driven dynamics. However, the terminal speed for current-driven
dynamics is found to be asymmetric in the range of lower injected currents, then
depending on either the initial DW magnetization orientation or the sign of the
applied stimulus.

Finally, since the abrupt reorientation of the DW magnetization occurs for higher
injected currents, the degenerate condition of the initial DW magnetization orientation
also determines different traveled distances for a train of current-driven DWs in a
strip, which may be also of experimental relevance.
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Chapter 7

Steady-state configurations of
Dzyaloshinskii domain walls
driven by field and current∗

The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic
strips with perpendicular magnetic anisotropy, for different values of both perpendic-
ular field and longitudinal current excitation associated to the Spin-Hall effect, has
been studied, taking into account different values of the interfacial Dzyaloshinskii-
Moriya interaction (DMI). This study has been carried out with the help of the q-Φ
one-dimensional model and micromagnetic simulations. We have found that Walker
breakdown may be avoided by applying a certain threshold current, even though the
inverse effect is also possible. We have also found that, for particular values of field
and current, the magnetization within the DDW experiences an abrupt change of
orientation, which provokes a change on the contribution of current to the terminal
DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected
from the model.

∗Adapted from L. Sánchez-Tejerina, O. Alejos, and E. Mart́ınez. Steady-state configurations
of dzyaloshinskii domain walls driven by field and current. Journal of Magnetism and Magnetic
Materials, 423(Supplement C):405 – 410, 2017. doi:10.1016/j.jmmm.2016.09.116.
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7.1 Introduction

The dynamics of a domain wall (DW) in a ferromagnetic strip driven by the solely
application of external magnetic fields Hz, parallel to the magnetizations within
the two adjacent domains, is a well-known issue, characterized by a monotonic
increasing of the DW velocity until the phenomenon known as Walker breakdown
occurs at Hz ě HW where HW is the so-called Walker field [71]. The main difference
between both behaviors, below Hz ă HW and above Hz ą HW this breakdown, is
that the former promotes a DW dynamics characterized by a stationary regime,
where the inner DW magnetic structure holds, while the latter is characterized
by a DW magnetization precessing around the applied magnetic field. The max-
imum speed for the DW is then reached in the limit between both behaviors, for
Hz “ HW . Besides, asymmetric structures consisting in a ferromagnetic (FM) layer
sandwiched between a heavy-metal (HM) and an oxide, which exhibit high perpen-
dicular magnetic anisotropy (PMA), present a particularly efficient current-driven
DW dynamics [7–9, 11–13, 17, 18, 20–23, 71, 152]. The spin-orbit coupling (SOC)
and the interfacial Dzyaloshinskii-Moriya interaction (DMI) have been revealed to be
the main ingredients that explain this effectiveness, in particular, the establishment
of a spin current connected with the Spin-Hall effect (SHE), that promotes spin
accumulation at the FM-HM interface [9, 11, 12]. The DW driven by the solely appli-
cation of longitudinal currents, then transverse to the DW, has also been adequately
characterized in these systems [41, 139], showing that, contrary to the field-driven
case, there is not such a Walker breakdown. An initial linear increase of the DW
velocity with current occurs, which tends asymptotically to a finite value for higher
currents as the orientation of the magnetization within the DW approaches the
direction perpendicular to the current.

As a further step, studies of the DW dynamics driven by stimuli resulting from
the combination of fields and currents, which have not been reported so far, may
contribute to a deeper knowledge of the underlying physical mechanisms that govern
magnetization textures. Accordingly, this work has been conceived as a contribution
in this direction, and both the micromagnetics and the one-dimensional approach
have been taken as its basis. The dependence of the DW inner structure on the
strength of the DMI has been considered in this study, since this interaction governs
the formation of achiral, homochiral or intermediate DWs, the latter referred to as
weak Dzyaloshinskii domain walls (wDDW) in this paper. Results are depicted as
phase diagrams which show at a glance the most outstanding features of such a
driven DW dynamics. In particular, it can be confirmed its inherent asymmetric
nature, and the boundaries that determine whether a precessional regime occurs or
not, then defining the conditions of highest dynamic efficiency.

7.2 One dimensional model and field-current driven

dynamics

The one dimensional model (1DM) was developed to study the behavior of the
transitional area between two magnetic domains, i.e, DWs, where the magnetization
changes smoothly from the magnetization in one domain to the magnetization

84



Steady-state configurations of DDWs driven by field and current

within the other one [41, 124, 139]. The 1DM for an infinite strip with high PMA
and moderate interfacial DMI excited by a perpendicular magnetic field Hz and
a longitudinal current ja predicts that the DW position and its orientation with
respect to the longitudinal in-plane (x-axis), as represented in the inset of 7.1.(b),
are described by a set of two equations:

9q “
γ0∆

1` α2
rΩA ` αΩBs (7.1a)

9Φ “
γ0

1` α2
r´αΩA ` ΩB ´ αΩAs (7.1b)

γ0, α and Ms being respectively the gyromagnetic ratio multiplied by the vacuum
permeability µ0, the Gilbert damping parameter, and the saturation magnetization
of the medium. Besides, ∆ ”

a

A{Keff determines the DW width, A being the
exchange parameter, and Keff including the perpendicular anisotropy constant and
the shape effect as Keff « Ku ´

1
2
µ0M

2
s for the strip geometry. The other terms are

defined as:

ΩA ” HD sin Φ´Hk sin Φ cos Φ´
π

2
HFL cos Φ (7.2a)

ΩB ” Hz `HSL cos Φ (7.2b)

where Hk is a constant field related to magnetostatic interactions, which takes into
account geometric and material characteristic parameters [149], and HD ”

π
2

D
µ0Ms∆

is a constant field accounting for the DMI through the parameter D. The torque
exerted by the applied current ja is in general composed of two main contribu-
tions [10], a Slonzceswskii-like torque (SL-SOT) and a Field-like torque (FL-SOT)
expressed respectively by means of the constants HSL and HFL. The first one has
been already introduced as due to the spin accumulation at the FM-HM interface
associated with the spin current caused by the SHE in the way HSL ”

~θSH
2eµ0Mst

ja,
where the parameter θSH stands for the spin-Hall angle, ~ is the reduced Planck
constant, and t accounts for the strip thickness. The second constant can be written
as proportional to the former through a certain factor k so that HFL ” kHSL.
Finally, it must be pointed out that the suitability of the use of the above men-
tioned trial’s functions for these strips was initially stated by other authors [41],
who introduced the concept of Dzyaloshinskii domain walls (DDWs). Depending on
the strength of the DMI, three types of DWs can be then reported: achiral DWs,
usually named as Bloch DWs (BDW), that appear in the total absence of such
an interaction, homochiral DWs, i.e., Néel DWs (NDW), for large values of the
DMI, and intermediate cases between both of them. As it has been stated in the
introduction section, the latter are referred to as wDDWs in this text. These three
types of DWs are represented in the case of an up to down (UD) transition of the
magnetization, sketching 7.1.(a) the magnetization for a BDW, 7.1.(b) a wDDW
in the case of a material with negative DMI parameter, and 7.1.(c) a NDW. It
must be reminded at this point that, similarly to BDWs, such wDDWs admit a
doubly-degenerate equilibrium state, symmetric with respect to the x-axis, that can
be straightforwardly determined from the condition in the absence of any external
stimulus. 7.1.(b) depicts indeed only one of the two equilibrium states for the wDDW.
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Figure 7.1: Schematic representation of a) Bloch domain wall, b) weak Dzyaloshinskii
domain wall for a material with negative DMI constant, c) Néel domain wall and inset b)
domain wall orientation ( Φ ) with respect to the longitudinal in-plane axis (x) as the one
dimensional model defines it.

In the present work, the DW dynamics is studied under the combined application of
both an external field pHzq and a longitudinal current pjaq. According to the 1DM,
the rotation speed of the DW orientation, i.e., equation (7.1b), possesses one term in-
dependent of Φ, which is associated with the external field torque Hz, and whose sign
then remains along the DW dynamics. This term is to be named as Hz-term in the
following discussion. Oppositely, the other terms may change its sign depending on Φ,
and are due to the magnetostatic (Hk-term) and Dzyaloshinskii-Moriya interactions
(HD-term), and the effect of the applied current (ja-term), the latter including both
SL-SOT and FL-SOT. According to the signs of these four terms and the amplitude
of the applied stimuli Hz and ja, a wide variety of dynamic behaviors can be de-
scribed. However, the further discussion can be reduced to a set of six states as follows:

1. HD-, ja- and Hz-terms, jointly acting, contribute to the rotation of the DW
magnetization in a certain direction. The DW magnetization may undergo an
abrupt reorientation if the Hk-term is not sufficiently intense.

2. The HD-term opposes the effect of the other three.

3. The combined effect of HD-, ja- and Hk-terms counteracts the torque due to
Hz.

4. Both HD- and ja-terms, oppose the joint effect of Hz- and Hk-terms. For
sufficiently high ja the DW magnetization rotates so that theHk-term overcomes
a maximum and then becomes weaker. The DW orientation is then unstable,
and a reorientation process finishing in state 3 occurs.

5. TheHD-term, together with theH´k-term, opposes the change in Φ imposed by
Hz and ja. If the HD-term is rather weak, the longitudinal in-plane component
of the DW magnetization (mx) may even reverse, leading to state 3.

6. Both HD- and Hz-terms, impose an orientation of the DW magnetization
towards the x-axis. If the ja-term, together with Hk-term, cannot balance out
the effect of the former, the DW undergoes an abrupt reorientation.
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Table 7.1: Schematic description of the six DW stationary states defined in Section 7.2.
Each state results from the balance of the torques associated with the applied stimuli, as
either out-of-plane field (Hz) or longitudinal current (ja), and the intrinsic interactions
within the magnetic material in form of magnetostatic (Hk) and Dzyaloshinskii-Moriya
(HD) contributions. A positive DMI parameter has been considered in this table. Since
the direction of the torques depends on the actual DW magnetization orientation Φ , four
columns have been established so as to consider Φ-values ranging within any of the four
quadrants. Red/blue boxes indicate positive/negative values for the applied stimuli, as
further defined in the text. Even though sixteen combinations are possible, four of them
can be discarded. Those are the cases when either all torques act likewise, so that 9Φ never
vanishes, and a non stationary state (ns) is reached, or states when the torque associated
with the current ja oposses the other three torques. The latter case require that the DW
magnetization orientation lays on either the first or the fourth quadrant, which cannot be
achieved from equilibrium unless the torque due to the applied field oposses the effect of the
DMI, i.e., the applied field and the DMI must act oppositely. These are then non achievable
states (na). The other twelve can be grouped into only six twin states, in agreement with
the state degeneracy that is to be explained in Section 7.3. According to the discussion in
that section, each twin state can be separated into a green and a blue-purple state, as the
colored boxes within the row of possible states reflect.

Next section will refer then to these six behaviors as states 1 ´ 6, so that all the
DW stationary regimes lie on one of them. In order to show briefly the previous
description of states, a schematic diagram has been included in 7.1.

7.3 Micromagnetic Simulations

7.3.1 Field and current induced dynamics of wDDWs.

In our study, a 4800nm long, 160nm wide and 0.6nm thick slab has been considered.
Material parameters usually found on the literature have been taken [17] saturation
magnetization Ms of 7 ¨ 105 A

m
, exchange constant A of 10´11 J

m
, uniaxial anisotropy

constant Ku of 4.8 ¨ 105 J
m3 , and Gilbert damping parameter α “ 0.2. The study has

been performed for five different values of the DMI parameter D: 10´5 J
m2 , 2 ¨ 10´5 J

m2 ,
3¨10´5 J

m2 , which promote a wDDW, 4.77¨10´5 J
m2 , which is close to the minimum value

required to promote a pure Néel wall, and 10´4 J
m2 , even though only the most relevant

results are to be shown here. Finally, values of θSH “ 0.1 for the spin-Hall angle and
k “ 31.4, according to the above reference. The application of these values leads to a
magnetostatic field Hk « 11.5kA

m
, that is to be used within the framework of the 1DM.
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Figure 7.2: DW angle as a function of the applied field h (perpendicular) and the applied
current j (through heavy metal) for a DMI parameter of D “ 2 ¨ 10´5J{m2 obtained from:
a) full µM simulations and b) the application of the 1DM. The black area corresponds to
pairs of field and current values leading to a non-stationary, i.e., precessional regime. An
abrupt change of the orientation of the wall for specific pairs of values of the applied field
and current may also occur, as discontinuities in the color map indicate (see text).

Therefore, micromagnetic (µM) simulations have been performed with the package
MuMax3 [122] so as to validate the self-consistency of the 1DM. Within both ap-
proaches, 1DM and µM, Hz and ja have been taken as input variables. Since the
dependence of 9Φ is linear with these variables, results are presented by means of the
normalized variables h “ Hz

αHk
and j “ π

2
HSL
αHk

p1` αkq, so as to reduce the dependence
on other parameters to only one, i.e., the DMI constant. In order to clarify the signs
of both magnitudes within this context, a positive field means a field directed along
the positive out-of-plane axis (z-axis), and a positive current means a longitudinal
current along the positive x-axis.

A first set of results are shown in Fig. 7.2, where a value of the DMI parameter
D “ 2 ¨ 10´5 J

m2 , leading to the formation of wDDWs, has been considered. Hence,
calculations have been made starting from one of the two possible equilibrium states
for such a DW. In this way, Fig. 7.2.(a) represents the DW orientation angle Φ as a
function of the reduced external field h and longitudinal current j, obtained from
µM simulations. A similar color map can be depicted for the results provided by
the 1DM, as it is shown in Fig. 7.2.(b). Prior to further discussions, it must be
noticed that the color map obtained from the application of the 1DM possesses
a higher resolution than its counterpart obtained from µM simulations, since the
latter requires a rather high computational effort to conveniently define every pixel
within the map. In any case, black areas within both figures represent field-current
pairs ph, jq leading to DW displacements out of the stationary regime, i.e, in the
precessional regime. Despite the different image resolutions, it can be said that
results are rather similar, showing discrepancies mainly for values of j and h near to
the ones where discontinuities of Φ are present. These slight discrepancies may arise
from the fact that a constant wall width ∆ has been considered in the calculations
made by using the 1DM. Hence, the considered 1DM seems to perfectly reproduce
the DW behavior.

From a first sight, an evident asymmetric DW behavior can be remarked. This
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asymmetry does not only lie on the ph, jq-pairs leading to a precessional regime, but
also on the stationary DW orientation angles reached. In fact, the green area, corre-
sponding to stationary angles Φ ranging from 0o to 180o, prevail over the blue-purple
area, characterized by the condition ´180o ď Φ ď 0o. The first asymmetry will be
left for further discussion, so the explanation of the second one is to be addressed now.
It must be mentioned that such behavior has already been reported by the authors
for the individual application of fields and currents [139], and it is related to the DW
degenerate state already mentioned in this text. The maps confirm that this behavior
can be extended to the combined application of both stimuli. So as to clarify this,
different regions have been delimited within the figures by means of black solid lines
over the areas where a stationary regime is reached. Each region has been numbered
according to the list of states given in the previous section. Some additional white
dotted lines have been added over the colored areas that define, along with the corre-
sponding parallel solid black lines, a rotated rectangle: its tilt depending on the value
of the DMI parameter, i.e., the dimensionless quantity δ ” HD

Hk
, within the framework

of the 1DM. This rectangle sets the conditions in which the DW degeneracy holds,
and it can be understood as the intersection of two overlapping corners, the one
that limits the green area, which conceals the second one limiting the blue-purple area.

As an example, let start by applying a positive field and a positive current. Under
the adequate choice of this pair of stimuli, the DW remains in state 6. Similarly, if a
negative field is applied along with a positive current, the DW may go through states
2 and 3. The combination of negative currents and fields may lead the DW to states
4 and 5, while a positive field together with a negative current drive the DW within
state 1. Starting from the DW equilibrium state, all the latter states are smoothly
reached, since all of them are green colored, that is, the DW rotates to its stationary
orientation in a gradual manner. Oppositely, steep transitions may occur if the DW
is driven across the black continuous boundary of the rotated rectangle mentioned
above. The origin of this abrupt DW reorientation is related to the existence of
local extrema of 9Φ. For example, state 5 in the purple area can be reached from
green state 6, by simply lowering the applied current, provided the applied field is
sufficiently strong. Nevertheless, state 6 cannot be reached again by increasing the
applied current unless the applied current is sufficiently high as to cross the white
dotted border. In fact, this color map shows green state 6 overlapping blue-purple
states 4 and 5, as green states 4 and 5 overlap blue state 6 for negative fields and
currents. States 1 and 2 would act likewise.

Hence, the stationary orientation angle for a current and field-driven wDDW behaves
in a hysteretic-like manner, since the final value for this angle depends not only on
the applied values of both stimuli, but also on the procedure of application. It is then
expected to obtain a similar plot if the initial orientation of the magnetization takes
the other possible equilibrium state [139]. In such a case, the color map would show
blue and purple areas overlapping green ones. Moreover, for positive DMI values,
DW stationary orientations close to 0o are not achievable, which can be confirmed
by the absence of red areas on the color map. Finally, it is interesting to note that
states 4 and 5 form the corner of the green area shown in both Fig. 7.2.(a) and (b),
and so the boundary where abrupt reorientations of the DW magnetization may
occur. The corners of the green area (shown in the figure) and blue-purple area (not
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Figure 7.3: Transient behavior of a DDW after the combined application of a reduced
field h=0. 10 , and a reduced current of j=0. 35 . Plots represent the DW instantaneous
position q, speed 9q, and orientation angle Φ, but taking into account the two possible
equilibrium states for the wDDW have been considered as the respective initial states for
the curves, which have been named as “green” and “blue”, according to the color maps in
Fig. 7.2. This point can be also checked in the initial DW orientation angle, being close to
120o for the “green” state, and close to ´120o for the “blue” state.

shown, but delimited by the dotted white line) are located exactly where the effect
of the applied current on the direction of rotation of the DW orientation reverses.
The strength of h, that is, the applied field, is in this case sufficiently high to make
the DW angle pass through the value Φ “ ˘90o then inverting the contribution of
the applied current to the rotation of the DW magnetization. This is the reason why
the intensity of the applied current must be reduced to avoid the reorientation process.

Another important conclusion related to the existence of overlapping states is that
the terminal speed of a wDDW is consequently not a state function, within the
traditional meaning of this concept, since this speed depends on the DW stationary
orientation, as (7.1b) establishes [139]. As an example of this point, Fig. 7.3 shows
the evolution from equilibrium of the DW position q, speed 9q, and orientation angle
Φ for the two degenerate states of a wDDW. Each evolution has been named “green”
and “blue” respectively, according to the states presented in the color maps in Fig. 7.2.
The evolution has been calculated by using the 1DM, for a reduced field of h “ 0.10
, together with a reduced current of j “ 0.35. Despite showing apparently similar
instantaneous positions, the respective DW speeds for each DW have completely
different behaviors, their terminal values being appreciably different, which can be
significant for long time evolutions. Contrary to the latter example, the combined
application of a reduced field h “ 0.085 and a reduced current of j “ 0.44 leads both
wDDW to identical final states, as shown in the time evolution of Φ plotted in Fig. 7.4.
However, one of them must go through an abrupt reorientation prior to reach such
a stationary regime. Since the contribution of the ja-term to the DW stationary
speed depends on Φ, this contribution may change appreciably during the transient.
This results in a large peak of the DW speed during the reorientation process, that
makes the run distances for either wDDW rather different in this example. This
difference may be in general shorter or larger because the effect of h can veil the con-
tribution of j to the stationary DW speed, since the former effect is independent of Φ.

As mentioned above, the second important asymmetry lies on the ph, jq-pairs leading
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Figure 7.4: Transient behavior of two DDWs after the combined application of a reduced
field h=0. 085 , and a reduced current of j=0. 44 . Plots represent the DW instantaneous
positions q, speeds 9q, and orientation angles Φ, the latter defined now within the range
r0o : 360os, so as to better show the DW inner magnetization sharp reorientation during
the dynamics. The two possible equilibrium states for the DWs have been considered
as the respective initial states for the curves, which have been named as “green” and
“blue”, according to the color maps in Fig. 7.2. This point can be also checked in the
respective initial DW orientation angles, being close to 120o for the “green” state, and close
to 240o(“ ´120o) for the “blue” state. Both wDDWs reach identical stationary regimes,
but the reorientation process gives rise to rather different run distances.

to a precessional regime. This results in the fact that applied fields higher than HW

may lead to stationary regimes if they are combined with sufficiently high currents,
the threshold of the current depending on its sign. States 3 (higher) and 3 (lower)
define in absolute terms such thresholds, so that the black areas within this color map
are symmetric with respect to the origin of ph, jq-pairs. As an example, the solely
application of a reduced field h of `0.9 leads the wDDW to the precessional regime.
However, the stationary regime is recovered if an additional reduced current j of
either above `0.7 or below ´0.2 is applied. It must be noticed the large difference
between the absolute values of such thresholds. Additionally, since the applied field
may overcome the limit given by HW without giving rise to precessional regimes,
higher values of the DW terminal speed are achievable, which should be relevant for
applications. Oppositely, such precessional regimes may appear for applied fields
lower than HW , depending on the sign of the applied current, as it occurs when a
reduced field h of `0.7 is applied along with a positive current, within a certain
range of positive currents. The same effect never occurs for a similar applied reduced
field along with a negative current.

7.3.2 Effect of the DMI parameter

As it has been mentioned previously, the 1DM predicts the existence of local extrema
of 9Φ, which explain the existence of abrupt DW reorientations. For values of δ ě 1,
δ as defined above, such local extrema disappear, and the variations of the DW mag-
netization orientation become smoother. This is shown in Fig. 7.5, which displays in
(a) the results obtained from µM simulations for δ “ 1, j and h defined as they were
before, and in (b) the results obtained from the 1DM. The rather good agreement
between µM results and those provided by the 1DM can be also checked in this case.
As it can be seen, the rotated rectangle delimiting the area of degenerate states has
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Figure 7.5: DW angle as a function of applied field (perpendicular) and applied current
(through heavy metal) for a DMI parameter of D “ 4.77 ¨ 10´5J{m2 pδ “ 1q obtained from
a) full µM simulations and b) the application of the 1DM. The black area corresponds to
pairs of field and current values leading to a precessional regime.

collapsed into the white dotted line, so that only one state is available for the NDW
within the stationary regime, and such a state is gradually achieved from any other
previous stationary state.

Besides, since the condition δ ě 1 lead to the existence of NDWs, both DMI and
magnetostatic interaction energies are extrema, i.e., the HD- and Hk-terms vanish, so
that, as long as the effect of the applied stimuli on the DW magnetization orientation
cancels out, that is, h “ j, the DW orientation angle at equilibrium holds during
the dynamics. Under such a condition the NDW is maintained and the dynamics
acquires its maximum efficiency [153].

Finally, it should be highlighted that the pairs of values ph, jq required to promote
the non-stationary DW displacement increase in absolute terms with increasing
the DMI parameter, as it can be inferred by comparing the scales in the different
color maps in Figs. 7.2 and7.5. From such a comparison, it can be derived also
that the boundary between the green and blue areas, which defines the abrupt DW
reorientation processes, possesses a gentler slope as the value of the DMI parameter
increases. This is because of the fact that for stronger DMI the DW takes, in general,
an orientation closer to the x-axis. Actually, stronger applied fields are required to
lead the DW stationary angle to an orientation closer to the transverse in-plane axis
(y-axis).

In any case, for higher DMI parameters, the non-stationary area holds asymmetric
since the H ´ k-term together with the HD-term may act likewise or oppositely to
the effect of ja, depending on the sign of the latter.
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7.4 Conclusions

A systematic numerical study of the DW dynamics in asymmetric structures consist-
ing in a ferromagnetic (FM) layer sandwiched between a heavy-metal (HM) layer
and an oxide layer has been carried out. The combined effect on such dynamics
of stimuli in the form of out-of-plane applied fields and longitudinal currents has
been considered. Despite slight discrepancies, the 1DM reproduces the main trends
obtained by means of full µM modeling, then proving the selfconsistency of our
results. In fact, the 1DM is able to adequately explain the complexity of such DW
dynamics, which may be of interest for improving the control of spintronic devices
by increasing the efficiency of the applied stimuli. Furthermore, discrepancies are
basically limited to the DW state boundaries where abrupt reorientations of the
magnetization within the DW may occur.

As the most remarkable conclusions, it can be mentioned, first, that our results
confirm the inherent asymmetric character of the wDDW dynamics, derived from
the existence of DW degenerate states. This asymmetry may result in different DW
terminal speeds reached after the application of the same couple of stimuli. Secondly,
it is demonstrated that DW precessional regimes can be avoided by combining
applied fields with sufficiently high currents, then resulting in a faster DW dynamics.
Moreover, within certain ranges of applied fields leading to DW stationary regimes,
provided no longitudinal currents are applied, the application of the former in a
certain direction may lead the DW dynamics to the precessional regime, while the
same current oppositely applied maintains the stationary DW dynamics.
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Chapter 8

Angular dependence of
current-driven chiral walls∗

The current-driven dynamics of chiral domain walls is theoretically studied by means
of realistic micromagnetic simulations. Trains of current pulses flowing through the
heavy metal underneath the ferromagnetic layer are injected with different direc-
tions with respect to the ferromagnetic strip axis. The wall displacement is highly
sensitive to the wall configuration and to the angle between the current and the
longitudinal axis of the strip. These simulations can account for the experimental
behavior at large currents, but preliminary results at lower current density point
towards incompatibilities between the model and the experiment that need further
experimental and theoretical efforts.

∗Adapted from E. Mart́ınez, O. Alejos, M. A. Hernandez, V. Raposo, L. Sanchez-Tejerina, and
S. Moretti. Angular dependence of current-driven chiral walls. Appl. Phys. Express, 9:063008, 2016.
doi:10.7567/APEX.9.063008.
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Owing to its technological relevance and the underlying physics involved, understand-
ing and controlling the current-driven magnetization dynamics in multilayers with
structural asymmetry and consisting of an ultrathin ferromagnetic (FM) layer sand-
wiched between a heavy metal (HM) and an oxide are nowadays the focus of intense
research. [7–9, 11–13, 17, 18, 20–23, 152] These systems exhibit high perpendicular
anisotropy (PMA), and owing to the presence of antisymmetric exchange interaction,
i.e., Dzyaloshinskii-Moriya interaction (DMI) present at the FM/HM interface, [41]
the magnetization adopts chiral patterns, such as homochiral Neel domain walls
(DWs). [11, 12, 17, 21, 152] Recent experiments have demonstrated that these DWs
are efficiently driven along patterned FM strips under injection of the electrical
current along the HM underneath. [11, 12, 17, 21, 152] These observations are linked
to the generation of a spin current due to the spin Hall effect (SHE), which induces
spin accumulation at the FM/HM interface and interacts with the local magnetic
moment in FM. [9, 11, 12] When the charge current flows parallel to the FM strip
axis, the effective field due to the SHE is maximized if the local magnetization is
collinear with the charge current. As a consequence, the interfacial DMI stabilizes
Neel walls with a given chirality, which are efficiently driven by the SHE. [11, 12]

The switching of the magnetization of a patterned FM nanodot has also been ob-
served experimentally in multilayers with strong DMI under the additional presence
of an in-plane magnetic field parallel to the charge current. [7, 9, 13, 18, 22] In this
case, magnetization reversal takes place universally by DW nucleation followed by its
current-driven propagation. [23] Most of the studies up to now have analyzed the DW
dynamics when the current in the HM is collinear with the FM strip axis. However,
more recently, a further development has been experimentally reported: [18, 78] when
both the FM and HM are patterned independently, the current-driven magnetization
switching can be achieved in the absence of in-plane fields by exploding the geometry
of the FM and the noncollinear direction of the charge current in the HM. In these
experiments, [78] the magnetization reversal still takes place by the DW motion, but
its displacement is found to be highly dependent on the angle at which the current
flows in the HM, and it is asymmetric and nonlinear with respect to the current polar-
ity. This opens the doors to novel architectures for logic and memory devices, which
could be controlled solely by electrical currents. However, a complete understanding
of the physics governing these processes is still missing, and consequently, theoret-
ical investigations and realistic numerical descriptions are very timely and in demand.

Here, we theoretically investigate the current-driven DW dynamics in different sys-
tems with strong DMI where the longitudinal axis of the FM layer is noncollinear with
the direction of the electric charge flowing along the independently patterned HM.
On the basis of our micromagnetic simulations under ideal conditions, we provide
a simple analytical description of the angular dependence of the DW displacement
with respect to the current orientation. After that, a more realistic analysis including
disorder and thermal effects is performed, which indicates that these ingredients play
a significant role in the dynamics.

The current-induced DW dynamics is governed by the Gilbert equation augmented
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by the Slonczewskii-like SOT, [19, 145]

dm

dt
“ ´γ0mˆ pHeff `Hthq ` αmˆ

dm

dt
` τ SL (8.1)

where γ0, α, and m pr, tq “ M pr, tq {Ms denote the gyromagnetic ratio, the Gilbert
damping constant, and the normalized local magnetization to the saturation value
(Ms), respectively. Heff is the deterministic effective field, which includes the
exchange, the magnetostatic, the uniaxial anisotropy, and the DMI. Hth is the
stochastic thermal field. [117] The last term τ SL is the Slonczewskii-like spin orbit
torque (SL-SOT) due to the SHE, [9]

τ SL “ ´γ0H
0
SHmˆ pmˆ σq (8.2)

where H0
SH “

~θSHJ
2µ0 | e |Mst

, ~ is the Planck constant, | e | is the electric charge, µ0 is

the permeability of free space, t is the thickness of the ferromagnetic layer, and θSH
is the spin Hall angle. J is the magnitude of the density current rJJ “ JptquJ s and
σ “ uz ˆuJ is the unit vector of the spin current generated by the SHE in the heavy
metal, which is orthogonal to both the direction of the electric current (uJ ) and the
perpendicular direction (uz). Typical parameters for a HM/FM/oxide multilayer
with strong DMI are considered: [15] Ms “ 1.1 ˆ 106A{m, A “ 1.5 ˆ 10´11J{m,
Ku “ 1.25 ˆ 106J{m3, D “ ´1.8mJ{m2, α “ 0.5, and θSH “ 0.07. The thickness
of the Co layer is fixed to t “ 0.6nm. The samples were discretized using a 2D
grid of 4-nm-wide cells. Except that the contrary is indicated, disorder and thermal
effects are taken into account in order to mimic realistic conditions. The local
disorder and imperfections are taken into account in the simulations by considering
both randomly generated roughness at the strip edges [117] and grains in the strip
body. A typical edge roughness with a characteristic length of 12nm is assumed
in the present study. [117] In addition, we assume that the easy axis anisotropy
direction is distributed among a length scale defined by a characteristic grain size of
5nm. The direction of the uniaxial anisotropy of each grain is mainly directed along
the perpendicular direction (z-axis) but with a small in-plane component, which
is randomly generated over the grains. The maximum percentage of the in-plane
component of the uniaxial anisotropy unit vector is 5%. In this work, five different
grain patterns have been evaluated to obtain statistic results. All numerical details
can be found in Ref. [122].

We firstly focus our attention on the sample depicted in Fig. 8.1(a), where the FM
layer is patterned with the shape of a quarter-of-a-star on top of an extended HM.
The FM consists of seven strips, each one forming a different angle φS with the x-axis
(φS “ 0o, . . . , 90o, in steps of ∆φS “ 15o). This geometry was produced by firstly
generating a strip along the x-axis with edge roughness and random dispersion of the
easy axis of each grain as defined above. Then, the strip was replicated seven times,
and each replica is rotated in steps of ∆φS “ 15o to form the final geometry shown in
Fig. 8.1(a). Initially, each strip contains an up–down DW as shown in Fig. 8.1(a). A
train of five current pulses is injected in the extended HM along the transverse y-axis
(uJ “ uy, i.e., φJ “ 90o). The length of each pulse (tp) and the time between them
(tw) are fixed to tp “ tw “ 2ns, and the amplitude is | J |“ 2TA{m2. Figure 8.1(b)
depicts the difference between the final state rmz,f prqs after the injection of five
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Figure 8.1: DW dynamics along different strips with different orientations with respect to
the current. (a) Initial state of up–down DWs. (b) Forward displacement of the DWs (dF )
under five positive current pulses (2ns at J “ `2TA{m2). Grey dotted lines represent the
initial positions of the DW in each strip. The DW displacement is shown by plotting the
differential images ∆mz prq “ mz,f prq ´mz,i prq, where the sub-indexes i and f indicate
the initial and final states, respectively. (c) Backward displacement of the DWs (dB) under
five negative current pulses (2ns at J “ ´2TA{m2). Black dotted lines represent the initial
positions of the DW in each strip. (d)–(f) correspond to a similar study but starting from
a down–up DW. (g)-(i) Semibubble DW dynamics under five positive current pulses (1ns
at J “ `1TA{m2) at zero and at room temperature.

positive pulses (J ą 0) minus the initial state rmz,i prqs [Fig. 8.1(a)]. Therefore, the
red color along each strip in Fig. 8.1(b) represents the terminal DW displacement
(dDW ) of the corresponding DW r∆mz prq “ rmz,f prqs´ rmz,i prqs. From Fig. 8.1(b),
it is evident that the dDW depends significantly on the relative orientation of the
strip axis with respect to the direction of the current (φ “ φJ´φS “ 90o´φS): dDW
increases from φ “ 0 to 30o, where the DW displacement reaches a maximum. From
φ “ 30 to 90o, the displacement decreases monotonically. Starting from the state
of Fig. 8.1(b), a new train of five negative pulses (J ă 0) is applied, and the new
differential micromagnetic image is shown in Fig. 8.1(c). During this back motion,
only the DW in the strip with φS “ 90o returns to its initial position, and the DW
displacement monotonically decreases as φ “ φJ ´ φS “ 90o ´ φS increases. Similar
trends are observed when the initial state is prepared to have a down–up DW on
each strip [see Figs. 8.1(d)– 8.1(f)]. The asymmetry of the displacement reverses
with the current polarity (J ą 0 or J ă 0) or with the DW configuration (up–down
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Figure 8.2: Snapshots of the DW displacement after t “ 10ns under DCs of | J |“ 2TA{m2

injected in the HM with different orientations (φJ) with respect to the FM strip axis
(φS “ 0): (a) up–down DW, (b) down–up DW. The FM strip is ideal, without imperfections.

or down–up).

A similar study was also performed for an unpatterned square pad initially containing
two semibubble DWs [see Fig. 8.1(g)]. The final state after injection of five pulses
with J “ `1TA{m2 and tp “ tw “ 1ns is shown in Figs. 8.1(g)(h) and 8.1(g)(i) at
zero and room temperature, respectively. In both cases and similarly to the case of the
patterned strips, the DW displacement is largest for | φ |“| φJ´Φ |« 30o. This proves
that the angular dependence of the DW displacement is not due to the DW tilting [19]
present in the patterned strips [see Figs. 8.1(b), 8.1(c), 8.1(e), and 8.1(f)]. The
asymmetric angular dependence of the DW displacement observed when the current
polarity reverses (J ą 0 to J ă 0) also occurs, inverting the angle φ “ 90o ´ φS (`φ
to ´φ) or the configuration of the DW (up–down to down–up). Although a roughly
estimated set of material parameters for the evaluated samples have been considered,
our simulations exhibit rather similar features to recent observations. [78] See the
online supplementary data at http://stacks.iop.org/APEX/9/063008/mmedia for
an additional description of the angular dependence of semibubbles when the current
is reduced.

To understand these observations, a systematic study of the DW dynamics is carried
out for a single strip along the x-axis (φS “ 0o) by varying the direction of the
current from φJ “ 0 to 180o. The strip length is 8192nm and its width is 512nm.
We firstly discuss the case of DW motion under direct current (DC), which is
applied for a total time of 10ns. Some representative snapshots of the initial and
final DW positions are shown in Fig. 8.2 for both up–down (a) and down–up (b)
DWs. The DW displacements along a perfect strip (PS) under DC are shown in
Figs. 8.3(c)- 8.3(f) for both up–down and down–up DWs. The terminal DW angle
(Φ) and the tilting angle of the DW plane (ξ) as defined in Figs. 8.3(a) and 8.3(b)
are also represented as a function of φJ . As expected, no DW motion is achieved
when the current J “ Jxux ` Jyuy is perpendicular to the strip axis (φJ “ 90
or 270o). The DW displacement (dDW ) is symmetric with respect to the current
polarity (J ą 0 or J ă 0) only when the current is collinear with the strip axis
(φJ “ φS “ 0o). The DWs move along the direction of the longitudinal component of
the current (Jx “ J cosφJ), but dDW strongly depends on the direction of the current
(φJ ,uJ “ J{J). Under positive current [J ą 0, Fig. 8.3(c)], the displacement of the
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Figure 8.3: (a) Schematic representation of a tilted DW with the definitions of the DW
angle (Φ) and the tilting angle of the DW plane (ξ). (b) Definition of the direction of the
injected current (φJ). DW displacement after t “ 10ns under DCs of | J |“ 2TA “ m2

injected in the HM with different orientations (φJ) with respect to the FM strip axis
(φS “ 0). Left graphs (c, d, g) correspond to the up–down DW. Right graphs (e, f, g)
correspond to the down–up DW. The FM strip is ideal, without imperfections, and the
results were obtained at zero temperature. The DWs are initially placed at the center of
the strip.
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up–down DW [dUD pJ ą 0, φJJq] firstly increases from φJ “ 0 to 45o, where it reaches
its maximum value dmax “ dUD pJ ą 0, φJ “ 45oq. From φJ “ 45 to 90o, dUDpφJ)
decreases to zero. For 90o ď φJ ď 180o, the direction of the DW motion reverses
with respect to the range 0 ď φJ ď 90o, and again, the maximum displacement
along the negative x-axis is achieved at φJ “ 135o. The angular dependence of
the DW displacement is completely different when the current polarity reverses
[J ă 0, Fig. 8.3(d)]. In this case, the displacement | dUD pJ ă 0, φJq | decreases
linearly and monotonically from φJ “ 0 to 90o. Similar results are obtained for
the down–up DW [Figs. 8.3(e) and 8.3(f)], which can be summarized as follows:
dDU pJ ą 0, φJq “ ´dUD pJ ă 0, φJq and dDU pJ ă 0, φJq “ ´dUD pJ ą 0, φJq. It is
clearly observed that the maximum DW displacement is reached when the internal
DW angle (Φ) becomes closer to the angle at which the current is injected (Φ « φJ).
Therefore, we replot using dots the normalized displacement to the maximum value
d pJ, φJq {dmax as a function of (φJ ´Φ) in Figs. 8.3(g) and 8.3(h) for both up–down
and down–up DWs, respectively. As shown, these data can be successfully reproduced
by a simple analytical formula:

d pJ, φJq

dmax
“ Q

J

| J |
cos pφJ ´ Φq (8.3)

where Q “ ˘1 corresponds to up–down (Q “ `1) and down–up (Q “ ´1) DW
configurations, and J{ | J | determines the polarity of the applied current: positive
(J ą 0) and negative (J ą 0), respectively. Note that in general, Φ is a function
of the amplitude of the injected current J and the time during which it is applied.
It also depends on the geometry and on the material parameters. As can be easily
understood, the current direction φJ , which maximizes the displacement, is also a
function of the current J , the geometry, and the material parameters, particularly
the DMI parameter and the spin Hall angle.

These results can be understood in terms of the torque τ SL due to the SHE, (8.2),
and the corresponding effective field HSHE “

~θSHJ
2µ0|e|Mst

pmDW ˆ σq. This spin Hall

effective field depends on the internal DW magnetization (mDW ) and the direction
of the spin current applied current σ “ uz ˆ uJ , which directly depends on the
current direction rJ “ J ptquJ s. In systems with strong DMI, the internal DW mag-
netization at rest, mDW , points along the strip axis (x-axis). Its direction, either
ux or ´ux, depends on the chirality, imposed by the sign of the DMI parameter
D, and on the DW configuration (up–down or down–up). [11, 12] Let us consider
here for clarity an up–down DW with right-handed chirality, where mDW “ `ux
at rest. When a current is applied along the x-axis (J “ Jux ; σ “ `uyq, the
effective field HSHE “

~θSHJ
2µ0|e|Mst

mDW,xuz, points along `uz for θSH ą 0, and con-
sequently, drives the DW motion along the `ux . However, owing to the SHE
torque, the internal magnetization of the DW rotates clockwise from the x-axis
(Φ ą 0), and thus it is no longer collinear with the current. In other words, the
longitudinal component of the DW moment is reduced with respect to the initial
state before the current injection [Φ pt “ 0q “ 0], and thus mDW,x “ cos Φ ă 1
for Φ ą 0. If the current is applied at a different orientation from the x-axis,
J “ JuJ “ J cos ΦJux ` J sinφJuy with φJ ą 0, the unit vector along the spin
polarized current is σ “ ´ sinφJux ` cosφJuy, and the internal DW moment has
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fig4.pdf

Figure 8.4: Displacement of the up–down DW as a function of the DC (J) for different
orientations of the injected current (φJ): (a) Perfect strip (PS), without imperfections at
zero temperature. (b) Results obtained for a realistic strip (RS), which has edge roughness
and a dispersion of the out-of-plane easy axis. (c) and (d) show the comparison of the DW
displacement between PS and RS for two different amplitudes of the DC: | J |“ 0.8TA{m2

and | J |“ 2TA{m2.

both x and y components: mDW “ cos Φux ` sin Φuy. The SHE effective field is
HSHE “

~θSHJ
2µ0|e|Mst

cos pφJ ´ Φquz, which reaches a maximum when φJ “ Φ. The DW

velocity under DC is therefore vDW “
γ0∆
α

~θSHJ
2µ0|e|Mst

cos pφJ ´ Φq where ∆ is the DW

width. Consequently, the DW displacement [dDW pJ, φJq “ vDW∆t, with ∆t being
the time during the DC is applied] is enhanced when the internal DW moment m
DW becomes collinear with the current J “ JuJ , as shown in Figs. 8.3(g) and 8.3(h).

A similar study was performed by applying a train of ten pulses. The amplitude of
each pulse is | J |“ 2TA{m2 and its length is tp “ 2ns. The interval between two
consecutive pulses is also tw “ 2ns. The absolute value of the DW displacement,
| dDW |, as a function of φJ of the up–down DW is shown in Fig. 8.4 for both the
perfect strip at zero temperature (a) and the realistic strip at room temperature
(b). The results for the realistic strip case were averaged over five different grain
and roughness patterns, with error bars indicating the standard deviation. The
main features of the DW displacement as a function of φJ remain similar to the
previous analysis of DCs. Under positive currents, we found a maximum in the
DW displacement for φJ « 30o. For negative currents, no DW motion is found for
φJ ą 60o. Actually, our results [ 8.4] are qualitatively analogous to the experimental
measurements by Safeer et al. The obtained DW displacements are indeed in good
quantitative agreement, despite the fact that the present work does not search for
a quantitative replication of such experiments. The quantitative discrepancies are
expected owing to the different strip widths, different evaluated current pulses, and
also possible differences in the material parameters. The disorder (grain and edge
roughness), which has been shown to play a significant role, may also differ from
the one of the samples studied experimentally. Nevertheless, further theoretical and
experimental efforts are needed to completely elucidate the physics governing these
systems. Particularly demanding are the theoretical/numerical study of the angular
dependence of the DW displacement under non-collinear currents in the creep regime,
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where the experiments [78] indicate a similar asymmetry with velocities two orders
of magnitude smaller. The realistic analysis of the creep regime requires a huge
computational effort, which is beyond the scope of the present study.

In summary, we theoretically investigated the current-induced DW dynamics in
heterostructures with high PMA and strong DMI for different orientations of the
current with respect to the strip axis. Under ideal conditions (without disorder and at
zero temperature), the DW displacement is largest when the internal magnetization
of the DW is parallel to the direction of the applied current for both direct current
and train of current pulses. Analytical expressions were obtained to explain these
results in the framework of the spin Hall effect. Realistic conditions (with disorder
and at room temperature) were also evaluated. This analysis indicates that the
direction of maximum displacement is significantly modified with respect to the
ideal case, and it takes place at current angles relative to the strip axis of around
15–30o. Although our simulations can account for the experimental behavior at
large currents in the flow regime, preliminary results at lower current density in the
creep regime point towards incompatibilities (see the online supplementary data
at http://stacks.iop.org/APEX/9/063008/mmedia) between the model and the
experiment, which need further experimental and theoretical efforts. Our work, which
at present does not exclude other more complex driving mechanisms, constitutes
a first theoretical attempt to describe the DW dynamics in multilayers where the
current is not collinear with the axis of the patterned ferromagnetic strip and/or the
bubble expansion in extended thin films. It also provides insightful contributions to
a further understanding of the physics involved and it is expected to be useful for
the future development of DW-based logic and memory devices in the absence of
applied fields, by just designing the geometry of the ferromagnetic samples.
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Chapter 9

Micromagnetic analysis of
geometrically controlled
current-driven magnetization
switching∗

The magnetization dynamics induced by current pulses in a pair of two isolated
“S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted ta-
pered spikes at the ends of a straight section, is theoretically studied by means of
micromagnetic simulations. Our results indicate that the magnetization reversal is
triggered by thermal activation, which assists the current-induced domain nucleation
and the propagation of domain walls. The detailed analysis of the magnetization
dynamics reveals that the magnetization switching is only achieved when a single
domain wall is nucleated in the correct corner of the element. In agreement with
recent experimental studies, the switching is purely dictated by the shape, being
independent of the current polarity. The statistical study points out that successful
switching is only achieved within a narrow range of the current pulse amplitudes.

∗Adapted from O. Alejos, V. Raposo, M. A. Hernandez, L. Sanchez-Tejerina, S. Moretti, and
E. Martinez. Micromagnetic analysis of geometrically controlled current-driven magnetization
switching. AIP Advances, 7(5):055909, 2017. doi:10.1063/1.4973749.
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9.1 Introduction

Understanding and controlling the current-driven magnetization dynamics in multi-
layers with structural inversion asymmetry, where an ultra-thin ferromagnetic layer
(FM) is sandwiched between a heavy metal (HM) and an oxide, is the focus of
intense research. [7, 9, 11, 12, 17, 18, 21, 22] These systems present high perpendic-
ular magnetocrystalline anisotropy (PMA) and a sizable Dzyaloshinskii–Moriya
interaction (DMI) which promotes the emergence of chiral magnetization pat-
terns. [11, 12, 17, 21, 155, 156] The switching of the magnetization of a patterned
FM element has been observed experimentally in these multilayers under the addi-
tional presence of an in-plane magnetic field parallel to the charge current which
flows along the HM. [7, 9, 18, 22] However, recent experiments have shown that the
current-driven magnetization switching (CDMS) of an independently patterned FM
element on top of an extended HM can be achieved in the absence of in-plane fields
by solely exploding its geometry and the non-collinear direction of the current in
the HM underneath. [78] The lithographically defined shape of the FM determines
its reversal, and therefore, objects with identical composition and subjected to the
same electric current undergo different magnetization reversal.

Safeer et al. [78] studied two geometries, “U-shaped” and “S-shaped” (see figure
4a and 4b of Ref. [78]), and show how with an adequate election of the amplitude,
duration and number of pulses, it is possible to control the magnetization without
any external field, with the only application of electrical current. Both “U-shaped”
and “S-shaped” FM elements consist on two tilted tapered spikes at the ends of
a straight section. They suggested that current density should be larger in the
spikes. Consequently, the nucleation of reversed domains, flanked by two domain
walls (DWs), would take place predominantly at the tapered spikes of the patterned
FM element as caused by the non-uniform Joule heating. As the spike has a tilt
angle of « 45o with respect to the central straight section, the different speeds of
the up-down and down-up walls cause the propagation of the two DWs or their
collapse depending on the current polarity. [78, 153] In these cases, the magnetization
reversal is not achieved. However, when the reversed domain occurs exactly at
the corner of the spike, a single DW is nucleated, and the current polarity and
the location of the spike determine whether the switching is or not achieved by its
current-driven propagation. Therefore, the final magnetic state of the FM element
can be controlled with its geometry and the current polarity. These observations open
the door to the development of high-performance memory or logic devices, but the
underlying mechanisms responsible for the DW nucleation have not been clarified yet,
and a complete understanding of the physics governing these processes is still miss-
ing. Here, we analyze these reversal processes by means of micromagnetic simulations.

As the underlying mechanism is essentially the same for both “U shaped” and
“S shaped” geometries studied in, [78] here we focus our attention on a pair of
two isolated “S-shaped” FM elements, each one consisting on two oppositely tilted
tapered spikes at the ends of a straight section. These FM elements are independently
patterned on top of an extended HM. A scheme of the system is shown in Fig. 9.1(a).
In order to elucidate whether the nucleation takes place predominantly at the spikes,
the current distribution and the Joule heating are characterized in Sec. 9.2. After
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Figure 9.1: (a) Schematic view and dimensions of the S-shaped FM device along with the
vertical HM/FM structure. Spatial distribution of the current density (J prq) for the bulk
(b1) and thin-films (b2) resistivities. Green color correspond to the current density in the
conductive HM underlayer. (c) Temporal evolution of the device temperature for a series
of pulses of 2TA{m2. (d) Temperature in the FM dots as function of the current density in
the HM.

that, the magnetization dynamics under a train of current pulses is evaluated by
means of micromagnetic simulations in Sec. 9.3, which allow us to characterize the
reversal mechanism under realistic conditions. The manuscript ends with the main
conclusions of the study.

9.2 Current Distribution and Joule Heating

As the non-uniform current distribution at the spikes, and the resulting Joule heating
effects were proposed in Ref. [78] to be the main cause of the DW nucleation, a
preliminary study of the current distribution and the Joule heating of the system
was performed with the techniques described in. [86, 157] Two different cases were
evaluated for the 3D structure Ptp3q{Cop0.6q{AlO, where numbers indicate the
thickness the HM and FM layers. We firstly considered the bulk resistivities of
the FM and HM layers: ρ pCq “ 62.4ˆ 10´9Ωm and ρ pPtq “ 105ˆ 10´9Ωm. Due
to the higher resistivity of the Pt, the current flows mainly through the Co layer
where it is present (Fig. 9.1 (b1)), but its distribution is quite uniform, with no
higher densities at the spikes (Fig. 9.1 b1). Alternatively, we also take into account
the thickness dependence of the resistivity that becomes very relevant for ultrathin
layers. [158] If resistivity values for the Co and Pt ultrathin layers are assumed
(ρ pCoq “ 9.6ˆ 10´7Ωm and ρ pPtq “ 2.7ˆ 10´7Ωm), the roles invert, and now the
current flows mainly through the Pt uniformly (Fig. 9.1 (b2)) in such a manner that
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the Joule heating is again uniform along the FM elements of the device. In both
cases, as the current distribution is essentially uniform over FM elements, the same
probability of domain nucleation along the FM is expected due to thermal agitation.
The temporal evolution of the temperature resulting from two current pulses is shown
in Fig. 9.1(c), and the variation of the maximum temperature in the FM with the
amplitude of the current pulse is shown in Fig. 9.1(d). The current distribution and
the Joule heating effects considering the realistic thinfilm resistivities of the FM
and HM layers was taken into account to study the magnetization dynamics in the
following section.

9.3 Magnetization Dynamics

Once it has been verified that the current is almost uniform over the FM layer,
we theoretically investigate the current-driven magnetization dynamics (CDMD).
As the underlying physics responsible for the reversal mechanism is similar for the
two geometries proposed in, [78] here we focus on S-shaped devices as depicted in
Fig. 9.1(a). This geometry was intentionally designed to achieve switching purely
dictated by the shape, then being independent of the current polarity. [78] The
CDMD is governed by the Gilbert equation augmented by the Slonczewskii-like
spin-orbit torque (SL-SOT) [19, 145]

dm

dt
“ ´γ0mˆ pHeff `Hthq ` αmˆ

dm

dt
´ γ0H

0
SHmˆ pmˆ σq (9.1)

where γ0, α, and m pr, tq “ M pr, tq {Ms denote respectively the gyromagnetic ra-
tio, the Gilbert damping constant, and the normalized local magnetization to the
saturation value (Ms). Heff is the deterministic effective field, which includes
the exchange, the magnetostatic, the uniaxial anisotropy, and the DMI. Hth is the
stochastic thermal field. [117] The last term in eq. (9.1) is the SL-SOT due to the

spin Hall effect [12] H0
SH “

~θSHJptq
2µ0|e|Mst

, ~ is the Planck constant, |e| is the electric
charge, µ0 is the permeability of free space, t is the thickness of the FM layer, and
θSH is the spin Hall angle. Jptq is the magnitude of the density current J “ Jptqux,
and σ “ uz ˆ ux is the unit vector of the spin current generated by the SHE in
the HM, which is orthogonal to both the direction of the electric current (ux) and
the perpendicular direction (uz). Typical parameters for a HM/FM/oxide multi-
layer with strong DMI are considered: [153] Ms “ 1100kA{m, exchange constant
A “ 15pJ{m, uniaxial magnetocrystalline anisotropy constant Ku “ 1250kJ{m3,
DMI parameter D “ ´1.8mJ{m2, α “ 0.5, and θSH “ 0.07. The thickness of the
Co layer is fixed to t “ 0.6nm. The samples were discretized using a 2D grid of
4 ´ nm-wide cells. Micromagnetic simulations were performed with Mumax 3[122]
using a time step of 1ps. Realistic analysis including disorder and thermal effects
is performed, which indicates that these ingredients play a significant role in the
dynamics. To simulate realistic samples a characteristic grain size of 5nm was con-
sidered. [153] The direction of the uniaxial anisotropy of each grain (uK) is mainly
directed along the perpendicular direction (z-axis, uz) but with a small in-plane com-
ponent, which is randomly generated over the grains. [153] The maximum percentage
of the in-plane component of the uniaxial anisotropy unit vector is 5%. In what fol-
lows, the results were computed by taking into account the temperature dependence
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Figure 9.2: Micromagnetically computed inversion of S-shaped device for the up-up initial
state. Blue and red represent up and down magnetization respectively. White arrow
indicates the electric current direction in the HM. Black arrow indicates the faster up-down
DW speed while the grey arrow indicates the slower down-up DW speed. Circle indicates
the point where a single DW triggers the switching of the element. Images correspond to
representative snapshots of the temporal evolution of the magnetization under a series of 8
current pulses with J “ ´3TA{m2 and length of tp “ 4ns.

on the current density as described in the previous section using thin-film resistivities.

Fig. 9.2 illustrates the inversion mechanism of the “S-shaped” device starting from
an initial state with both the left and the right elements magnetized along positive
out-of-plane direction: up-up configuration. Here a train of 8 negative current pulses
with J “ ´3TA{m2 and length of tp “ 4ns is injected. The time between consecutive
pulses is also 4ns. Blue and red represents up and down magnetization respectively.
After some time, due to thermal fluctuations, reversed domains (magnetized down,
red color) are randomly generated within the device, both in the left (Fig. 9.2f)
and/or in the right (Fig. 9.2b) elements. For example, the semi-bubble nucleated in
the central part of the left element (Figs. 9.2b and 9.2c) turns into two DWs when it
reaches the spike as driven by the current (Fig. 9.2d). The left and the right DWs are
up-down and down-up respectively. Due to the non collinear direction of the current
and the spike axis (which forms an angle of 45o with J) these DWs are displaced
with different velocities along the current direction. [78, 153] Black and grey arrows
represent the fastest and slowest DW velocities. The up-down DW is firstly expelled
from the bottom-left spike of the right element (Fig. 9.2e), and the down-up DW
afterwards, the spike then recovering its initial state with uniform up magnetization.
The domain generated in the left element undergoes a similar annihilation process
(Fig. 9.2f). This type of reversed domain, being either a semi-bubble or flanked by
two DWs, leads always to unsuccessful switching.

On the contrary, when a reversed domain appears exactly at the upper-right corner of
the right element (marked with the circle in Fig. 9.2f), only a single DW is nucleated.
This DW propagates along the current direction from right to left (Figs. 9.2f–j)
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Figure 9.3: Switching probability for the left and right S-shaped elements as a function
of the applied current starting from the up-up (a) and down-down (b) initial states. Full
and open symbols correspond to the left and right elements respectively. I, II and III
correspond to the no switching, switching and stochastic regions respectively. The open
circle in the snapshots at the bottom indicate the corner where the nucleation of the DW
which leads to the switching. Error bars indicate the standard deviation from the mean
value computed from each realization and initial state.

successfully completing the switching of the right element (Fig. 9.2j). Note also that
eventually the magnetization may reverse again within the already switched region
(see the spurious blue domain in the right spike in Fig. 9.2h). However, due to the
different speeds of the left and right DWs, such a spurious domain finally collapses
(Fig. 9.2i). If the current polarity reverses, the final state will be the same, but now
the nucleation corner which leads to the switching is the opposite one. [78] Our study,
which indicates that the Joule heating is uniform in the FM elements of the device,
predicts that the reversed domain is due to thermal fluctuations. This local inversion
of the magnetization can occur with the same probability in any point of the two
FM elements, but not necessarily at the spikes. Moreover, the switching mechanism,
which is triggered by the thermally-assisted DW nucleation at the correct corner of
the element and its subsequent current-driven propagation, is consistent with recent
experimental observations. [78]

As the origin of the switching processes is the random inversion of a domain with
opposite orientation than the original state due to the thermal fluctuations, it is
necessary to carry out a statistical study of the process. Fig. 9.3 presents the
switching probability (Ps) for the right and left S-shaped elements, considering the
up-up (a) and down-down (b) initial configurations, and both current polarities of the
pulse train. The probability was obtained by evaluating ten different realizations for
each current density. Starting from the up-up state (Fig. 9.3(a)), the Joule heating
is negligible for low currents (|J | ă 2TA{m2), and therefore no Ps is achieved (see
region I of Fig. 9.3(a)). For intermediate currents (2.75TA{m2 À |J | À 3.25TA{m2),
the switching of the right element is achieved with Ps « 100%, while the left element
maintains its initial state (region II in Fig. 9.3(a)). If the current is further increased
(|J | ą 3.5TA{m2), the device presents a stochastic behavior dominated by thermal
agitation caused by the Joule heating (indicated as region III in Fig. 9.3(a)). This
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restricts the current range of Ps « 100%. A similar explanation describes the
magnetization dynamics starting from the down-down configuration, but in this case
the switching is triggered in the left element of the device (Fig. 9.3(b)). The open
circles in the final snapshots of Fig. 9.3 indicate the corner where the switching is
triggered.

9.4 Conclusions

The current-driven magnetization dynamics of patterned ferromagnetic devices
proposed by Safeer et al.[78] has been studied by realistic micromagnetic simulations
taking into account both the current distribution and Joule heating. Our results
provide an explanation of this geometry-controlled switching mechanism, which
consists on the proper DW nucleation and subsequent propagation. Reversed domains
are assisted by thermal fluctuations anywhere in the FM elements of the device, but
the switching is only achieved with « 100% of probability for a restricted range of
current amplitudes, when a single DW is nucleated at the correct corner in agreement
with recent experimental observations.

9.5 Acknowledgment

This work was supported by project WALL, FP7-PEOPLE-2013-ITN 608031 from the
European Commission, project MAT2014-52477-C5-4-P from the Spanish government,
and project SA282U14 from the Junta de Castilla y Leon.

113



Micromagnetic analysis of geometrically controlled current-driven magnetization switching

114



Chapter 10

Chiral-triggered magnetization
switching in patterned media∗

The current triggered switching of patterned ferromagnetic elements over a heavy
metal layer is analyzed in this work. A couple of symmetrically placed, but isolated,
U-shaped elements, each one consisting of two oppositely tilted tapered spikes at the
ends of a straight section, is theoretically studied by means of micromagnetic simula-
tions. Our results indicate that the magnetization reversal processes deterministically
start at a corner of the spikes selected by the direction of the current, as other exper-
imental evidences claimed. Our study also reveals that the thermal agitation plays a
supporting rather than a main role to promote complete switching. Temperature
assists the local magnetization reversal at the corners, resulting in the nucleation of
domain walls. This inversion is mainly due to the Slonczewskii-like torque exerted
by the spin current associated with the spin Hall effect. When domain walls are
nucleated, the angular dependence of the current-driven dynamics of those walls,
already reported in the literature, determines whether the process results in either a
complete or a frustrated switching attempt. Besides, our statistical study reflects that
complete switching is only achieved within a narrow range of current pulse amplitudes.

∗Adapted from Óscar Alejos, Eduardo Mart́ınez, Vı́ctor Raposo, Luis Sánchez-Tejerina, and
Maŕıa Auxiliadora Hernández-López. Chiral-triggered magnetization switching in patterned media.
Applied Physics Letters, 110(7):072407, 2017. doi:10.1063/1.4976693.
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Chiral-triggered magnetization switching in patterned media

The current-driven magnetization dynamics in multilayers where an ultra-thin ferro-
magnetic layer (FM) is sandwiched between a heavy metal (HM) and an oxide is being
the matter of thorough research in the recent years. [7, 9, 11, 12, 17, 18, 21, 22] Some
important phenomena arise from such a structural inversion asymmetry. The high per-
pendicular magnetocristalline anisotropy (PMA) along with a strong Dzyaloshinskii-
Moriya interaction (DMI) present in these systems lead to the formation of chiral
magnetization textures. [11, 12, 17, 21, 106, 155, 156] In particular, patterned FM
elements have been experimentally observed to switch when a current flows through
the HM layer, either in the presence [7, 9, 18, 22] or absence [78] of applied in-plane
magnetic fields. Actually, the election of the amplitude, duration and number of
current pulses made it possible in the latter case to control the magnetization with
the only application of electrical currents. This current-driven magnetization switch-
ing (CDMS) would require combining the adequate design of the shape of the FM
element with the correct application of the current in a certain direction. Thus,
magnetization reversal would depend not only on the current magnitude but also on
the relative orientation between the element and the current flow direction. This
switching was studied for two different geometries consisting of two tilted tapered
spikes at the ends of a straight section, either S-shaped or U-shaped, [78] as Figures
4a and 4b of the referenced work depict. A selective switching took place, and the
domain walls (DWs) resulting from magnetization inversions in the spikes of the
FM element were declared as a cornerstone of this process. Indeed, due to the tilt
angle of about 45o of the spikes with respect to the central straight section, the
two possible types of DWs in the FM layer, either up-down or down-up according
to the magnetization transitions within them, acquire different speeds, causing the
propagation of the DWs or their collapse depending on the current polarity. [78, 153]
Thus, this unequal propagation of DWs might favor some switching attempts against
others. However, the exact origin of the DWs nucleation processes and its selective
characteristics still remain unclear. The only argument pointed out in this direction
is that a higher density current through the tapered spikes, leading to a non-uniform
Joule heating at their corners, might be responsible for triggering such magnetic
reversal mechanisms. [78]

Since these results open the door to the development of high-performance memory or
logic devices, a special effort must be made to completely understand the underlying
physical mechanisms that originate them. As an additional contribution, this letter
analyzes the CDMS of FM patterned elements over HM layers, focusing on the
above-mentioned U-shaped geometries. [78] In this way, numerical simulations have
been performed trying to mimic as much as possible realistic conditions. Our results
reveal that the thermal agitation plays an aiding rather than a leading role to promote
complete CDMS.

The Gilbert equation augmented by the spin-orbit torque (SOT) governs the current-
driven magnetization dynamics (CDMD) of the proposed systems: [19, 145]

d~m

dt
“ ´γ0 ~mˆ

´

~Heff ` ~Hth

¯

` α~mˆ
d~m

dt
` ~τSOT , (10.1)

γ0, α, and ~m p~r, tq “
~Mp~r,tq
Ms

being respectively the gyromagnetic ratio, the Gilbert
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damping constant, and the normalized local magnetization to its saturation value
(Ms). ~Heff is the deterministic effective field, which includes the exchange, the

magnetostatic, the uniaxial anisotropy, and the DMI, while ~Hth accounts for the
stochastic thermal field. [70, 117] ~τSOT consists of the sum of two terms, a Slonczewskii-

like torque ~τSL “ ´γ0
~~m ˆ ~HSL and a field-like torque ~τFL “ ´γ0 ~m ˆ ~HFL, with

~HSL “ H0
SL ~m ˆ ~σ and ~HFL “ H0

FL~σ being the respective effective fields. Here,
~σ “ ~uz ˆ ~ux is the unit vector along the direction of the polarization of the spin
current generated by the spin Hall effect (SHE) in the HM, being orthogonal to both
the direction of the electric current ~ux and the vector ~uz standing for the normal
to the HM-FM interface. Finally, H0

SL “
~θSHJptq

2µ0|e|MstFM
determines the strength of the

SHE, [12] where ~ is the Planck constant, |e| is the electron charge, µ0 is the vacuum
permeability, tFM is the thickness of the FM layer, and θSH is the spin Hall angle.
J ptq is the magnitude of the current density ~J ptq “ J ptq ~ux, while H0

FL can be taken
without lack of generality as proportional to H0

SL by a certain factor k: H0
FL “ kH0

SL.

So as to draw some light to the consequences derived from the application of the
Gilbert equation, some results are to be presented here. The corresponding problem
has been fully described elsewhere from both the experimental [78] and the theoreti-
cal [153] points of view, by means of micromagnetic (µMag) simulations in the latter
case. Figures 10.1(a) to (d) present the CDMD in the case of a quarter-of-a-star
shaped FM element independently patterned over a HM layer. The FM element
possesses seven arms directed along regularly spaced directions from 0o to 90o. Every
arm has its magnetization in the out-of-plane direction, so as to present two magnetic
domains, either up (mz ą 0, white areas) or down (mz ă 0, black areas). DWs
separate adjacent domains and all of them are initially located equidistant from the
center of the star. A train of ten current pulses, 2-ns long, and 2-TA

m2 amplitude,
are injected through the HM layer along the direction defined by the vertical green
arrow. Pulses are also 2ns spaced in time. The displacement of each DW depends
on the magnetization transition, either up-down or down-up, and the relative angle
between the current and the considered arm of the star. In order to adequately
estimate the run distances as a function of this relative angle, Fig. 10.1(e) shows the
DW displacement in a FM strip of comparable dimensions to any of the arms of the
star, when a pulsed current of equal characteristics is injected at different angles φJ .
While the displacement of the down-up DW decreases monotonously with φJ , the
distance run by the up-down DW has a maximum at an angle φJ « 30o. This different
behavior has been described in terms of the interaction between the DW inner mag-
netization orientation and the Slonczewskii-like torque associated with the SHE. [153]

These results are to be considered in the explanation of the current-triggered mecha-
nisms of switching of patterned FM elements. The device under study consists of
two elements symmetrically placed, that is, one U-shaped and one inverse U-shaped
element, which will be referred to respectively as upper and lower elements, as those
blue colored in the image of Fig. 10.2(a). It must be mentioned that the geometry
of such elements was intentionally meant to promote switching depending on the
current polarity and the initial magnetization state. [78] The multilayered system can
be described as Pt(3)/Co(0.6)/AlO, over a Si(200) substrate, the numbers indicating
the respective thicknesses in nm of the layers. The structure is depicted in the
subfigure in Fig. 10.2 (the AlO layer is not shown). Dimensions of the layout are
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Fig. 10.1: Run distances for DWs in FM strips due to SOT. Pictures (a) to (d) mimic
by means of µMag simulations the experimental evidences [78] (see text). The initial
magnetization state is presented in (a)/(c) for the up-down/down-up configuration, while
(b) and (d) represent the DWs displacements after the application of the current pulses
in the direction given by the adjacent arrows. Besides, the subfigures in the upper-right
corner present the direction of the injected current and an up-down DW in a FM strip. (e)
An unequal dynamics for up-down and down-up DWs, also depending on the relative angle
φJ between the orientation of the FM strip and the direction of ~J is revealed. [78, 153]

also given. µMag simulations of the device under study were carried out by means of
Mumax. [122] Typical parameters for such a typical HM/FM/oxide multilayer with
strong DMI are considered: [153] Ms “ 1100kA

m
, exchange constant A “ 15pJ

m
, uniaxial

magnetocristalline anisotropy constant Ku “ 1250KJ
m3 , DMI parameter D “ ´1.8mJ

m2 ,
α “ 0.5, θSH “ 0.07, and k “ 0.5. The samples were discretized using a 2D grid of
4-nm wide cells, and simulations were performed using a time step of 1ps. Analysis
including thermal effects and non-homogeneities characterized by a random granu-
larity have been considered so as to mimic realistic samples and conditions. Five-nm
size grains, whose direction of the uniaxial anisotropy (~uK) is mainly directed along
the out-of-plane direction (z-axis, ~uz), but with an in-plane component being ran-
domly generated over the grains, with a maximum percentage of 5%, define such a
granularity. [153]

Since Joule heating effects due to a non-uniform current distribution at the spikes
were proposed [78] as the origin of the DW nucleation in these systems, a preliminary
study of such a current and the Joule heating is a need. The study has been carried
out by means of computational techniques as those detailed elsewhere. [86, 157]
A 3D-structure of the multilayered system was numerically analyzed, where val-
ues of resistivity for the Co and Pt ultra-thin layers, ρCo “ 9.6 ¨ 10´7Ω ¨ m and
ρPt “ 2.7 ¨ 10´7Ω ¨m, were taken. A rather uniform current density is obtained in
both the FM and the HM layer, although the current mainly flows through the latter,
resulting in a uniform heating of the whole FM-HM ensemble (see the stationary
temperature distribution in Fig. 10.2(b)). The quadratic dependence of the tempera-
ture on density current is plotted in Fig. 10.2(c), as obtained from simulations. The
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Fig. 10.2: Current distribution and Joule heating for the device under study. The geometry
parameters of both U-shaped elements, together with the layer thicknesses are drawn. The
thin-film resistivity model is considered (see text). (a) shows that current flows uniformly
through both the FM and HM layers, although the current density is higher for the latter.
This leads to an almost uniform heating of the HM-FM ensemble (b). The stationary
temperature as a function of the current density is plotted in (c). This temperature is
rapidly reached as soon as the current is injected and decreases to room temperature once
the current ceases (d).

graph of Fig. 10.2(d) shows that a certain time constant defines the heating rate of
the ensemble. Briefly, this thin-film resistivity approach results in uniform currents
within the FM and HM layers, and consequently, a uniform Joule heating of the FM
layer. Accordingly, a rather uniform probability of domain nucleation throughout
the FM layer would be expected as due to the thermal agitation. However, the
experimental evidences [78] reveal the existence of nucleation points for the DWs at
the corners of the patterned elements.

To elucidate the origin of the current-triggered DW nucleation, the CDMD is now to
be analyzed. This CDMD results in the reversal mechanisms for either the U-shaped
elements depicted in Fig. 10.2.a or other patterned elements that share similar un-
derlying physics. [78] In order to adequately incorporate the influence of the thermal
agitation in the CDMD, the results were computed by considering the thin-film
resistivity model described above.

The switching mechanisms are revealed in Fig. 10.3 by means of µMag simulations.
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Fig. 10.3: Micromagnetically computed magnetization switching of couples of U-shaped
and inverse U-shaped elements due to the injection of a train of current pulses along the
direction that the arrows at the left indicate. Each row depicts several initial states (t “ 0
column) of the upper and the lower element, either up for the white elements or down for
the black elements, depending on the sign of the out-of-plane magnetization component.
The ordinal #N accounts for the number of applied pulses, i.e, the simulation time. A total
number of pulses N “ 8, with amplitude J “ 3TA

m2 and duration tp “ 4ns were applied (only
the first six pulses are shown). Magnetization reversal occurs at the corners determined
by the current polarity. DWs appearing at these corners have unequal current-driven
propagation, resulting in complete or frustrated magnetization switching processes.

Four rows of images are shown, each corresponding to the evolution of the out-
of-plane component of the magnetization from a certain initial state, either up or
down, after the injection of eight current pulses. The pulses are 4-ns long, and with
different polarity, in the direction of the x-axis, the time between consecutive pulses
being also of 4ns. The current amplitude has been fixed to 3TA

m2 , and its polarity
is depicted using a blue arrow for positive currents (directed along the positive
x-axis), and red otherwise. The first row starts from an up-up configuration, and a
positive current is applied. Reversed domains appear randomly at the left corners
of both elements, the randomness bound to the thermal fluctuations, as it is the
most evident after the second pulse. The corresponding DWs are then current-driven
from left to right. However, the angular dependence of the current-driven DW
dynamics [78, 153] leads to complete switching from up to down after the sixth
pulse for the lower element and frustrated switching attempts for the upper element.
What is meant by frustrated switching is any process of DW generation leading to
spurious domains which collapse due to the different speeds of the limiting DWs.
Contrarily, currents with the opposite polarity promote magnetization inversions
at the right corners, resulting in complete switching of the upper element and no
switching of the lower element (see Fig. 10.3(b)). The third row shows the case
when the elements starts from a down-down configuration. The current polarity
determines again the corners where magnetization inversion occurs, leading to a
complete switching of the upper element and no final switching of the lower element,
which is coherent with the results above. Finally, in order to confirm this coher-
ence, the case when the upper element is initially in the up state, and the lower
one in the down state, with a negative current is included as Fig. 10.3(d). In such
a case, switching is complete for both elements, and is triggered from the right corners.
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Fig. 10.4: Switching probabilities of couples of U-shaped and inverse U-shaped elements
starting from either an (a) up-up or (b) down-down initial state. Open/full symbols
correspond to the upper/lower element. Vertical error bars reflects the statistical standard
deviation. Complete up-to-down switching for the upper/lower element is achieved for
negative/positive currents. Conversely, complete down-to-up switching for the upper/lower
element is achieved for positive/negative currents. No switching occurs otherwise. The
open circle in the snapshots at the bottom indicate the corner where the nucleation of DWs
leading to complete switching occurs, due to the current driven DW dynamics afterwards.

Since these switching mechanisms require the random DW nucleation at the corners
of the spikes of the elements, and its subsequent current-driven propagation, a statis-
tical study of the dependence of the completeness of the switching on the current
amplitude must be performed. Fig. 10.4 shows the results drawn by the µMag simula-
tions in the form of probability of switching as a function of the current amplitude for
currents ranging from ´4TA

m2 to 4TA
m2 , starting either from an (a) up-up configuration

or a (b) down-down configuration. Results from other initial configurations have
been also obtained, and no significant differences have been found. Those have been
omitted in Fig. 10.4 for the sake of a clearer view of the plots in the graphs. Such
probabilities have been calculated from the mean value of the out-of-plane component
of the magnetization of each element at the end of the simulation pă mz ą|t“64nsq.

The probability of switching is given approximately by
1˘ămzą|t“64ns

2
, where the sign

`{´ determines up-to-down/down-to-up switching. Statistics have been carried out
by considering 8 different realizations for each current density over a total of 5
granularity patterns of the elements. Completely complete/frustrated switching is
achieved for absolute currents of the order of 3TA

m2 , being the switching probability
close to 1/0 with a rather low standard deviation. Note that switching probabilities
as they have been defined cannot reach exactly the values 0 or 1, since thermal
agitation prevents the magnetization of the FM elements from reaching the exact
values ă mz ą“ ˘1.
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Fig. 10.5: Effect of the out-of-plane component of the Slonczewskii effective field due to
the SHE on the magnetization at the corners of the spikes. The in-plane component of the
magnetization determines the orientation of this field and so whether this effective field
favors the destabilization of the magnetization and the nucleation of DWs. Each nucleated
DW travels at a speed, either ~vud or ~vdu, which can be estimated from the plots in (e).
These plots present the DW displacement vs. its relative orientation φ with respect to ~J,
as derived from the results in the graph in Fig. 10.1(e). Pink squares indicate for each
initial state (up/down) and current polarity (J ą 0/J ă 0) the corners where the DWs
responsible for complete switching attempts are nucleated.

The presented µMag results are fully consistent with recent experimental observa-
tions, [78] where the magnetization reversal processes were proved to deterministically
start at certain corners of the FM elements, selected by the current polarity. This
fact cannot be simply explained in terms of the Joule heating due to the current
injection, since it has been shown in Fig. 10.2(b) that a uniform temperature of the
FM layer is achieved. Temperature only assists the magnetization destabilization and
the propagation of DWs. An additional ingredient must be given so as to explain the
chiral-triggered character of this CDMS. At this point, the following argument can
be proposed. The DMI present is indeed the responsible for the formation of chiral
magnetization textures in these systems. In particular, boundary conditions (BCs)
at the edges of the element require the existence of a certain in-plane component
of the magnetization ( ~mip) throughout them, [23] which points inwards/outwards
for the down/up domains. The average ~mip at the tapered spikes points along the
direction defined by the tilting angle of the spikes, as shown in Figures 10.5(a) to (d),
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while the corresponding average ~mip at the straight sections points along the in-plane

direction ~uy (not shown), perpendicular to ~J. The effective field associated with
the Slonczewskii-like torque due to the SHE then possesses a foremost out-of-plane
component ~HSL at the tapered spikes, i.e., where magnetization reversals take place,
due to the component of ~mip directed along the current flow. The magnitude of ~HSL

depends then on the relative direction between the current flow and ~mip. For up

domains, ~HSL favors the stabilization/destabilization of the element magnetization

if the projection of ~mip along ~J is parallel/antiparallel, as the depicted vectors

on the corners of Figures 10.5(a) and (b) determine. Conversely, ~HSL favors the
stabilization/destabilization of the element magnetization if the projection of ~mip

along ~J is antiparallel/parallel for down domains, as in Fig. 10.5(c). In summary,
magnetization reversal processes take place at the left/right corners if the current

flows from left to right/right to left, triggered by the resulting ~HSL. After each mag-
netization reversal, the nucleated DW is driven by the current at a speed ~vud/~vdu for
up-down/down-up DW transitions, as the plots in Fig. 10.5(e) reveal. In agreement
with the experiments, [78] in particular with the discussion in Fig. 10.3(c) of the
referenced work, such different DW speeds determine if the process lead to either a
complete or a frustrated switching attempt.

In summary, the CDMS in independlently patterned FM elements on top of an
extended HM has been evaluated by means of realistic µMag simulations, coupled to
the heat dynamics over the full multilayer heterostructure. Our results indicate that
Joule heating per se is not the responsible for DW nucleations at the spikes. Actually,
DW nucleations are promoted by the Slonczewskii-like torque due to the SHE, being
determined by the magnetization in-plane component, as imposed by the DMI BCs,
and the current polarity. In agreement with recent experimental observations, the
nucleated DWs depicts an angular dependence which determines the completeness of
the switching.

We acknowledge the support by project WALL, FP7-PEOPLE-2013-ITN 608031
from the European Commission, project MAT2014-52477-C5-4-P from the Spanish
government and project SA282U14 from the Junta de Castilla y León.
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Chapter 11

Analysis of the current-driven
domain wall motion in a ratchet
ferromagnetic strip∗

The dynamics of magnetic domain walls along ferromagnetic strips with spatially
modulated perpendicular magnetic anisotropy is theoretically studied by means of
micromagnetic simulations. Ferromagnetic layers with a periodic sawtooth profile
of the anisotropy depict a well-defined set of energy minima where the walls are
pinned in the absence of external stimuli, and favor the unidirectional propagation
of domain walls. The performance of the current-driven domain wall motion along
these ratchet-like systems is compared to the field-driven case. Our study indicates
that the current-driven domain wall motion exhibits significant improvements with
respect to the field-driven case in terms of bit shifting speed and storage density,
and therefore, it is suggested for the development of novel devices. The feasibility of
these current-driven ratchet devices is studied by means of realistic micromagnetic
simulations and supported by a one-dimensional model updated to take into account
the periodic sawthooth anisotropy profile. Finally, the current-driven domain wall
motion is also evaluated in systems with a triangular modulation of the anisotropy
designed to promote the bidirectional shifting of series of walls, a functionality that
cannot be achieved by magnetic fields.

∗Adapted from Luis Sánchez-Tejerina, Óscar Alejos, Vı́ctor Raposo, and Eduardo Mart́ınez.
Current-driven domain wall motion along ferromagnetic strips with periodically-modulated perpen-
dicular anisotropy. Journal of Applied Physics, 2018. doi:10.1063/1.5036601 (just accepted).
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11.1 Introduction

The ability to propagate series of magnetic domain walls (DWs) along ferromagnetic
strips is the basis of several proposed logic and memory devices [27, 28]. There are
some requirements for successful DW-based memory devices, where the informa-
tion is coded within the magnetic domains between DWs. Firstly, it is needed to
nucleate (write operation) a magnetic domain and its DWs [161]. The nucleated
or written domain (which acts as the data bit) should be efficiently shifted along
the ferromagnetic strip to the location of the reading head. Therefore, other issue
is to control the exact pinning positions where the DWs stop after propagation.
Recent studies focused on multilayers with inversion structural asymmetry, where a
ultrathin ferromagnetic layer (FM) is sandwiched between a heavy metal (HM) and
an oxide (Ox) [8, 10–12, 21] have opened new promising ways of efficient DW motion.
These systems exhibit a high perpendicular magnetic anisotropy (PMA), and the
interfacial Dzyaloshinskii-Moriya interaction (DMI) [41] at the HM/FM interface
makes DWs adopt a Néel configuration. These homochiral DWs are efficiently driven
by the torque exerted by an injected electrical current through the HM, due to the
spin Hall effect (SHE) [11, 12]. In contrast, an applied out-of-plane magnetic field
drives adjacent DWs in exactly opposite directions; this is the main reason why the
manipulation of DWs with electrical currents is so useful.

As mentioned, apart from the high efficient current-driven DW motion, the design
of DW-based devices requires to develop an adequate pinning strategy to precisely
control the DW positions along the device. In HM/FM/Ox multilayers, adjacent
homochiral DWs experience magnetostatic interaction [145, 162, 163], which imposes
a limit in the stored bit density. Moreover, under current pulses, these homochiral
DWs can also depict inertia [164] which results in some after-effect DW motion once
the current pulse is switched off. The introduction of notches along the strip was
initially suggested to fix the DW positions [165]. However, these shape-induced
effects were initially designed for systems with in-plane magnetization, while in
systems with high PMA this effect is rather weak, and typically induces deformations
of the DW [166]. For these reasons, some alternatives have been proposed, such as
the control of the DW pinning (and DW nucleation) by means of a tailored PMA.
These alternatives include the application of a voltage in an epitaxial magnetic tunnel
junction [167] , or a strain-mediated coupling in piezoelectric/magnetostrictive bilayer
structures [168]. The irradiation of the sample with heavy ions is another proce-
dure [48, 79] which can produce an anisotropy landscape along the ferromagnetic strip.

The PMA is known to be reduced by irradiation with highly energetic ions, and
therefore, the anisotropy can be controlled very locally at a scale of a few nanometers.
Using different doses of local irradiation with heavy ions, Franken et al. [80] generated
a sawtooth profile, where the local PMA anisotropy (Ku “ Ku pxq) varies linearly
from a minimum (K´

u ) to a maximum (K`
u ) over a distance d, and this tooth is

repeated periodically along the ferromagnetic strip. This idea led to a new proposal
for a magnetic memory, known as ratchet memory, which was studied under the
field-driven regime. The periodic sawtooth PMA profile was intended to fix the DW
positions and to establish one direction of bit shifting by avoiding backwards DW
movement due to the applied field. As adjacent up-down (Ö) and down-up (Œ) DWs
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move in opposite directions under a fixed out-of-plane field orientation, an alternate
applied magnetic field (bipolar field pulse) is needed to promote the shifting of the
DWs. Moreover, as one DW is driven by the field whereas the other one remains
pinned for a fixed field polarity (either along the `z or the ´z direction), two teeth
are needed to store a single bit of information, a fact which imposes the minimum
bit size bs “ 2d. In the present work we go deeper into this conception and study
theoretically for the first time the DW dynamics in a ratchet memory device by means
of unipolar current pulses. Using micromagnetic simulations (µM), we evaluate the
dynamics of DWs under perfect and realistic conditions to explore the feasibility
of the proposed current-driven ratchet device. Additionally, the one-dimensional
model (1DM) is also updated here to include the effective field accounting for the
periodic anisotropy landscape. This 1DM is used to clarify some aspects of the DW
dynamics and will be of help in the further development of the proposed devices. We
will show that the current-driven mechanism ensures the proper bit shifting along
the FM strip. Indeed, it constitutes a much more interesting alternative from the
technological point of view to the field-driven basis, since the current promotes the
dynamics of all DWs in the same direction. Moreover, the current-driven ratchet
also contributes to reduce bit sizes (increasing bit densities) and to speed up the
bit shifting. Besides, we also suggest other systems where the PMA is periodically
modulated to achieve the bidirectional DW motion, and theoretically analyze the
current-driven DW back and forth shifting along them.

The present manuscript is structured as follows: Sec. 11.2 presents the system under
study along the details of the Micromagnetic model (µM) and the one-dimensional
model (1DM) developed to describe the DW dynamics in systems with periodically
modulated PMA. Sec. 11.3.1 reviews the main features of the field-driven ratchet
and unveils its handicaps when dealing with bit densities and bit shifting times as
compared to the current-driven case (Sec. 11.3.2). The current-driven DW shifting
along a ratchet strip studied in Sec. 11.4. Full µM simulations and 1DM results are
presented for perfect strips, both at zero and at finite temperature. Besides, the effect
of disorder is evaluated to provide a more realistic description. Sec. 11.5 sketches
how to extend the exposed ideas to implement a bi-directional device. Finally, the
main conclusions are discussed in Sec. 11.6.

11.2 Geometry and Models

A ratchet FM strip with high PMA sandwiched between a HM and an Ox, as
schematically depicted in Fig. 11.1, is considered. The left graph in Fig. 11.1 de-
picts four periods of the sawtooth profile of anisotropy (Ku “ Ku pxq) along the
longitudinal axis of the FM strip (x-axis). Within each tooth of the sawtooth the
PMA constant increases linearly from K´

u to K`
u over a distance d, which defines

the periodicity of the sawtooth anisotropy profile along the x-axis. Each region
of length d can pin one DW, which in the absence of external stimuli locates ap-
proximately at any of the points where the anisotropy energy is a minimum. The
word “approximately” accounts for the finite width of the DW and the abrupt drop
of the anisotropy from the maximum (K`

u ) to the minimum (K´
u ) for the ratchet case.
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Fig. 11.1: Description of the system under study. A stack consisting of a FM strip of width
w and thickness tFM sandwiched between a HM and an Oxide is considered. The FM
layer exhibits high PMA, but such an anisotropy is tailored to present a sawtooth profile
along the longitudinal direction (x). This ratchet profile is defined by two extreme values
K`
u and K´

u , and its periodicity is given by a distance d. All minima define subsequent
equilibrium positions where DWs get pinned.

11.2.1 Micromagnetic model (µM)

The temporal evolution of the normalized magnetization ~m p~r, tq “ ~M{Ms is de-
scribed by the Landau-Lifshitz-Gilbert (LLG) equation augmented by the spin-orbit
torques [10, 12, 16, 19] (SOT) and thermal fluctuations [114]:

d~m

dt
“ ´γ0 ~mˆ

´

~Heff ` ~Hth

¯

` α~mˆ
d~m

dt
` ~τSO (11.1)

where γ0 and α are the gyromagnetic ratio and the damping parameter respectively.
~Heff is the effective field, which includes the exchange, the perpendicular magnetic
anisotropy, the magnetostatic and the Zeeman interactions, along with the DMI [41].
For the field-driven case, the applied field is pointing along the out-of-plane direction,
~Bext “ Be ptq ~uz, with Be ptq “ µ0He ptq. ~τSO represents the spin-orbit torque (SOT),
which in general includes two contributions: ~τSO “ ~τSL`~τFL. The first one, ~τSL, is the
Slonczewski-like (or damping-like) SOT term, which is given by ~τSL “ ´γ0 ~mˆ ~HSL

where ~HSL “ H0
SL p~σ ˆ ~mq is the Slonczewski-like effective field [12, 14]. Here,

~σ “ ~uz ˆ ~uJ is the unit vector along the direction of the polarization of the spin
current generated by the spin Hall effect (SHE) [9, 50] in the HM, which is orthogonal
to both the direction of the electric current ~uJ “ ~ux and the vector ~uz standing for
the normal to the HM/FM interface. H0

SL “
~θSHJaptq

2µ0eMstFM
determines the strength of

the SHE [14], where ~ is the Planck constant, e ă 0 is the electron charge, µ0 is the
vacuum permeability, θSH is the spin Hall angle, and Ja ptq is the magnitude of the

current density ~J ptq “ Ja ptq ~ux injected through the HM. The second contribution to

the SOT (~τFL) is the Field-like SOT, which is expressed as ~τFL “ ´γ0 ~mˆ ~HFL with
~HFL being the corresponding effective field given by ~HFL “ HFL~σ. The magnitude
of the Field-like SOT effective field is H0

FL “ kH0
SL, where the factor k parameterizes

H0
FL in terms of the Slonczewski-like effective field H0

SL. ~Hth is the thermal field
included as a Gaussian-distributed random field [113, 114].
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The study of the motion of a DW in such a system requires solving this equation
by means of full micromagnetic simulations (µM). In order to carry out those sim-
ulations, typical material parameters of HM/FM/Ox multilayers commonly found
in the literature [15, 16, 41, 72] have been considered: saturation magnetization
Ms “ 1.1MA{m, exchange constant Aex “ 16pJ{m and a Gilbert damping parameter
α “ 0.5. The values K`

u “ 1.27MJ{m3, K´
u “ 1.0MJ{m3 and d “ 128nm define the

anisotropy landscape. The anisotropy variation has been chosen to be compatible
with the reported in recent experimental works [79]. Except otherwise indicated,
a uniform DMI parameter D “ 1mJ{m2 has been considered [17]. This value is
sufficiently high to induce the formation of homochiral Néel DWs and, therefore,
to allow efficient current-driven DW movement by means of the SHE [12]. The
considered spin Hall angle is θSH “ 0.1. The adopted magnetic parameters mimic a
multilayer of Pt(3)/Co(0.6)/AlO(2) where the corresponding thicknesses between
brackets are in given in nm [15, 16, 41, 72]. Although it is now well established that
the main driving force on the DW in theses systems comes from the Slonczewski-like
SOT term, some additional simulations were carried out considering also a finite
Field-like SOT contribution, which was equal in magnitude to the Slonczewski-like
SOT (|k| “ 1). It was verified that this Field-like SOT (|k| “ 1) does not signifi-
cantly modify the results obtained in the absence of Field-Like SOT (k “ 0), and
therefore, the presented results were computed assuming k “ 0. Indeed, the main
driving force on the DW is the Slonczewski-like SOT. A FM strip with a cross
section w ˆ tFM “ 128nm ˆ 0.6nm has been analyzed. µM simulations have been
performed with MuMax3 package [122] using a time 1ps. The in-plane side of the
computational cells is ∆x “ ∆y “ 1nm. Except the contrary is said, the presented
results were obtained at zero temperature. Simulations at room temperature were
performed with a fixed time step ∆t “ 0.1ps. Several tests were performed with re-
duced cell sizes and time steps to assess the numerical validity of the presented results.

Part of the simulations was carried out by considering perfect samples, without
imperfections nor defects. Additionally, other parts were computed under realistic
conditions (see Sec. 11.4.3). In order to take into account the effects of disorder
due to imperfections and defects in a realistic way, we assume that the easy axis
anisotropy direction (~uK “ ~uK p~rGq) is distributed among a length scale defined
by a grain size [164]. The average size of the grains is 10nm. Despite the fact
that the direction of the uniaxial anisotropy of each grain is mainly directed along
the perpendicular direction (z-axis), a small in-plane component lower than 5% is
randomly generated over the grains. The inter-grain exchange stiffness parameters
was assumed to be equal to the exchange parameter Aex. It was verified that a
25% reduction of the inter-grain exchange constant does not modify the presented
results. Besides, a random edge roughness pattern is considered along both edges of
the FM strip with a characteristic size of 4nm. Although other ways to account for
imperfections could be adopted [87], we selected this one based on previous studies,
which properly describe other experimental observations [163, 164].
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11.2.2 One dimensional model (1DM)

The one dimensional model (1DM) assumes that the DW profile can be described

by the Bloch’s ansatz [124], θ px, tq “ 2 arctan
”

exp
´

Qx´qptq
∆

¯ı

, where θ is the angle

of magnetization with respect to the out-of-plane direction, z-axis, ∆ is the DW
width and Q “ ˘1 correspond to the up-down (Ö, Q “ `1,) and down-up (Œ,
Q “ ´1) DW configurations. The DW dynamics can be described by means of the
DW position (q) along the strip axis (x-axis), and the internal DW angle (Φ), which
is defined with respect to the `x-axis. The 1DM has been developed by several
authors to account for and describe the field-driven and current-driven DW dynamics
in different systems [41, 72, 145]. Here we have developed it to analyze the DW
dynamics in systems depicting a modulated profile of the perpendicular magnetic
anisotropy (PMA) along the strip axis, Ku “ Ku pxq. In general, the resulting 1DM
equations from Eq. (11.1) can be expressed as

α
9q

∆
`Q 9Φ “ ´

γ0

2µ0Ms

Bσ

Bq
` γ0QHth ` γ0Q

π

2
HSH cos Φ (11.2)

Q
9q

∆
´ α 9Φ “

γ0

2µ0Ms

Bσ

Bϕ
´ γ0

π

2
HFL cos Φ (11.3)

where the top dot notation represents the time derivative ( 9q ” dq
dt

). The term

HSH ” H0
SL “

~θSHJaptq
2µ0eMstFM

is the Slonczewskii-like term associated to the SHE, and
HFL “ kHSL is the Field-like effective field. Thermal fluctuations are accounted by
the thermal term Hth ptq. σ is the total areal energy density [41] which results from
the integration of the volume energy density ω over the strip axis, σ “

ş8

´8
ωdx, and

it includes the same interactions as the effective field ~Heff in Eq. (11.1): exchange,
magnetostatic, DMI, PMA and interaction with an external field.

σ “
2Aex

∆
`∆µ0M

2
s

`

Nx cos2 Φ`Ny sin2 Φ´Nz

˘

`

`QπD cos Φ´ 2Qµ0MsHzq ` σPMA

(11.4)

where Nx, Ny, Nz are the magnetostatic factors, and σPMA “
ş8

´8
ωPMAdx is the

areal energy density due to the PMA, with ωPMA “ Ku pxq sin2 θ pxq. As here we are
interested in strips with modulated PMA along their axis, Ku “ Ku pxq, this term
deserves a particular treatment. Let us initially consider a general periodic PMA
profile where Ku increases linearly from K´

u to K`
u over a distance d1, and after that

it decreases linearly from K`
u to K´

u over a distance d2, with d “ d1 ` d2 being the
period of the PMA profile. This can be expressed as

Ku pxq “

$

&

%

K´
u `

K`u ´K
´
u

d1

`

x´ tx
d
ud
˘

, 0 ď
`

x´ tx
d
ud
˘

ď d1

K`
u ´

K`u ´K
´
u

d2

`

x´ tx
d
ud´ d1

˘

, d1 ď
`

x´ tx
d
ud
˘

ď d
(11.5)

where tx
d
u represents the integer part of x

d
. Note that here we are interested in strips

where the DW width is significantly smaller than the PMA period (∆ ! d). Under this
circumstance and after some algebra, the PMA areal density σPMA “

ş8

´8
ωPMAdx

can be expressed as
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σPMA “ 2∆K´
u `

`pK`
u ´K

´
u q

`1
ÿ

n:´1

«

∆2

d1

log

˜

cosh d
∆
an

cosh d
∆

`

an ´
d1

d

˘

¸

`
∆2

d2

log

˜

cosh d
∆
an

cosh d
∆

`

an ´
d1

d

˘

¸ff

(11.6)
where an “ t

q
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u ` n, with the braces t q
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u indicating the fractional part of q

d
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The general PMA profile Ku “ Ku pxq (Eq. (11.5)), and the corresponding PMA
r pqq function (Eq. (11.7)-(11.8)) are represented in Fig. 11.2(a) for d1 “ 2d2 and
K´
u “ 1MJ{m3 and K`

u “ 1.27MJ{m3. This effective field HPMA pqq “ H0
PMAr pqq

drives the DW to the closest accessible energy minima in the absence of driving
force: a DW located between 0 ď q ď d1 is pushed back towards q « 0 by a negative
HPMA pqq, whereas a DW between d1 ď q ď d1 ` d2 is forced towards q « d1 ` d2 by
a positive HPMA pqq (see bottom graph in Fig.11.2(a)). The magnitude of this out-
of-plane PMA effective field is determined by the slope of the local PMA parameter
Ku pxq “ Ku pqq.

The ratchet case, where Ku periodically increases linearly from K´
u to K`

u over a
distance d (Fig. 11.2(b)), can be also obtained from Eq. (11.5) with d “ d1 and
d2 “ 0. The corresponding PMA r pqq function (Eq. (11.8)) is shown in the bottom
graph of Fig. 11.2(b). As it can be easily understood, a DW at an intermediate
location 0 ď q ď d is always forced backwards to q « 0 by the corresponding PMA
effective field, HPMA pqq “ H0

PMAr pqq.

By substituting Eq. (11.4) and (11.6) in Eqs. (11.2) and (11.3) the 1DM equations
can be finally expressed as:

9q “
γ0∆

1` α2
rQΩA ` αΩBs (11.9)

9Φ “
γ0

1` α2
r´αΩA `QΩBs (11.10)

where

ΩA “ Q
π

2
HD sin Φ´

Hk

2
sin p2Φq ´

π

2
HFL cos Φ (11.11)

ΩB “ ´
π

2
HSL cos Φ`QHz `Hth ptq `HPMA pqq (11.12)
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Fig. 11.2: Periodic anisotropy profile Ku “ Ku pxq and corresponding local pinning PMA
field r pqq ” HPMA pqq {H

0
PMA as function of the DW position q. The period of the

anisotropy profile is d “ d1 ` d2. (a) General case with d1 ą d2. (b) Ratchet case with
period d “ d1 and d2 “ 0. In both cases K´

u “ 1MJ{m3 and K`
u “ 1.27MJ{m3.

HD “ D
µ0Ms∆

is the DMI effective field [12, 14, 41], where ∆ is the DW width

which was assumed to be constant (∆ “

b

A
Keff

where Keff “ K̃u ´
1
2
µ0M

2
s , with

K̃u “ pK`
u `K

´
u q {2q. Hk “ Ms pNx ´Nyq « MsNx is the magnetostatic shape

anisotropy field, where Nx “
tFM logp2q

π∆
is the magnetostatic factor [149]. Eqs. (11.9)-

(11.10) are solved numerically using a Runge-Kutta scheme.

11.3 Ratchet memory: field-driven vs current-driven

DW shifting.

11.3.1 Field-driven case

Before focusing our attention to the current-driven DW along a ratchet device, here
we review the main features of the field-driven case, which was initially suggested by
Franken et al. [80] to develop a magnetic memory device based in the unidirectional
motion of trains of DWs along a ratchet strip. A periodic anisotropy sawtooth profile
given by Eq. (11.6) with d “ d1 and d2 “ 0 (ratchet PMA profile) is considered to
study the DW dynamics by means of µM simulations. The field-driven case requires
bipolar pulses to displace trains of DWs along the same strip because up-down (Ö)
and down-up (Œ) DWs are driven in opposite directions by the same field pulse. This
fact is shown in the example depicted in Fig. 11.3(b), where three central magnetic
domains (ÖÒ: 101, up/down magnetized domains represent 1{0 bits respectively) are
separated by down-up (Œ) and up-down (Ö) DWs, which are initially located at
their equilibrium positions close to the minimum the sawtooth profile (K´

u ). Each
domain extends over a distance equivalent to the length of two slopes of the PMA
profile, the bit size being bs “ 2d in this case. Note that down-up DWs are driven to
the right (x ą 0 direction) by the negative field-pulse (Be ptq ă 0 for 0 ă t ă 2ns),
whereas up-down DWs remain trapped at their initial locations. Indeed, the strength
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of the applied field is not sufficiently intense to promote their movement towards the
left due to the high energy barrier associated with the sawtooth anisotropy profile.
A second positive field pulse (Be ptq ą 0 for 2ns ă t ă 4ns) is needed to displace
up-down DWs along the positive x-axis afterwards (see snapshots for t ě 2ns in
Fig. 11.3(b)), whereas down-up DWs remain trapped during this second pulse. In
this case, where each bit extends over a distance bs “ 2d, the bipolar field pulse
shown in Fig. 11.3(b) drives the sequence of bits (ÖÒ: 101) a single tooth (d).

In order to illustrate the limitations of the field-driven case in terms of bit density, an
analogous study to that shown in Fig. 11.3(b) is now carried out, but reducing the
initial distance between the adjacent DWs to bs “ d. The corresponding snapshots
shown in Fig. 11.3(c) indicate that down-up DWs are initially displaced towards
positive x-values, whereas up-down DWs remain trapped at their initial locations
for 0 ă t ă 2ns, i.e., when the out-of-plane field is negative (Be ă 0). Down-up and
up-down DWs repel each other due to the DMI [163] and therefore, they do not
annihilate. When the field switches to the positive polarity (Be ą 0, for t ą 2ns),
down-up DWs move back to their initial locations whereas up-down DWs jump to
the adjacent energy minima. As a result, the initially coded information is perturbed
after t “ 2ns. Note that the right up domain has increased its length (2d) with respect
to the initial state (d). Therefore, the proper operation of this field-driven device
requires a minimum bit size equal to 2d, where d is the period of the anisotropy profile.
Moreover, a complete bit shifting requires a total time given by the duration of the
bipolar field pulse. Next section demonstrates that the current-driven mechanism
only requires one characteristic length d to store one bit, whereas the unidirectional
bit shifting can be promoted by single unipolar current pulses.

11.3.2 Current-driven case

Let us now evaluate the current-driven DW motion in the same ratchet strip as
in Fig. 11.3. A single unipolar current pulse with amplitude Ja “ 0.8TA{m2 and
duration 2ns is applied (see Fig. 11.4(a)). An example of the current-driven mecha-
nism is displayed in Fig. 11.4(b). As in the previous field-driven case of Fig. 11.3(b),
three central domains (ÖÒ: 101 ) are separated by down-up (Œ) and up-down (Ö)
DWs, which are initially at their equilibrium positions and at a distance equal to
two characteristic lengths d (bite size is bs “ 2d). Every DW is moved in the same
x ą 0 direction when a positive Ja ą 0 pulse is applied, and therefore a current
in the opposite direction is not required. Indeed, the DWs are displaced to the
subsequent equilibrium position of the anisotropy profile. Moreover, the coherent
DWs displacement can be exploited to reduce the bit size to bs “ d, as Fig.11.4(c)
shows. Contrary to the case field-driven case depicted in Fig. 11.3(c), now the
coded bits (ÖÒ: 101) within the domains are preserved after the application of a
single current pulse. Note also that even in the case of bs “ 2d (Fig. 11.4(b)), the
current-driven ratchet requires less time to promote the unidirectional bit shifting as
compared to the field-driven case (Fig. 11.3(b)).
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Fig. 11.3: Micromagnetic results of the field-driven DW motion along a ratchet strip.
(a) shows the bipolar field pulse needed to shift the bit along the positive direction of
the x-axis. The amplitude of the bipolar field pulse is Be “ 50mT, and it is negative
during the first 2ns and positive from 2ns to 4ns. The other two panels depict transient
magnetization snapshots of the bit shifting of two bits of size (b) bs “ 2d and (c) bs “ d
with d “ 128nm. Materials parameters are those given in Sec. 11.2. Results were obtained
at zero temperature.
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Fig. 11.4: Micromagnetic results of the current-driven DW motion along a ratchet strip.
(a) shows the unipolar current pulse needed to shift the bit along the positive direction of
the x-axis. The amplitude of the pulse is Ja “ 0.8TA{m2, and its duration is 2ns. The
other two panels depict transient magnetization snapshots of the bit shifting of two bits of
size (b) bs “ 2d and (c) bs “ d with d “ 128nm. Materials parameters are those given in
Sec. 11.2. Results were obtained at zero temperature.
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11.4 Performance of current-driven DW motion

along a ratchet strip

11.4.1 Micromagnetic and 1DM results. Perfect strips at
zero temperature

The advantages of the current-driven mechanism over the field-driven case for a
ratchet device have been highlighted in the previous section. Here we focus our
attention to the analysis of the performance of these current-driven ratchet devices.
The working principle of the current-driven ratchet device here proposed is described
as follows. Each region of length d can pin one DW, which in the absence of external
stimuli locates approximately at any of the points where the anisotropy energy is
a minimum. The region size indeed defines the bit size (bs “ d), and bit shifting

should occur after the application of current pulses ~J ptq “ Ja ptq ~ux, since the DWs
can skip the tooth of the anisotropy profile pushed forward by the driving force
associated with the current. Therefore, the proper performance of the device depends
on the amplitude Ja of the injected current, its duration, which is referred to as the
excitation time (te), and the interval between subsequent pulses, named here as the
relaxing time (tr). The ratio between the excitation time (te) and the total latency
time (τ “ te ` tr) defines the duty cycle (te{τ). Different behaviors can be observed
depending on these inputs Ja, te and tr.

Fig. 11.5(a) presents the results obtained at zero temperature for three different
current amplitudes Ja and fixed excitation and relaxation times (te “ tr “ 2ns)
corresponding to a 50% duty cycle. Micromagnetic results (µM) are depicted by
dots and 1DM results with lines. A single DW located at the position of one of the
anisotropy landscape minima is considered as the initial state, and two consecutive
current pulses are applied. The temporal evolution of DW position is plotted when
low (Fig. 11.5(a)), intermediate (Fig. 11.5(b)) and high (Fig. 11.5(c)) current pulses
are applied. Representative micromagnetic snapshots are shown in the right panels.
It can be checked that the values provided by the 1DM are in a rather good agreement
with the µM results. As it has been stated, a positive current promotes DW motion
from left to right. This driving force must overcome the restoring force associated
with the slopes of the anisotropy profile. If the driving force overwhelms the restoring
force at each point, the DW is able to skip one or several teeth of the anisotropy
profile, as long as the current is on (t ă te). When the current is switched off at
t “ te the DW moves backwards due to the above-mentioned restoring force, going
back to the local equilibrium position at an anisotropy minimum. The current is
off during a relaxing time tr which must be sufficiently long to let the DW reach
such local equilibrium position. This ensures that the application of the new current
pulse drives the DW in a predictable way.

Fig. 11.5(a) illustrates a frustrated jump attempt followed by a complete DW jump
after the second current pulse (Ja “ 0.4TA{m2). Initially, the DW is driven by the
current a distance shorter than d. Then, the DW does not skip the anisotropy tooth
but reverses its motion due to the anisotropy profile for te ă t ă te ` tr. If the
relaxation time tr was sufficiently long, the DW would recover its starting position
at equilibrium. However, the time tr “ 2ns is in this case rather short, and the
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Fig. 11.5: DW position as a function of time for two successive current pulses of te “ 2ns
excitation time and tr “ 2ns relaxing time. Three different current amplitudes at zero
temperature are considered: (a) Ja “ 0.4TA{m2, (b) Ja “ 0.6TA{m2, and (c) Ja “
1.1TA{m2. In the left graphs, points correspond to full Micromagnetic results (µM) and
lines are the results of the 1DM. Micromagnetic snapshots at the times when the current is
switched on and off are shown in the right panels. Dashed lines in the snapshots indicate
the peaks of the anisotropy profile.

DW acquires an intermediate position on the slope when the second current pulse is
applied at t “ te ` tr “ 4ns. The subsequent jump is caused by the fact that the
DW starts its dynamics from this non-equilibrium intermediate position after the
first pulse, i.e., eventual (non predictable) bit shifting occurs during the application
of the second current pulse, since DWs may skip the anisotropy tooth from such
intermediate positions. This unpredictable behavior is completely undesirable for
applications. Conversely, high current amplitudes can make DWs eventually advance
two or more bits after every single current pulse, instead of only one. Fig. 11.5(c),
which corresponds to a current pulse with Ja “ 1.1TA{m2, displays this behavior.
The application of the first current pulse results in a double bit shift, and the
second pulse also promotes a double bit shift. Finally, Fig. 11.5(b) depicts the
case when the amplitude of the pulse is adequately high as to promote the DW
displacement over a distance larger than d but shorter than 2d (Ja “ 0.6TA{m2). For
this amplitude of the current pulse DWs do not return to the starting position after
the application of each current pulse, but to the subsequent equilibrium position
at a distance d provided the relaxing time is sufficiently long. This situation is
achieved with a high confidence in this example, and corresponds to the desired
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behavior, where a single bit is shifted only one tooth after every single current
pulse. In other words, single DW jump occurs and the positions of the DWs al-
ways match an equilibrium state prior to the application of the next current pulse.
As it can be checked in left graphs of Fig.11.5, the 1DM model provides us with
adequate predictions of the time evolution of DWs, in agreement with full µM results.

11.4.2 Thermal effects: Joule heating and operation range

Former results were computed at zero temperature (T “ 0). However, real devices
should work at finite temperature and therefore, the effect of thermal fluctuations
needs to be evaluated. Moreover, DWs are moved by an electric current and con-
sequently, the effect of Joule heating may increase this temperature. Accordingly,
thermal effects have been included in our results by means of the procedure described
in Sec. 11.2, whereas the temperature increase due to the Joule heating was com-
puted by COMSOL [169] simulations of the full HM/FM/Oxide stack (see its cross
section in Fig. 11.6(a)). The thermal parameters of the different layers are given
in Fig. 11.6(b), where σ is the electrical conductivity, Cp the heat capacity, kth is
the thermal conductivity, and ρm is the density. A thin silicon oxide layer (SiO)
is assumed to be formed at the interface between the Si wafer and the Pt layer,
which introduces an interfacial thermal resistance (Rth). Further details of this Joule
heating evaluation are given in our previous works (see Refs. [86, 157]). The study
indicates that within the range of current amplitudes considered along this work the
temperature rises from room temperature (T “ 300K) following an exponential law,
with a characteristic time of a few tenths of nanoseconds. After that, when the current
pulse is switched off, the temperature decreases in identical fashion. As to exemplify
these statements, the temporal evolution of the temperature is shown in Fig. 11.6(c)
for three current pulses with te “ 2ns and different amplitudes Ja. The temporal
evolution of the temperature in the FM layer obtained by COMSOL simulations can
be analytically described by T ptq “ T0 ` βJ

2
a r1´ exp p´t{τthqs during the current

pulse 0 ă t ă tp, and T ptq “ T0 ` βJ2
a exp p´pt´ tpq {τth) after it (t ě tp), where

T0 “ 300K, β “ 2.1 ˆ 10´23K{pA{m2
q , and τth “ 0.4ns. Note that the maximum

temperature reached at the end of the current pulse (Tmax “ T pt “ teq) is well below
the Curie temperature of conventional ferromagnetic materials. In particular, it is
very well below the Curie temperature of the Co (TC „ 1400K) [92]. In Fig. 11.6(d)
we plot the maximum temperature Tmax reached at the end of the current pulse
as a function of the current pulse amplitude (Ja). Although Tmax scales with J2

a ,
the temperature remains well below the Curie threshold for the current amplitudes
considered in the present study. Moreover, we have compared the DW dynamics
along the ratchet device under a current pulse of Ja “ 0.65TA{m2 and te “ 2ns,
assuming both a constant room temperature (T “ 300K) and a temperature rise
due to the Joule heating as described above (not shown). We checked that the
dynamics is not significantly perturbed by Joule heating, and consequently, Joule
heating does not constitute a drawback in the evaluated devices within the range of
current amplitudes and pulse lengths considered here.

Although Joule heating seems to be negligible for the short and current pulses
needed for the proper performance of these ratchet devices, thermal fluctuations can
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Fig. 11.6: Temperature dynamics under current pulses as computed by COMSOL sim-
ulations. (a) Cross section of the multilayer studied by COMSOL simulations for the
heat transport under current pulses. (b) Thermal parameters used in the simulations.
(c) Temporal evolution of the temperature for three current pulses with te “ 2ns and
different amplitudes (Ja). (d) Maximum temperature reached at the end of the current
pulse (Tmax “ T pt “ teq) as function of Ja. The box indicates the proper operation range
of the considered device.

significantly reduce the reliability of the device even at fixed temperature. In order
to study this reliability, the concept of proper operating range of the device can be
introduced. This concept defines the range of values of the current amplitude Ja
for given times te and tr that promote a single DW jump after the application of
one current pulse. Indeed, the wider the operating range is, the more reliable the
device becomes. As an example, Fig. 11.7(a) depicts the probability of one single DW
jump after the application of one current pulse, obtained from both µM simulations
and the 1DM, as a function of the current amplitude Ja. Within this context, a
probability of one means one single DW jump for every realization, for a total of
twenty realizations at room temperature (T “ 300K). Three different excitation
times, te : 1ns, 1.5ns, 2ns, are considered for a 50% duty cycle (te “ tr). The
curves neatly define for each excitation time a range of applied currents leading to
single DW jumps, i.e., the proper operating range. Importantly, this range increases
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Fig. 11.7: (a) Probability of single jumps of one DW after the application of one pulse.
The probability is given as a function of the current amplitude for pulses with te “ 1ns,
te “ 1.5ns, and te “ 2ns and are computed from full µM simulations (symbols) and the
1DM (lines). (b) Color map computed by using the 1DM showing the probability of single
DW jumps at room temperature as a function of the current amplitude Ja and latency
time τ “ te` tr, the latter defined as the total time required to move one bit. A duty cycle
of 50% is considered in both cases. (c) Applied current as a function of current amplitude
Ja, pulse length tr, and period τ “ te ` tr. (d) Probability of single jumps of one DW
promoted by one current pulse with 50% and 33% duty cycles. Probabilities are calculated
over 100000 jump attempts by means of the 1DM. The excitation time is te “ 1ns in both
cases, while the relaxing times are tr “ 1ns for the 50% duty cycle and tr “ 2ns for the
33% duty cycle.

with decreasing pulse lengths. It can be checked from the graphs in Fig. 11.7 the
remarkable agreement between the results provided by full µM simulations and the
1DM even at finite temperature, in particular within the area of interest which defines
the proper operating range. Actually, the use of the 1DM permits us to easily extend
this study over the excitation times (te) along with the current amplitudes (Ja).
The color map in Fig. 11.7(b) collects this study. As in previous examples, room
temperature (T “ 300K) is considered. As previously said, the proper operating
range increases with decreasing excitation times. Besides, the shorter excitation times
(te) are considered, the higher amplitudes (Ja) are required to achieve single DW
jumps. The highest current amplitudes suitable for this device might be then limited
by the appearance of DW tilting [19, 72] or other effects such as a non-negligible
Joule heating for currents higher than 2TA{m2. In any case, thermal fluctuations
are not as intense as to endanger the performance of this device at room temperature.
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With the aim of extending the operating range of this device, the following strategy
can be proposed. Since the DW requires a minimal relaxing time (tr) to reach an
equilibrium position, this time can be lengthened, then reducing the duty cycle. In
that way, a 50% duty cycle means that te “ tr while a 33% duty cycle stands for
2te “ tr. In order to provide a detailed statistics of the reliability of the proposed
device, Fig.11.7(d) compares the probability at finite temperature (T “ 300K) of
single DW jump after one current pulse over 100000 attempts (see the previous
definition of probability equal to 1) calculated by means of the 1DM. The two
mentioned duty cycles, 50% and 33%, are considered with fixed excitation time
te “ 1ns. The results for current pulses with 50% duty cycle reveal a shorter range
of currents resulting in proper working, as making the device more vulnerable to
thermal fluctuations. Nevertheless, a 33% duty cycle ensures proper working for a
wider range of applied currents, which increases the reliability of the device.

11.4.3 The effect of disorder

Results discussed in previous sections were evaluated assuming perfect samples,
without defects nor imperfections. Here we show that current-driven DW motion
along a ratchet (unidirectional) device is also reliable even under realistic conditions.
The DW motion under current pulses for perfect strips (with neither edge roughness
nor bulk defects) is compared with a more realistic description. Such realistic
conditions were evaluated by assuming that the strip has some edge roughness and
bulk defects in the form of grains (see Sec.11.2.1). In Fig. 11.8, the perfect and the
realistic cases are compared under two consecutive current-pulses with te “ 2ns and
tr “ 4ns (which correspond to a duty cycle of 33%). Room temperature (T “ 300K)
and current pulse amplitudes of Ja “ 0.65TA{m2 were considered in both cases.
Note that both thermal fluctuations and disorder make the DW profile rough as
compared to the perfect case (no disorder) at zero temperature (see Fig. 11.5, for
example). Anyway, the results presented in Fig. 11.8 indicate that realistic conditions
(with edge roughness and bulk defects in the form of grains) do not significantly
deviate from the ideal (perfect) case, and therefore, the device working principle is
not compromised by realistic conditions.

11.4.4 Material parameters and variable DMI

The performance of the proposed current-driven ratchet device can be dependent
in general on the material parameters. For example, studies (not shown here) on
the dependence of this performance on the Gilbert damping (α: 0.1, . . . , 0.5) or
other extreme values of the PMA constant (K´

u , K
`
u ) have also been carried out,

not leading to severe qualitative modifications of this performance. Moreover, these
parameters can be adequately tuned in most cases to fix the most convenient set of
them for the desired characteristics. In that way, the 1DM becomes a useful tool to
determine the proper parameters.

The influence of the DMI parameter deserves particular attention. In fact, a constant
DMI parameter has been considered along this work. Although it has been recently
demonstrated that PMA and DMI can be tuned almost independently by adjusting
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Fig. 11.8: Micromagnetic analysis of the current-driven DW motion along a ratchet
strip: (a) perfect vs (b) realistic strips. µM simulations were performed with the inputs
given in Sec. 11.2 and at room temperature. Here the amplitude of the current pulse is
Ja “ 0.65TA{m2 and two consecutive current-pulses of te “ 2ns and tr “ 4ns are applied.
The anisotropy profile and the x-component of the uniaxial easy axis are shown on top of
the snapshots. In (b), bulk grains and edge roughness are taken into account as described
in Sec. 11.2.1. Snapshots from top to bottom correspond to different magnetization states
at consecutive instants of time. The temporal evolution of the DW position is plot in (c).

irradiation energies and doses [48], a small variation of the DMI may be expected when
tailoring the PMA by ionic irradiation. Here, a linear variation of the DMI parameter
(D pxq), analogous to that of the PMA (Ku pxq), has been also considered. In this
way, the DMI parameter changes linearly from D´ “ 0.8mJ{m2 to D` “ 1.0mJ{m2

in a periodic fashion with period d “ 128nm. Note that within this range, the
DMI parameters are still sufficiently high as to give rise to the formation of chiral
Néel DWs, so that efficient current-driven DW movement by means of the SHE
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Fig. 11.9: Micromagnetically computed probability of single jumps of one DW over twenty
attempts with constant DMI parameter (open symbols) and with a linear variation of
the DMI parameter (filled symbols). In the first case the DMI parameter is fixed (D “

1.0mJ{m2), whereas in the second one D “ D pxq changes linearly from D´ “ 0.8mJ{m2

to D` “ 1.0mJ{m2 in a periodic fashion with the same period of the PMA constant
(d “ 128nm).

is still guaranteed. µM simulations have been carried out to compare the results
obtained both with constant DMI basis and with the considered linear variation of
the DMI (see Sec.11.2.1 for details). 33% duty cycle current pulses are applied with
an amplitude Ja “ 1.2TA{m2 , and the probability of single DW jump after each
current pulse is analyzed in both cases at finite temperature. The results are plotted
in Fig. 11.9, which indicates that no drastic changes are found in the case of variable
DMI with respect to the case of constant DMI, and therefore the working principle
is still preserved.

11.5 Current-driven DW motion along bi-directional

devices

The ratchet PMA profile (Fig. 2(b)) was designed to avoid DW backward movement
in a field-driven basis. However, this results in a unidirectional motion of trains
of DWs, making this device less flexible as compared to other racetracks memories
devices intended for bi-directional DW motion [27, 28]. Our methods (µM and
1DM) can be straightforwardly adapted for a perpendicular profile (Ku “ Ku pxq,)
designed now to promote the bi-directional shifting of trains of DWs. This can
be easily performed by considering a periodic triangular anisotropy profile, which
consists on parts where Ku pxq increases linearly up to K`

u over a distance d1 “ d{2,
and from there, Ku decreases down to K´

u with the same slope within an identical
distance (d2 “ d{2). The analytical expression for this PMA profile Ku “ Ku pxq
can be obtained from Eq. (11.5) with d1 “ d2 “ d{2, and it is shown in top
graph of Fig. 11.10(a). The corresponding effective field due to the PMA profile
(r pqq “ HPMA pqq {H

0
PMA) is obtained from Eq. (11.8) and it is represented in the

bottom graph of Fig. 11.10(a). We have considered a single DW initially located
at one of these energy minima, i.e., at a point where Ku pqq « K´

u pq pt “ 0q « ´dq,
and positive current pulses are applied with fixed duration te “ 2ns and two dif-
ferent amplitudes: Ja “ 0.5TA{m2 and Ja “ 0.6TA{m2 (see Fig. 11.10(b)). The
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Fig. 11.10: Periodic triangular PMA profile (Ku pxq, Eq. (11.5)) to promote DW motion
in bi-directional devices. Here K´

u “ 1.0MJ{m3, K`
u “ 1.27MJ{m3, d1 “ d2 “ d{2, with

d “ 256nm. The bottom graph represents the corresponding r pqq “ HPMA pqq {H
0
PMA

along the strip axis (Eq. (11.8)). (b) Two current pulses with fixed duration te “ 2ns and
two different amplitudes: Ja “ 0.5TA{m2 (red) and Ja “ 0.6TA{m2 (green). (c) Temporal
evolution of the DW position initially located at under the current pulses. Open symbols
correspond to µM results and solid lines were obtained by solved the 1DM Eqs. Perfect
samples (without imperfections) and zero temperature conditions were assumed in both
models.

temporal evolution of the DW position is depicted in Fig. 11.10(c), where open
symbols corresponds to µM results and solid lines were obtained from the 1DM. For
Ja “ 0.5TA{m2, the DW does not overcome the energy barrier at the end of the
pulse, and it relaxes back to its initial location for t ą te “ 2ns. On the contrary, a
current pulse with Ja “ 0.6TA{m2 is enough to overcome the energy barrier (located
at q “ ´d`d{2) during the current pulse (0 ă te ă 2ns). Therefore, this DW relaxes
to the adjacent energy minima (at q “ ´d` d “ 0), where it rests for t ą 6ns. As
it is clearly seen, both µM and 1DM results are again in good quantitative agreement.

In this bi-directional device, an isolated bit of information is coded within a domain
magnetized up (Ò, white color in magnetic snapshots of Fig.11.11) bounded by two
adjacent DWs placed at two energy minima. i.e., at points where Ku pxq « K´

u .
This domain then includes a position where a maximum of the anisotropy locates
equally distant to the domain edges where down-up (Œ) and up-down (Ö) DWs are.
The bit size is therefore bS “ d “ 2d1. Contrary to the unidirectional ratchet device,
this PMA profile (Fig. 11.10(a)) allows the bi-directional current-driven DW motion.
In order to show it, the current-driven motion of two DWs under two consecutive
current pulses of opposite polarities was evaluated. Positive current pulses (Ja ą 0)
drive both down-up (Œ) and up-down (Ö) DWs along the positive direction (x ą 0),
whereas negative current pulses (Ja ă 0) drive both down-up and up-down DWs
along the negative direction (x ă 0). One example of this bi-directional functionality
is shown in Fig. 11.11, which was obtained by means of full µM simulations. The
current amplitude is Ja “ 0.8TA{m2, and the pulse duration is te “ 2ns. Note that
such a bi-directional functionality cannot be achieved in the field-driven case, due
to the simple fact that adjacent DWs move along opposite directions under a given
polarity of the field. Our modeling suggests these systems as promising platforms
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Fig. 11.11: Micromagnetic analysis of the current-driven DW motion in bi-directional
devices. A perfect strip at zero temperature is considered. The perpendicular anisotropy pe-
riodically increases and decreases linearly between K´

u “ 1.1MJ{m3 and K´
u “ 1.27MJ{m3

within a distance d1 “ d2 “ d{2 “ 128nm. The rest of inputs are those given in 11.2.1.
The bit size, defined as the distance between two adjacent energy minima, is bs “ d.
The anisotropy profile along the ferromagnetic strip axis is shown in (b), while the two
current pulses (Ja “ 0.8TA{m2 and te “ 2ns) injected to promote forward and backward
longitudinal displacement of the two DWs are plotted in (a). Transient snapshots of
consecutive magnetic states are shown in (c).

to develop DW-based devices which can be efficiently driven back and forth by
short current pulses, and where the DW position can be controlled by the periodic
modulation of the PMA.

11.6 Conclusions

The DW dynamics along ferromagnetic strip with periodically modulated perpen-
dicular magnetic anisotropy has been analyzed. The work presents a theoretical
study of the current-driven ratchet memory as a DW-based magnetic memory. This
study has been carried out by means of full µM simulations along with the 1DM,
showing that both approaches are in good agreement. The 1DM was developed
for a general periodic PMA profile: a new term (HPMA pqq) in the 1DM dynamics
equations. Such a local PMA field accounts for the space dependent anisotropy
profile, and forces the DW to travel the closest accessible PMA minimum in the
absence of driving force. The work shows how both the bit density and shifting
speed are notably enhanced if the memory device works on the current-driven basis
as compared with the field-driven scheme. This enhancement roots in three main
differences between the two driving forces. First of all, single pulses with a given
polarity (unipolar) are required in the case of the current-driven ratchet, whereas
bipolar pulses are needed in the field-driven case. Secondly, the duration of the
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current pulses to achieve a single DW jump over a single anisotropy slope (tooth) is
significantly shorter than the duration of the needed bipolar field pulses. Moreover,
the bit size (bs), determined by the minimum distance between two adjacent DWs,
is smaller in the current-driven case than in the field driven case. Note that each bit
occupies two teeth in the field-driven ratchet (bS “ 2d), whereas a bit only needs a
single tooth in the current-driven case (bS “ d). Consequently, the current-driven
architecture allows higher density packed information in these devices. Additionally,
its performance may even be improved by a fine tuning of the pulse and relaxing
times. In this way, the best results are obtained when the combined effect of the
times of both the applied current pulse and the relaxing interval leads every DW
from an equilibrium state to another one at the adjacent tooth of the anisotropy
landscape, the former time by promoting only one single jump and the latter by
allowing the DW to recover this new equilibrium position before the next pulse is
applied. Finally, our study opens a new promising door to other devices with tuned
anisotropy. In particular, not only ratchet-like but also current-driven bi-directional
devices can be developed.
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Chapter 12

Current-driven domain wall
motion based memory devices:
application to a ratchet
ferromagnetic strip∗

Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so
as to precisely control the magnetic transitions, has been recently proven to be a
feasible device to store and manipulate data bits. For such devices, it has been shown
that the current-driven regime of domain walls can improve their performances with
respect to the field-driven one. However, the relaxing time required by the traveling
domain walls constitutes a certain drawback if the former regime is considered, since
it results in longer device latencies. In order to speed up the bit shifting procedure, it
is demonstrated here that the application of a current of inverse polarity during the
DW relaxing time may reduce such latencies. The reverse current must be sufficiently
high as to drive the DW to the equilibrium position faster than the anisotropy slope
itself, but with an amplitude sufficiently low as to avoid DW backward shifting.
Alternatively, it is possible to use such a reverse current to increase the proper range
of operation for a given relaxing time, i.e., the pair of values of the current amplitude
and pulse time that ensures single DW jumps for a certain latency time.

∗Adapted from Luis Sánchez-Tejerina, Eduardo Mart́ınez, Vı́ctor Raposo, and Óscar Alejos.
Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic
strip. AIP Advances, 8(4):047302, 2018. doi:10.1063/1.4993750.
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12.1 Introduction

Multilayer strips, where high perpendicular magnetocristalline anisotropy (PMA)
appears due to surface effects, have been recurrently proposed as promising data
storage devices based on domain walls (DWs) motion. [27, 28, 77, 171–173] One of
the essential requirements to put such devices into practice is the development of a
reliable pinning system to precisely control the DWs positions. A ratchet memory
device, where PMA is tailored so as to present a sawtooth profile, was proposed
elsewhere [79] to achieve this goal. The field-driven regime of such a ratchet memory
was studied, drawing rather interesting features. However, it has been recently shown
that a current-driven regime for the DWs can be a more advantageous alternative to
the field-driven one. [174]

An unavoidable requisite for such a current-driven regime is the presence in the
system of spin-orbit coupling phenomena as the spin Hall effect (SHE), along with
the interfacial Dzyaloshinskii-Moriya interaction (iDMI). Multilayer systems with
inversion asymmetry, where a ferromagnetic layer (FM) is sandwiched between a
heavy metal (HM) and an oxide (Ox) can be then proposed. [14, 19] An anisotropy
profile as the one described above make this device suitable for bit storing and
shifting in a denser and faster way. The application of adequately estimated current
amplitudes, pulse times and duty cycles can permit the synchronous displacement
of all DWs along the device. [174] In this way, every DW performs single jumps
over the teeth and always recovers an equilibrium state at any of the valleys of the
anisotropy landscape. The latency time of the bit shifting procedure is then given
by the sum of the pulse (excitation) time, that makes the DW skip each tooth, and
a relaxing time required to let the DW move backward to the closest equilibrium
position, the latter time depending on the slope of the anisotropy profile. For this
device, relaxing times longer than pulse times ensured the proper operation of the
device after subsequent pulses.

In order to speed up the bit shifting procedure, two strategies can be proposed.
Firstly, the applied current can be increased as to reduce the time needed by the
DW to perform one jump. Alternatively, a reduction of the time needed by the
DW to reach the equilibrium position must be achieved. The latter strategy is to
be applied here by using a reverse current, i.e. a current of inverse polarity to the
driving one. The work is then structured as follows. The micromagnetic analysis and
the one-dimensional model (1DM) are introduced in section 12.2, while section 12.3
describes the system under study. Section 12.4 is divided up into two subsections.
Section 12.4.1 deals with the variation of the single-jump probability when a reverse
current Jr of different relaxing times tr is applied. Additionally, section 12.4.2 focuses
on the dependence of the proper range of operation on the reverse current, while
maintaining the relaxing time constant. Finally, section 12.5 briefly presents the
conclusions drawn by this study.
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Fig. 12.1: Likely behaviors of the DW motion under the application of pulsed currents
in a FM ratchet. The sawtooth anisotropy energy profile, as represented in the central
column of images, is meant to drive the DW to well defined positions. The periodicity of
this profile is given by a characteristic length d. (a) For low currents, the DW is not able
to jump over any profile tooth, i.e., the DW maximal run distance is less than d for the
excitation time te. (c) For high currents, multiple teeth can be overcome at once after each
pulse, that is, the DW runs distances over 2d. (b) For intermediate currents, the DW final
position after the excitation and relaxing (tr) times is located between the two subsequent
teeth. However, if this final position does not match the anisotropy minimum position,
as the figure (b.2) depicts, further pulses may promote multiple jumps rather than single
ones. The proper performance of the device is obtained when the DW overcome one single
tooth at each pulse, matching the DW final position the minimum of the anisotropy energy
profile, as in (b.1).

12.2 Micromagnetic analysis and one-dimensional

model

The time evolution of the normalized magnetization ~m is to be considered in order to
predict the behavior of the system. Such a time evolution is known to be described by
the Landau-Lifshitz-Gilbert (LLG) equations, augmented by the spin-orbit torques
(SOT) and thermal fluctuations: [114, 117]

d~m

dt
“ ´γ0 ~mˆ

´

~Heff ` ~Hth

¯

´

´α~mˆ
d~m

dt
´ γ0 ~mˆ

´

~mˆ ~HSH

¯

.

(12.1)

where γ0 and α are the gyromagnetic ratio and the damping parameter, and ~Heff is
the effective field, including exchange, anisotropy, and magnetostatic interactions,
along with the iDMI. Finally, ~HSH and ~Hth are, respectively, the effective field associ-
ated to the SHE and the thermal field, the former being proportional to the applied
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current, [12] and the latter included as a gaussian-distributed random field. [70, 113–
115, 117] The complete study of the motion of a DW in such a system requires
solving this equation by means of full micromagnetic simulations (µMag). These
µMag simulations have been performed with the help of the Mumax3 package. [122]

Additionally, the one-dimensional model has also been specifically tailored to obtain
a more simple approach to the DW dynamics in this system. [174] Two mutually
dependent equations can be derived for such a dynamics:

9q “
γ0∆

1` α2
rpHD´Hk cos Φq sin Φs `

`
γ0∆

1` α2
rα pHSH cos Φ`Hth `Hrrpqqqs ,

(12.2a)

9Φ “
γ0

1` α2
rα pHk cos Φ´HDq sin Φs `

`
γ0

1` α2
rHSH cos Φ`Hth `Hrrpqqs .

(12.2b)

The terms HD, Hk, stand for the iDMI and the magnetostatic interaction, respectively,
and their definition can be found elsewhere.[41, 139] The other terms, HSH and
Hth, are straightforwardly derived from their counterparts in the LLG equations.
Finally, the sawtooth anisotropy profile, given by a function Ku pxq of the longitudinal

coordinate x (see the central column of Fig. 12.1), introduces the terms Hr “
K`u ´K

´
u

2µ0Ms

, and

rpqq “
1

cosh2
“`

1´ t q
d
u
˘

d
∆

‰ `
1

cosh2
`

t
q
d
u d

∆

˘´

´

∆
d

sinh
`

q
∆

˘

cosh
`

t
q
d
u d

∆

˘

cosh

„

p1´t qd uqd
∆

 ,
(12.3)

where the braces stand for the fractional part function.

12.3 Description of the FM ratchet system

A FM strip with high PMA sandwiched between a HM and an oxide is considered
within this work. Material parameters commonly found in the literature [41] have
been used for the present study: saturation magnetization Ms of 1.1MA

m
, exchange

constant A of 16pJ
m

and a Gilbert damping parameter α “ 0.5. An interfacial DMI
with a DMI parameter D “ 1mJ

m2 has also been considered (a brief discussion on
the convenience of using a constant DMI parameter is included in our previous
work[174]). This value is sufficiently high as to induce Néel DWs and, thus, to effi-
ciently drive the DW by means of the SHE. An electric current is then applied through
the HM, giving rise to a spin Hall current with a spin Hall angle of a typical value
θSH “ 0.1. A cross section LyˆLz of 128nmˆ0.6nm has been taken for the FM strip.

The ratchet anisotropy profile is obtained by tuning the out-of-plane anisotropy
as described elsewhere.[79] Five periods of the sawtooth anisotropy profile are
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Fig. 12.2: Use of a current of inverse polarity Jr to ensure the proper operation of the
ratchet system. After the application of a driving pulse current of amplitude Ja and width
te, DWs slide backwards to an equilibrium position within the relaxing time tr due to the
combined effect of the slope of the anisotropy profile together with the reverse current Jr.

depicted in the central column of Fig. 12.1. The highest and lowest anisotropy
values, K`

u “ 1.27MJ
m3 and K´

u “ 1MJ
m3 , respectively, are indicated. A ratchet period

d “ 128nm has been taken, as represented in the figure. Fig. 12.1 summarizes the
results obtained in our previous work.[174] A sufficiently high pulsed current as to
promote single DW jumps over the teeth of the sawtooth profile, but sufficiently low
not to give rise to multiple DW jumps is considered in this work, i.e., the intermediate
current range described in the caption of Fig. 12.1. Within this current range, the
DW might not be able to reach the equilibrium position at the anisotropy energy
minimum by the time the current is switch on again, as depicted in the bottom-right
case of Fig. 12.1. In that case, a double jump may occur after subsequent pulses. This
possibility was avoided in our previous study by prolonging the relaxing time.[174]

12.4 Results

As it has been already stated, the proper performance of the device is obtained
when the DW overcome only one tooth at each current pulse, and its final position
matches the equilibrium position at the energy minimum of the anisotropy profile.
Such an equilibrium position must be reached in a time less than tr after the driving
pulse of amplitude Ja and width te is switched off. Since the DW is located at
any arbitrary position between subsequent teeth by the time the driving current
is switched off, the time tr might not be sufficiently long as to let the DW slide
backwards to the equilibrium position by the effect of the slope of the anisotropy
profile. As an alternative, instead of switching off the driving current, a current of
amplitude Jr and opposite polarity to Ja can be injected so as to drive the DW to
the equilibrium state in a faster way, as Fig. 12.2 depicts. This can be of use whether
a reduction of the time tr is sought or, for a fixed tr, the range of driving currents Ja
of successful operation is to be broadened, as the following sections detail.
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Fig. 12.3: Probability of single jumps of one DW after the application of one driving pulse
of amplitude Ja “ 1.6TA

m2 and width te “ 1ns as a function of the relaxing time tr and
reverse current Jr. The results are obtained by means of the 1DM. The probability has
been statistically computed by evaluating forty different stochastic realizations for each
relaxing time and current at a temperature of 300K.

12.4.1 Probability dependence on the reverse current and
the relaxing time

The results that are to be presented here have been obtained by means of the tailored
1DM described in section 12.2, which has been proven to draw rather accurate
results for these ratchet systems,[174] and to be rather less time consuming for the
determination of the reduction of the bit shifting latencies. Along this study, a
driving current Ja “ 1.6TA

m2 and an excitation time te “ 1ns have been considered.
Fig. 12.3 represents the probability of proper operation of the device, i.e, single
jumps as those depicted in Fig. 12.2 as a function of the relaxing time tr and the
reverse current Jr, the values of the latter magnitude given in absolute terms. The
probability has been statistically calculated after forty stochastic realizations at a
temperature of 300K. It can be noticed that, in the absence of the reverse current, a
rather low probability of DW single jumps is obtained, even for relaxing times tr
as long as 1ns. However, a relaxing current of Jr “ 80GA

m2 is sufficiently high as to
drive the DW to the equilibrium position after the 1-ns long relaxing time for every
realization. Additionally, it can be checked that the use of a reverse current with a
modulus of 10% of the driving current Ja allows a reduction of the relaxing time to
tr “ 0.6ns, but keeping the system within the proper operation regime. Latencies,
calculated as the sum of the pulse width te “ 1ns and the relaxing time tr, are then
reduced in this case from a total time much longer than 2ns to an interval of 1.6ns.

12.4.2 Broadening of the range of operation

Alternatively to the considerations made in the previous section, a broadening of the
range of operation, that is, the range of driving currents Ja leading to DW single
jumps, can be achieved. This might be of particular interest in order to reduce
as much as possible bit shifting error rates. Fig. 12.1 depicts the probability of
proper operation of the device after the application of one current pulse 1-ns long,
as a function of the current amplitude Ja for three different reverse currents Jr of
values 0TA

m2 , 0.08TA
m2 and 0.16TA

m2 . Reverse currents are also applied for 1ns. Dots in
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amplitudes of the reverse current Jr. Results are computed from full µMag simulations
(dots) and the 1DM (lines). The probability has been statistically obtained by evaluating
twenty different realizations for each pair of driving and reverse currents, at a temperature
of 300K.

these plots correspond to the results obtained by means of full µMag simulations,
while lines correspond to the results obtained from the use of the 1DM. Prior to any
consideration, it is timely again to insist on the rather good agreement between both
the µMag and the 1DM approaches.

Under these conditions, the proper operation of the device requires the use of a driv-
ing current Ja above a certain threshold, given in this case by the value 1.1TA

m2 . The
DW run distance then exceeds the value d defining the periodicity of the anisotropy
profile, almost independently of whether or not a subsequent reverse current is
applied. If no reverse current is applied (red line/dots), and the driving current Ja
exceeds a value of 1.4TA

m2 , the relaxing time tr is not sufficiently long to let the DW
backward slide down to the closest equilibrium position at the anisotropy energy
minima. Further increase of the driving current Ja above 2.2TA

m2 would give rise to
DW run distances greater than 2d. Consequently, the range of proper operation,
defined as the driving currents leading to DW single jumps with a probability closest
to one, is estimated to be of only 0.3TA

m2

However, the use of the reverse current Jr contributes to extend the range of proper
operation up to 0.4TA

m2 for Jr “ 0.08TA
m2 and 0.6TA

m2 for Jr “ 0.16TA
m2 . In these cases,

the reverse current promotes the DW movement from the position reached over the
corresponding slope of the anisotropy profile after the driving pulse current down to
the anisotropy energy minimum.

As a final consideration, it must be noted that the current pulses used for this study
has been taken with a negligible rise time. This might not seem sufficiently realistic.
However, with the help of the described 1DM, estimations of the probability of single
jumps of one DW after the application of one driving pulse can be easily calculated in
a straightforward way under more practical conditions. As an example, a pulse rise
time of 250ps can be defined, so that the current varies from Ja to ´Jr and vice versa
within this interval. Each current then holds for 750ps, so that pulse and relaxing
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Fig. 12.5: Probability of single jumps of one DW after the application of one driving pulse.
A pulse rise time of 250ps has been considered, so that the current varies either from Ja to
´Jr or from ´Jr to Ja within this interval, and then hold for 750ps, i.e., te “ tr “ 1ns.
The results are obtained by means of the 1DM. The probability has been statistically
computed by evaluating forty different stochastic realizations for each relaxing time and
current at a temperature of 300K.

times are both equal to 1ns. The dependence of the probability on the driving and
reverse currents is presented as a color map in Fig. 12.5. A net, but small reduction
of the proper range of operation is obtained when no reverse current is applied, if
compared with the corresponding curve pJr “ 0q plotted in Fig. 12.1. However, this
reduction is compensated as the density of the reverse current is increased, with an
approximately linear increase of the range of operation.

12.5 Conclusions

The current-driven DW motion of a ratchet FM strip previously reported[174] has
been considered and improved along this work. It is demonstrated that the application
during the DW relaxing time of a current of inverse polarity to that applied during the
DW driving procedure reduces device latencies by reducing that relaxing time. That
reverse current must be sufficiently intense as to drive the DW to the equilibrium
position faster than the anisotropy slope itself, but with an amplitude rather low, so
that DW backward shifting is not promoted. Alternatively, it is possible to use such
a reverse current to increase the proper range of operation of the device for a given
relaxing time, i.e., the pair of values of the driving current amplitude and pulse time
that ensures single DW jumps for a certain latency time.
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Conclusions

This thesis deals with the domain wall motion in multilayered systems with high
perpendicular magnetic anisotropy. It has been focused on the effects of the presence
of strong spin-orbit coupling in the heavy metal layer which, along with the lack
of inversion symmetry, allows the coherent displacement of domain walls when an
electric current is applied. The last part of the thesis also includes the effect of an
inhomogeneous perpendicular anisotropy landscape.

Two main tools have been used for this study. First, the performance of micromag-
netic simulations allows for the numerical solution of the Landau-Lifshitz-Gilbert
equation. This kind of solvers permits an accurate quantitative study of those
systems, allowing us to appreciate the rich and varied complexity of them, whose
macroscopic properties are the result of an intricate game of equilibria between
different energetic contributions, which veil most of its details. Second, the one
dimensional model allows us to simplify this complexity, clarifying the physics in-
volved and highlighting the main features that must be taken into account in order to
understand multilayered systems. In spite of the numerous approximations made to
develop this model, it has been shown a rather good agreement with the predictions
drawn by the micromagnetic simulations, proving the validity of the model as a tool
to study those systems.

Part I presents an extended introduction to the topic itself, focusing on the aspects
treated by this thesis, where a detailed explanation of the origin and meaning of
the Landau-Lifshitz-Gilbert equation is given. Besides, it also gives an explana-
tion of the used tools that should serve to understand properly the following chapters.

Part II discusses the Dzyaloshinskii domain wall dynamics in ferromagnetic strips
with high perpendicular magnetic anisotropy. This study reflects the existence of
degenerate ground states. It also shows the dependence of the dynamics of the system
not only on the applied stimuli but also on the initial domain wall configuration. If a
stationary state exists, it may be different for the different ground states. Moreover,
even though when the stationary state is the same, the dynamics of the transient
differs and so do final positions. In both cases, a final position dependence on the
initial state appears which may be of experimental relevance. Besides, it is shown that
the precessional regime of the domain wall dynamics may be promoted or avoided
by the application of an electric current, even though solely an electric current never
induce such a precessional regime. Summarizing, this part constitutes a step forward
in the understanding of systems with moderate DMI and can clarify the nature of
the precessional regime and the degeneracy of non-quiral domain walls. Further
conclusions can be found in the corresponding chapters.
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Part III considers the angular dependence of the current-driven domain wall motion
and its consequences for the geometrically control switching. This study constitutes
a first theoretical attempt to describe the noncollinear current driven domain wall
dynamics. The theoretical description presented can account for the experimental
behavior at high currents, even though low current density results indicate that
further theoretical and experimental efforts much be done. In any case, such a
description can describe the mechanism behind the geometrically control switching.
The boundary conditions imposed by the DMI at the edge of the sample allow the
spin current to nucleate a new domain when it is assisted by the thermal field. After
that, switching is determined by the relative velocities of the two types of domain
walls.

Part IV is focused on the effect of an inhomogeneous anisotropy landscape. Particu-
larly, it is considered a ferromagnetic strip where the anisotropy has been tailored so
as to present a saw-toothed profile. The domain wall motion has been studied on
such a strip by means of full micromagnetic simulations and the one dimensional
model, which has been updating to account for space dependent anisotropy profile.
It is shown that this simplified model can properly describe the main features of the
domain wall motion. Moreover, it is stated that a sawtoothed profile can constitute
a feasible pinning system ensuring the proper control of domain wall positions even
in a current driven basis. Besides, bit density and shifting speed are enhanced in a
current driven scheme as compared to the field driven case. Additionally, current
driven basis allows finer tuning of pulse length and relaxing times. This permits
to apply an electric current of the opposite polarity to reduce relaxing times or
to increase proper operation times. Finally, different anisotropy profiles may be
proposed for which bidirectional domain wall motion is possible under a current
driven basis, while it would not be possible under a field driven scheme.

These works constitute a step forward in the development of a low-consuming non-
volatile magnetic memory based on domain wall motion. Moreover, they clarify some
aspects of multilayered systems providing a deeper and insightful knowledge about the
domain wall dynamics and the role played by the spin-orbit torques. However, this
thesis must be understood in its context, where a major collective effort seeks a better
understanding of nature, in general, and particularly of magnetic materials. This
thesis is focused on the consequences of the presence of strong spin-orbit coupling,
and a better comprehension of them has been achieved. Nevertheless, it must be
pointed out that along the time this thesis has taken, the same group has also worked
on other important features of multilayered systems such as the effect of disorder and
temperature leading to the results in references [90] and [94] respectively. Indeed,
scientific research should not be understood as an individual and isolated effort to
obtained answers about a particular problem, but as a collective one where the
individual works from the same or different topic support each other and mixed
giving the “scientific knowledge”. In that way, Newton’s statement can be recalled:
“If I have seen further it is by standing on ye shoulders of Giants”. But those giants
are not only Faraday, Maxwell, Landau or Brown but the whole scientific community
working together to improve our perception of nature. Summarizing, “sure, it may
give some practical results, but that’s not why we do it”†.

†Attribute to R. Feynman
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[94] Simone Moretti. Micromagnetic study of magnetic domain wall motion: thermal
effects and spin torques. PhD thesis, Universidad de Salamanca, 2017.

[95] L. Berger. Exchange interaction between electric current and magnetic domain
wall containing Bloch lines. Journal of Applied Physics, 63(5):1663–1669, 1988.
doi:10.1063/1.339899.

[96] L. Berger. Motion of a magnetic domain wall traversed by fast-
rising current pulses. Journal of Applied Physics, 71(6):2721–2726, 1992.
doi:10.1063/1.351045.

[97] J.Z Sun. Current-driven magnetic switching in manganite trilayer junctions.
Journal of Magnetism and Magnetic Materials, 202(1):157 – 162, 1999. ISSN
0304-8853. doi:10.1016/S0304-8853(99)00289-9.

[98] L. Berger. Interaction of electrons with spin waves in the bulk and in
multilayers (invited). Journal of Applied Physics, 91(10):6795–6800, 2002.
doi:10.1063/1.1446121.

[99] Gen Tatara and Hiroshi Kohno. Theory of current-driven domain wall motion:
Spin transfer versus momentum transfer. Phys. Rev. Lett., 92:086601, 2004.
doi:10.1103/PhysRevLett.92.086601.

[100] S. Zhang and Z. Li. Roles of nonequilibrium conduction electrons on the
magnetization dynamics of ferromagnets. Phys. Rev. Lett., 93:127204, 2004.
doi:10.1103/PhysRevLett.93.127204.

[101] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki. Micromagnetic under-
standing of current-driven domain wall motion in patterned nanowires. EPL
(Europhysics Letters), 69(6):990, 2005. doi:10.1209/epl/i2004-10452-6.

[102] Gen Tatara, Hiroshi Kohno, and Junya Shibata. Microscopic approach to
current-driven domain wall dynamics. Physics Reports, 468(6):213 – 301, 2008.
doi:https://doi.org/10.1016/j.physrep.2008.07.003.

168

http://dx.doi.org/10.1063/1.339899
http://dx.doi.org/10.1063/1.351045
http://dx.doi.org/10.1016/S0304-8853(99)00289-9
http://dx.doi.org/10.1063/1.1446121
http://dx.doi.org/10.1103/PhysRevLett.92.086601
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2008.07.003


References

[103] O. Boulle, G. Malinowski, and M. Kläui. Current-induced domain wall motion
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[144] M. Heide, G. Bihlmayer, and S. Blügel. Dzyaloshinskii-moriya interaction ac-
counting for the orientation of magnetic domains in ultrathin films: Fe/w(110).
Phys. Rev. B, 78:140403, 2008. doi:10.1103/PhysRevB.78.140403.
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Liliana D. Buda-Prejbeanu, Olivier Klein, Mohamed Belmeguenai, Yves Rous-
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Appendix

This appendix shows the details of the derivation of the one dimensional model. We
take the LLG equation in spherical coordinates (4.4) and assumed a profile given
by (4.6). It is worthy to establish some relationships. First, a new variable ζ is
defined

ζ “ Q
px´ qq cosχ` y sinχ

∆
(1)

As it can be seen, is the argument of the exponential function. It can be checked
that

dx “
Q∆dζ

cosχ
(2)

∆ζ tanχ´
y

cosχ
“ px´ qq sinχ´ y cosχ (3)

It is possible to obtain the following derivatives

Bθ

Bx
“ ´

Bθ

Bq
“

2Q
cosχ

∆
1` exp p2ζq

exp pζq “ Q
sin θ

∆
cosχ (4)

Bθ

By
“ Q

sin θ

∆
sinχ (5)

Bθ

B∆
“ ´Q

sin θ

∆2

`

px´ qq cosχ` y sinχ
˘

(6)

Bθ

Bχ
“ Q

sin θ

∆

ˆ

y

cosχ
´∆ζ tanχ

˙

(7)

as well as Bθ
Bt
“ 9θ

9θ “ ´Q
sin θ

∆

„

9q cosχ `ppx´ qq sinχ´ y cosχq 9χ`

` ppx´ qq cosχ` y sinχq
9∆

∆

ff

(8)

The following integrals are known

ż 8

´8

dζ

cosh ζ
“ π (9)
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ż 8

´8

ζdζ

cosh ζ
“ 0 (10)

ż b

a

dζ

cosh2 ζ
“ tanh b´ tanh a (11)

ż b

a

ζdζ

cosh2 ζ
“ b tanh b´ a tanh a´ log pcosh bq ` log pcosh aq (12)

ż 8

´8

ζ2dζ

cosh2 ζ
“
π2

6
(13)

A more detailed explanation is required for the integral of cos θ

ż 8

´8

cos θdx “ lim
b,b1Ñ8

ż q´∆
2

´b

Qdx`

ż b1

q`∆
2

´Qdx`

ż q`∆
2

q´∆
2

cos θdx “ Q2q (14)

where the third integral vanishes because is an odd function in a symmetric range. It
must be noticed that this limit is not well defined so if b and b1 are different there is
a remaining contribution to the total energy. It should be checked that this integral
appears due to the Zeeman energy contribution. That means that if the mean
magnetization of the sample is not null and a magnetic field is applied, two terms will
appear: a term accounting for the DW movement and an additional term. This addi-
tional term will be responsible for new domains nucleation, but it does not affect the
primary DW motion. As long as we are not considering the nucleation topic, we will
ignore such a term, so only the term due to the presence of the DW, Q2q, is considered.

In the following, the relationships given by (1)-(14) are used to derive an energy
density which simplifies equations (4.4a) and (4.4b). In that way, four equations
accounting for the global behavior of the strip and depending only on q and Φ and, if
needed, on ∆ and/or χ are obtained. Note the difference with the previous equation
which is local even though only depends on θ and ϕ. Therefore, the assumption that
properties are constant along at least one of the axis allows the simplification of the
volume energy density uV by integrating along the other axes. The result is a surface
energy density σ if there are two constant axes, or a linear energy density λ if there
is only one. In our case changes along y-axis may be possible so now we focus on the
linear energy density λ. Nevertheless, chapters 6-12 use the surface energy density σ
since it is supposed that changes along y are not significant. Then, it can be written

λ “

ż w{2

´w{2

σdy “

ż w{2

´w{2

ż 8

´8

uV dydx (15)

from which it is possible to derive an expression for the variation of λ [125]

δλ “

ż w{2

´w{2

ż 8

´8

ˆ

δuV
δθ

δθ `
δuV
δϕ

δϕ

˙

dydx (16)
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Taking into account that δθ can be expressed as

δθ “
Bθ

Bq
δq `

Bθ

B∆
δ∆`

Bθ

Bχ
δχ (17)

δλ is read

δλ “

ż w{2

´w{2

ż 8

´8

„

δu

δθ

ˆ

Bθ

Bq
δq `

Bθ

B∆
δ∆`

Bθ

Bχ
δχ

˙

`
δu

δϕ
δϕ



dydx (18)

It may be notice that only partial with respect q, ∆ and χ are considered, but no
with respect its gradients ∇q, ∇∆ and ∇χ. The reason is that we are not considering
a pure bidimensional system, i.e., DW can tilt with an angle χ, but it cannot bend.
This means that those gradients, and also ∇ϕ, are zero [66]. Each term can be now
identified with a derivative of λ with respect to each variable [125]

Bλ

Bq
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

Bq
dxdy (19)

Bλ

Bϕ
“

ż w{2

´w{2

ż 8

´8

δuV
δϕ

dxdy (20)

Bλ

B∆
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

B∆
dxdy (21)

Bλ

Bχ
“

ż w{2

´w{2

ż 8

´8

δuV
δθ

Bθ

Bχ
dxdy (22)

Each equation must be integrated by using equations (4.4) and (1)-(14).

Partial derivative of λ with respect to q

Equation (19) is

Bλ

Bq
“
µ0Ms

γ0

ĳ

”

α 9θ ´ sin θ 9ϕ´ bj sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

`

` bjξ

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

` γ0HSH pjx cosϕ` jy sinϕq´

´ γ0 rpHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θs ´

´ γ0HRa cos θ pjx sinϕ´ jy cosϕq ´
ı

Q
sin θ

∆
cosχdxdy

(23)

Each of the seven addends is called Iλ,qn , with n an integer ranging from 1 to 7.

Iλ,q1 “ α

ĳ

´

ˆ

sin θ

∆

˙2

cosχ

„

9q cosχ` ppx´ qq sinχ´ y cosχq 9χ`

` ppx´ qq cosχ` y sinχq
9∆

∆

ff

dxdy “

“ ´α
2 9q

∆
w cosχ

(24)
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Every term vanishes except the one with 9q because these terms are odd functions
and the integration is performed in a symmetric range. The other addends are

Iλ,q2 “ ´

ĳ

Q
sin2 θ

∆
9ϕ cosχdxdy “ ´Q2 9Φw (25)

Iλ,q3 “ ´

ĳ

bjQ
sin2 θ

∆

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

cosχdxdy “ 0 (26)

Iλ,q4 “ bjξ

ĳ

sin θ

∆

ˆ

jx
J

sin θ

∆
cosχ`

jy
J

sin θ

∆
sinχ

˙

cosχdxdy “

“
2bjξw

∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙ (27)

Iλ,q5 “ γ0HSH

ĳ

pjx cosϕ` jy sinϕqQ
sin θ

∆
cosχdxdy “

“ γ0QπwHSH pjx cos Φ` jy sin Φq

(28)

Iλ,q6 “ ´γ0

ĳ

rpHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θs sin θdζdy “

“ γ0Qw2Hz,th

(29)

Iλ,q7 “ ´γ0HRa

ĳ

cos θ pjx sinϕ´ jy cosϕqQ
sin θ

∆
cosχdxdy “ 0 (30)

where relationships (1)-(14) has been used again. Finally it can be written

Bλ

Bq
“ ´

µ0Msw

γ0

”

α
2 9q

∆
cosχ`Q2 9Φ´

2bjξ

∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙

´

´γ0Q2Hz,th ´ γ0QπHSH pjx cos Φ` jy sin Φq
ı

(31)

Partial derivative of λ with respect to ϕ

Now, expression (20) is integrated

Bλ

Bϕ
“
µ0Ms

γ0

ĳ

sin θ
”

´ 9θ ´ α sin θ 9ϕ´ bj

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

´

´bjξ sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

`

`γ0 p´Hx,th sinϕ`Hy,th cosϕq`

`γ0HSH cos θ pjx sinϕ´ jy cosϕq`

`γ0HRa pjx cosϕ` jy sinϕq
ı

dxdy

(32)
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A notation similar to the one used previously is employed, so these addends are
called Iλ,ϕn .

Iλ,ϕ1 “

ĳ

Q
sin2 θ

∆

„

9q cosχ` ppx´ qq sinχ´ y cosχq 9χ`

` ppx´ qq cosχ` y sinχq
9∆

∆

ff

dxdy “ Q2 9qw

(33)

Iλ,ϕ2 “ ´α

ĳ

sin2 θ 9ϕdxdy “ ´
2α∆w 9Φ

cosχ
(34)

Iλ,ϕ3 “ ´bj

ĳ

Q
sin2 θ

∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙

dxdy “

“ ´Q2bjw

ˆ

jx
J
`
jy
J

tanχ

˙ (35)

Iλ,ϕ4 “ ´bjξ

ĳ

sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

dxdy “ 0 (36)

Iλ,ϕ5 “ γ0

ĳ

sin θ p´Hx,th sinϕ`Hy,th cosϕq dxdy “

“ γ0
∆πw

cosχ
p´Hx,th sin Φ`Hy,th cos Φq

(37)

Iλ,ϕ6 “ γ0HSH

ĳ

sin θ cos θ pjx sinϕ´ jy cosϕq dxdy “ 0 (38)

Iλ,ϕ7 “ γ0HRa

ĳ

sin θ pjx cosϕ` jy sinϕq dxdy “

“ γ0HRa
∆πw

cosχ
pjx cos Φ` jy sin Φq

(39)

So in this case

Bλ

Bϕ
“

2µ0Msw

γ0

”

Q 9q ´
α∆ 9Φ

cosχ
´Qbj

ˆ

jx
J
`
jy
J

tanχ

˙

`

` γ0
∆

cosχ

π

2
p´Hx,th sin Φ`Hy,th cos Φq`

` γ0HRa
∆

cosχ

π

2
pjx cos Φ` jy sin Φq

ı

(40)

Partial derivative of λ with respect to ∆

Equation (21) becomes

Bλ

B∆
“
µ0Ms

γ0

ĳ

”

α 9θ ´ sin θ 9ϕ´ bj sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

` bjξ

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

´

´ γ0 rpHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θs ´

´ γ0HRa cos θ pjx sinϕ´ jy cosϕq`

` γ0HSH pjx cosϕ` jy sinϕq
ı

Q
sin θ

∆
ζdxdy

(41)
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Again, the notation is adapted to this case with Iλ,∆n

Iλ,∆1 “ ´α

ĳ
ˆ

sin θ

∆

˙2 „

9q cosχ` ppx´ qq sinχ´ y cosχq 9χ`

` ppx´ qq cosχ` y sinχq
9∆

∆

ff

ζdxdy “

“ ´α

ĳ
ˆ

sin θ

∆

˙2 „ˆ

∆t tanχ´
y

cosχ

˙

9χ` t 9∆



ζdxdy “

“ ´α
w

cosχ

π2

6

´

tanχ 9χ `
9∆

∆

¯

(42)

Iλ,∆2 “ ´

ĳ

Q
sin2 θ

∆
9ϕζdxdy “ 0 (43)

Iλ,∆3 “ ´bj

ĳ

Q
sin2 θ

∆

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

ζdxdy “ 0 (44)

Iλ,∆4 “ bjξ

ĳ
ˆ

sin θ

∆

˙2 ˆ
jx
J

cosχ`
jy
J

sinχ

˙

ζdxdy “ 0 (45)

Iλ,∆5 “ ´γ0

ĳ

Q
“

pHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θ
‰sin θ

∆
ζdxdy “ 0 (46)

Iλ,∆6 “ ´γ0

ĳ

QHRa cos θ pjx sinϕ´ jy cosϕq
sin θ

∆
ζdxdy “ 0 (47)

Iλ,∆7 “ γ0

ĳ

QHSH pjx cosϕ` jy sinϕq
sin θ

∆
ζdxdy “ 0 (48)

So this term is expressed simply as

Bλ

B∆
“ ´

µ0Ms

γ0

α
w

cosχ

π2

6

´

tanχ 9χ`
9∆

∆

¯

(49)

Partial derivative of λ with respect to χ

Finally equation (22) transforms as

Bλ

Bχ
“ ´

µ0Ms

γ0

ĳ

”

α 9θ ´ sin θ 9ϕ´ bj sin θ

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙

` bjξ

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙

´

´ γ0 rpHx,th cosϕ`Hy,th sinϕq cos θ ´Hz,th sin θs ´

´ γ0HRa cos θ pjx sinϕ´ jy cosϕq`

` γ0HSH pjx cosϕ` jy sinϕq
ı

Q
sin θ

∆

ˆ

y

cosχ
´∆ζ tanχ

˙

dxdy

(50)
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Again, each addend is called Iλ,χn

Iλ,χ1 “ α

ĳ
ˆ

sin θ

∆

˙2 „

9q cosχ` ppx´ qq sinχ´ y cosχq 9χ`

` ppx´ qq cosχ` y sinχq
9∆

∆

ˆ

∆ζ tanχ´
y

cosχ

˙

dxdy “

“ α

„

π2

6

w∆

cosχ
tan2 χ 9χ`

2

∆ cos3 χ

w3

12
9χ`

π2

6

tanχ

cosχ
w 9∆



(51)

Iλ,χ2 “

ĳ

Q
sin2 θ

∆

ˆ

∆ζ tanχ´
y

cosχ

˙

9ϕdxdy “ 0 (52)

Iλ,χ3 “ bj

ĳ

Q
sin2 θ

∆

ˆ

jx
J

Bϕ

Bx
`
jy
J

Bϕ

By

˙ˆ

∆ζ tanχ´
y

cosχ

˙

dxdy “ 0 (53)

Iλ,χ4 “ bjξ

ĳ

Q
sin θ

∆

ˆ

jx
J

Bθ

Bx
`
jy
J

Bθ

By

˙ˆ

y

cosχ
´∆ζ tanχ

˙

dxdy “

“ bjξ

ĳ
ˆ

sin θ

∆

˙2 ˆ
jx
J

cosχ`
jy
J

sinχ

˙ˆ

y

cosχ
´∆ζ tanχ

˙

dxdy “ 0

(54)

Iλ,χ5 “ ´γ0

ĳ

Q
sin θ

∆

”

pHx,th cosϕ`Hy,th sinϕq cos θ´

´Hz,th sin θ
ı

ˆ

y

cosχ
´∆ζ tanχ

˙

dxdy “ 0

(55)

Iλ,χ6 “ ´γ0HRa

ĳ

Q sin θ cos θ pjx sinϕ´ jy cosϕq

ˆ

y

∆ cosχ
´ ζ tanχ

˙

dxdy “ 0

(56)

Iλ,χ7 “ γ0HSH

ĳ

pjx cosϕ` jy sinϕqQ
sin θ

∆

ˆ

y

cosχ
´∆ζ tanχ

˙

dxdy “ 0 (57)

so finally it is obtained

Bλ

Bχ
“ ´

µ0Ms

γ0

α

„

π2

6

w∆

cosχ
tan2 χ 9χ`

2

∆ cos3 χ

w3

12
9χ`

π2

6

tanχ

cosχ
w 9∆



(58)

Four equations relating the partial derivatives of the linear energy density and the
dynamic variables have been derived. However, a useful expression of such linear
energy density is still needed. Density energies given in chapter 2 are integrated in
order to calculate such an expression. The additive character of the energy allows us
to calculate each contribution separately and then, summing all contribution up to
get the total linear energy density.
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Exchange

From equation (2.35) and using (4) and (5) it can be derived

λexch “

ĳ

A

«

ˆ

Bθ

Bx

˙2

` sin2 θ

ˆ

Bϕ

Bx

˙2

`

ˆ

Bθ

By

˙2

` sin2 θ

ˆ

Bϕ

By

˙2
ff

dxdy “

“

ĳ

A

«

ˆ

sin θ

∆
cosχ

˙2

`

ˆ

sin θ

∆
sinχ

˙2
ff

dxdy “
2Aw

∆ cosχ

(59)

It should be pointed out that expression
´

~∇~m
¯2

“ |

´

~ux~∇
¯

~m|2 ` |
´

~uy ~∇
¯

~m|2 `

|

´

~uz ~∇
¯

~m|2 has been used.

Magnetic anisotropy

Taking (2.40) as the starting point, the linear magnetic anisotropy energy density in
the case of a uniform and homogeneous strip is

λanis “

ĳ

K0 ´K1 cos2 θdxdy “

ĳ

K1 sin2 θdxdy “
2K1∆w

cosχ
(60)

Nevertheless, systems with a variable magnetic anisotropy are also considered. It is
assumed that anisotropy might increase or decrease but always in a linear manner and
only along the x-direction. In fact, it is assumed a periodic change of the anisotropy.
So it is considered that anisotropy grows linearly from a minimum value K´

u to a
maximum value K`

u in a distance d1. Then, anisotropy decreases linearly from this
maximum value K`

u to the minimum one K´
u in a distance d2. It is also assumed that

the minimum value K´
u is still high enough to preserve the perpendicular anisotropy‡.

This profile is repeated periodically. The addition of d1 and d2 is called dt “ d1 ` d2

Ku “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

K´
u `

K`
u ´K

´
u

d1

ˆ

x´ dt

ˆZ

q

dt

^

´ n

˙˙

if dt

ˆZ

q

dt

^

´ n

˙

ă x ă dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙

K`
u ´

K`
u ´K

´
u

d2

ˆ

x´ dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙˙

if dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙

ă x ă dt

ˆZ

q

dt

^

´ pn´ 1q

˙

(61)

where tu stands for the floor function. So the linear magnetic anisotropy energy
density reads

λanis “

ĳ

K sin2 θdxdy “

ż

˜

m1
ÿ

n“´m

In ` I
1
n

¸

dy (62)

‡It should be pointed out that, from the magnetostatic point of view, this axis is the least
favorable.
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As long as K only change along x, it is possible to focus on this integral. Nevertheless,
comments about integral along y will be made along this subsection. So In and
I 1n are the integrals along x of the rise and fall intervals of the anisotropy function
respectively. Since there are m1 ` m of such integrals, the summation is needed,
which tends to infinity for and infinite strip. In that case, this limit is well defined
and addends due to slopes far from the DW vanish. It is worthy to highlight that
even though q appears in (61), the anisotropy does not depend on the DW -or even
on the existence of such a wall-. Any integer replacing the floor function leads to the
same profile. However, the above expression makes the following calculations easier
by choosing a proper coordinate origin, depending on the DW position.

First, In is considered, accounting for the linear anisotropy rising

In “

ż dt
´Y

q
dt

]

´

´

n´
d1
dt

¯¯

dt
´Y

q
dt

]

´n
¯

K´
u `

K`
u ´K

´
u

d1

ˆ

x´ dt

ˆZ

q

dt

^

´ n

˙˙

sin2 θdx “

“

ż ζmax

ζmin

K´
u `

K`
u ´K

´
u

d1

ˆ

Q∆ζ ` y sinχ

cosχ
` dt

ˆ"

q

dt

*

` n

˙˙

sin2 θ
Q∆

cosχ
dζ

(63)

with

ζmax “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´ y sinχ



ζmin “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´ n

˙

cosχ´ y sinχ



where x has been replaced by t, and the fact that q
dt
´

Y

q
dt

]

“

!

q
dt

)

is used, being

tu the fractional part function. In is computed term by term

I1
n “

ż ζmax

ζmin

K´
u sin2 θ

Q∆

cosχ
dζ “

“
∆K´

u

cosχ

„

tanh

„

dt
∆

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ

´

"

q

dt

*

´ n

˙

cosχ´
y

∆
sinχ



(64)

I2
n “

ż ζmax

ζmin

K`
u ´K

´
u

d1

dt

ˆ"

q

dt

*

` n

˙

sin2 θ
Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d1

dt∆

cosχ

ˆ"

q

dt

*

` n

˙„

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



(65)
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I3
n “

ż ζmax

ζmin

K`
u ´K

´
u

d1

Q∆ζ ` y sinχ

cosχ
sin2 θ

Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d1

ˆ

∆

cosχ

˙2
«

ζmax tanh ζmax ´ ζmin tanh ζmin`

` log

ˆ

cosh ζmin
cosh ζmax

˙

ff

(66)

where the term with y of I3
n has been discarded because it vanishes when integration

along y is made. In the case of the fall of the anisotropy, a similar expression can be
cast

I 1n “

ż dt
´Y

q
dt

]

´pn´1q
¯

dt
´Y

q
dt

]

´

´

n´
d1
dt

¯¯

K`
u ´

K`
u ´K

´
u

d2

ˆ

x´ dt

ˆZ

q

dt

^

´

ˆ

n´
d1

dt

˙˙˙

sin2 θdx “

“

ż ζ1max

ζ1min

K`
u ´

K`
u ´K

´
u

d2

ˆ

Q∆t` y sinχ

cosχ
` dt

ˆ"

q

dt

*

` n´
d1

dt

˙˙

sin2 θ
Q∆

cosχ
dζ

(67)

with

ζ 1max “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´ pn´ 1q

˙

cosχ´ y sinχ



ζ 1min “
Q

∆

„

dt

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´ y sinχ



So in this case

I
11
n “

ż ζ1max

ζ1min

K`
u sin2 θ

Q∆

cosχ
dζ “

“
∆K`

u

cosχ

„

tanh

„

dt
∆

ˆ

´

"

q

dt

*

´ pn´ 1q

˙

cosχ´
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ

´

"

q

dt

*

´

ˆ

n´
d1

dt

˙˙

cosχ´
y

∆
sinχ



(68)

I
12
n “

ż ζ1max

ζ1min

´
K`
u ´K

´
u

d2

dt

ˆ"

q

dt

*

` n´
d1

dt

˙

sin2 θ
Q∆

cosχ
dζ “

“
K`
u ´K

´
u

d2

dt∆

cosχ

ˆ"

q

dt

*

` n´
d1

dt

˙

«

tanh

„

dt
∆

ˆ"

q

dt

*

` pn´ 1q

˙

cosχ`
y

∆
sinχ



´

´ tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



ff

(69)
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I
13
n “

ż ζ1max

ζ1min

´
K`
u ´K

´
u

d2

ˆ

Q∆t` y sinχ

cosχ

˙

sin2 θ
Q∆

cosχ
dζ “

“ ´
K`
u ´K

´
u

d2

ˆ

∆

cosχ

˙2
«

ζ 1max tanh ζ 1max ´ ζ
1
min tanh ζ 1min`

` log

ˆ

cosh ζ 1min
cosh ζ 1max

˙

ff

(70)

At this point it can be assumed that DW width is much smaller than the anisotropy
period dt. This means that I1

n and I
11
n vanish for n ą 1 and n ă ´1. Then it can be

written

m1
ÿ

´m

I1
n “

∆K´
u

cosχ

«

1´
1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



`

`

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



ff (71)

m1
ÿ

´m

I
11
n “

∆K`
u

cosχ

«

1`
1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



´

´

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



ff (72)

Summing up both contributions one gets

A “
m1
ÿ

´m

I1
n ` I

11
n “

∆

cosχ

`

K`
u `K

´
u

˘

`

`
∆

cosχ

`

K`
u ´K

´
u

˘

«

´

0
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

` n

˙

cosχ`
y

∆
sinχ



`

`

1
ÿ

´1

tanh

„

dt
∆

ˆ"

q

dt

*

`

ˆ

n´
d1

dt

˙˙

cosχ`
y

∆
sinχ



ff

(73)

Again I2
n and I

12
n vanish for n ą 1 and n ă ´1. It can be defined an “

!

q
dt

)

` n so

in this case

m1
ÿ

´m

I2
n “

K`
u ´K

´
u

d1

dt∆

cosχ

«

1
ÿ

´1

an

„

tanh

ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

´

´ tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

(74)

m1
ÿ

´m

I
12
n “

K`
u ´K

´
u

d2

dt∆

cosχ

«

1
ÿ

´1

ˆ

an ´
d1

dt

˙

«

tanh

ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´ tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ffff

(75)
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and its addition is

B “
m1
ÿ

´m

I2
n ` I

12
n “

`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

an
d1

tanh

ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

`

`
1

d2

ˆ

an ´
d1

dt

˙

tanh

ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´

ˆ

an

ˆ

1

d1

`
1

d2

˙

´
d1

d2dt

˙

tanh

ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ff

(76)

It is convenient to work on tanh addends and log addends separately when taking
into account I3

n and I
13
n . In the case of tanh terms it can be written

cn “
`

K`
u ´K

´
u

˘ Q∆

cosχ

«

dt
d1

”

an tanh ζmin ´

ˆ

an ´
d1

dt

˙

tanh ζmax

ı

`

`
dt
d2

”

pan ´ 1q tanh ζ 1max ´

ˆ

an ´
d1

dt

˙

tanh ζ 1min

ı

ff (77)

where terms with y has been discarded as they vanish when making the integral
along y. It can be checked that for n ą 1 and n ă ´1 the integral vanishes again.
Then, taking into account that ζmax “ ζ 1min it is possible to write the addition

C “ ´
`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

an
d1

tanh

„ˆ

dt
∆
an cosχ`

y

∆
sinχ

˙

´

´

ˆ

1

d1

`
1

d2

˙ˆ

an ´
d1

dt

˙

tanh

„ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

`

`
1

d2

pan ´ 1q tanh

„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

ff

(78)

It can be checked that the addition of B (76) and C (78) cancels out most of their
addends

B ` C “
`

K`
u ´K

´
u

˘ dt∆

cosχ

1
ÿ

´1

«

1

d2

ˆ

1´
d1

dt

˙

tanh

„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

`

`

ˆ

d1

d2dt
´

dt
d1d2

d1

dt

˙

tanh

„ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ff

“

“
`

K`
u ´K

´
u

˘ ∆

cosχ

1
ÿ

´1

«

tanh

„ˆ

dt
∆
pan ´ 1q cosχ`

y

∆
sinχ

˙

´

´ tanh

„ˆ

dt
∆

ˆ

an ´
d1

dt

˙

cosχ`
y

∆
sinχ

˙

ff

(79)
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and finally summing A (73) up it is obtained

A`B ` C “
2∆

cosχ
K´
u (80)

where the assumption that ∆ ăă dt has been used. Finally, the log terms from I3
n

and I
13
n must be considered. It can be checked that for |n| ą 1

∆

d1

log

ˆ

cosh ζmin
cosh ζmax

˙

«
n

|n|

∆

d2

log

ˆ

cosh ζ 1max
cosh ζ 1min

˙

« ´
n

|n|

So the addition of log terms is

C 1 “
pK`

u ´K
´
u q∆

cos2 χ

m1
ÿ

´m

∆

d1

log

ˆ

cosh ζmin
cosh ζmax

˙

`
∆

d2

log

ˆ

cosh ζ 1max
cosh ζ 1min

˙

“

“
pK`

u ´K
´
u q∆

cos2 χ

”

pm1
´ 2q ´ pm´ 2q ´ pm1

´ 2q ` pm´ 2q
ı

`

`
pK`

u ´K
´
u q

cos2 χ

1
ÿ

´1

«

∆2

d1

log

¨

˝

cosh
`

dt
∆
an
˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚`
∆2

d2

log

¨

˝

cosh
`

dt
∆
pan ´ 1q

˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚

ff

(81)
Taking into account both, (80) and (81), the final expression for the linear magnetic
anisotropy energy density can be written as

λanis “
w∆

cosχ

«

2K´
u `

pK`
u ´K

´
u q

cosχ

1
ÿ

´1

∆

d1

log

¨

˝

cosh
`

dt
∆
an
˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚`

`
∆

d2

log

¨

˝

cosh
`

dt
∆
pan ´ 1q

˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚

ff

(82)

Expression (82) is still valid even though ∆ ăă dt is not true if just the summation
is extended to take into account more slopes. In order to derive the expression used
in chapters 11 and 12 it must be noticed that the limit when d2 Ñ 0 is

lim
d2Ñ0

1

d2

log
cosh dtan

∆

cosh
dt
´

an´
d1
dt

¯

∆

“
1

∆
tanh

ˆ

d1

∆
p1´ anq

˙

Magnetostatic terms

From equation (2.44) it is possible to derive the term accounting for the applied field

λext “ ´µ0

ĳ

Ms pHx sin θ cosϕ`Hy sin θ sinϕ`Hz cos θq dxdy “

“ ´µ0Ms
∆w

cosχ

´

πHx cos Φ` πHy sin Φ` 2QHzq
cosχ

∆

¯

(83)
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The accountant for the demagnetizing energy requires computing an expression for
the demagnetizing field, ~Hdmg “ ´N ~M . There always exists a proper coordinate
system for which the demagnetizing tensor N is diagonal, so the demagnetizing field
depends only on the diagonal components, Nx, Ny and Nz. Usually, this system
coincides with that defined in figure 4.1. However, when χ ‰ 0, both systems differ
by this angle χ as it is represented in figure 6. This means that expression (2.49)
depends on ω rather than ϕ.

udmg “
1

2
µ0M

2
s

`

Nxm
2
x `Nym

2
y `Nzm

2
z

˘

“

“
1

2
µ0M

2
s

“

sin2 θ
`

Nx cos2
pϕ´ χq `Ny sin2

pϕ´ χq ´Nz

˘

`Nz

‰

(84)

It is possible to drop off the constant since it does not affect the behavior of the
system. The linear demagnetizing energy density reads

λdmg “
1

2
µ0M

2
s

ĳ

sin2 θ
`

Nx cos2
pϕ´ χq `Ny sin2

pϕ´ χq ´Nz

˘

dxdy “

“
∆µ0M

2
sw

cosχ

`

Nx cos2
pΦ´ χq `Ny sin2

pΦ´ χq ´Nz

˘

(85)

Dzyaloshinskii-Moriya interaction

Finally, the term accounting for the DMI can be obtained from (2.51) taking into
account that in our case ~un “ ~uz

uDMI “ D
”

p~m~unq ~∇~m´ ~m~∇ p~m~uzq
ı

“

“ D

„

mz
Bmx

Bx
´mx

Bmz

Bx
`mz

Bmy

By
´my

Bmz

By

 (86)

This equation can be worked out so finally it can be expressed as

uDMI “ D

„

cos θ

ˆ

cos θ cosϕ
Bθ

Bx
´ sin θ sinϕ

Bϕ

Bx

˙

` sin θ cosϕ sin θ
Bθ

Bx
`

` cos θ

ˆ

cos θ sinϕ
Bθ

By
` sin θ cosϕ

Bϕ

By

˙

` sin2 θ sinϕ
Bθ

By



“

“ D

„

cosϕ
Bθ

Bx
` sinϕ

Bθ

By
´ sin θ cos θ sinϕ

Bϕ

Bx
` sin θ cos θ cosϕ

Bϕ

By



(87)

Recalling that ϕ is constant along the whole strip the expression for the linear DMI
energy density can be written as

λDMI “ D

ĳ
„

cosϕ
Bθ

Bx
` sinϕ

Bθ

By



dxdy “

“ D

ĳ
„

cosϕQ
sin θ

∆
cosχ` sinϕQ

sin θ

∆
sinχ



dxdy “

“
QπDw

cosχ
pcos Φ cosχ` sin Φ sinχq “

QπDw

cosχ
cos pΦ´ χq

(88)
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ImÃ°genesTesis2.1.pdf

Fig. 6: DW tilting angle and relationship between tilting angle χ, DW orientation Φ and
ω. Since demagnetizing tensor is diagonal for the primed system, is ω the angle to be used
for the demagnetizing energy.

Final expressions and comments

Adding all contributions up leads to an expression for the linear energy density

λ “
w

cosχ

«

2A

∆
´ µ0Ms∆

´

πHx cos Φ` πHy sin Φ` 2QHzq
cosχ

∆

¯

`

`∆µ0M
2
s

`

Nx cos2
pΦ´ χq `Ny sin2

pΦ´ χq ´Nz

˘

`

`QπD cos pΦ´ χq ` 2∆K´
u `

pK`
u ´K

´
u q∆2

cosχ
S pq,∆q

ff

(89)

where S is

S pq,∆q “
1
ÿ

´1

1

d1

log

¨

˝

cosh
`

dt
∆
an
˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚`
1

d2

log

¨

˝

cosh
`

dt
∆
pan ´ 1q

˘

cosh
´

dt
∆

´

an ´
d1

dt

¯¯

˛

‚

Taking into account (89), (19), (20), (21) and (22) it is possible to derive four
equations describing the system dynamics

Bλ

Bq
“ ´µ0wMs2QHz `

pK`
u ´K

´
u qw

cos2 χ

1
ÿ

´1

∆

d1

ˆ

tanh
dt
∆
an ´ tanh

dt
∆

ˆ

an ´
d1

dt

˙˙

`

∆

d2

ˆ

tanh
dt
∆
pan ´ 1q ´ tanh

dt
∆

ˆ

an ´
d1

dt

˙˙

“

“ ´
µ0Msw

γ0

”

α
2 9q

∆
cosχ`Q2 9Φ´

2bjξ

∆

ˆ

jx
J

cosχ`
jy
J

sinχ

˙

´

´γ0Q2Hz,th ´ γ0QπHSH pjx cos Φ` jy sin Φq
ı

(90)
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Bλ

Bϕ
“

w

cosχ

´

µ0Ms∆ pπHx sin Φ´ πHy cos Φq ´QπD sin pΦ´ χq`

`∆µ0M
2
s sin 2 pΦ´ χq pNy ´Nxq

¯

“

“
2µ0Msw

γ0

”

Q 9q ´
α∆ 9Φ

cosχ
´Qbj

ˆ

jx
J
`
jy
J

tanχ

˙

`

`γ0
∆

cosχ

π

2
p´Hx,th sin Φ`Hy,th cos Φq`

`γ0HRa
∆

cosχ

π

2
pjx cos Φ` jy sin Φq

ı

(91)

Bλ

B∆
“

w

cosχ

´

´2A

∆2
´ µ0Ms pπHx cos Φ` πHy sin Φq`

`µ0M
2
s

`

Nx cos2
pΦ´ χq `Ny sin2

pΦ´ χq ´Nz

˘

¯

`

`
2wK´

u

cosχ
`

2∆w

cosχ

pK`
u ´K

´
u q

cosχ
S pq,∆q´

´
dtw

d1

pK`
u ´K

´
u q

cos2 χ

1
ÿ

´1

ˆ

tanh
dt
∆
an ´ tanh

dt
∆

ˆ

an ´
d1

dt

˙˙

´

´
dtw

d2

pK`
u ´K

´
u q

cos2 χ

ˆ

tanh
dt
∆
pan ´ 1q ´ tanh

dt
∆

ˆ

an ´
d1

dt

˙˙

“

“ ´
µ0Ms

γ0

α
w

cosχ

π2

6

´

tanχ 9χ`
9∆

∆

¯

(92)

Bλ

Bχ
“ λ tanχ`

w

cosχ
r2Qµ0MsHzq sinχ`QπD sin pΦ´ χqs´

´
w

cosχ
∆µ0M

2
s

sin 2 pΦ´ χq

2
pNy ´Nxq`

`
pK`

u ´K
´
u qw∆2

cos2 χ
tanχS pq,∆q “

“ ´
µ0Ms

γ0

α

„

π2

6

w∆

cosχ
tan2 χ 9χ`

2

∆ cos3 χ

w3

12
9χ`

π2

6

tanχ

cosχ
w 9∆
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These expressions can be simplified by defining some additional parameters
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The above expressions become now
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The equation describing the time derivative of the DW position q is calculated
multiplying (94) by Qα and adding (95)
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where v0 “
∆γ0

1` α2
. In the same way, the time derivative of Φ is derived multiply-

ing (95) by ´Qα and adding (94)
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The time derivative of χ can be computed in a similar way multiplying (96) by
´ tanχ and summing it to (97)
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Now it is possible to find the time derivative of ∆ from (96) taking into account (100)
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(101)

Equations (98), (99), (100) and (101) describe in a simplified manner the dynamic
behaviour of the sample.
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1DM One dimensional model
AC Alternating current
AHE Anomalous Hall effect
BC Boundary condition
BDW Bloch wall
DC Direct current
DW Domain wall
DDW Dzyaloshinskii domain wall
FFT Fast Fourier Transform
FM Ferromagnetic
GMR Giant magnetoresistance
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iDMI Interfacial Dzyaloshinskii-Moriya interaction
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RF Radio frequency
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SOC Spin-orbit coupling
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µMag Micromagnetic
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1.1 Sketch of (a) Bloch domain walls and (b) Néel domain walls. Since Néel

domain walls are quiral due to the DMI, magnetization is directed along
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metric scattering as a function of the electron spin. As a consequence,
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4.1 Generic considered system. Infinite strip of width w and thickness t for
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system employed: x is the axis for which the strip is infinite, while y and z

are the transversal ones. The strip width along y-axis is w, and its thickness

along z equals t. It can be checked that the azimuthal ϕ and polar θ angles
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5.2 Anomalous Hall voltage measurements device. The sample holder
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5.3 Hysteresis loops from a sample with high PMA for (a) perpendicular
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5.4 Experimental setup for polar MOKE measurements. The main com-
ponents are indicated: the light source, the sample, the detector and
the two polarizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 (a) and (b) MOKE images obtained after normalizing the images to a
reference one. (c) difference between (a) and (b). . . . . . . . . . . . 66

6.1 Definition of the geometry and some of the magnitudes involved in this

study, in particular, the applied stimuli in the form of out-of-plane magnetic

fields Hz and longitudinal currents jx. Some DDW static configurations

are also depicted. In particular, subfigures (a), (b) and (c) show how

the chiral character of the DMI forces the longitudinal component of the

magnetization mx within a DW to rotate either clock- or counterclockwise,

but not both. However, the transversal component of the magnetization my

is achiral, so that, this component is free to rotate within the DW. In this

way, this rotation can take either the same direction within two consecutive

DWs, as in subfigure (b), or different directions, as in subfigures (a) and (c). 74

6.2 DDW dynamics under the influence of an out-of-plane external field. In

these graphs, h represents a normalized value as it has been defined along

the text. Positive h-values stand for fields applied along the direction

of the magnetization in the up-domain, while negative values stand for

fields applied in the opposite direction, i.e., the magnetization in the

down-domain. q represents the instantaneous DDW position, and v is the

instantaneous speed. Φ corresponds to the DW magnetization orientation.

Plots correspond to the numerical calculation of eqs.(6.3) and (6.4). Figure

a) is obtained for applied fields of h “ ˘0.23, and figure b) is obtained

for applied fields of h “ ˘0.88. The sign of the applied field may promote

completely different DDW dynamics. . . . . . . . . . . . . . . . . . . . . 76

6.3 Comparison between micromagnetic simulations and the predictions of the

1DM analytical model. Different signs of the applied fields lead to different

behaviors of the DDW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Dependence of the DW magnetization orientation at stationary motion

on the applied out-of-plane field with HD
HK

as a parameter. While both

Bloch and Néel walls present symmetric behavior, DDWs present a clear

asymmetry with the applied field governed by the strength of the DMI. . . 78

6.5 Current-driven DDW dynamics under the influence of SHE for positive

and negative longitudinal currents as calculated analytically with the help

of the 1DM. As in the case of the field-driven dynamics, asymmetry with

the sign of the stimulus is also noticeable. . . . . . . . . . . . . . . . . . 79

6.6 Dependence of the DDW terminal speed at stationary motion on the

applied longitudinal current due to SHE. The h-value in the graph is defined

as proportional to the current density (see text). The graph compares

micromagnetic simulations and the results obtained from the 1DM model.

A noticeable asymmetry is found if the stimulus is reversed, leading to a

sharp transition of the terminal speed in a certain range of applied currents. 80
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6.7 Dependence of the DW magnetization orientation at stationary motion on

current through the normalized h-value (see text) with HD
HK

as a parameter.

It is shown that Néel walls present symmetric behavior, while DDWs present

a hysteretic-like behavior. As a consequence, a DDW may reach different

terminal speeds depending on either the sign of the current or its initial

orientation at rest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Schematic representation of a) Bloch domain wall, b) weak Dzyaloshinskii

domain wall for a material with negative DMI constant, c) Néel domain wall

and inset b) domain wall orientation ( Φ ) with respect to the longitudinal

in-plane axis (x) as the one dimensional model defines it. . . . . . . . . . 86

7.1 Schematic description of the six DW stationary states defined in Section 7.2.

Each state results from the balance of the torques associated with the ap-

plied stimuli, as either out-of-plane field (Hz) or longitudinal current (ja),

and the intrinsic interactions within the magnetic material in form of mag-

netostatic (Hk) and Dzyaloshinskii-Moriya (HD) contributions. A positive

DMI parameter has been considered in this table. Since the direction of

the torques depends on the actual DW magnetization orientation Φ , four

columns have been established so as to consider Φ-values ranging within

any of the four quadrants. Red/blue boxes indicate positive/negative values

for the applied stimuli, as further defined in the text. Even though sixteen

combinations are possible, four of them can be discarded. Those are the

cases when either all torques act likewise, so that 9Φ never vanishes, and a

non stationary state (ns) is reached, or states when the torque associated

with the current ja oposses the other three torques. The latter case require

that the DW magnetization orientation lays on either the first or the fourth

quadrant, which cannot be achieved from equilibrium unless the torque due

to the applied field oposses the effect of the DMI, i.e., the applied field and

the DMI must act oppositely. These are then non achievable states (na).

The other twelve can be grouped into only six twin states, in agreement

with the state degeneracy that is to be explained in Section 7.3. According

to the discussion in that section, each twin state can be separated into

a green and a blue-purple state, as the colored boxes within the row of

possible states reflect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 DW angle as a function of the applied field h (perpendicular) and the applied

current j (through heavy metal) for a DMI parameter of D “ 2 ¨ 10´5J{m2

obtained from: a) full µM simulations and b) the application of the 1DM.

The black area corresponds to pairs of field and current values leading

to a non-stationary, i.e., precessional regime. An abrupt change of the

orientation of the wall for specific pairs of values of the applied field and

current may also occur, as discontinuities in the color map indicate (see text). 88
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7.3 Transient behavior of a DDW after the combined application of a reduced

field h=0. 10 , and a reduced current of j=0. 35 . Plots represent the

DW instantaneous position q, speed 9q, and orientation angle Φ, but taking

into account the two possible equilibrium states for the wDDW have been

considered as the respective initial states for the curves, which have been

named as “green” and “blue”, according to the color maps in Fig. 7.2. This

point can be also checked in the initial DW orientation angle, being close

to 120o for the “green” state, and close to ´120o for the “blue” state. . . . 90

7.4 Transient behavior of two DDWs after the combined application of a

reduced field h=0. 085 , and a reduced current of j=0. 44 . Plots represent

the DW instantaneous positions q, speeds 9q, and orientation angles Φ, the

latter defined now within the range r0o : 360os, so as to better show the

DW inner magnetization sharp reorientation during the dynamics. The

two possible equilibrium states for the DWs have been considered as the

respective initial states for the curves, which have been named as “green”

and “blue”, according to the color maps in Fig. 7.2. This point can be

also checked in the respective initial DW orientation angles, being close to

120o for the “green” state, and close to 240o(“ ´120o) for the “blue” state.

Both wDDWs reach identical stationary regimes, but the reorientation

process gives rise to rather different run distances. . . . . . . . . . . . . . 91

7.5 DW angle as a function of applied field (perpendicular) and applied current

(through heavy metal) for a DMI parameter of D “ 4.77 ¨ 10´5J{m2 pδ “ 1q

obtained from a) full µM simulations and b) the application of the 1DM.

The black area corresponds to pairs of field and current values leading to a

precessional regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 DW dynamics along different strips with different orientations with respect

to the current. (a) Initial state of up–down DWs. (b) Forward displacement

of the DWs (dF ) under five positive current pulses (2ns at J “ `2TA{m2).

Grey dotted lines represent the initial positions of the DW in each strip. The

DW displacement is shown by plotting the differential images ∆mz prq “

mz,f prq ´mz,i prq, where the sub-indexes i and f indicate the initial and

final states, respectively. (c) Backward displacement of the DWs (dB) under

five negative current pulses (2ns at J “ ´2TA{m2). Black dotted lines

represent the initial positions of the DW in each strip. (d)–(f) correspond

to a similar study but starting from a down–up DW. (g)-(i) Semibubble

DW dynamics under five positive current pulses (1ns at J “ `1TA{m2) at

zero and at room temperature. . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Snapshots of the DW displacement after t “ 10ns under DCs of | J |“

2TA{m2 injected in the HM with different orientations (φJ) with respect

to the FM strip axis (φS “ 0): (a) up–down DW, (b) down–up DW. The

FM strip is ideal, without imperfections. . . . . . . . . . . . . . . . . . . 101
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8.3 (a) Schematic representation of a tilted DW with the definitions of the

DW angle (Φ) and the tilting angle of the DW plane (ξ). (b) Definition

of the direction of the injected current (φJ). DW displacement after

t “ 10ns under DCs of | J |“ 2TA “ m2 injected in the HM with different

orientations (φJ) with respect to the FM strip axis (φS “ 0). Left graphs

(c, d, g) correspond to the up–down DW. Right graphs (e, f, g) correspond

to the down–up DW. The FM strip is ideal, without imperfections, and the

results were obtained at zero temperature. The DWs are initially placed at

the center of the strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4 Displacement of the up–down DW as a function of the DC (J) for different

orientations of the injected current (φJ): (a) Perfect strip (PS), without

imperfections at zero temperature. (b) Results obtained for a realistic strip

(RS), which has edge roughness and a dispersion of the out-of-plane easy

axis. (c) and (d) show the comparison of the DW displacement between

PS and RS for two different amplitudes of the DC: | J |“ 0.8TA{m2 and

| J |“ 2TA{m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.1 (a) Schematic view and dimensions of the S-shaped FM device along

with the vertical HM/FM structure. Spatial distribution of the current

density (J prq) for the bulk (b1) and thin-films (b2) resistivities. Green

color correspond to the current density in the conductive HM underlayer.

(c) Temporal evolution of the device temperature for a series of pulses

of 2TA{m2. (d) Temperature in the FM dots as function of the current

density in the HM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.2 Micromagnetically computed inversion of S-shaped device for the up-up

initial state. Blue and red represent up and down magnetization respectively.

White arrow indicates the electric current direction in the HM. Black arrow

indicates the faster up-down DW speed while the grey arrow indicates the

slower down-up DW speed. Circle indicates the point where a single DW

triggers the switching of the element. Images correspond to representative

snapshots of the temporal evolution of the magnetization under a series of

8 current pulses with J “ ´3TA{m2 and length of tp “ 4ns. . . . . . . . . 111

9.3 Switching probability for the left and right S-shaped elements as a function

of the applied current starting from the up-up (a) and down-down (b) initial

states. Full and open symbols correspond to the left and right elements

respectively. I, II and III correspond to the no switching, switching and

stochastic regions respectively. The open circle in the snapshots at the

bottom indicate the corner where the nucleation of the DW which leads to

the switching. Error bars indicate the standard deviation from the mean

value computed from each realization and initial state. . . . . . . . . . . 112
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10.1 Run distances for DWs in FM strips due to SOT. Pictures (a) to (d)

mimic by means of µMag simulations the experimental evidences [78]

(see text). The initial magnetization state is presented in (a)/(c) for the

up-down/down-up configuration, while (b) and (d) represent the DWs

displacements after the application of the current pulses in the direction

given by the adjacent arrows. Besides, the subfigures in the upper-right

corner present the direction of the injected current and an up-down DW

in a FM strip. (e) An unequal dynamics for up-down and down-up DWs,

also depending on the relative angle φJ between the orientation of the FM

strip and the direction of ~J is revealed. [78, 153] . . . . . . . . . . . . . . 118

10.2 Current distribution and Joule heating for the device under study. The

geometry parameters of both U-shaped elements, together with the layer

thicknesses are drawn. The thin-film resistivity model is considered (see

text). (a) shows that current flows uniformly through both the FM and

HM layers, although the current density is higher for the latter. This

leads to an almost uniform heating of the HM-FM ensemble (b). The

stationary temperature as a function of the current density is plotted in

(c). This temperature is rapidly reached as soon as the current is injected

and decreases to room temperature once the current ceases (d). . . . . . . 119

10.3 Micromagnetically computed magnetization switching of couples of U-

shaped and inverse U-shaped elements due to the injection of a train of

current pulses along the direction that the arrows at the left indicate. Each

row depicts several initial states (t “ 0 column) of the upper and the lower

element, either up for the white elements or down for the black elements,

depending on the sign of the out-of-plane magnetization component. The

ordinal #N accounts for the number of applied pulses, i.e, the simulation

time. A total number of pulses N “ 8, with amplitude J “ 3TA
m2 and

duration tp “ 4ns were applied (only the first six pulses are shown).

Magnetization reversal occurs at the corners determined by the current

polarity. DWs appearing at these corners have unequal current-driven

propagation, resulting in complete or frustrated magnetization switching

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.4 Switching probabilities of couples of U-shaped and inverse U-shaped elements

starting from either an (a) up-up or (b) down-down initial state. Open/full

symbols correspond to the upper/lower element. Vertical error bars reflects

the statistical standard deviation. Complete up-to-down switching for the

upper/lower element is achieved for negative/positive currents. Conversely,

complete down-to-up switching for the upper/lower element is achieved for

positive/negative currents. No switching occurs otherwise. The open circle

in the snapshots at the bottom indicate the corner where the nucleation of

DWs leading to complete switching occurs, due to the current driven DW

dynamics afterwards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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10.5 Effect of the out-of-plane component of the Slonczewskii effective field due

to the SHE on the magnetization at the corners of the spikes. The in-plane

component of the magnetization determines the orientation of this field and

so whether this effective field favors the destabilization of the magnetization

and the nucleation of DWs. Each nucleated DW travels at a speed, either

~vud or ~vdu, which can be estimated from the plots in (e). These plots

present the DW displacement vs. its relative orientation φ with respect to
~J, as derived from the results in the graph in Fig. 10.1(e). Pink squares

indicate for each initial state (up/down) and current polarity (J ą 0/J ă 0)

the corners where the DWs responsible for complete switching attempts

are nucleated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.1 Description of the system under study. A stack consisting of a FM strip

of width w and thickness tFM sandwiched between a HM and an Oxide

is considered. The FM layer exhibits high PMA, but such an anisotropy

is tailored to present a sawtooth profile along the longitudinal direction

(x). This ratchet profile is defined by two extreme values K`
u and K´

u ,

and its periodicity is given by a distance d. All minima define subsequent

equilibrium positions where DWs get pinned. . . . . . . . . . . . . . . . 130

11.2 Periodic anisotropy profile Ku “ Ku pxq and corresponding local pinning

PMA field r pqq ” HPMA pqq {H
0
PMA as function of the DW position q.

The period of the anisotropy profile is d “ d1 ` d2. (a) General case with

d1 ą d2. (b) Ratchet case with period d “ d1 and d2 “ 0. In both cases

K´
u “ 1MJ{m3 and K`

u “ 1.27MJ{m3. . . . . . . . . . . . . . . . . . . . 134

11.3 Micromagnetic results of the field-driven DW motion along a ratchet

strip. (a) shows the bipolar field pulse needed to shift the bit along the

positive direction of the x-axis. The amplitude of the bipolar field pulse is

Be “ 50mT, and it is negative during the first 2ns and positive from 2ns to

4ns. The other two panels depict transient magnetization snapshots of the
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Materials parameters are those given in Sec. 11.2. Results were obtained
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11.6 Temperature dynamics under current pulses as computed by COMSOL

simulations. (a) Cross section of the multilayer studied by COMSOL simu-

lations for the heat transport under current pulses. (b) Thermal parameters

used in the simulations. (c) Temporal evolution of the temperature for three
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temperature reached at the end of the current pulse (Tmax “ T pt “ teq)
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11.7 (a) Probability of single jumps of one DW after the application of one
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A duty cycle of 50% is considered in both cases. (c) Applied current as a
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with 50% and 33% duty cycles. Probabilities are calculated over 100000
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both cases, while the relaxing times are tr “ 1ns for the 50% duty cycle

and tr “ 2ns for the 33% duty cycle. . . . . . . . . . . . . . . . . . . . . 142
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strip: (a) perfect vs (b) realistic strips. µM simulations were performed

with the inputs given in Sec. 11.2 and at room temperature. Here the

amplitude of the current pulse is Ja “ 0.65TA{m2 and two consecutive

current-pulses of te “ 2ns and tr “ 4ns are applied. The anisotropy profile

and the x-component of the uniaxial easy axis are shown on top of the

snapshots. In (b), bulk grains and edge roughness are taken into account

as described in Sec. 11.2.1. Snapshots from top to bottom correspond to

different magnetization states at consecutive instants of time. The temporal

evolution of the DW position is plot in (c). . . . . . . . . . . . . . . . . 144

11.9 Micromagnetically computed probability of single jumps of one DW over

twenty attempts with constant DMI parameter (open symbols) and with a

linear variation of the DMI parameter (filled symbols). In the first case
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11.10Periodic triangular PMA profile (Ku pxq, Eq. (11.5)) to promote DW motion
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0
PMA along the strip axis (Eq. (11.8)). (b) Two current
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0.5TA{m2 (red) and Ja “ 0.6TA{m2 (green). (c) Temporal evolution of the
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11.11Micromagnetic analysis of the current-driven DW motion in bi-directional

devices. A perfect strip at zero temperature is considered. The perpen-

dicular anisotropy periodically increases and decreases linearly between

K´
u “ 1.1MJ{m3 and K´

u “ 1.27MJ{m3 within a distance d1 “ d2 “

d{2 “ 128nm. The rest of inputs are those given in 11.2.1. The bit size,

defined as the distance between two adjacent energy minima, is bs “ d.

The anisotropy profile along the ferromagnetic strip axis is shown in (b),

while the two current pulses (Ja “ 0.8TA{m2 and te “ 2ns) injected to

promote forward and backward longitudinal displacement of the two DWs

are plotted in (a). Transient snapshots of consecutive magnetic states are

shown in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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